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Abstract. The subject of this paper is quantum walks, which are ex-
pected to simulate several kinds of quantum dynamical systems. In this paper,
we define analyticity for quantum walks on Z. Almost all the quantum walks
on Z which have been already studied are analytic. In the framework of ana-
lytic quantum walks, we can enlarge the theory of quantum walks. We obtain
not only several generalizations of known results, but also new types of the-
orems. It is proved that every analytic space-homogeneous quantum walk on
Z is essentially a composite of shift operators and continuous-time analytic
space-homogeneous quantum walks. We also prove existence of the weak limit
distribution for analytic space-homogeneous quantum walks on Z.

1. Introduction.

In this paper, we study a kind of dynamical systems called quantum walks. Many
researchers have already studied the subject in several different frameworks (see [Mey96],
[ABN101] for example). They commonly make use of the following items:

o the Hilbert space H = l2(X) ® C™ defined on a (discrete) metric space X,
e a unitary operator U on #5(X) @ C",
e and a unit vector ¢ in the Hilbert space.

The metric space X is usually associated to some graph (see [Porl8]). In some case,
X is the set of symmetric arcs, In other case, X is the vertex set. The sequence (or
1-parameter family) of unit vectors {U*¢}; defines a probability measure on the space
X, which has attracted much attention (see [Kon05], [GJS04], etc.).

In this paper, we focus on the case that the space X is given by the set Z of integers
and that the unitary operator U is space-homogeneous. The following are aims of this
paper:

e We will prove a structure theorem on such a walk U (Theorem 5.7).

e The walk U can be constructed from shift operators and continuous-time space-
homogeneous quantum walks on Z (Theorem 5.13).

e We will prove that the eigenvalue functions introduced in Definition 4.9 determine

when U is a restriction of a continuous-time space-homogeneous quantum walk
(Theorem 5.14).
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e The walk U always has weak limit distribution for every initial unit vector £ which
rapidly decreases. Its precise statement is given in Theorem 6.4.

Theorem 5.7 means that every space-homogeneous quantum walk on Z is essentially a
direct sum of model quantum walks. The model quantum walk Uy is introduced in
subsection 5.1. They are labeled by a pair of a natural number d and an analytic map
A: T — T. Our new framework of quantum walks is large enough to include all the model
quantum walks.

To state above theorems in this paper, we need to clarify the definition of quantum
walks. Throughout this paper, we always require analyticity in the sense of Definition 3.1
for quantum walks. This assumption is so weak that almost all known examples satisfy.
We need complex analysis on the Fourier dual of the quantum walk. Requirement of
analyticity on the walk enables us to use Riemann surfaces. Many mathematicians and
physicists have already used Fourier analysis on quantum walks. Combining with complex
analysis, we can extend the study further.

In Section 6, we prove existence of the weak limit distribution for every analytic
space-homogeneous quantum walk. Grimmet, Janson, and Scudo stated this theorem in
[GJS04] and our argument follows their excellent idea. The paper [GJS04] does not
explicitly define quantum walks. This is one of the reasons why it is difficult for the
readers to check the claims in [GJS04]. They put explicit and implicit assumptions
(see Remark 6.5). In Subsection 9.2, we construct an example for which an implicit
assumption in [GJS04] does not hold. The authors think that it is unnatural to exclude
the example from the class of quantum walks.

In Section 8, we prove that every analytic space-homogeneous quantum walk on Z is
a solution of algebraic equation, whose coefficients are elements of an operator algebra.
The authors expect that there might be more algebraic way of the definition of quantum
walks, which enlarges the scope of our study further.

In Section 9, we examine a new example of quantum walks, as well as known exam-
ples. If the readers want to start with concrete examples, the authors recommend them
to see Section 9 first.

2. Preliminary on vector-valued analytic maps.

This paper completely relies on complex analysis. To study the inverse Fourier dual
of quantum walk, in Subsection 4.4, we construct analytic sections of eigenvectors. For
the argument, we prepare a couple of lemmata. Let T be the set of complex numbers
whose absolute values are 1.

LEMMA 2.1.  Letx: T — C" be an analytic map. Suppose that the map x is not the
constant map 0. Then there exists an analytic map v: T — C" satisfying the following
conditions:

o for every z € T, |v(2)|| =1,
o for every z € T, x(z) € Cv(z).

We call v a normalization of x.
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Proor. For k=1,2,...,n,let xx: T — C be the k-th entry of the analytic map
x: T — C™. There exists an open neighborhood €2 of T such that  is invariant under
the reflexion z — 1/% and that xj: T — C admits an analytic (or holomorphic) extension

SL’k:Q—>(C,

for every k. Define z}: @ — C by the reflection x;(1/Z). Note that z} is analytic on Q
and that the equation zj = 7}, holds on T.
Consider the analytic function

n

k=1
defined on Q. If the function has no zero on T, then the map
_ x(2)
Vi wi(@)an(z)

satisfies the conditions in the lemma.
Consider the case that there exists a zero of analytic function

v(z)

n

Z Z 2y (2)zk(2)

k=1
on T. Note that the order of the zero on T is even. There exist analytic functions
Ix[[+: T\{-1} = R,
Ix[[—: T\ {1} =R,

satisfying that
Ix[l+(2)> = > wi(2)an(z), 2z €T\{-1},

Ix|-(2)* =) wi(2)au(2), 2 €T\ {1},

and that ||x||+(z) = ||x||-(2) on the intersection of the upper half plane and T. Note
that on the intersection of the lower half plane and T, ||x||—(z) is identical to ||x||+(2) or
x4 (2):

If z € T is a zero of ||x||+ or ||x]|—, then the order coincides with

min (the order of zero of zj at z).
1<k<n

This means that the singular points of

x(z) x(z)

A

Xl ) <] (z)’
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on T are removable. If ||x||_(z) is identical to ||x||+(2z) on the intersection of the lower
half plane and T, define v(z) by

x(z) x(z)

Ixl+ (=) — [x[-(2)"

We finish the proof in such a case.
Consider the case that

%[l (2) = lIx[+(2), =z € T,Im(z) >0,

Il () = —lxll+ (), # € T,Tm(z) <.
Define v by
) B i x(exp(ify))
v(exp(ify)) = exp (;) m7 —T <0 <,
v(exp(ifs)) = exp (?) m}%, 0 <6y < 27.

This defines a single-valued function, because for every —m < 61 < 7w and 7 < 6y < 2,
if 03 — 61 = 27, then exp(if1/2) = —exp(ib3/2). O

LEMMA 2.2,  Let x1 x® . x(D: T — C" be a collection of analytic maps.
Suppose that on a coset of a finite subset of T, the vectors

{(xWM(2),xP(2),...,xD(2)}
are linearly independent. Then there exist analytic maps
v v@ @ e
satisfying the following conditions:
o for every z € T, {vD(2),v®(2),...,v{®D(2)} forms an orthonormal system,

o for every z € T, xV(2),x?(2),...,x4(2) are elements of the linear span of
{(vD(2), v (2),...,v(D(2)}.

Proor. The Gram—Schmidt process works in our framework.

Because the map x(!) is analytic and not the constant map 0, by Lemma 2.1, there
exists an analytic map v(*) which is a normalization of x(1). Note that on a coset of a
finite subset of T, Cx()(z) = Cv(1(z).

On T, define y(?(z) by

¥y (2) = x(2) = (D (2), VO )V (2),

For k = 1,2,...,n, the complex conjugate v,(cl)(z) of the k-th entry of v(!)(2) is an

analytic function on T, because it is identical to v,(:)(l/f). It follows that the map
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y?)(2) is also an analytic map on T. Because on a coset of finite subset of T, x(?)(z) is
linearly independent of Cv(1)(z), y(? is not the constant map 0. Again by Lemma 2.1,
there exists an analytic map v(?) which is a normalization of y(?). Because v(z)(z) is
perpendicular to v(V)(2) on a coset of a finite subset of T, {v(V(z),v(®(2)} forms an
orthonormal system on the coset. By the continuity, the vectors form an orthonormal
system for every z € T. On T, we have

xW(z) e CvW(z), ¥y (2) =x®(2) = (x?(2), vV (2))vV(2) € CvP)(2).
It follows that
span{x™(z),x®@(2)} c span{vV(z),v?(2)}.

