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Abstract. The subject of this paper is quantum walks, which are ex-
pected to simulate several kinds of quantum dynamical systems. In this paper,

we define analyticity for quantum walks on Z. Almost all the quantum walks
on Z which have been already studied are analytic. In the framework of ana-
lytic quantum walks, we can enlarge the theory of quantum walks. We obtain
not only several generalizations of known results, but also new types of the-

orems. It is proved that every analytic space-homogeneous quantum walk on
Z is essentially a composite of shift operators and continuous-time analytic
space-homogeneous quantum walks. We also prove existence of the weak limit
distribution for analytic space-homogeneous quantum walks on Z.

1. Introduction.

In this paper, we study a kind of dynamical systems called quantum walks. Many

researchers have already studied the subject in several different frameworks (see [Mey96],

[ABN+01] for example). They commonly make use of the following items:

• the Hilbert space H = ℓ2(X)⊗ Cn defined on a (discrete) metric space X,

• a unitary operator U on ℓ2(X)⊗ Cn,

• and a unit vector ξ in the Hilbert space.

The metric space X is usually associated to some graph (see [Por18]). In some case,

X is the set of symmetric arcs, In other case, X is the vertex set. The sequence (or

1-parameter family) of unit vectors {U tξ}t defines a probability measure on the space

X, which has attracted much attention (see [Kon05], [GJS04], etc.).

In this paper, we focus on the case that the space X is given by the set Z of integers

and that the unitary operator U is space-homogeneous. The following are aims of this

paper:

• We will prove a structure theorem on such a walk U (Theorem 5.7).

• The walk U can be constructed from shift operators and continuous-time space-

homogeneous quantum walks on Z (Theorem 5.13).

• We will prove that the eigenvalue functions introduced in Definition 4.9 determine

when U is a restriction of a continuous-time space-homogeneous quantum walk

(Theorem 5.14).
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• The walk U always has weak limit distribution for every initial unit vector ξ which

rapidly decreases. Its precise statement is given in Theorem 6.4.

Theorem 5.7 means that every space-homogeneous quantum walk on Z is essentially a

direct sum of model quantum walks. The model quantum walk Ud,λ is introduced in

subsection 5.1. They are labeled by a pair of a natural number d and an analytic map

λ : T → T. Our new framework of quantum walks is large enough to include all the model

quantum walks.

To state above theorems in this paper, we need to clarify the definition of quantum

walks. Throughout this paper, we always require analyticity in the sense of Definition 3.1

for quantum walks. This assumption is so weak that almost all known examples satisfy.

We need complex analysis on the Fourier dual of the quantum walk. Requirement of

analyticity on the walk enables us to use Riemann surfaces. Many mathematicians and

physicists have already used Fourier analysis on quantum walks. Combining with complex

analysis, we can extend the study further.

In Section 6, we prove existence of the weak limit distribution for every analytic

space-homogeneous quantum walk. Grimmet, Janson, and Scudo stated this theorem in

[GJS04] and our argument follows their excellent idea. The paper [GJS04] does not

explicitly define quantum walks. This is one of the reasons why it is difficult for the

readers to check the claims in [GJS04]. They put explicit and implicit assumptions

(see Remark 6.5). In Subsection 9.2, we construct an example for which an implicit

assumption in [GJS04] does not hold. The authors think that it is unnatural to exclude

the example from the class of quantum walks.

In Section 8, we prove that every analytic space-homogeneous quantum walk on Z is

a solution of algebraic equation, whose coefficients are elements of an operator algebra.

The authors expect that there might be more algebraic way of the definition of quantum

walks, which enlarges the scope of our study further.

In Section 9, we examine a new example of quantum walks, as well as known exam-

ples. If the readers want to start with concrete examples, the authors recommend them

to see Section 9 first.

2. Preliminary on vector-valued analytic maps.

This paper completely relies on complex analysis. To study the inverse Fourier dual

of quantum walk, in Subsection 4.4, we construct analytic sections of eigenvectors. For

the argument, we prepare a couple of lemmata. Let T be the set of complex numbers

whose absolute values are 1.

Lemma 2.1. Let x : T → Cn be an analytic map. Suppose that the map x is not the

constant map 0. Then there exists an analytic map v : T → Cn satisfying the following

conditions :

• for every z ∈ T, ∥v(z)∥ = 1,

• for every z ∈ T, x(z) ∈ Cv(z).

We call v a normalization of x.
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Proof. For k = 1, 2, . . . , n, let xk : T → C be the k-th entry of the analytic map

x : T → Cn. There exists an open neighborhood Ω of T such that Ω is invariant under

the reflexion z 7→ 1/z and that xk : T → C admits an analytic (or holomorphic) extension

xk : Ω → C,

for every k. Define x∗
k : Ω → C by the reflection xk(1/z). Note that x∗

k is analytic on Ω

and that the equation x∗
k = xk holds on T.

Consider the analytic function

z 7→
n∑

k=1

x∗
k(z)xk(z)

defined on Ω. If the function has no zero on T, then the map

v(z) =
x(z)√∑n

k=1 x
∗
k(z)xk(z)

,

satisfies the conditions in the lemma.

Consider the case that there exists a zero of analytic function

z 7→
n∑

k=1

x∗
k(z)xk(z)

on T. Note that the order of the zero on T is even. There exist analytic functions

∥x∥+ : T \ {−1} → R,
∥x∥− : T \ {1} → R,

satisfying that

∥x∥+(z)2 =
n∑

k=1

x∗
k(z)xk(z), z ∈ T \ {−1},

∥x∥−(z)2 =

n∑
k=1

x∗
k(z)xk(z), z ∈ T \ {1},

and that ∥x∥+(z) = ∥x∥−(z) on the intersection of the upper half plane and T. Note

that on the intersection of the lower half plane and T, ∥x∥−(z) is identical to ∥x∥+(z) or
−∥x∥+(z).

If z ∈ T is a zero of ∥x∥+ or ∥x∥−, then the order coincides with

min
1≤k≤n

(the order of zero of xk at z).

This means that the singular points of

z 7→ x(z)

∥x∥+(z)
, z 7→ x(z)

∥x∥−(z)
,
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on T are removable. If ∥x∥−(z) is identical to ∥x∥+(z) on the intersection of the lower

half plane and T, define v(z) by

x(z)

∥x∥+(z)
=

x(z)

∥x∥−(z)
.

We finish the proof in such a case.

Consider the case that

∥x∥−(z) = ∥x∥+(z), z ∈ T, Im(z) > 0,

∥x∥−(z) = −∥x∥+(z), z ∈ T, Im(z) < 0.

Define v by

v(exp(iθ1)) = exp

(
iθ1
2

)
x(exp(iθ1))

∥x∥+(exp(iθ1))
, −π < θ1 < π,

v(exp(iθ2)) = exp

(
iθ2
2

)
x(exp(iθ2))

∥x∥−(exp(iθ2))
, 0 < θ2 < 2π.

This defines a single-valued function, because for every −π < θ1 < π and π < θ2 < 2π,

if θ2 − θ1 = 2π, then exp(iθ1/2) = − exp(iθ2/2). □

Lemma 2.2. Let x(1),x(2), . . . ,x(d) : T → Cn be a collection of analytic maps.

Suppose that on a coset of a finite subset of T, the vectors

{x(1)(z),x(2)(z), . . . ,x(d)(z)}

are linearly independent. Then there exist analytic maps

v(1),v(2), . . . ,v(d) : T → Cn

satisfying the following conditions :

• for every z ∈ T, {v(1)(z),v(2)(z), . . . ,v(d)(z)} forms an orthonormal system,

• for every z ∈ T, x(1)(z),x(2)(z), . . . ,x(d)(z) are elements of the linear span of

{v(1)(z),v(2)(z), . . . ,v(d)(z)}.

Proof. The Gram–Schmidt process works in our framework.

Because the map x(1) is analytic and not the constant map 0, by Lemma 2.1, there

exists an analytic map v(1) which is a normalization of x(1). Note that on a coset of a

finite subset of T, Cx(1)(z) = Cv(1)(z).

On T, define y(2)(z) by

y(2)(z) = x(2)(z)− ⟨x(2)(z),v(1)(z)⟩v(1)(z).

For k = 1, 2, . . . , n, the complex conjugate v
(1)
k (z) of the k-th entry of v(1)(z) is an

analytic function on T, because it is identical to v
(1)
k (1/z). It follows that the map
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y(2)(z) is also an analytic map on T. Because on a coset of finite subset of T, x(2)(z) is

linearly independent of Cv(1)(z), y(2) is not the constant map 0. Again by Lemma 2.1,

there exists an analytic map v(2) which is a normalization of y(2). Because v(2)(z) is

perpendicular to v(1)(z) on a coset of a finite subset of T, {v(1)(z),v(2)(z)} forms an

orthonormal system on the coset. By the continuity, the vectors form an orthonormal

system for every z ∈ T. On T, we have

x(1)(z) ∈ Cv(1)(z), y(2)(z) = x(2)(z)− ⟨x(2)(z),v(1)(z)⟩v(1)(z) ∈ Cv(2)(z).

It follows that

span{x(1)(z),x(2)(z)} ⊂ span{v(1)(z),v(2)(z)}.

On a coset of a finite subset of T, the vectors x(1)(z), x(2)(z) are linearly independent,

and therefore the above two subspaces coincide.

On T, define y(3)(z) by

y(3)(z) = x(3)(z)− ⟨x(3)(z),v(1)(z)⟩v(1)(z)− ⟨x(3)(z),v(2)(z)⟩v(2)(z), z ∈ T.