On a coset of a finite subset of T, the vectors x(M)(z), x(?)(z) are linearly independent,
and therefore the above two subspaces coincide.
On T, define y®)(z) by

yP(2) =xP(2) = (xO(2), vV (2))vD (2) = (xD(2), vB (2)vP(2), z€T.

Since the complex conjugates of the entries of v(1), v(2) are analytic functions on T,
the map y® is also analytic on T. Because on a coset of a finite subset of T, x(3)(z)
is linearly independent of span{v(")(z),v(?(2)} = span{xM(2),x?(2)}, y® is not the
constant map 0. Again by Lemma 2.1, there exists an analytic map v(® which is a
normalization of y(*). On a coset of a finite subset of T, {v(})(2),v(?(2),v(®)(2)} forms
an orthonormal system. By the continuity, on T, the system is orthonormal. On T, we
have y®)(2) € Cv®)(2). Tt follows that

span{x(2),x@(2),x®(2)} ¢ span{v(V(2),v(?(2),v®(2)}.

On a coset of a finite subset of T, the above two subspaces coincide.
Repeating this procedure, we obtain an orthonormal system in the lemma. (|

We note that two subspaces
span{x(2),...,x D (2)} c span{vV(2),...,v(¥(2)}

coincide on a coset of a finite subset of T.

3. Quantum walks on £3(Z) ® C™ and Analyticity.

The subject of this paper is a unitary operator satisfying the following conditions.
Let n be a natural number. Consider a bounded linear operator X on ¢5(Z) @ C".
The matrix expression

[X((Sa k)7 (ta l))](s,k),(t,l)EZX{1,27...,71}

of X is given by

X((s,k), (t,1)) = (X(6;: @), 55 @ Oy,).
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DEFINITION 3.1. (1) The operator X is said to be in the C*°-class, if for every
natural number N, the set

{@+ s =tV X((s,k), (t,1)) | s,t € Z,k, L € {1,2,...,n}}
is bounded.

(2) The operator X is said to be analytic, if there exist constants 0 < ¢ and 1 < r
satisfying that for every k, [, s,t

| X ((s, k), (8, )] < er™lo=tl.
(3) The operator X is said to have finite propagation, if there exists a constant 1 < R
satisfying that for every k, [, s,t
X((s,k), (1)) =0,
whenever |s — t| is greater than R (see e.g. [N'Y12, Definition 5.9.2]).

(4) The operator X is said to be homogeneous or space-homogeneous, if the matrix
coefficient X ((s, k), (¢,1)) depends only on k,1, and s — t.

Note that for an operator X on ¢3(Z) @ C™.
e The operator X is analytic, if it has finite propagation.
e The operator X is in the C*-class, if it is analytic.
e The operator X is bounded, if it is in the C*°-class.

We often identify a vector in £5(Z) @ C™ with a column vector whose entries are £
functions on Z. Every bounded linear operator on ¢5(Z) ® C™ = ¢5(Z)™ can be expressed
by an (n x n)-matrix whose entries are bounded linear operator acting on £5(Z).

The adjoint operator X* of the bounded linear operator X = [X((s, k), (¢,1))] is
given by

X* = [X5((s, k), (&) = | X((&, 1), (s, k)| -

In the case that X and X™ are preserving norms of vectors, we call X a unitary operator.
In such a case, X* is the inverse of X.
For s € Z, let S5 be the unitary operator on ¢5(Z) defined by the shift

525 g 5s+ta teZ.
A homogeneous operator X = [X((s, k), (¢,1))] can be expressed by infinite sums

[Z Xk,l(S)Ss‘| )

1<k,l<n
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where the coefficient Xy, (s — t) is given by X ((s, k), (¢,1)). In the case that X is in the
C°-class, the infinite sums are given by operator norm convergence.

G e

It is not hard to see that the following classes of unitary operators form groups:
unitary operators in the C*°-class,
analytic unitary operators,
unitary operators with finite propagation,
homogeneous unitary operators.
We give a definition of quantum walks on Z.

DEFINITION 3.2.  Let t — U® be a group homomorphism from a closed subgroup
R to the group consisting of unitary operators acting on ¢5(Z) @ C". Note that the

group G is R or of the form cZ.

have

The group homomorphism is called a continuous-time quantum walk on 7Z, if the
group G is R and the homomorphism is continuous with respect to weak operator
topology.

The group homomorphism is called a discrete-time quantum walk on Z or simply
a quantum walk on Z, if the group G is of the form cZ.

The quantum walk is said to be in the C®-class, if U®) is a unitary operator in
the C*>-class for every t € G.

The quantum walk is said to be analytic, if U®) is an analytic unitary operator for
every t € G.

The quantum walk is said to have finite propagation, if U(*) has finite propagation
for every t € G.

The quantum walk is said to be space-homogeneous, or more simply homogeneous
if U® is a homogeneous unitary operator for every t € G.

ExAMPLE 3.3.  Almost all discrete-time space-homogeneous quantum walks on Z
finite propagation. Therefore, they are analytic unitary operators. For example,

the Hadamard quantum walk have finite propagation. See [ABN101] for examples of

quantum walks on Z.

time
zZ

4. Fourier and complex analysis for quantum walks on Z.

In this section, we define and discuss the inverse Fourier transform U of a discrete-
analytic homogeneous quantum walk U on Z. Such a transform defines a map
U(z) from T to unitary operators acting on C"™. The goal of this section is to

construct analytic sections of eigenvectors of U (z) which form an orthonormal basis of

each

fiber C". The main ingredient is analyticity of the map z ﬁ(z)
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4.1. Inverse Fourier transform for homogeneous operators and quantum
walks.
Our discussion will completely rely on Fourier analysis. We express the Pontryagin
dual of Z by T = {z € C | |z| = 1}. The inverse Fourier transform F~! is given by the
unitary operator

F7 1 ty(Z) 3 6, 7 2° € L*(T).

For a bounded linear operator X on ¢3(Z) ® C", we call the bounded linear operator
X = (F'®id)X(F ®id) acting on L?(T) @ C" the inverse Fourier transform of X.
In the case that X is a homogeneous operator, X can be expressed as

X = [ZX&[(S)SS

SEZL ‘| 1<k,I<n

)

and the (k,)-entry of the inverse Fourier transform X is the multiplication operator by
the function

> Xpa(s)z* € L¥(T)

SEZ
on T. For a continuous function n on T, we often identify the function n and the multi-
plication operator

L*(T) > &€ — n¢ € L*(T).

Sometimes, to emphasize that 7 gives a multiplication operator, we denote by M|n| the
operator.

LEMMA 4.1.  For the homogeneous operator X on {s(Z)®C™, we have the following:

(1) The operator X is in the C*®-class, if and only if every entry of X is a smooth
function.

(2) The operator X is analytic, if and only if every entry of)? is an analytic function
defined on a neighborhood of T.

(3) The operator X has finite propagation, if and only if every entry of)? s a linear
combination of {z° | s € Z} C C(T).

PROOF. Smoothness and analyticity of functions on T can be rephrased by how
rapidly the Fourier coefficients decreases. O

For the rest of this paper, we focus on a discrete-time analytic homogeneous quantum
walk acting on ¢2(Z) @ C™. We may assume that the group of time is Z. Then we simply
denote the generator of the quantum walk U by U. The inverse Fourier transform U=
(F7'®id)U(F ®id) of the generator of the quantum walk is an element of M,,(C(T)) =
C(T)® M, (C). We denote by U(z; k, 1) the (k,l)-entry of U. By Lemma 4.1, the function
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(7(,2; k,1) has an analytic extension to a neighborhood  of T. We also denote by ﬁ(z, k1)
the extension. Note that for every z € €, (U(z; k, l))k_l is an invertible (n X n)-matrix

and that for every z € T, (U(z, k, l))k_l is a unitary matrix.