Since the complex conjugates of the entries of v(1), v(2) are analytic functions on T,
the map y(3) is also analytic on T. Because on a coset of a finite subset of T, x(3)(z)

is linearly independent of span{v(1)(z),v(2)(z)} = span{x(1)(z),x(2)(z)}, y(3) is not the

constant map 0. Again by Lemma 2.1, there exists an analytic map v(3) which is a

normalization of y(3). On a coset of a finite subset of T, {v(1)(z),v(2)(z),v(3)(z)} forms

an orthonormal system. By the continuity, on T, the system is orthonormal. On T, we
have y(3)(z) ∈ Cv(3)(z). It follows that

span{x(1)(z),x(2)(z),x(3)(z)} ⊂ span{v(1)(z),v(2)(z),v(3)(z)}.

On a coset of a finite subset of T, the above two subspaces coincide.

Repeating this procedure, we obtain an orthonormal system in the lemma. □

We note that two subspaces

span{x(1)(z), . . . ,x(d)(z)} ⊂ span{v(1)(z), . . . ,v(d)(z)}

coincide on a coset of a finite subset of T.

3. Quantum walks on ℓ2(Z) ⊗ Cn and Analyticity.

The subject of this paper is a unitary operator satisfying the following conditions.

Let n be a natural number. Consider a bounded linear operator X on ℓ2(Z) ⊗ Cn.

The matrix expression

[X((s, k), (t, l))](s,k),(t,l)∈Z×{1,2,...,n}

of X is given by

X((s, k), (t, l)) = ⟨X(δt ⊗ δl), δs ⊗ δk⟩.
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Definition 3.1. (1) The operator X is said to be in the C∞-class, if for every

natural number N , the set{
(1 + |s− t|2)NX((s, k), (t, l)) | s, t ∈ Z, k, l ∈ {1, 2, . . . , n}

}
is bounded.

(2) The operator X is said to be analytic, if there exist constants 0 < c and 1 < r

satisfying that for every k, l, s, t

|X((s, k), (t, l))| ≤ cr−|s−t|.

(3) The operator X is said to have finite propagation, if there exists a constant 1 ≤ R

satisfying that for every k, l, s, t

X((s, k), (t, l)) = 0,

whenever |s− t| is greater than R (see e.g. [NY12, Definition 5.9.2]).

(4) The operator X is said to be homogeneous or space-homogeneous, if the matrix

coefficient X((s, k), (t, l)) depends only on k, l, and s− t.

Note that for an operator X on ℓ2(Z)⊗ Cn.

• The operator X is analytic, if it has finite propagation.

• The operator X is in the C∞-class, if it is analytic.

• The operator X is bounded, if it is in the C∞-class.

We often identify a vector in ℓ2(Z)⊗ Cn with a column vector whose entries are ℓ2
functions on Z. Every bounded linear operator on ℓ2(Z)⊗Cn = ℓ2(Z)n can be expressed

by an (n× n)-matrix whose entries are bounded linear operator acting on ℓ2(Z).
The adjoint operator X∗ of the bounded linear operator X = [X((s, k), (t, l))] is

given by

X∗ = [X∗((s, k), (t, l))] =
[
X((t, l), (s, k))

]
.

In the case that X and X∗ are preserving norms of vectors, we call X a unitary operator.

In such a case, X∗ is the inverse of X.

For s ∈ Z, let Ss be the unitary operator on ℓ2(Z) defined by the shift

δt 7→ δs+t, t ∈ Z.

A homogeneous operator X = [X((s, k), (t, l))] can be expressed by infinite sums[∑
s

Xk,l(s)Ss

]
1≤k,l≤n

,
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where the coefficient Xk,l(s− t) is given by X((s, k), (t, l)). In the case that X is in the

C∞-class, the infinite sums are given by operator norm convergence.

It is not hard to see that the following classes of unitary operators form groups:

• unitary operators in the C∞-class,

• analytic unitary operators,

• unitary operators with finite propagation,

• homogeneous unitary operators.

We give a definition of quantum walks on Z.

Definition 3.2. Let t 7→ U (t) be a group homomorphism from a closed subgroup

G ∈ R to the group consisting of unitary operators acting on ℓ2(Z)⊗ Cn. Note that the

group G is R or of the form cZ.

• The group homomorphism is called a continuous-time quantum walk on Z, if the
group G is R and the homomorphism is continuous with respect to weak operator

topology.

• The group homomorphism is called a discrete-time quantum walk on Z or simply

a quantum walk on Z, if the group G is of the form cZ.

• The quantum walk is said to be in the C∞-class, if U (t) is a unitary operator in

the C∞-class for every t ∈ G.

• The quantum walk is said to be analytic, if U (t) is an analytic unitary operator for

every t ∈ G.

• The quantum walk is said to have finite propagation, if U (t) has finite propagation

for every t ∈ G.

• The quantum walk is said to be space-homogeneous, or more simply homogeneous

if U (t) is a homogeneous unitary operator for every t ∈ G.

Example 3.3. Almost all discrete-time space-homogeneous quantum walks on Z
have finite propagation. Therefore, they are analytic unitary operators. For example,

the Hadamard quantum walk have finite propagation. See [ABN+01] for examples of

quantum walks on Z.

4. Fourier and complex analysis for quantum walks on Z.

In this section, we define and discuss the inverse Fourier transform Û of a discrete-

time analytic homogeneous quantum walk U on Z. Such a transform defines a map

z 7→ Û(z) from T to unitary operators acting on Cn. The goal of this section is to

construct analytic sections of eigenvectors of Û(z) which form an orthonormal basis of

each fiber Cn. The main ingredient is analyticity of the map z 7→ Û(z).
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4.1. Inverse Fourier transform for homogeneous operators and quantum

walks.

Our discussion will completely rely on Fourier analysis. We express the Pontryagin

dual of Z by T = {z ∈ C | |z| = 1}. The inverse Fourier transform F−1 is given by the

unitary operator

F−1 : ℓ2(Z) ∋ δs 7→ zs ∈ L2(T).

For a bounded linear operator X on ℓ2(Z) ⊗ Cn, we call the bounded linear operator

X̂ = (F−1 ⊗ id)X(F ⊗ id) acting on L2(T)⊗ Cn the inverse Fourier transform of X.

In the case that X is a homogeneous operator, X can be expressed as

X =

[∑
s∈Z

Xk,l(s)Ss

]
1≤k,l≤n

,

and the (k, l)-entry of the inverse Fourier transform X̂ is the multiplication operator by

the function ∑
s∈Z

Xk,l(s)z
s ∈ L∞(T)

on T. For a continuous function η on T, we often identify the function η and the multi-

plication operator

L2(T) ∋ ξ 7→ ηξ ∈ L2(T).

Sometimes, to emphasize that η gives a multiplication operator, we denote by M [η] the

operator.

Lemma 4.1. For the homogeneous operator X on ℓ2(Z)⊗Cn, we have the following :

(1) The operator X is in the C∞-class, if and only if every entry of X̂ is a smooth

function.

(2) The operator X is analytic, if and only if every entry of X̂ is an analytic function

defined on a neighborhood of T.

(3) The operator X has finite propagation, if and only if every entry of X̂ is a linear

combination of {zs | s ∈ Z} ⊂ C(T).

Proof. Smoothness and analyticity of functions on T can be rephrased by how

rapidly the Fourier coefficients decreases. □

For the rest of this paper, we focus on a discrete-time analytic homogeneous quantum

walk acting on ℓ2(Z)⊗Cn. We may assume that the group of time is Z. Then we simply

denote the generator of the quantum walk U (1) by U . The inverse Fourier transform Û =

(F−1 ⊗ id)U(F ⊗ id) of the generator of the quantum walk is an element of Mn(C(T)) =
C(T)⊗Mn(C). We denote by Û(z; k, l) the (k, l)-entry of Û . By Lemma 4.1, the function
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Û(z; k, l) has an analytic extension to a neighborhood Ω of T. We also denote by Û(z; k, l)

the extension. Note that for every z ∈ Ω,
(
Û(z; k, l)

)
k,l

is an invertible (n × n)-matrix

and that for every z ∈ T,
(
Û(z; k, l)

)
k,l

is a unitary matrix.

Our next goal is to show a structure theorem (Proposition 5.6) on the inverse Fourier

transform Û(z), z ∈ T. Some readers may think that such a structure theorem is a

conclusion of Kato’s theory. Applying Kato’s analytic perturbation theory in [Kat95]

to the analytic map of matrices z → Û(z), we obtain locally defined analytic sections

of eigenvectors. However, we need analytic sections defined on T in order to obtain a

structure theorem (Theorem 5.7) on the original operator U . It is not impossible but

difficult to deduce such a global decomposition from Kato’s theorems in [Kat95]. We

give a self-contained proof to provide a simple proof.

The first ingredient is the algebraic field QT, which is defined in the following subsec-

tion. The field consists of meromorphic functions defined around T. The characteristic

polynomial of Û(z), z ∈ T is a polynomial whose coefficients are elements of the field QT.

The decomposition in Proposition 5.6 corresponds to the factorization of the character-

istic polynomial.

4.2. Polynomials whose coefficients are analytic functions on T.
For the rest of this section, let f(λ; z) be the characteristic polynomial

f(λ; z) = det

((
λδk,l − Û(z; k, l)

)
k,l

)
.

The degree of polynomial with respect to λ is n. The coefficients are analytic (or holo-

morphic) functions of z defined on a domain containing T. To study such a polynomial,

we need some preparation.

Definition 4.2. • Let QT be the set of all the pairs (Ω, q) of a domain Ω

containing T and an analytic map to the Riemann sphere

q : Ω → C ∪ {∞}

which is not the constant map ∞.

• Two elements (Ω1, q1), (Ω2, q2) of QT are said to be equivalent, if there exists a

domain T ⊂ Ω0 ⊂ Ω1 ∩ Ω2 on which q1 and q2 coincide.

• LetQT be the set of all the equivalence classes with respect to the above equivalence

relation.

Lemma 4.3. The point-wise summation and multiplication of QT induce a field

structure on the set QT.