Our next goal is to show a structure theorem (Proposition 5.6) on the inverse Fourier
transform U (2),z € T. Some readers may think that such a structure theorem is a
conclusion of Kato’s theory. Applying Kato’s analytic perturbation theory in [Kat95]
to the analytic map of matrices z — U (z), we obtain locally defined analytic sections
of eigenvectors. However, we need analytic sections defined on T in order to obtain a
structure theorem (Theorem 5.7) on the original operator U. It is not impossible but
difficult to deduce such a global decomposition from Kato’s theorems in [Kat95]. We
give a self-contained proof to provide a simple proof.

The first ingredient is the algebraic field Qr, which is defined in the following subsec-
tion. The field consists of meromorphic functions defined around T. The characteristic
polynomial of U (2),z € T is a polynomial whose coefficients are elements of the field Qr.
The decomposition in Proposition 5.6 corresponds to the factorization of the character-
istic polynomial.

4.2. Polynomials whose coefficients are analytic functions on T.
For the rest of this section, let f(A;z) be the characteristic polynomial

F(Nz) = det ((A(sk,l —U(z:k, 1))&[) .

The degree of polynomial with respect to A is n. The coefficients are analytic (or holo-
morphic) functions of z defined on a domain containing T. To study such a polynomial,
we need some preparation.

DEFINITION 4.2. e Let Qr be the set of all the pairs (€,q) of a domain Q
containing T and an analytic map to the Riemann sphere

q: 2 — CU {0}
which is not the constant map oc.

e Two elements (Q1,¢q1), (Q2,¢2) of Qr are said to be equivalent, if there exists a
domain T C Q¢ C 27 N Qs on which ¢; and ¢o coincide.

e Let Ot be the set of all the equivalence classes with respect to the above equivalence
relation.

LEMMA 4.3. The point-wise summation and multiplication of Qt induce a field
structure on the set Or.

The proof is a routine work. We call Qr the field of meromorphic functions on T. We
simply denote by ¢ € Qr the equivalence class containing (€2, ¢) € Qr. The characteristic
polynomial f();z) of the matrix U(z) defines a polynomial f()\) whose coefficients are
elements of Qr. For every polynomial g(A\) € Or[)\], and for every z € T, evaluating
the coefficients of g(\) at z, we obtain a polynomial g(};z) in C[A]. To decompose the
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characteristic polynomial f()\) € Qp[A] of U, we will make use of the following lemma
and proposition.

LEMMA 4.4. Let g(\) € Or[A] be an irreducible polynomial. Then there exists a
finite subset To of T such that for every z € T \ Ty, the polynomial g(A;z) € C[\ at z
has no multiple root.

PrROOF. Note that the polynomial ring Qr[)] is a principal ideal domain. Choose
a polynomial h(\) € Or[)\] satisfying that

9N+ 2 (05 = VL5

Since (0g/OA)(A) € h(A\)QOr[A], the degree of h is less than that of g. Since g(\) is
irreducible, h()) is an element of Qp. It follows that there exist q1(A),g2(A\) € Or[)
satisfying that

0
9B (N + 51 (Na2(N) = 1 € Qe
Choose a finite subset Ty of T such that for every z € T \ Ty, all the coefficients of

g1(A), g2(N\) are not oo at z. For such z, we have

905 2)m(2) + 9L ) 2) = 1€ T

It follows that there exists no common root A of g(A; 2) and (9g/0N)(X\;2) € C[A]. O

PROPOSITION 4.5.  Let g(\) be an irreducible polynomial in Qr[\] with degree d.
Suppose that the coefficient of the highest degree is 1. Assume that for every z € T, all
the roots A of g(A; z) € C[)A] are elements of T. Then we have the following:

(1) There exists an analytic function A(-) € Qr satisfying that for every z € T,

gz = J[ O =x).

¢: Cl=2

(2) Assume that another analytic function A(-) defined around T satisfies
s = II (A-%20).
(: Cd=z
Then there exists a natural number ¢ satisfying that
ce{0,1,2,...,d—1},
A(¢) = Aexp(2mic/d)), C€T.

PROOF.  Since the roots A of g(A; z) uniformly bounded on z € T, there exists a
domain € containing T on which the coefficients of g(A) have no poles. By the same



Analytic homogeneous quantum walks on Z 1211

argument as the book [Ahl66, Chapter 8, Section 2] by Ahlfors, the set of germs whose
graphs are included in

G={(z2) €2xClg(A2) =0}

gives a Riemann surface. In the book by Ahlfors, it is proved that an irreducible
polynomial defines a (compact) Riemann surface. In our argument, the coefficients of
A4 A4 1 are not necessarily polynomials of z but analytic functions of z. How-
ever, the argument by Ahlfors works in our framework and shows that G gives a (not
necessarily compact) Riemann surface.

We prove that the Riemann surface has no branch point on T.

Let zp be an arbitrary element of T. Let D C €2 be a tiny open disc including zg
such that there exists no branch point in D \ {20} and that the circle D intersects with
T at right angles. Let {z1, 22} be the intersection of T and the boundary dD. Pick up
an analytic germ z — A(z) defined around z; whose graph is included in G. Denote by
Cout the path such that the starting point is z; and the terminal point is zo and that
Cout goes outside of T. Denote by Cj, the path such that the staring point is z; and
the terminal point is zo and that Cj, goes inside of T. Let Aout(2) be the germ defined
around zy given by the analytic continuation of A(z) along Coyt. Let Ain(2) be the germ
defined around zo given by the analytic continuation of \(z) along Cjy,.

Because the germ A satisfies g(\(z),z) = 0, by the identity theorem, we have
9(Ain(2),2) = 0. By assumption, for z € T, the absolute values of the roots of g(A,z)
are 1. It follows that if z is in T and close to zs, then

|/\in(z)| =1,
1
= )\in zZ).
) (2)

For z € T close to z1, we have |A(z)| = 1. For such z, we have
1

—_— =%,
Z

Let us move z from z; along Cj,. Then 1/Z moves from z; along Cout. By Schwarz
reflection principle, for z € Q around z,, we have

>\out (1> = L .
z )\in(z)

If z is in T and close to z2, then we have

1
)\in (Z) .

It follows that Aowt(2) = Ain(z). By the identity theorem, this equality holds on a

/\out(z) =
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neighborhood of z3. It means that two germs given by Aoy and Ay at zo are identical.
We conclude that the analytic continuation of A(-) on the tiny circle 9D is unique and
that zg is not a branch point. It follows that there exists no branch point on T.

Let us take an analytic germ Ao(z) at 1 whose graph is included in G. Since the
Riemann surface has no branch point on T, there exists an analytic continuation

R 3> 60— Ay,

where \g is a germ at e?. By the finiteness of the roots, there exists a natural number ¢
such that 27c is the period of the analytic continuation. Define an analytic function A(-)
on T by

)‘(O = )‘cargc(cc)-

Note that for every c-th root ¢ of z, we have
9(A(¢),2) = 0.
For every 1 < b < ¢, the function
z + b-th elementary symmetric polynomial of {A(¢) | ¢¢ = z}

defines an analytic function of z. It follows that
gn2)= I A=)
¢: (==

gives an element g1 (\) of Qp[A].

We next prove that g1 (\) is identical to g(\). By the definition of A(¢), for every
z € T, every root of gi(A;z) is that of g(A;z). By Lemma 4.4, for almost every z € T,
g(A; z) € C[A] has mutually different d roots. It follows that for such z, the complex
numbers {A(¢) | ¢° = z} are mutually different. Consider the remainder () obtained
by the polynomial long division

g(A) = q(N)g1(A) +r(N) € Qr[A].

Since g1 (A) is monic, all the coefficients of g(A) and r(X) are realized by complex-valued
analytic functions. Substituting z, we obtain the identity

g 2) = g\ 2) (N 2) + (N 2) € CIA.

For almost every z € T, r(\;2) € C[A] has mutually different ¢ roots {\(¢) | (¢ = z}.
Since the degree of r(\;z) € C[A] is less than ¢, we have r(\;z) = 0 for such z. By
continuity, for every z € T, 7()\; z) = 0. Therefore we have

g(\) = q(N)g1(N) € Qr[A].

Since g(A) is irreducible, two polynomials g and ¢; are identical.
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_ For the second item of the proposition, assume that there exists an analytic function
A on T such that

s = I 0-xon= I (A-20).
¢ ¢d=2 ¢ ¢d=2

By Lemma 4.4, there exists zo € T such that if z € T is close to zg, then {\(¢) | ¢¢ = 2z}
consists of d elements. Choose a d-th root (y of zp. Then there exists ¢ € {0,1,...,d—1}
such that A(Co) = A(exp(2mic/d)Co). By continuity of A and of X, if ¢ € T is close to
o, then X(C) = Mexp(2mic/d)¢). By the identity theorem, the equality holds for every
CeT. 0

REMARK 4.6. In the case that the quantum walk U has finite propagation, the char-
acteristic polynomial f(); z) of U(z) is a polynomial of A, z, z~1. Let g(\) € Clz, 27 4][)]
be an irreducible factor of f(\) € C[z, 27 !][\]. The Riemann surface given by g is a com-
pact Riemann surface. This is not used for the rest of this paper, but this is interesting.

LEMMA 4.7.  Let A(+) be an analytic function defined on T. Define g(A) € Qr[A] by

gz = J[ (=)

¢: Cl=z
The following two conditions are equivalent:
(1) The polynomial g(\) € Qr[A] is reducible.

(2) There exists a natural number ¢ € {1,2,...,d — 1} satisfying that
2mic
A (exp (d) C) = AQ),

If the_above conditions hold true, then there exist natural numbers b,c and an analytic
map A\: T — T satisfying that bc = d and that

for every ¢ € T.

M) =AQ), CeT,
b
g\ 2) = ( 11 (A - X(n))) :
n:nNc=z
PROOF. Suppose that there exists ¢ € {1,2,...,d — 1} satisfying that
Aexp(2mic/d)¢) = A(C).

Choose minimum value of ¢ satisfying the above property. Such a natural number c
divides d. Define b by d/c. Define an analytic function A: T — T by

(1) = A(b-th oot of 7).
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Since A(exp(2mi/b)¢) = A(¢), A is well-defined. The polynomial

( I1 (A—X(vﬂ))be(C[/\]

n: =z

is identical to g(A; z). It follows that g(\) is not irreducible.

Suppose that g(\) is not irreducible. Take an irreducible monic polynomial g, (\) €
Or[A] which divides g(A). Let ¢ be the degree of g1 (\). By Proposition 4.5, there exist
a natural number ¢ and an analytic function X such that

a =TI (A-2m).

n:ne=z

Because [, . nc=z()\*x(77)) divides [ ], ca—,(A—A(()), the germ of X around 1 is realized
by a germ of A\ around some d-th root {y of 1. More precisely, if 7 is close to 1, if { is close
to (o, and if n° = ¢?, then A(n) = A(C). Let us move 7 on T in the anticlockwise direction.
Under the condition that 7¢ = (%, as argn moves from 0 to 27, arg ¢ moves from arg (,
to arg (o + 2mc/d. We have A(exp(27i)n) = M exp(2mic/d)C). Since A(exp(2mi)n) = (),
we have

Alexp(2mic/d)¢) = A(C),
for ( € T close to 1. By the identity theorem, for every ( € T, the equation holds. O

4.3. Eigenvalue function for a quantum walk.
The characteristic polynomial

F\z) = det ((Aak,l ~U(z k,l))hl)

of the inverse Fourier transform U (z) induces a polynomial f(\) € Qr[)]. The coefficients
of f()\) are analytic functions defined on T. The polynomial admits a decomposition into
irreducible polynomials, and each irreducible factor admits such an expression as in
Proposition 4.5. Thus we have the following proposition:

ProproOsSITION 4.8.  There exist
e a sequence of natural numbers d(1),d(2),...,d(m) whose sum is n,
e analytic functions Ai,...,Apm: T — T,
satisfying that the characteristic polynomial f(X; z) of [7(2) is given by

fsa =11 JI (=x©Q)-

Jj=1 ¢: ¢dl) =z
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In our argument before Proposition 4.8, the factor [].. cay—, (A —A;(¢)) is irre-
ducible. However the equation in Proposition 4.8 does not imply that each factor is
irreducible, because the factor may admit further decomposition as in Lemma 4.7.

DEFINITION 4.9. For the quantum walk U, the m-tuple of pairs
((d(1)7 >‘1)7 (d(2)a )‘2)7 LR (d(m)ﬂ /\m))
satisfying the equation in Proposition 4.8 is called a system of eigenvalue functions of U.

For the quantum walk U, the natural number m and the system of eigenvalue func-
tions of U are not necessarily unique. It admits the following three types of replacements:

(1) Permutation on the index {1,2,...,m}.

(2) Rotation on the function A;. More precisely, The system admits the replacement

of A;(¢) with
u (o (35) <)

where ¢ is a natural number. See Proposition 4.5 (2).

(3) Decomposition described in Lemma 4.7. More precisely, in the case that
2mic d(j)
/\»C:)r(exp(_)(), b:=——=¢€¢N,
J ( ) J d(]) c

the pair (d(j), ;) can be replaced with the b-tuple of pairs

(3. () o ().
The new eigenvalue function is given by

(1) = Aj(the b-th oot of 7).

If the third procedure can not be applied to the system, the system is said to be
indecomposable. If two systems of eigenvalue functions of U are given, by applying
the above procedures (1), (2), and (3), we obtain a common indecomposable system of
eigenvalue functions. If two indecomposable systems of eigenvalue functions are given,
by applying the procedures (1), (2) to one system, we obtain the other system. This is
a conclusion of the uniqueness of the irreducible decomposition of f(A).

DEFINITION 4.10. Let
((d(1)7 Al)a (d(2)v )‘2)7 R (d(m)a /\m))

be a system of eigenvalue functions of U. We denote by w(A;) the winding number of
the analytic map A;: T — T. We define a quantity |w|(U) by the sum
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The quantity |w|(U) is uniquely determined by U, because the sum is preserved
under the procedures (1), (2), and (3).

4.4. Analytic section of eigenvectors.
The following is a structure theorem on the inverse Fourier transform U of an analytic
homogeneous quantum walk U on Z:

PROPOSITION 4.11.  For every indecomposable system of eigenvalue functions
((d(l)v )‘1)’ (d<2)7 )‘2)7 EER) (d(m), Am))

of ﬁ', there exist analytic maps vi,...,vy: T — C™ satisfying the following:

e for every z € T,

{Vj(é) ‘ 1<j<m,eT, i) = Z}
forms an orthonormal basis of C",

o for every 1 < j <m, and for every ¢ € T,
U (¢")v;(0) = 5(Qvi(€).

PROOF. Because the indecomposable system of the eigenvalue functions is essen-
tially unique, it suffices to construct the required analytic sections of eigenvectors for
some indecomposable system.

Let f(A) = g1(MN)g2(A) - - - gm(N) be an irreducible decomposition of the characteristic
polynomial f(A) € Op[A]. For 1 < j < m, denote by d(j) the degree of g;(A). We
may assume that g1, gs,..., gmn are monic. By Proposition 4.5, there exists an analytic
function A;: T — T satisfying that

gz = I =X

C: A =2

The collection of such A;({) is the set of all the roots of f(\;z). We may further assume
that

g1 =""=9pJ1 7égp+1,91 #9p+27~~»91 # Gm

and that Ay =--- = \,. By Lemma 4.7, on a coset of finite subset of T, the eigenvalue
A1 (¢) of U(¢¥M) is different from other eigenvalues

A (exp (Zf;) g), k=1,2,....d(1) -1,

Ai(n), j=p+1,p+2,....,m, n isa d(j)-th root of ¢#1).
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Define a matrix X()(¢) € M, (C) by the product

xW(¢) = 11 (Al(n) - ﬁ(Cd(l)» ‘ ﬁ 9i (ﬁ (Cd(l)»'

n: AN =¢4) nzt¢ j=p+1

Note that for every ¢ € T, U (Cd(l)) is diagonalizable and satisfies
(M© =T (¢"M)) XD(Q) = £ (T (¢"V) :¢"V) = 0.