The proof is a routine work. We call QT the field of meromorphic functions on T. We

simply denote by q ∈ QT the equivalence class containing (Ω, q) ∈ QT. The characteristic

polynomial f(λ; z) of the matrix Û(z) defines a polynomial f(λ) whose coefficients are

elements of QT. For every polynomial g(λ) ∈ QT[λ], and for every z ∈ T, evaluating
the coefficients of g(λ) at z, we obtain a polynomial g(λ; z) in C[λ]. To decompose the
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characteristic polynomial f(λ) ∈ QT[λ] of Û , we will make use of the following lemma

and proposition.

Lemma 4.4. Let g(λ) ∈ QT[λ] be an irreducible polynomial. Then there exists a

finite subset T0 of T such that for every z ∈ T \ T0, the polynomial g(λ; z) ∈ C[λ] at z
has no multiple root.

Proof. Note that the polynomial ring QT[λ] is a principal ideal domain. Choose

a polynomial h(λ) ∈ QT[λ] satisfying that

g(λ)QT[λ] +
∂g

∂λ
(λ)QT[λ] = h(λ)QT[λ].

Since (∂g/∂λ)(λ) ∈ h(λ)QT[λ], the degree of h is less than that of g. Since g(λ) is

irreducible, h(λ) is an element of QT. It follows that there exist q1(λ), q2(λ) ∈ QT[λ]

satisfying that

g(λ)q1(λ) +
∂g

∂λ
(λ)q2(λ) = 1 ∈ QT[λ].

Choose a finite subset T0 of T such that for every z ∈ T \ T0, all the coefficients of

q1(λ), q2(λ) are not ∞ at z. For such z, we have

g(λ; z)q1(λ; z) +
∂g

∂λ
(λ; z)q2(λ; z) = 1 ∈ C[λ].

It follows that there exists no common root λ of g(λ; z) and (∂g/∂λ)(λ; z) ∈ C[λ]. □

Proposition 4.5. Let g(λ) be an irreducible polynomial in QT[λ] with degree d.

Suppose that the coefficient of the highest degree is 1. Assume that for every z ∈ T, all
the roots λ of g(λ; z) ∈ C[λ] are elements of T. Then we have the following :

(1) There exists an analytic function λ(·) ∈ QT satisfying that for every z ∈ T,

g(λ; z) =
∏

ζ : ζd=z

(λ− λ(ζ)).

(2) Assume that another analytic function λ̃(·) defined around T satisfies

g(λ; z) =
∏

ζ : ζd=z

(
λ− λ̃(ζ)

)
.

Then there exists a natural number c satisfying that

c ∈ {0, 1, 2, . . . , d− 1},

λ̃(ζ) = λ(exp(2πic/d)ζ), ζ ∈ T.

Proof. Since the roots λ of g(λ; z) uniformly bounded on z ∈ T, there exists a

domain Ω containing T on which the coefficients of g(λ) have no poles. By the same
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argument as the book [Ahl66, Chapter 8, Section 2] by Ahlfors, the set of germs whose

graphs are included in

G = {(z, λ) ∈ Ω× C | g(λ; z) = 0}

gives a Riemann surface. In the book by Ahlfors, it is proved that an irreducible

polynomial defines a (compact) Riemann surface. In our argument, the coefficients of

λd, λd−1, . . . , 1 are not necessarily polynomials of z but analytic functions of z. How-

ever, the argument by Ahlfors works in our framework and shows that G gives a (not

necessarily compact) Riemann surface.

We prove that the Riemann surface has no branch point on T.
Let z0 be an arbitrary element of T. Let D ⊂ Ω be a tiny open disc including z0

such that there exists no branch point in D \ {z0} and that the circle ∂D intersects with

T at right angles. Let {z1, z2} be the intersection of T and the boundary ∂D. Pick up

an analytic germ z 7→ λ(z) defined around z1 whose graph is included in G. Denote by

Cout the path such that the starting point is z1 and the terminal point is z2 and that

Cout goes outside of T. Denote by Cin the path such that the staring point is z1 and

the terminal point is z2 and that Cin goes inside of T. Let λout(z) be the germ defined

around z2 given by the analytic continuation of λ(z) along Cout. Let λin(z) be the germ

defined around z2 given by the analytic continuation of λ(z) along Cin.

Because the germ λ satisfies g(λ(z), z) = 0, by the identity theorem, we have

g(λin(z), z) = 0. By assumption, for z ∈ T, the absolute values of the roots of g(λ, z)

are 1. It follows that if z is in T and close to z2, then

|λin(z)| = 1,

1

λin(z)
= λin(z).

For z ∈ T close to z1, we have |λ(z)| = 1. For such z, we have

1

z
= z,

λ

(
1

z

)
= λ(z) =

1

λ(z)
.

Let us move z from z1 along Cin. Then 1/z moves from z1 along Cout. By Schwarz

reflection principle, for z ∈ Ω around z2, we have

λout

(
1

z

)
=

1

λin(z)
.

If z is in T and close to z2, then we have

λout(z) =
1

λin(z)
.

It follows that λout(z) = λin(z). By the identity theorem, this equality holds on a
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neighborhood of z2. It means that two germs given by λout and λin at z2 are identical.

We conclude that the analytic continuation of λ(·) on the tiny circle ∂D is unique and

that z0 is not a branch point. It follows that there exists no branch point on T.
Let us take an analytic germ λ0(z) at 1 whose graph is included in G. Since the

Riemann surface has no branch point on T, there exists an analytic continuation

R ∋ θ 7→ λθ,

where λθ is a germ at eiθ. By the finiteness of the roots, there exists a natural number c

such that 2πc is the period of the analytic continuation. Define an analytic function λ(·)
on T by

λ(ζ) = λc arg ζ(ζ
c).

Note that for every c-th root ζ of z, we have

g(λ(ζ), z) = 0.

For every 1 ≤ b ≤ c, the function

z 7→ b-th elementary symmetric polynomial of {λ(ζ) | ζc = z}

defines an analytic function of z. It follows that

g1(λ; z) :=
∏

ζ : ζc=z

(λ− λ(ζ))

gives an element g1(λ) of QT[λ].

We next prove that g1(λ) is identical to g(λ). By the definition of λ(ζ), for every

z ∈ T, every root of g1(λ; z) is that of g(λ; z). By Lemma 4.4, for almost every z ∈ T,
g(λ; z) ∈ C[λ] has mutually different d roots. It follows that for such z, the complex

numbers {λ(ζ) | ζc = z} are mutually different. Consider the remainder r(λ) obtained

by the polynomial long division

g(λ) = q(λ)g1(λ) + r(λ) ∈ QT[λ].

Since g1(λ) is monic, all the coefficients of q(λ) and r(λ) are realized by complex-valued

analytic functions. Substituting z, we obtain the identity

g(λ; z) = q(λ; z)g1(λ; z) + r(λ; z) ∈ C[λ].

For almost every z ∈ T, r(λ; z) ∈ C[λ] has mutually different c roots {λ(ζ) | ζc = z}.
Since the degree of r(λ; z) ∈ C[λ] is less than c, we have r(λ; z) = 0 for such z. By

continuity, for every z ∈ T, r(λ; z) = 0. Therefore we have

g(λ) = q(λ)g1(λ) ∈ QT[λ].

Since g(λ) is irreducible, two polynomials g and g1 are identical.
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For the second item of the proposition, assume that there exists an analytic function

λ̃ on T such that

g(λ; z) =
∏

ζ : ζd=z

(λ− λ(ζ)) =
∏

ζ : ζd=z

(
λ− λ̃(ζ)

)
.

By Lemma 4.4, there exists z0 ∈ T such that if z ∈ T is close to z0, then {λ(ζ) | ζd = z}
consists of d elements. Choose a d-th root ζ0 of z0. Then there exists c ∈ {0, 1, . . . , d−1}
such that λ̃(ζ0) = λ(exp(2πic/d)ζ0). By continuity of λ and of λ̃, if ζ ∈ T is close to

ζ0, then λ̃(ζ) = λ(exp(2πic/d)ζ). By the identity theorem, the equality holds for every

ζ ∈ T. □

Remark 4.6. In the case that the quantum walk U has finite propagation, the char-

acteristic polynomial f(λ; z) of Û(z) is a polynomial of λ, z, z−1. Let g(λ) ∈ C[z, z−1][λ]

be an irreducible factor of f(λ) ∈ C[z, z−1][λ]. The Riemann surface given by g is a com-

pact Riemann surface. This is not used for the rest of this paper, but this is interesting.

Lemma 4.7. Let λ(·) be an analytic function defined on T. Define g(λ) ∈ QT[λ] by

g(λ; z) =
∏

ζ : ζd=z

(λ− λ(ζ)).

The following two conditions are equivalent :

(1) The polynomial g(λ) ∈ QT[λ] is reducible.

(2) There exists a natural number c ∈ {1, 2, . . . , d− 1} satisfying that

λ

(
exp

(
2πic

d

)
ζ

)
= λ(ζ),

for every ζ ∈ T.

If the above conditions hold true, then there exist natural numbers b, c and an analytic

map λ̃ : T → T satisfying that bc = d and that

λ̃(ζb) = λ(ζ), ζ ∈ T,

g(λ; z) =

( ∏
η : ηc=z

(
λ− λ̃(η)

))b

.

Proof. Suppose that there exists c ∈ {1, 2, . . . , d− 1} satisfying that

λ(exp(2πic/d)ζ) = λ(ζ).

Choose minimum value of c satisfying the above property. Such a natural number c

divides d. Define b by d/c. Define an analytic function λ̃ : T → T by

λ̃(η) = λ(b-th root of η).
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Since λ(exp(2πi/b)ζ) = λ(ζ), λ̃ is well-defined. The polynomial( ∏
η : ηc=z

(
λ− λ̃(η)

))b

∈ C[λ]

is identical to g(λ; z). It follows that g(λ) is not irreducible.