On a coset of a finite subset of T, the image of X1 () is the eigenspace of U (Cd(l))
whose eigenvalue is A1 (¢). On a coset of a finite subset of T, the rank of X (1 (¢) is equal
to the multiplicity p of the eigenvalue A;({). Let Xl(l)(C) be the I-th column of X(1)(¢).
Note that for every choice of 1 <1(1) < 1(2) < --- < I(p) < n, the map

¢ XA AX( () e nrer

to the p-th exterior product is analytic. There exists a collection I(1) < I(2) < --- < I(p)
of labels satisfying that

Xz((11))(C) A AXY

1) (¢) € APCT

is not the constant map 0 and the zero set is at most finite. This means that the set of
vectors

is linearly independent and spans the image of X)(¢) on a coset of a finite subset of T.
By Lemma 2.2, there exist analytic maps v(1, v ... v(®): T — C” satisfying the
following conditions:

o for every ¢ € T, {v(V(¢),v?((),...,vP(¢)} forms an orthonormal system,

e on a coset of a finite subset of T, the linear span of {Xl((ll))(C), .. .,Xl((lp))(()} is
identical to the linear span of {v(V(¢),v(?(¢),...,vP(()}.

It follows that on a coset of a finite subset of T, the following four subspaces of C”
coincide:

e the eigenspace of U (Cd(l)) whose eigenvalue is A1 (¢),
e the image of X1 (),

. 1) (1)
o the linear span of § X;})(¢),-.., X, (Q) 7,

e the linear span of {v<1>(§),v<2>(g), e ,v(p)(C)}.
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The vectors v(D (¢), v (¢),...,vP)({) are eigenvectors of U (¢?™M) whose eigenvalue is
A1(€), on the coset of T. By the continuity of vV (¢), v (¢), ..., v (¢) and A\ (C), it
turns out that there exists no exception.

By Lemma 4.7, every two eigenvalue functions chosen from

A1(€), A1 (exp(2mi/d(1))C), .. - A (exp(2mi(d(1) — 1) /d(1))C)
are not identical. With finite exceptions, for fixed z € T, the (p x d(1)) vectors
(010 | 15 .00 =5},

form an orthonormal system in C". Again by continuity, the exceptions are removed.
Now we proceed to the next step. Rearranging the index, we may further assume
that

Ip+1 = " = Gp+q> Ip+1 # 9p+q+1s-- -,
and that A\p 1 = -+ = \,4q. Define X@+1(() by
XU(Q) = g1 (T(c"#+D)) - 11 (Ao lm) = T(c?o )

n: ndP+l) =¢dp+1) n=£¢

I1 o (0.

Jj=p+q+1
Using column vectors of X <P+1>(g ), we can construct a section of orthonormal basis

vPrD (), v (), v PTO ()

which consists of eigenvectors of U (Cd(p+1)) whose eigenvalues are Ap41(¢). For every
z €T, (¢ xd(p+1)) vectors

{V(”(C) | p+1<j<p+q ¢ty =z},

forms an orthonormal system. On a coset of a finite subset of T, the roots of g1 (\; z) are
different from those of g,+1(A; z). Therefore the members of the system are perpendicular
to

(v | 125 <pci® =2},
on the coset. Again by continuity, it turns out that there exists no exception.
Repeating this procedure, we finish the construction of v(j)(C ), 1<j<n. O
5. Realization by continuous-time QW.

In this section, we first construct a collection of typical quantum walks, which is
called model quantum walks. These walks are like atoms in the world of discrete-time
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analytic homogeneous quantum walks U on Z. Such a walk U is equivalent to a direct
sum of model quantum walks.

5.1. Model quantum walks.
We introduce the model quantum walk Uy x, which is constructed by a natural
number d and an analytic function A: T — T. Let

be the Laurent series of A(¢). For k,l € {1,2,...,d}, define an analytic operator Uy
acting on ¢5(Z) by

o0

Ui = Y c(k—1+ds)S..

§=—00

Define an analytic operator Uy y acting on ¢2(Z) ® C? by
Ui = (Ukp)y, -

Let Ax;: T — C be the function defined by

oo

Aii(2) = Z c(k —1+ds)z°.

S=—00

The inverse Fourier transform 17;:1 = F U, F is identical to the multiplication operator
M) by A

In the case that d =1, Ufl\)\ is nothing other than the multiplication operator M[A]
by the function A. The unitary U, y is the operator given by the Fourier transform of A.
The operator is expressed by

o0

Uiy = Z c(8)Ss.

§=—00

We first prove that the natural number d does not have an important role. Define a
unitary operator Wy: f5(Z) @ C* — (5(Z) by

Wd(53®5k):6k+d87 SEZ,kE{l,Z,...,d}.
We call Wy the rearrangement.

LeEMMA 5.1. Let A\: T — T be an analytic function and let d be a natural number.
Then we have Ug x = WiU \Wy.

PrROOF. Fix arbitrary ¢t € Z and [ € {1,2,...,d} for a while. We hit the vectors
0t ® ¢; to the unitary operators WqUg, x and U; yxW4. We obtain the following equation:
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NE

WdUd7,\((5t ®0) =Wy clk — 1+ ds)Ssd; ® oy,

S§=—00

I
N
M8

X ol
Il |l B
— =

w
Il
|

C(k —1 + d8)65+t X (5k;

o0

I
M=~
M8

c(k =1+ ds)0kya(s+t)-

=
Il
—

S

oo

Every integer o is uniquely expressed by o = k — 1l +ds, k € {1,...,d},s € Z. We get
the equation

o)
WdUd,A(dt X 51) = Z C(U)5l+a'+dt-
We also have
oo o0
UraWa(6:®06) = > e(s)Sebirar = c($)014star-
They are identical. O

LEMMA 5.2.  For analytic maps A, A1, A2: T — T and a natural number d,
Uir=Usx: UsnUdn, = Udris-
Proor. Using Lemma 5.1, we have
Uix =WaUi \Wa = Wi (FMNF ') Wy

= WiFM [X] F'Wq = WiU, Wa
= Ud,X'

We also have

Ud,AlUd,A2 = W;Ul,)\l Ul’)\2Wd = W;.FM[)\l]M[)\2}f71Wd
= WiFMN ) F "Wy = WiUi a2 Wa
=Ug - O

LEMMA 5.3. Let A\: T — T be an analytic function and let d be a natural number.
For every z € T, the operator Ug x is unitary.

Proor. By Lemma 5.2, we have
UirUar =Uy5U0axr =Uyxy, =Ua1 = 1.

The operator Uj ,Uq,x is also the identity operator 1. O
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We calculate the eigenvalue functions of the model quantum walks.

LEMMA 5.4.  For every ¢ € T, the column vector

(1,¢70,¢72,. )T

is an eigenvector of @(Cd) whose eigenvalue is A(().

ProOOF. We directly compute. The k-th entry of the vector

ljd,\A(Cd) . (15 C_17C_27 sy Cl_d)T

is

d oo
Z)‘kl Cll Z ZC 7Z+d5§1 l+ds
=1

d
_<-1 kZZ —l+d8<k l+ds
l=1 s=—o0

Every integer o is uniquely expressed by k —1+ds, l € {1,...,d}, s € Z. Tt follows that

d oo
D AT =R YT o) = A
=1 g=—00
We obtain the following equation:
Tar(C) - (1L,¢TH ¢ )T = A0 - (1,671,672, ¢ T O

We also note that for every z € T,

(17C_17 C_Q’ ctt Cl_d)T

.

LEMMA 5.5.  The characteristic polynomial of the inverse Fourier transform ljd\,\(z)
of the model quantum walk is

(Vi

forms an orthonormal basis of C¢.

IT A =xQ) € QA

¢: Cl=z

ProoF. The roots of the characteristic polynomial of (765\)\(7:) are eigenvalues of
the unitary matrix. By Lemma 5.4, the eigenvalues are {\(¢) | ¢¢ = z}. O

5.2. Structure theorem.
PROPOSITION 5.6.  Let U be the inverse Fourier transform of the quantum walk U.
For every indecomposable system of eigenvalue functions



1222 H. SAa1co and H. SAKO

((d(1)7 >\1)7 (d(2)a )‘2)7 e (d(m)> /\m))’

there exists an analytic map V:T— M, (C) to unitary matrices satisfying

~

0() = V() (Vayn (2) © Uaeyra (2) @ -+ @ Uy a,a (2)) V()" 2 € T

PROOF. Let

((d(1), A1), (d(2), A2), - -, (d(m), Am))

be an arbitrary system of eigenvalue functions of U. By Proposition 4.11, for every
Jj€{1,2,...,m} there exist analytic maps v,: T — C” satisfying that

o for every z € T,

(Vi) 115 <m0 =2}
forms an orthonormal basis of C",

e for every 1 < j < m, and for every ( € T,
U (¢19) v;(0) = X5(Qv; Q).

For z € T, define an isometric operator V;(z): C%9) — C" by the correspondence
L

d(j)

between two orthonormal systems, where ¢ is a d(j)-th root of z. Since the unitary

matrices V;(z) give a correspondence between analytic sections to analytic sections, the
map z — V;(z) is analytic.
We can easily check the equation

(L2 0) (0

U(2)Vi(z) - % (L2, ) =T ()0 = A(Ovs(0).

By Lemma 5.4, we also have

1

Vi) Uatn, (2) - 7z (1€ ¢T3 LT
= X(OVi(2) - % (1,¢70,¢72,. )T
= X (Q)v;(C)-

Thus we obtain U (2)V;(2) = V;(2)Ug(jya, (2)- Let

V(z):clWgpci®@g...pcim -
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be the direct sum of V;,1 < j < m. This matrix is isometric and surjective. It satisfies

O

_ o)

UV (2) = V(2) (Uayn (2) © Uagay s (2) @ -+ © Uy 2, ()
Applying the Fourier transform to Proposition 5.6, we obtain the following.

THEOREM 5.7 (Structure theorem on analytic homogeneous quantum walks on Z).
Every n-state discrete-time analytic homogeneous quantum walk U on Z is conjugate to
a direct sum of model quantum walks. More precisely, for every indecomposable system
of eigenvalue functions

((d(1)7 >‘1)7 (d(Q)a )‘2), ey (d(m)a /\m))
of (7, there exists an analytic unitary operator V' acting on lo(Z) @ C™ satisfying
U=V (Us)x @ Ua@)re @ & Uamya,,) V-

5.3. Decomposable and indecomposable quantum walks.
DEFINITION 5.8.  An n-state discrete-time analytic homogeneous quantum walk U
is said to be decomposable, if there exist

e natural numbers d(1) and d(2) whose sum is n,
e discrete-time analytic homogeneous d(1)-state quantum walk Uy,
e discrete-time analytic homogeneous d(2)-state quantum walk Us,
e and an analytic unitary V acting on ¢2(Z) @ C"
satisfying
U=V ({UieU) V™.
Otherwise, the quantum walk U is said to be indecomposable.

LEMMA 5.9. For every indecomposable analytic homogeneous quantum walk U,
there exist an analytic unitary operator V acting on lo(Z) @ C¢ and model quantum walk
Uqg,» such that

U=VUg V™.
PROOF. The quantum walk U admits a decomposition

U=V Uayr ®Uazyr, @ & Uigimyr,, ) V*

m

described in Theorem 5.7. Since the quantum walk is indecomposable, m = 1. O

PROPOSITION 5.10. A discrete-time analytic homogeneous quantum walk U is in-
decomposable, if and only if the characteristic polynomial f(\;z) of the inverse Fourier
transform U(z) is an irreducible polynomial in Qr[]].
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PROOF. Let f();z) be the characteristic polynomial of the matrix U(z).
Suppose that U is decomposed as in Definition 5.8:

U=V (U aU)V™.
Consider the inverse Fourier transforms of unitary operators. We have
U()=V() (Th(z) @ Tale)) V(o)

Let f;(X;z) be the characteristic polynomial of the matrix U;(z), for j = 1,2. By the
above decomposition, we have

f2) = fi(As2) f2(Xs 2).

It follows that f(A) € Or[A] is not irreducible.
Conversely, suppose that f(\) € Or[)] is not irreducible. The decomposition of f(\)
into irreducible polynomials

F) =91(A) - gm ()

corresponds to an indecomposable system of eigenvalue functions
((d(l)v )‘1)’ (d(2)7 )‘2)7 SRR (d(m), Am))

of U. Theorem 5.7 gives a decomposition of U into model quantum walks
U= V(Ud(l))\l @ Ug(2),xs @"'@Ud(m),)\m) V. O

COROLLARY 5.11. A model quantum walk Uy » is decomposable, if and only if the
characteristic polynomial satisfies the rotation symmetry in the following sense: there
exists ¢ € {1,...,d — 1} satisfying that

Mexp(2mic/d)¢) = A(¢), (¢ e€T.

Proor. The characteristic polynomial of the inverse Fourier transform of Ug_y is

IT &= € arlN,

C: =z

by Lemma 5.5. By Lemma 4.7, this polynomial is not irreducible, if and only if A satisfies
the rotation symmetry in the above sense. g

5.4. Realization by continuous-time quantum walks.
PROPOSITION 5.12.  Let \: T — T be an analytic map. If the winding number of
A is 0, then there exists a 1-state continuous-time analytic homogeneous quantum walk

Rt U®

satisfying that UM = Ui .
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PrOOF. If the winding number of A is 0, then there exists an analytic function
h: T — R satisfying that

exp(ih(z)) = A(z), =zeT.
The 1-parameter unitary group
U® = FM|exp(ith)]F
satisfies the conditions in the proposition. O

Let us denote by w(\) the winding number of A: T — T. By Lemma 5.2, we may
factorize the model quantum walk Uy » as follows

Uiy = ULCW(A)ULCW(A))\(Q = Sw(,\)Ul,gfw(Au(g)-

Since the winding number of { — C*“’(A)/\(C) is 0, by Proposition 5.12, the model quan-
tum walk Uy ¢—win () can be realized by a continuous-time quantum walk.

THEOREM b5.13.  For every n-state discrete-time analytic homogeneous quantum
walk U, we can express U as

m * 1 *
u=V (@j:le(j)Sw(j)Uj( )Wd(])> 4

by

e preparing several 1-state continuous-time analytic homogeneous quantum walks R 3
te U 1< <m,

e restricting the group of time R to Z,
e composing with shift operators Sw(j)U;l),
e rearranging the labels of position Wj(j)Sw(j)UJ(l)Wd(j),
e taking direct sum
O Wity Su Uy W),
e conjugacy by an analytic unitary V acting on ¢3(Z) @ C™,
using some natural numbers m, w(l),...,w(m), and d(1),...,d(m).
ProoOF. By Theorem 5.7, we can describe U by
U=V (Usyr ®Ug2)n @+ & Ugimyn,) V"
By rearranging the labels of positions, we have

Wai Uagyn; Wagy = U, -
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By the proceeding remark before the theorem, U; y; is a product of a shift operator and
a restriction of a continuous-time analytic homogeneous quantum walk. (|

THEOREM 5.14.  Let U be an n-state discrete-time analytic homogeneous quantum
walk. Let

((d(l)v A1)7 (d(Q)v )‘2)7 AR (d(m)a /\m))

be an arbitrary system of eigenvalue functions of U, which is introduced in Definition 4.9.
The quantum walk U is a restriction of a continuous-time analytic homogeneous quantum
walk, if and only if all the winding numbers of Aj: T — T are 0.

PROOF. Suppose that U can be realized by a continuous-time analytic homo-
geneous quantum walk. Then for every natural number N, there exists an analytic
homogeneous quantum walk W satisfying that W& = U. Let

((d(1)7 P1)> (d(2)7 p2)a ) (d(M)7 PM))
be a system of eigenvalue functions of W (see Definition 4.9). Then
(A0, Y) (420, ) ..., (A, )

is a system of eigenvalue functions of U. (This is not necessarily an indecomposable
system). The quantity |w|(U) given in Definition 4.10 satisfies

wl@) =3 [ (o) = N lwlo)l

This is an element of NZ. Since N is arbitrary, we have |w|(U) = 0. By well-definedness
of |w|(U), we have

> lw(A)=0.
j=1

Conversely, suppose that the equation
U=V Uiy ®Ua2)n, @ & Ugimyn,,) V™

holds and that all the winding numbers w(A;) is 0. By Proposition 5.12, for every j,
the quantum walk Ug(j) x, = WjUi x;Wq can be realized by a continuous-time analytic
homogeneous quantum walk. O

6. Convergence theorem.

6.1. Some remarks on locality of initial unit vectors.
In the conjugacy

u=V (Ud(l),)\l ) Ud(2),>\2 ®---D Ud(m),)\,”) v*
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given by Theorem 5.7, the unitary V* does not preserve finiteness of the support of the
initial unit vector. However, V* preserves weaker forms of locality.
For a unit vector £ € ¢5(Z) ® C™, we define a probability measure P[] on Z by

RICED) :Z|5®5k, , SE€EL.
k=1

If there exists a positive real number r greater than 1 satisfying that two sequences

(PN sez,  (rPLEHsY) ez

are elements in ¢;(Z), then we call the probability measure P[¢]({s}) and the unit vector
& are of the exponential type. In the study of quantum walks, this type of probability
measures have attracted attention. See [EK14], for example. This is equivalent to the
condition that the inverse Fourier transform (F~! ®id)¢ € L*(T,C") is analytic on T.