Suppose that g(λ) is not irreducible. Take an irreducible monic polynomial g1(λ) ∈
QT[λ] which divides g(λ). Let c be the degree of g1(λ). By Proposition 4.5, there exist

a natural number c and an analytic function λ̃ such that

g1(λ) =
∏

η : ηc=z

(
λ− λ̃(η)

)
.

Because
∏

η : ηc=z(λ− λ̃(η)) divides
∏

ζ : ζd=z(λ−λ(ζ)), the germ of λ̃ around 1 is realized

by a germ of λ around some d-th root ζ0 of 1. More precisely, if η is close to 1, if ζ is close

to ζ0, and if ηc = ζd, then λ̃(η) = λ(ζ). Let us move η on T in the anticlockwise direction.

Under the condition that ηc = ζd, as arg η moves from 0 to 2π, arg ζ moves from arg ζ0
to arg ζ0+2πc/d. We have λ̃(exp(2πi)η) = λ(exp(2πic/d)ζ). Since λ̃(exp(2πi)η) = λ̃(η),

we have

λ(exp(2πic/d)ζ) = λ(ζ),

for ζ ∈ T close to 1. By the identity theorem, for every ζ ∈ T, the equation holds. □

4.3. Eigenvalue function for a quantum walk.

The characteristic polynomial

f(λ; z) = det

((
λδk,l − Û(z; k, l)

)
k,l

)
of the inverse Fourier transform Û(z) induces a polynomial f(λ) ∈ QT[λ]. The coefficients

of f(λ) are analytic functions defined on T. The polynomial admits a decomposition into

irreducible polynomials, and each irreducible factor admits such an expression as in

Proposition 4.5. Thus we have the following proposition:

Proposition 4.8. There exist

• a sequence of natural numbers d(1), d(2), . . . , d(m) whose sum is n,

• analytic functions λ1, . . . , λm : T → T,

satisfying that the characteristic polynomial f(λ; z) of Û(z) is given by

f(λ; z) =

m∏
j=1

∏
ζ : ζd(j)=z

(λ− λj(ζ)) .



1215(191)

Analytic homogeneous quantum walks on Z 1215

In our argument before Proposition 4.8, the factor
∏

ζ : ζd(j)=z (λ− λj(ζ)) is irre-

ducible. However the equation in Proposition 4.8 does not imply that each factor is

irreducible, because the factor may admit further decomposition as in Lemma 4.7.

Definition 4.9. For the quantum walk U , the m-tuple of pairs

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

satisfying the equation in Proposition 4.8 is called a system of eigenvalue functions of Û .

For the quantum walk U , the natural number m and the system of eigenvalue func-

tions of Û are not necessarily unique. It admits the following three types of replacements:

(1) Permutation on the index {1, 2, . . . ,m}.

(2) Rotation on the function λj . More precisely, The system admits the replacement

of λj(ζ) with

λj

(
exp

(
2πic

d(j)

)
ζ

)
,

where c is a natural number. See Proposition 4.5 (2).

(3) Decomposition described in Lemma 4.7. More precisely, in the case that

λj(ζ) = λj

(
exp

(
2πic

d(j)

)
ζ

)
, b :=

d(j)

c
∈ N,

the pair (d(j), λj) can be replaced with the b-tuple of pairs(
c, λ̃
)
,
(
c, λ̃
)
, . . . ,

(
c, λ̃
)
.

The new eigenvalue function is given by

λ̃(η) = λj(the b-th root of η).

If the third procedure can not be applied to the system, the system is said to be

indecomposable. If two systems of eigenvalue functions of Û are given, by applying

the above procedures (1), (2), and (3), we obtain a common indecomposable system of

eigenvalue functions. If two indecomposable systems of eigenvalue functions are given,

by applying the procedures (1), (2) to one system, we obtain the other system. This is

a conclusion of the uniqueness of the irreducible decomposition of f(λ).

Definition 4.10. Let

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

be a system of eigenvalue functions of Û . We denote by w(λj) the winding number of

the analytic map λj : T → T. We define a quantity |w|(U) by the sum
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m∑
j=1

|w(λj)|.

The quantity |w|(U) is uniquely determined by U , because the sum is preserved

under the procedures (1), (2), and (3).

4.4. Analytic section of eigenvectors.

The following is a structure theorem on the inverse Fourier transform Û of an analytic

homogeneous quantum walk U on Z:

Proposition 4.11. For every indecomposable system of eigenvalue functions

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

of Û , there exist analytic maps v1, . . . ,vm : T → Cn satisfying the following :

• for every z ∈ T, {
vj(ζ)

∣∣∣ 1 ≤ j ≤ m, ζ ∈ T, ζd(j) = z
}

forms an orthonormal basis of Cn,

• for every 1 ≤ j ≤ m, and for every ζ ∈ T,

Û
(
ζd(j)

)
vj(ζ) = λj(ζ)vj(ζ).

Proof. Because the indecomposable system of the eigenvalue functions is essen-

tially unique, it suffices to construct the required analytic sections of eigenvectors for

some indecomposable system.

Let f(λ) = g1(λ)g2(λ) · · · gm(λ) be an irreducible decomposition of the characteristic

polynomial f(λ) ∈ QT[λ]. For 1 ≤ j ≤ m, denote by d(j) the degree of gj(λ). We

may assume that g1, g2, . . . , gm are monic. By Proposition 4.5, there exists an analytic

function λj : T → T satisfying that

gj(λ; z) =
∏

ζ : ζd(j)=z

(λ− λj(ζ)).

The collection of such λj(ζ) is the set of all the roots of f(λ; z). We may further assume

that

g1 = · · · = gp, g1 ̸= gp+1, g1 ̸= gp+2, . . . , g1 ̸= gm,

and that λ1 = · · · = λp. By Lemma 4.7, on a coset of finite subset of T, the eigenvalue

λ1(ζ) of Û(ζd(1)) is different from other eigenvalues

λ1

(
exp

(
2πki

d(1)

)
ζ

)
, k = 1, 2, . . . , d(1)− 1,

λj(η), j = p+ 1, p+ 2, . . . ,m, η is a d(j)-th root of ζd(1).
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Define a matrix X(1)(ζ) ∈ Mn(C) by the product

X(1)(ζ) =
∏

η : ηd(1)=ζd(1),η ̸=ζ

(
λ1(η)− Û

(
ζd(1)

))
·

m∏
j=p+1

gj

(
Û
(
ζd(1)

))
.

Note that for every ζ ∈ T, Û
(
ζd(1)

)
is diagonalizable and satisfies(

λ1(ζ)− Û
(
ζd(1)

))
X(1)(ζ) = f

(
Û
(
ζd(1)

)
; ζd(1)

)
= O.

On a coset of a finite subset of T, the image of X(1)(ζ) is the eigenspace of Û
(
ζd(1)

)
whose eigenvalue is λ1(ζ). On a coset of a finite subset of T, the rank of X(1)(ζ) is equal

to the multiplicity p of the eigenvalue λ1(ζ). Let X
(1)
l (ζ) be the l-th column of X(1)(ζ).

Note that for every choice of 1 ≤ l(1) < l(2) < · · · < l(p) ≤ n, the map

ζ 7→ X
(1)
l(1)(ζ) ∧ · · · ∧X

(1)
l(p)(ζ) ∈ ∧pCn

to the p-th exterior product is analytic. There exists a collection l(1) < l(2) < · · · < l(p)

of labels satisfying that

X
(1)
l(1)(ζ) ∧ · · · ∧X

(1)
l(p)(ζ) ∈ ∧pCn

is not the constant map 0 and the zero set is at most finite. This means that the set of

vectors {
X

(1)
l(1)(ζ), . . . , X

(1)
l(p)(ζ)

}
is linearly independent and spans the image of X(1)(ζ) on a coset of a finite subset of T.

By Lemma 2.2, there exist analytic maps v(1),v(2), . . . ,v(p) : T → Cn satisfying the

following conditions:

• for every ζ ∈ T,
{
v(1)(ζ),v(2)(ζ), . . . ,v(p)(ζ)

}
forms an orthonormal system,

• on a coset of a finite subset of T, the linear span of
{
X

(1)
l(1)(ζ), . . . , X

(1)
l(p)(ζ)

}
is

identical to the linear span of
{
v(1)(ζ),v(2)(ζ), . . . ,v(p)(ζ)

}
.

It follows that on a coset of a finite subset of T, the following four subspaces of Cn

coincide:

• the eigenspace of Û
(
ζd(1)

)
whose eigenvalue is λ1(ζ),

• the image of X(1)(ζ),

• the linear span of
{
X

(1)
l(1)(ζ), . . . , X

(1)
l(p)(ζ)

}
,

• the linear span of
{
v(1)(ζ),v(2)(ζ), . . . ,v(p)(ζ)

}
.
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The vectors v(1)(ζ),v(2)(ζ), . . . ,v(p)(ζ) are eigenvectors of Û
(
ζd(1)

)
whose eigenvalue is

λ1(ζ), on the coset of T. By the continuity of v(1)(ζ), v(2)(ζ), . . . , v(p)(ζ) and λ1(ζ), it

turns out that there exists no exception.

By Lemma 4.7, every two eigenvalue functions chosen from

λ1(ζ), λ1

(
exp(2πi/d(1))ζ

)
, . . . , λ1

(
exp(2πi(d(1)− 1)/d(1))ζ

)
are not identical. With finite exceptions, for fixed z ∈ T, the (p× d(1)) vectors{

v(j)(ζ)
∣∣ 1 ≤ j ≤ p, ζd(1) = z

}
,

form an orthonormal system in Cn. Again by continuity, the exceptions are removed.

Now we proceed to the next step. Rearranging the index, we may further assume

that

gp+1 = · · · = gp+q, gp+1 ̸= gp+q+1, . . . ,

and that λp+1 = · · · = λp+q. Define X(p+1)(ζ) by

X(p+1)(ζ) = g1

(
Û(ζd(p+1))

)
·

∏
η : ηd(p+1)=ζd(p+1),η ̸=ζ

(
λp+1(η)− Û(ζd(p+1))

)

·
m∏

j=p+q+1

gj

(
Û(ζd(p+1))

)
.

Using column vectors of X(p+1)(ζ), we can construct a section of orthonormal basis

v(p+1)(ζ),v(p+2)(ζ), . . . ,v(p+q)(ζ)

which consists of eigenvectors of Û
(
ζd(p+1)

)
whose eigenvalues are λp+1(ζ). For every

z ∈ T, (q × d(p+ 1)) vectors{
v(j)(ζ)

∣∣ p+ 1 ≤ j ≤ p+ q, ζd(p+1) = z
}
,

forms an orthonormal system. On a coset of a finite subset of T, the roots of g1(λ; z) are
different from those of gp+1(λ; z). Therefore the members of the system are perpendicular

to {
v(j)(ζ)

∣∣ 1 ≤ j ≤ p, ζd(1) = z
}
,

on the coset. Again by continuity, it turns out that there exists no exception.

Repeating this procedure, we finish the construction of v(j)(ζ), 1 ≤ j ≤ n. □

5. Realization by continuous-time QW.

In this section, we first construct a collection of typical quantum walks, which is

called model quantum walks. These walks are like atoms in the world of discrete-time
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analytic homogeneous quantum walks U on Z. Such a walk U is equivalent to a direct

sum of model quantum walks.

5.1. Model quantum walks.

We introduce the model quantum walk Ud,λ, which is constructed by a natural

number d and an analytic function λ : T → T. Let

λ(ζ) =
∞∑

s=−∞
c(s)ζs

be the Laurent series of λ(ζ). For k, l ∈ {1, 2, . . . , d}, define an analytic operator Uk,l

acting on ℓ2(Z) by

Uk,l =
∞∑

s=−∞
c(k − l + ds)Ss.

Define an analytic operator Ud,λ acting on ℓ2(Z)⊗ Cd by

Ud,λ = (Uk,l)k,l .

Let λk,l : T → C be the function defined by

λk,l(z) =
∞∑

s=−∞
c(k − l + ds)zs.

The inverse Fourier transform Ûk,l = F−1Uk,lF is identical to the multiplication operator

M [λk,l] by λk,l.

In the case that d = 1, Û1,λ is nothing other than the multiplication operator M [λ]

by the function λ. The unitary U1,λ is the operator given by the Fourier transform of λ.

The operator is expressed by

U1,λ =
∞∑

s=−∞
c(s)Ss.

We first prove that the natural number d does not have an important role. Define a

unitary operator Wd : ℓ2(Z)⊗ Cd → ℓ2(Z) by

Wd(δs ⊗ δk) = δk+ds, s ∈ Z, k ∈ {1, 2, . . . , d}.

We call Wd the rearrangement.

Lemma 5.1. Let λ : T → T be an analytic function and let d be a natural number.

Then we have Ud,λ = W ∗
dU1,λWd.

Proof. Fix arbitrary t ∈ Z and l ∈ {1, 2, . . . , d} for a while. We hit the vectors

δt ⊗ δl to the unitary operators WdUd,λ and U1,λWd. We obtain the following equation:
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WdUd,λ(δt ⊗ δl) = Wd

d∑
k=1

∞∑
s=−∞

c(k − l + ds)Ssδt ⊗ δk

= Wd

d∑
k=1

∞∑
s=−∞

c(k − l + ds)δs+t ⊗ δk

=

d∑
k=1

∞∑
s=−∞

c(k − l + ds)δk+d(s+t).

Every integer σ is uniquely expressed by σ = k − l + ds, k ∈ {1, . . . , d}, s ∈ Z. We get

the equation

WdUd,λ(δt ⊗ δl) =
∞∑

σ=−∞
c(σ)δl+σ+dt.

We also have

U1,λWd(δt ⊗ δl) =

∞∑
s=−∞

c(s)Ssδl+dt =

∞∑
s=−∞

c(s)δl+s+dt.

They are identical. □

Lemma 5.2. For analytic maps λ, λ1, λ2 : T → T and a natural number d,

U∗
d,λ = Ud,λ, Ud,λ1Ud,λ2 = Ud,λ1λ2 .

Proof. Using Lemma 5.1, we have

U∗
d,λ = W ∗

dU
∗
1,λWd = W ∗

d (FM [λ]F−1)∗Wd

= W ∗
dFM

[
λ
]
F−1Wd = W ∗

dU1,λWd

= Ud,λ.

We also have

Ud,λ1Ud,λ2 = W ∗
dU1,λ1U1,λ2Wd = W ∗

dFM [λ1]M [λ2]F−1Wd

= W ∗
dFM [λ1λ2]F−1Wd = W ∗

dU1,λ1λ2Wd

= Ud,λ1λ2 . □

Lemma 5.3. Let λ : T → T be an analytic function and let d be a natural number.

For every z ∈ T, the operator Ud,λ is unitary.

Proof. By Lemma 5.2, we have

U∗
d,λUd,λ = Ud,λUd,λ = Ud,λλ = Ud,1 = 1.

The operator U∗
d,λUd,λ is also the identity operator 1. □
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We calculate the eigenvalue functions of the model quantum walks.

Lemma 5.4. For every ζ ∈ T, the column vector(
1, ζ−1, ζ−2, . . . , ζ1−d

)T
is an eigenvector of Ûd,λ(ζ

d) whose eigenvalue is λ(ζ).

Proof. We directly compute. The k-th entry of the vector

Ûd,λ(ζ
d) · (1, ζ−1, ζ−2, . . . , ζ1−d)T

is

d∑
l=1

λk,l(ζ
d)ζ1−l =

d∑
l=1

∞∑
s=−∞

c(k − l + ds)ζ1−l+ds

= ζ1−k
d∑

l=1

∞∑
s=−∞

c(k − l + ds)ζk−l+ds.

Every integer σ is uniquely expressed by k− l+ ds, l ∈ {1, . . . , d}, s ∈ Z. It follows that

d∑
l=1

λk,l(ζ
d)ζ1−l = ζ1−k

∞∑
σ=−∞

c(σ)ζσ = λ(ζ)ζ1−k.

We obtain the following equation:

Ûd,λ(ζ
d) · (1, ζ−1, ζ−2, . . . , ζ1−d)T = λ(ζ) · (1, ζ−1, ζ−2, . . . , ζ1−d)T. □

We also note that for every z ∈ T,{
1√
d

(
1, ζ−1, ζ−2, . . . , ζ1−d

)T ∣∣∣∣ ζd = z

}
forms an orthonormal basis of Cd.

Lemma 5.5. The characteristic polynomial of the inverse Fourier transform Ûd,λ(z)

of the model quantum walk is ∏
ζ : ζd=z

(λ− λ(ζ)) ∈ QT[λ].

Proof. The roots of the characteristic polynomial of Ûd,λ(z) are eigenvalues of

the unitary matrix. By Lemma 5.4, the eigenvalues are {λ(ζ) | ζd = z}. □

5.2. Structure theorem.

Proposition 5.6. Let Û be the inverse Fourier transform of the quantum walk U .

For every indecomposable system of eigenvalue functions
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((d(1), λ1), (d(2), λ2), . . . , (d(m), λm)),

there exists an analytic map V̂ : T → Mn(C) to unitary matrices satisfying

Û(z) = V̂ (z)
(
Ûd(1),λ1

(z)⊕ Ûd(2),λ2
(z)⊕ · · · ⊕ ̂Ud(m),λm

(z)
)
V̂ (z)∗, z ∈ T.

Proof. Let

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

be an arbitrary system of eigenvalue functions of Û . By Proposition 4.11, for every

j ∈ {1, 2, . . . ,m} there exist analytic maps vj : T → Cn satisfying that

• for every z ∈ T, {
vj(ζ) | 1 ≤ j ≤ m, ζd(j) = z

}
forms an orthonormal basis of Cn,

• for every 1 ≤ j ≤ m, and for every ζ ∈ T,

Û
(
ζd(j)

)
vj(ζ) = λj(ζ)vj(ζ).

For z ∈ T, define an isometric operator Vj(z) : Cd(j) → Cn by the correspondence

1√
d(j)

(
1, ζ−1, ζ−2, . . . , ζ1−d(j)

)T
7→ vj(ζ)

between two orthonormal systems, where ζ is a d(j)-th root of z. Since the unitary

matrices Vj(z) give a correspondence between analytic sections to analytic sections, the

map z 7→ Vj(z) is analytic.

We can easily check the equation

Û(z)Vj(z) ·
1√
d

(
1, ζ−1, ζ−2, . . . , ζ1−d

)T
= Û(z)vj(ζ) = λj(ζ)vj(ζ).

By Lemma 5.4, we also have

Vj(z)Ûd(j),λj
(z) · 1√

d

(
1, ζ−1, ζ−2, . . . , ζ1−d

)T
= λj(ζ)Vj(z) ·

1√
d

(
1, ζ−1, ζ−2, . . . , ζ1−d

)T
= λj(ζ)vj(ζ).

Thus we obtain Û(z)Vj(z) = Vj(z)Ûd(j),λj
(z). Let

V̂ (z) : Cd(1) ⊕ Cd(2) ⊕ · · · ⊕ Cd(m) → Cn
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be the direct sum of Vj , 1 ≤ j ≤ m. This matrix is isometric and surjective. It satisfies

Û(z)V̂ (z) = V̂ (z)
(
Ûd(1),λ1

(z)⊕ Ûd(2),λ2
(z)⊕ · · · ⊕ ̂Ud(m),λm

(z)
)
. □

Applying the Fourier transform to Proposition 5.6, we obtain the following.