To apply differential operators on the Fourier dual, we consider wider class. In the
case that for every natural number d, the sequence

{@+ ) PIEsN} -

is bounded, we call the probability measure P[¢]({s}) and the unit vector & rapidly
decrease. This is equivalent to the condition that (F~! ® id)¢ is smooth on T.

If £ € ¢5(Z)®C™ is of the exponential type and if the operator V' acting on ¢5(Z)®C"
is analytic, then V*¢ is of the exponential type. If £ € ¢5(Z) ® C™ rapidly decreases and
if the operator V acting on ¢5(Z) ® C™ is analytic, then V*¢ rapidly decreases.

6.2. Limit distributions.

Let U be a discrete-time analytic homogeneous quantum walk acting on ¢2(Z) @ C™.
Given a unit vector £ called an initial vector, we obtain a sequence of probability measures
on Z

Plg), PlUE], P[U?E), P[UPE), . ...
For every time t € Z, consider the pushforward
9\ (P[U*¢]) € Prob(R)

with respect to the map Z 3 s — s/t € R. The goal of this section is to show that the
sequence {(bgt)(P[U t€]) 352, weakly converges.

To study the limit distribution, we use the following diagonal self-adjoint operator
on ls(Z):

Doso s sew
t t

Its inverse Fourier transform is a self-adjoint operator on L?(T)

D
.7-'_17]-': 2° > 82°, se.



1228 H. SAa1co and H. SAKO

When we write A\ as A(z), the operator is identical to the differential operator
(1/t)z(d/dz). When we write A as A(e'?), the operator is identical with the differen-
tial operator (1/it)(d/df). In the case that the probability measure P[¢] on Z rapidly
decreases, the vector ¢ is in the domain of (D/t)™

LEMMA 6.1.  Let & be a unit vector in £o(Z) @ C™ which rapidly decreases. Then
for every natural number m, the m-th moment of qﬁgf)(P[ﬁ]) is finite, and the moment is

given by the following formula:
(2os)"cd)
PrROOF. We express the vector ¢ by
Z £(s,k)ds @ O
s€Z,ke{l,...,n}

We compute the inner product as follows:

D n m
<(t®id) §,s>— > (5) ksmP
s€L,ke{l,...,n}

S m

)XY kewP

t
SEZL ke{l,...,n}

=3 ()" Pldsh.

SEZ

The last quantity is the m-th moment of gbit) (P[€])- O

LEMMA 6.2. Let A: T — T be an analytic map. Let U be the model quantum
walk Uy n. Let & € £y(Z) be a unit vector which rapidly decays. Then the sequence
{¢Sf)(P[Ut£])}Zl weakly converges to a measure whose support is compact.

PRrROOF. We prove that the m-th moments of measures {cﬁgf) (P[UE]) }:il converge,
for every m. By Lemma 6.1, the moment is given by

((7) weve)=((5v) s

Recall that U* = U{ , is the Fourier transform FM[X]F~! of the multiplication operator
by At € C(T). The operator U~¢(D/t)U? is equal to the following:
D 1d

~t Dy _ Ld nr- Ld LA 2
U SUt = FMIA) - MV F .F(itd0+M Sl )F

Note that the function (1/iX(e?))(d\(e?)/df) is the derivative of arg(A(e??)). We denote
the function by h(#). This is an analytic real-valued function on T. The m-th moment

of ¢>(kt)(P[Ut£]) is given by
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1d i -1
<(ma+M[’”> FLF 5>m

Note that F~1¢ is smooth, because its Fourier coefficients rapidly decrease. As t tends
to 0o, the sequence of the m-th moment converges to

2 db

(MY FeF )iy = [ he™ [P 5

Let i = py,e be the pushforward of the probability measure |[]-"1£](ei0)|2 (df/2m)
on T by the analytic map h: T — R. The above integral can be written as follows:

/erd,u(r).

Thus we have the moment convergence of the sequence {¢£f) (P[U%E)) }:il to the measure

-
Since the map h: T — R is continuous, the support of p is compact. The moment
convergence to u means weak convergence. O

LEMMA 6.3. Let d be a natural number and let A: T — T be an analytic map.
Let U be the model quantum walk Uy . Let & € (2(Z) @ C? be a rapidly decreasing

unit vector. Then the sequence {qi(kt)(P[Utf])}zl weakly converges to a measure whose
support is compact.

PrROOF. Recall that the model quantum walk Uy » is conjugate with the 1-state
model quantum walk U; » by

Ug = WiU \ Wy

By Lemma 6.2, the sequence of measures {d)it)(P[Uf’AWdf])}zl weakly converges. De-
note by n(*) the unit vector Ult, \Wa€. Compare the probability measure qﬁgf)P Wy n(t)]

with ¢>(kt)P [7®)]. The former measure is the pushforward of the latter measure under the
map

Z[1/t] > (ds+ k)/t — s/t € Z[1/t], ke{l,...,d}.
If ¢ is large, the above map is approximated by

Ror—r/deR.

Therefore, the sequence qzﬁgf)P[an(t)] also weakly converges, and the limit is the push-
forward of the limit of ¢>(kt)P[77(t)] by the map r — r/d. O

THEOREM 6.4. For every discrete-time analytic homogeneous quantum walk U,
and for every rapidly decreasing initial unit vector £, the sequence of probability measures
{qﬁg)(P[Utf])}Zl on R weakly converges to a measure whose support is compact.
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ProoOF. By Theorem 5.7, the quantum walk U is presented by an analytic unitary
operator V' and model quantum walks as follows:

U=V (Ua)r, © Vs ns @ © Ugmy 1) V"
Note that the vector V*¢ rapidly decreases. Denote by W the unitary
(Uayr, @ Ugayn, @ @ Ud(m))\m)t .
By Lemma 6.3, the sequence of measures
ol PIW' V]

weakly converges.
The m-th moment of the probability measure (bit)(P[U t¢]) is written by

<<lt) ® id)m Ute, Ut§> = <(th* <lt) ® id) th>m Ve, v*§> .

We consider the commutator

(?@id)VV(?@id).

Its inverse Fourier transform is
z d ~ ~(zd
-— ®id — -—®id | .
(tdz®l>v V(tdz®l)

Note that every entry ‘A/k,l(z) of V gives a multiplication operator by an analytic function
on T. By the Leibniz rule of differential, the above operator is simply given by the

multiplication operator by
1 Zd‘/}k,l(z)
t dz '
Kl

)

As t becomes large, the operator norm converges to 0. It follows that the m-th moment

< <WtV* (lt) ® id) VWt)m Ve, V*§>

is asymptotically equal to

<(W‘t (lt) ® id) Wt>m V*E, V*§> = <<ZZ ® id)m Wiv=e, th*§> .