Theorem 5.7 (Structure theorem on analytic homogeneous quantum walks on Z).
Every n-state discrete-time analytic homogeneous quantum walk U on Z is conjugate to

a direct sum of model quantum walks. More precisely, for every indecomposable system

of eigenvalue functions

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

of Û , there exists an analytic unitary operator V acting on ℓ2(Z)⊗ Cn satisfying

U = V
(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)
V ∗.

5.3. Decomposable and indecomposable quantum walks.

Definition 5.8. An n-state discrete-time analytic homogeneous quantum walk U

is said to be decomposable, if there exist

• natural numbers d(1) and d(2) whose sum is n,

• discrete-time analytic homogeneous d(1)-state quantum walk U1,

• discrete-time analytic homogeneous d(2)-state quantum walk U2,

• and an analytic unitary V acting on ℓ2(Z)⊗ Cn

satisfying

U = V (U1 ⊕ U2)V
∗.

Otherwise, the quantum walk U is said to be indecomposable.

Lemma 5.9. For every indecomposable analytic homogeneous quantum walk U ,

there exist an analytic unitary operator V acting on ℓ2(Z)⊗Cd and model quantum walk

Ud,λ such that

U = V Ud,λV
∗.

Proof. The quantum walk U admits a decomposition

U = V
(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)
V ∗

described in Theorem 5.7. Since the quantum walk is indecomposable, m = 1. □

Proposition 5.10. A discrete-time analytic homogeneous quantum walk U is in-

decomposable, if and only if the characteristic polynomial f(λ; z) of the inverse Fourier

transform Û(z) is an irreducible polynomial in QT[λ].
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Proof. Let f(λ; z) be the characteristic polynomial of the matrix Û(z).

Suppose that U is decomposed as in Definition 5.8:

U = V (U1 ⊕ U2)V
∗.

Consider the inverse Fourier transforms of unitary operators. We have

Û(z) = V̂ (z)
(
Û1(z)⊕ Û2(z)

)
V̂ (z)∗.

Let fj(λ; z) be the characteristic polynomial of the matrix Ûj(z), for j = 1, 2. By the

above decomposition, we have

f(λ; z) = f1(λ; z)f2(λ; z).

It follows that f(λ) ∈ QT[λ] is not irreducible.

Conversely, suppose that f(λ) ∈ QT[λ] is not irreducible. The decomposition of f(λ)

into irreducible polynomials

f(λ) = g1(λ) · · · gm(λ)

corresponds to an indecomposable system of eigenvalue functions

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

of Û . Theorem 5.7 gives a decomposition of U into model quantum walks

U = V
(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)
V ∗. □

Corollary 5.11. A model quantum walk Ud,λ is decomposable, if and only if the

characteristic polynomial satisfies the rotation symmetry in the following sense : there

exists c ∈ {1, . . . , d− 1} satisfying that

λ(exp(2πic/d)ζ) = λ(ζ), ζ ∈ T.

Proof. The characteristic polynomial of the inverse Fourier transform of Ud,λ is∏
ζ : ζd=z

(λ− λ(ζ)) ∈ QT[λ],

by Lemma 5.5. By Lemma 4.7, this polynomial is not irreducible, if and only if λ satisfies

the rotation symmetry in the above sense. □

5.4. Realization by continuous-time quantum walks.

Proposition 5.12. Let λ : T → T be an analytic map. If the winding number of

λ is 0, then there exists a 1-state continuous-time analytic homogeneous quantum walk

R ∋ t 7→ U (t)

satisfying that U (1) = U1,λ.
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Proof. If the winding number of λ is 0, then there exists an analytic function

h : T → R satisfying that

exp(ih(z)) = λ(z), z ∈ T.

The 1-parameter unitary group

U (t) = FM [exp(ith)]F−1

satisfies the conditions in the proposition. □

Let us denote by w(λ) the winding number of λ : T → T. By Lemma 5.2, we may

factorize the model quantum walk U1,λ as follows

U1,λ = U1,ζw(λ)U1,ζ−w(λ)λ(ζ) = Sw(λ)U1,ζ−w(λ)λ(ζ).

Since the winding number of ζ 7→ ζ−w(λ)λ(ζ) is 0, by Proposition 5.12, the model quan-

tum walk U1,ζ−w(λ)λ(ζ) can be realized by a continuous-time quantum walk.

Theorem 5.13. For every n-state discrete-time analytic homogeneous quantum

walk U , we can express U as

U = V
(
⊕m

j=1W
∗
d(j)Sw(j)U

(1)
j Wd(j)

)
V ∗

by

• preparing several 1-state continuous-time analytic homogeneous quantum walks R ∋
t 7→ U

(t)
j , 1 ≤ j ≤ m,

• restricting the group of time R to Z,

• composing with shift operators Sw(j)U
(1)
j ,

• rearranging the labels of position W ∗
d(j)Sw(j)U

(1)
j Wd(j),

• taking direct sum

⊕m
j=1W

∗
d(j)Sw(j)U

(1)
j Wd(j),

• conjugacy by an analytic unitary V acting on ℓ2(Z)⊗ Cn,

using some natural numbers m, w(1), . . . , w(m), and d(1), . . . , d(m).

Proof. By Theorem 5.7, we can describe U by

U = V
(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)
V ∗.

By rearranging the labels of positions, we have

Wd(j)Ud(j),λj
W ∗

d(j) = U1,λj .
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By the proceeding remark before the theorem, U1,λj is a product of a shift operator and

a restriction of a continuous-time analytic homogeneous quantum walk. □

Theorem 5.14. Let U be an n-state discrete-time analytic homogeneous quantum

walk. Let

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

be an arbitrary system of eigenvalue functions of Û , which is introduced in Definition 4.9.

The quantum walk U is a restriction of a continuous-time analytic homogeneous quantum

walk, if and only if all the winding numbers of λj : T → T are 0.

Proof. Suppose that U can be realized by a continuous-time analytic homo-

geneous quantum walk. Then for every natural number N , there exists an analytic

homogeneous quantum walk W satisfying that WN = U . Let

((d(1), ρ1), (d(2), ρ2), . . . , (d(M), ρM ))

be a system of eigenvalue functions of Ŵ (see Definition 4.9). Then((
d(1), ρN1

)
,
(
d(2), ρN2

)
, . . . ,

(
d(M), ρNM

))
is a system of eigenvalue functions of Û . (This is not necessarily an indecomposable

system). The quantity |w|(U) given in Definition 4.10 satisfies

|w|(U) =
M∑
j=1

∣∣w (ρNj )∣∣ = N
M∑
j=1

|w(ρj)|.

This is an element of NZ. Since N is arbitrary, we have |w|(U) = 0. By well-definedness

of |w|(U), we have

m∑
j=1

|w(λj)| = 0.

Conversely, suppose that the equation

U = V
(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)
V ∗

holds and that all the winding numbers w(λj) is 0. By Proposition 5.12, for every j,

the quantum walk Ud(j),λj
= W ∗

dU1,λjWd can be realized by a continuous-time analytic

homogeneous quantum walk. □

6. Convergence theorem.

6.1. Some remarks on locality of initial unit vectors.

In the conjugacy

U = V
(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)
V ∗
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given by Theorem 5.7, the unitary V ∗ does not preserve finiteness of the support of the

initial unit vector. However, V ∗ preserves weaker forms of locality.

For a unit vector ξ ∈ ℓ2(Z)⊗ Cn, we define a probability measure P [ξ] on Z by

P [ξ]({s}) =
n∑

k=1

|⟨δs ⊗ δk, ξ⟩|2, s ∈ Z.

If there exists a positive real number r greater than 1 satisfying that two sequences

(rsP [ξ]({s}))s∈Z ,
(
r−sP [ξ]({s})

)
s∈Z

are elements in ℓ1(Z), then we call the probability measure P [ξ]({s}) and the unit vector

ξ are of the exponential type. In the study of quantum walks, this type of probability

measures have attracted attention. See [EK14], for example. This is equivalent to the

condition that the inverse Fourier transform (F−1 ⊗ id)ξ ∈ L2(T,Cn) is analytic on T.
To apply differential operators on the Fourier dual, we consider wider class. In the

case that for every natural number d, the sequence{
(1 + s2)dP [ξ]({s})

}∞
s=−∞

is bounded, we call the probability measure P [ξ]({s}) and the unit vector ξ rapidly

decrease. This is equivalent to the condition that (F−1 ⊗ id)ξ is smooth on T.
If ξ ∈ ℓ2(Z)⊗Cn is of the exponential type and if the operator V acting on ℓ2(Z)⊗Cn

is analytic, then V ∗ξ is of the exponential type. If ξ ∈ ℓ2(Z)⊗Cn rapidly decreases and

if the operator V acting on ℓ2(Z)⊗ Cn is analytic, then V ∗ξ rapidly decreases.

6.2. Limit distributions.

Let U be a discrete-time analytic homogeneous quantum walk acting on ℓ2(Z)⊗Cn.

Given a unit vector ξ called an initial vector, we obtain a sequence of probability measures

on Z

P [ξ], P [Uξ], P [U2ξ], P [U3ξ], . . . .

For every time t ∈ Z, consider the pushforward

ϕ
(t)
∗ (P [U tξ]) ∈ Prob(R)

with respect to the map Z ∋ s 7→ s/t ∈ R. The goal of this section is to show that the

sequence {ϕ(t)
∗ (P [U tξ])}∞t=1 weakly converges.

To study the limit distribution, we use the following diagonal self-adjoint operator

on ℓ2(Z):

D

t
: δs 7→

s

t
δs, s ∈ Z.

Its inverse Fourier transform is a self-adjoint operator on L2(T)

F−1D

t
F : zs 7→ szs, s ∈ Z.
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When we write λ as λ(z), the operator is identical to the differential operator

(1/t)z(d/dz). When we write λ as λ(eiθ), the operator is identical with the differen-

tial operator (1/it)(d/dθ). In the case that the probability measure P [ξ] on Z rapidly

decreases, the vector ξ is in the domain of (D/t)m.

Lemma 6.1. Let ξ be a unit vector in ℓ2(Z) ⊗ Cn which rapidly decreases. Then

for every natural number m, the m-th moment of ϕ
(t)
∗ (P [ξ]) is finite, and the moment is

given by the following formula : ⟨(
D

t
⊗ id

)m

ξ, ξ

⟩
.

Proof. We express the vector ξ by∑
s∈Z,k∈{1,...,n}

ξ(s, k)δs ⊗ δk.

We compute the inner product as follows:⟨(
D

t
⊗ id

)m

ξ, ξ

⟩
=

∑
s∈Z,k∈{1,...,n}

(s
t

)m
|ξ(s, k)|2

=
∑
s∈Z

(s
t

)m ∑
k∈{1,...,n}

|ξ(s, k)|2

=
∑
s∈Z

(s
t

)m
P [ξ]({s}).

The last quantity is the m-th moment of ϕ
(t)
∗ (P [ξ]). □

Lemma 6.2. Let λ : T → T be an analytic map. Let U be the model quantum

walk U1,λ. Let ξ ∈ ℓ2(Z) be a unit vector which rapidly decays. Then the sequence{
ϕ
(t)
∗ (P [U tξ])

}∞
t=1

weakly converges to a measure whose support is compact.

Proof. We prove that them-th moments of measures
{
ϕ
(t)
∗ (P [U tξ])

}∞
t=1

converge,

for every m. By Lemma 6.1, the moment is given by⟨(
D

t

)m

U tξ, U tξ

⟩
=

⟨(
U−tD

t
U t

)m

ξ, ξ

⟩
.

Recall that U t = U t
1,λ is the Fourier transform FM [λt]F−1 of the multiplication operator

by λt ∈ C(T). The operator U−t(D/t)U t is equal to the following:

U−tD

t
U t = FM [λ−t]

1

it

d

dθ
M [λt]F−1 = F

(
1

it

d

dθ
+M

[
1

iλ

dλ

dθ

])
F−1.

Note that the function (1/iλ(eiθ))(dλ(eiθ)/dθ) is the derivative of arg(λ(eiθ)). We denote

the function by h(θ). This is an analytic real-valued function on T. The m-th moment

of ϕ
(t)
∗ (P [U tξ]) is given by
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1

it

d

dθ
+M [h]

)m

F−1ξ,F−1ξ

⟩
L2(T)

.

Note that F−1ξ is smooth, because its Fourier coefficients rapidly decrease. As t tends

to ∞, the sequence of the m-th moment converges to⟨
(M [h])

m F−1ξ,F−1ξ
⟩
L2(T) =

∫
T
h(eiθ)m

∣∣[F−1ξ](eiθ)
∣∣2 dθ

2π
.

Let µ = µU,ξ be the pushforward of the probability measure
∣∣[F−1ξ](eiθ)

∣∣2 (dθ/2π)
on T by the analytic map h : T → R. The above integral can be written as follows:∫

R
rmdµ(r).

Thus we have the moment convergence of the sequence
{
ϕ
(t)
∗ (P [U tξ])

}∞
t=1

to the measure

µ.

Since the map h : T → R is continuous, the support of µ is compact. The moment

convergence to µ means weak convergence. □

Lemma 6.3. Let d be a natural number and let λ : T → T be an analytic map.

Let U be the model quantum walk Ud,λ. Let ξ ∈ ℓ2(Z) ⊗ Cd be a rapidly decreasing

unit vector. Then the sequence
{
ϕ
(t)
∗ (P [U tξ])

}∞
t=1

weakly converges to a measure whose

support is compact.

Proof. Recall that the model quantum walk Ud,λ is conjugate with the 1-state

model quantum walk U1,λ by

Ud,λ = W ∗
dU1,λWd.

By Lemma 6.2, the sequence of measures
{
ϕ
(t)
∗ (P [U t

1,λWdξ])
}∞
t=1

weakly converges. De-

note by η(t) the unit vector U t
1,λWdξ. Compare the probability measure ϕ

(t)
∗ P [W ∗

d η
(t)]

with ϕ
(t)
∗ P [η(t)]. The former measure is the pushforward of the latter measure under the

map

Z[1/t] ∋ (ds+ k)/t 7→ s/t ∈ Z[1/t], k ∈ {1, . . . , d}.

If t is large, the above map is approximated by

R ∋ r 7→ r/d ∈ R.

Therefore, the sequence ϕ
(t)
∗ P [W ∗

d η
(t)] also weakly converges, and the limit is the push-

forward of the limit of ϕ
(t)
∗ P [η(t)] by the map r 7→ r/d. □

Theorem 6.4. For every discrete-time analytic homogeneous quantum walk U ,

and for every rapidly decreasing initial unit vector ξ, the sequence of probability measures{
ϕ
(t)
∗ (P [U tξ])

}∞
t=1

on R weakly converges to a measure whose support is compact.
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Proof. By Theorem 5.7, the quantum walk U is presented by an analytic unitary

operator V and model quantum walks as follows:

U = V
(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)
V ∗.

Note that the vector V ∗ξ rapidly decreases. Denote by W t the unitary(
Ud(1),λ1

⊕ Ud(2),λ2
⊕ · · · ⊕ Ud(m),λm

)t
.

By Lemma 6.3, the sequence of measures

ϕ
(t)
∗ P [W tV ∗ξ]

weakly converges.

The m-th moment of the probability measure ϕ
(t)
∗ (P [U tξ]) is written by⟨(

D

t
⊗ id

)m

U tξ, U tξ

⟩
=

⟨(
W−tV ∗

(
D

t
⊗ id

)
VW t

)m

V ∗ξ, V ∗ξ

⟩
.

We consider the commutator(
D

t
⊗ id

)
V − V

(
D

t
⊗ id

)
.

Its inverse Fourier transform is(
z

t

d

dz
⊗ id

)
V̂ − V̂

(
z

t

d

dz
⊗ id

)
.

Note that every entry V̂k,l(z) of V̂ gives a multiplication operator by an analytic function

on T. By the Leibniz rule of differential, the above operator is simply given by the

multiplication operator by

1

t

(
z
dV̂k,l(z)

dz

)
k,l

.

As t becomes large, the operator norm converges to 0. It follows that the m-th moment⟨(
W−tV ∗

(
D

t
⊗ id

)
VW t

)m

V ∗ξ, V ∗ξ

⟩
is asymptotically equal to⟨(

W−t

(
D

t
⊗ id

)
W t

)m

V ∗ξ, V ∗ξ

⟩
=

⟨(
D

t
⊗ id

)m

W tV ∗ξ,W tV ∗ξ

⟩
.

This is the m-th moment of ϕ
(t)
∗ P [W tV ∗ξ].

Therefore the sequence of measures
{
ϕ
(t)
∗ (P [U tξ])

}∞
t=1

converges in moments and

the limit distribution has compact support. □
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Remark 6.5. In the following point, our argument improves the known study of

space-homogeneous quantum walks on Z.

• We clarified the definition of quantum walks on Z in Section 3.

• As proceeding studies have said, the eigenvalue functions λ1, λ2 are smooth. How-

ever, this is not a trivial claim. The claim is proved in Proposition 4.8. In fact, the

eigenvalue functions are analytic.

• Our argument covers the case that the eigenvalue function of the inverse Fourier

transform is not single-valued. Subsection 9.2 gives an example. In the authors

opinion, it sounds natural to say that the unitary operator U in Subsection 9.2 is a

quantum walk, because in the actual experiment the walk is substantially identical

to a (part of) usual quantum walk. The paper [GJS04] implicitly concentrates on

the case that the eigenvalue functions are single-valued.

• Our argument encompasses the case that the characteristic polynomial has multiple

roots. The paper [GJS04] does not successfully explain why we only have to

consider the case that there exists no multiple root.

7. Classification of analytic unitary operators in C∗
red(Z) ⊗ Mn(C).

Let us recall that the reduced group C∗-algebra C∗
red(Z) of Z is the operator norm

closure of
∑

s∈Z CSs ⊂ B(ℓ2(Z)). For a complex number z with modulus 1, the linear

map defined by

Ss 7→ zsSs, x ∈ Z

extends to an automorphism αz on C∗
red(Z). For every operator X in C∗

red(Z), the map

X 7→ αz(X)

is continuous with respect to operator norm topology. The action

α : T → Aut(C∗
red(Z))

is called the gauge action. Note that α naturally extends to C∗
red(Z)⊗Mn(C).

For a homogeneous operator X on ℓ2(Z) ⊗ Cn, the operator X is analytic, if and

only if X is an element of C∗
red(Z)⊗Mn(C) and there exist

(1) a domain Ω ⊆ C containing the unit circle T,

(2) and an analytic map Ω → C∗
red(Z)⊗Mn(C) which extends the map T ∋ z 7→ αz(X)

given by the gauge action.

Let U(n) be the set of all the analytic unitary operators in C∗
red(Z) ⊗ Mn(C). We

introduce an equivalence relation ∼ on U(n) by conjugacy. More precisely, two elements

U1 and U2 are said to be equivalent, if there exists V ∈ U(n) such that V U1V
∗ = U2.

Our argument provides a classification result on U(n) up to conjugacy.



1232(208)

1232 H. Saigo and H. Sako

Let E(n) be the collections of all the indecomposable system of eigenvalue functions

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

introduced in Subsection 4.3. Here,

• m is a natural number,

• d(1), . . . , d(m) are natural numbers whose sum is n,

• and λ1, . . . , λm are analytic maps from T to T such that for any j, λj does not

satisfy the conditions on reducibility explained in Lemma 4.7.

We introduce an equivalence relation ∼ on E(n) by the procedures (1), (2) explained in

Subsection 4.3.

Theorem 7.1. The map

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

7→ Ud(1),λ1
⊕ Ud(2),λ2

⊕ · · · ⊕ Ud(m),λm

from U(n) to E(n) induces a bijective correspondence between E(n)/ ∼ and U(n)/ ∼.

Proof. For a natural number d and an analytic map λ : T → T, consider the

rotation λ̃ by

λ̃(ζ) = λ(exp(2πi/d)ζ).

We can easily show that Ud,λ̃ is conjugate to Ud,λ, by the definition of model quantum

walks introduced in Subsection 5.1. It follows that the map from E(n)/ ∼ to U(n)/ ∼ is

well-defined.

The map is surjective, by Theorem 5.7.

We next prove that the map is injective. For the unitary

U = Ud(1),λ1
⊕ Ud(2),λ2

⊕ · · · ⊕ Ud(m),λm
,

consider the inverse Fourier transform Û(z). The characteristic function is given by

f(λ; z) =
m∏
j=1

∏
ζ : ζd(j)=z

(λ− λj(ζ)).

By Lemma 4.7, each factor
∏

ζ : ζd(j)=z(λ− λj(ζ)) is an irreducible polynomial in QT[λ].

By uniqueness of the irreducible decomposition, the system of eigenvalue functions

((d(1), λ1), (d(2), λ2), . . . , (d(m), λm))

is uniquely determined up to permutation on {1, . . . ,m} and rotation on λj(ζ) by d(j)-th

root of 1. It follows that the map from E(n)/ ∼ to U(n)/ ∼ is injective. □
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8. An algebra to which a quantum walk belongs.

Theorem 8.1. Every n-state discrete-time analytic homogeneous quantum walk U

on Z is a solution of some algebraic equation of degree n whose coefficients are analytic

elements of C∗
red(Z)⊗ C ⊂ B(ℓ2(Z)⊗ Cn).

Proof. The characteristic polynomial f(λ; z) of Û(z) satisfies

f(Û(z); z) = O.

The left hand side is a polynomial of Û(z) whose coefficients are analytic functions on

T. Applying the inverse Fourier transform to the equation, we obtain the theorem. □

Remark 8.2. Let us recall the following basic insight emphasized by Mikio Sato:

• Equation ↔ Algebra (or Module)

• Solution ↔ Homomorphism.

For our concrete quantum walk U , let f(λ) ∈ QT[λ] be the characteristic polynomial of

the inverse Fourier transform Û(z). We have the following:

• Algebraic equation f = 0 defines a quotient algebra QT[λ]/(f), where (f) stands

for the ideal generated by f .

• The solution U of the algebraic equation f = 0 defines a homomorphism defined

on QT[λ]/(f) such that λ+ (f) maps to U .

There seems to be alternative framework of quantum walks in which we can treat quan-

tum walks more algebraically. Once such kind of framework is established, a concrete

form U of quantum walk will be regarded as an image of a homomorphism from some

algebra.

9. Examples.

As in the previous sections, for an integer s ∈ Z, Ss stands for the shift operator

δt → δs+t on ℓ2(Z).

9.1. Some 2-state quantum walk.

Let a, b be complex numbers satisfying |a|2 + |b|2 = 1, ab ̸= 0. We express a and b

as follows

a = reiα b =
√
1− r2eiβ ,

where α, β, and 0 < r < 1 are real numbers. Let us consider the unitary operator

U =

(
aS−1 −bS−1

bS1 aS1

)
, z ∈ T
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acting on ℓ2(Z)⊗C2. We regard ℓ2(Z)⊗C2 as the set of column vectors of length 2 whose

entries are ℓ2 functions on Z. The weak limit theorem for this walk has been already

shown in [Kon05].

Let us determine whether this walk is a restriction of a continuous-time quantum

walk and whether it is indecomposable. For simplicity, we assume that α = 0. The

characteristic function of the inverse Fourier transform Û(z) is

f(λ; z) = λ2 − r
(
z + z−1

)
λ+ 1.

We express z by eiθ. The roots are

λ1(e
iθ) = r cos θ + i

√
1− r2 cos2 θ,

λ2(e
iθ) = r cos θ − i

√
1− r2 cos2 θ.

They are single-valued functions. It follows that

((1, λ1), (1, λ2))

is an indecomposable system of eigenvalue functions of Û introduced in Subsection 4.3.

The characteristic function is expressed as follows:

f(λ; z) = (λ− λ1(z))(λ− λ2(z)).

By Proposition 5.10, the walk is decomposable. The winding numbers of the eigenvalue

functions are 0. By Theorem 5.14, the walk is a restriction of a continuous-time analytic

homogeneous quantum walk.

We now proceed to calculate more concrete description of the continuous-time quan-

tum walk. For the inverse Fourier transform of U , we have

Û(eiθ)− λ2(e
iθ)

=

(
i
√
1− r2 cos2 θ − ir sin θ −

√
1− r2e−i(θ−β)

√
1− r2ei(θ−β) i

√
1− r2 cos2 θ + ir sin θ

)
Û(eiθ)− λ1(e

iθ)

=

(
−i

√
1− r2 cos2 θ − ir sin θ −

√
1− r2e−i(θ−β)

√
1− r2ei(θ−β) −i

√
1− r2 cos2 θ + ir sin θ

)
.

The first column vectors of these matrices

x1(e
iθ) =

(
i
√
1− r2 cos2 θ − ir sin θ√

1− r2ei(θ−β)

)
x2(e

iθ) =

(
−i

√
1− r2 cos2 θ − ir sin θ√

1− r2ei(θ−β)

)
are eigenvectors of eigenvalues λ1(e

iθ), λ2(e
iθ), respectively. These normalizations

v1(e
iθ), v2(e

iθ) form an orthonormal basis.
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Define a unitary matrix V̂ (eiθ) by

V̂ (eiθ) =
(
v1(e

iθ) v2(e
iθ)
)
.

The inverse Fourier transform of the walk is diagonalized as follows:

Û(eiθ) = V̂ (eiθ)

(
λ1(e

iθ) 0

0 λ2(e
iθ)

)
V̂ (eiθ)∗.

There exists a real-valued function h : T → R satisfying

exp(ih(eiθ)) = λ1(e
iθ), exp(−ih(eiθ)) = λ1(eiθ) = λ2(e

iθ).

The walk can be obtained by restricting a continuous-time analytic homogeneous quan-

tum walk t 7→ U (t) whose inverse Fourier transform is

Û (t)(eiθ) = V̂ (eiθ)

(
exp(ith(eiθ)) 0

0 exp(−ith(eiθ))

)
V̂ (eiθ)∗.

9.2. Another type of 2-state quantum walk.

In this subsection, we consider a quantum walk defined by

U =

(
rS1 −bS1

b r

)
, r ∈ R, b ∈ C, r2 + |b|2 = 1,

acting on ℓ2(Z)⊗C2. This quantum walk is related to the walks with self-loops studied by

Hoyer and Meyer [HM09]. The weak limit theorem for this walk can be easily deduced

from that of the last subsection, but to observe the eigenvalue function, we proceed.

The characteristic function of the inverse Fourier transform Û(z) is

f(λ; z) = λ2 − r (z + 1)λ+ z.

Define an analytic function λ1(ζ) : T → T by

λ1(e
iθ) = reiθ cos θ + ieiθ

√
1− r2 cos2 θ.

The characteristic function is expressed as follows:

f(λ; z) =
∏

ζ : ζ2=z

(λ− λ1(ζ)).

The calculation is straightforward. Since λ1(−ζ) ̸= λ1(ζ), the polynomial f(λ) ∈ QT[λ]

is irreducible, by Lemma 4.7. For the quantum walk U , ((2, λ1)) is an indecomposable

system of eigenvalue functions defined in Subsection 4.3. By Proposition 5.10, the quan-

tum walk is indecomposable. The winding number of the eigenvalue function λ1 is 1.

By Theorem 5.14, the quantum walk is not a restriction of a continuous-time analytic

homogeneous quantum walk.
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9.3. 3-state Grover walk.

The 3-state Grover walk is given by

U =
1

3

 −S−1 2S−1 2S−1

2 −1 2

2S1 2S1 −S1

 .

The weak limit theorem for this walk was given in [IKS05]. The characteristic function

of the inverse Fourier transform Û(z) is

f(λ; z) = λ3 +
1

3
(z + 1 + z−1)λ2 − 1

3
(z + 1 + z−1)λ− 1

f(λ; eiθ) =

(
λ2 + 2

2 + cos θ

3
λ+ 1

)
(λ− 1).

The eigenvalues of Û
(
eiθ
)
are

λ1 = −2 + cos θ

3
± i

√
1−

(
2 + cos θ

3

)2

, λ2 = 1.

Let us observe the first eigenvalues λ1. The eigenvalues do not define single-valued

analytic functions. The eigenvalues λ1 of Û
(
e2iθ

)
are

λ1 = −2 + cos 2θ

3
± 2i

3
sin θ

√
3− sin θ2.

If we add π to θ, then we get the other root. We choose

−2 + cos 2θ

3
+

2

3
i sin θ

√
3− sin2 θ,

as the definition of the eigenvalue function λ1(e
iθ). The eigenvalues of Û (z) are

{λ1(ζ) | ζ2 = z} ∪ {1}.

The pair ((2, λ1), (1, 1)) is an indecomposable system of eigenvalues. The characteristic

function is expressed as follows:

f(λ; z) = (λ− 1) ·
∏

ζ : ζ2=z

(λ− λ1(ζ)).

By Proposition 5.10, the 3-state Grover walk is decomposable. The winding numbers

of the eigenvalue functions are both 0. By Theorem 5.14, the walk is a restriction of a

continuous-time analytic homogeneous quantum walk.
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