This is the m-th moment of ¢\" P[IWtV*¢].
Therefore the sequence of measures {(bgf)(P[U tg])}f; converges in moments and
the limit distribution has compact support. O
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REMARK 6.5. In the following point, our argument improves the known study of
space-homogeneous quantum walks on Z.

e We clarified the definition of quantum walks on Z in Section 3.

e As proceeding studies have said, the eigenvalue functions A1, Ay are smooth. How-
ever, this is not a trivial claim. The claim is proved in Proposition 4.8. In fact, the
eigenvalue functions are analytic.

e Our argument covers the case that the eigenvalue function of the inverse Fourier
transform is not single-valued. Subsection 9.2 gives an example. In the authors
opinion, it sounds natural to say that the unitary operator U in Subsection 9.2 is a
quantum walk, because in the actual experiment the walk is substantially identical
to a (part of) usual quantum walk. The paper [GJS04] implicitly concentrates on
the case that the eigenvalue functions are single-valued.

e Our argument encompasses the case that the characteristic polynomial has multiple
roots. The paper [GJS04] does not successfully explain why we only have to
consider the case that there exists no multiple root.

7. Classification of analytic unitary operators in C}_,(Z) ® M,(C).

Let us recall that the reduced group C*-algebra C¥ ,(Z) of Z is the operator norm
closure of >,
map defined by

CSs; C B(¢2(Z)). For a complex number z with modulus 1, the linear

Ss—2°Ss, x€l
extends to an automorphism «, on C} ,(Z). For every operator X in C¥ ;(Z), the map
X = a(X)
is continuous with respect to operator norm topology. The action

a: T — Aut(Cr4(2))

is called the gauge action. Note that « naturally extends to C} 4(Z) ® M, (C).
For a homogeneous operator X on ¢5(Z) ® C", the operator X is analytic, if and
only if X is an element of C} 4(Z) ® M,,(C) and there exist

(1) a domain 2 C C containing the unit circle T,

(2) and an analytic map Q — C;4(Z)® M, (C) which extends the map T 3 z — (X))
given by the gauge action.

Let U(n) be the set of all the analytic unitary operators in C} ;(Z) ® M, (C). We
introduce an equivalence relation ~ on U(n) by conjugacy. More precisely, two elements
Uy and U, are said to be equivalent, if there exists V' € U(n) such that VU, V* = Us.
Our argument provides a classification result on ¢(n) up to conjugacy.
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Let £(n) be the collections of all the indecomposable system of eigenvalue functions

((d(1), A1), (d(2), A2), .-, (d(m), Am))
introduced in Subsection 4.3. Here,
e m is a natural number,
e d(1),...,d(m) are natural numbers whose sum is n,

e and Aq,...,\, are analytic maps from T to T such that for any j, A; does not
satisfy the conditions on reducibility explained in Lemma 4.7.

We introduce an equivalence relation ~ on £(n) by the procedures (1), (2) explained in
Subsection 4.3.

THEOREM 7.1.  The map

((d(l)v >\1)a (d(2)7 )‘2)7 L) (d(m)v )‘m))
= Uay,n @ Ud)n, @ - @ Uagm) a,
from U(n) to E(n) induces a bijective correspondence between E(n)/ ~ and U(n)/ ~.

Proor. For a natural number d and an analytic map A: T — T, consider the
rotation A by

A(C) = Mexp(2mi/d)C).

We can easily show that U a3 is conjugate to Ug,x, by the definition of model quantum
walks introduced in Subsection 5.1. It follows that the map from E(n)/ ~ to U(n)/ ~ is
well-defined.

The map is surjective, by Theorem 5.7.

We next prove that the map is injective. For the unitary

U =Ujyx ©Ug2y,n, @ © Ugim),ams

consider the inverse Fourier transform U (2). The characteristic function is given by

By Lemma 4.7, each factor [, cah—, (A — A;(¢)) is an irreducible polynomial in Qr[A].
By uniqueness of the irreducible decomposition, the system of eigenvalue functions

((d(1)7 A1)7 (d(Q)v )‘2)7 AR (d(m)a /\m))

is uniquely determined up to permutation on {1, ..., m} and rotation on A;(¢) by d(j)-th
root of 1. It follows that the map from E(n)/ ~ to U(n)/ ~ is injective. O
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8. An algebra to which a quantum walk belongs.

THEOREM 8.1.  Every n-state discrete-time analytic homogeneous quantum walk U
on 7 1is a solution of some algebraic equation of degree n whose coefficients are analytic
elements of Cl4(Z) ® C C B({2(Z) @ C™).

PROOF. The characteristic polynomial f(;z) of U(z) satisfies
F(U(2);2) = O.

The left hand side is a polynomial of U (z) whose coefficients are analytic functions on
T. Applying the inverse Fourier transform to the equation, we obtain the theorem. [

REMARK 8.2. Let us recall the following basic insight emphasized by Mikio Sato:
e Equation + Algebra (or Module)
e Solution <+ Homomorphism.

For our concrete quantum walk U, let f(A) € Qp[A] be the characteristic polynomial of
the inverse Fourier transform U(z). We have the following:

e Algebraic equation f = 0 defines a quotient algebra Ot[A]/(f), where (f) stands
for the ideal generated by f.

e The solution U of the algebraic equation f = 0 defines a homomorphism defined
on Ot[A]/(f) such that A+ (f) maps to U.

There seems to be alternative framework of quantum walks in which we can treat quan-
tum walks more algebraically. Once such kind of framework is established, a concrete
form U of quantum walk will be regarded as an image of a homomorphism from some
algebra.

9. Examples.

As in the previous sections, for an integer s € Z, Sy stands for the shift operator
6t — 55+t on gQ(Z)

9.1. Some 2-state quantum walk.
Let a, b be complex numbers satisfying |a|? + [b|*> = 1,ab # 0. We express a and b
as follows

a=re® b=+1-r2",

where a, 8, and 0 < r < 1 are real numbers. Let us consider the unitary operator

_ aS_1 —bS_4
U_<b51 aS, ), zeT
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acting on fo(Z)®C?. We regard £5(Z) @ C? as the set of column vectors of length 2 whose
entries are f functions on Z. The weak limit theorem for this walk has been already
shown in [Kon05].

Let us determine whether this walk is a restriction of a continuous-time quantum
walk and whether it is indecomposable. For simplicity, we assume that « = 0. The
characteristic function of the inverse Fourier transform U (2) is

fz) =2 —r(z+2 ) A+ 1
We express z by €. The roots are

A (€)= rcos® +iv/1 —r2cos?h,
A2 (e) = rcos® —in/1 — 12 cos2 6.

They are single-valued functions. It follows that

((1’ )‘1)7 (17 /\2))

is an indecomposable system of eigenvalue functions of U introduced in Subsection 4.3.
The characteristic function is expressed as follows:

F2) = (A= M(2)(A = Aa(2))

By Proposition 5.10, the walk is decomposable. The winding numbers of the eigenvalue
functions are 0. By Theorem 5.14, the walk is a restriction of a continuous-time analytic
homogeneous quantum walk.

We now proceed to calculate more concrete description of the continuous-time quan-
tum walk. For the inverse Fourier transform of U, we have

[7(619) . )\2(61'0)
(V1 —1r2cos?0 —irsing —/1 = r2e—i(0-5)
o V1 = r2ei0-5) ivV1 —12c0s20 + irsinf
ﬁ(ew) _ /\1(€i6)
—iv1 —1r2cos?2 0 — irsinf —/1 = r2e=u0-5)
V1 = r2ei0=5) —ivV1—1r2cos?0 +irsinf )
The first column vectors of these matrices
oy [ W1 —12cos?0 —irsind
x1(e”) = T 12£i(0-8)
_ O e e, N
xa(e?) = ( ivV1—12cos20 — irsind

VI = 126i(0—6)

are eigenvectors of eigenvalues A;(e?), Ao(e?), respectively. These normalizations
v1(e?), va(e?) form an orthonormal basis.
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Define a unitary matrix V(e?) by
V(e?) = (vi(e?) va(e?)).
The inverse Fourier transform of the walk is diagonalized as follows:

o o6 o
U(ew) _ V(eze) ( /\1(0 ) )\2(0620) ) V(eze)*.

There exists a real-valued function h: T — R satisfying
exp(ih(e?)) = M (e),  exp(—ih(e™)) = A (e) = Aa(e™).

The walk can be obtained by restricting a continuous-time analytic homogeneous quan-
tum walk ¢t — U®) whose inverse Fourier transform is

exp(ith(e'?)) 0

GO = (e (SN ey ) T

9.2. Another type of 2-state quantum walk.
In this subsection, we consider a quantum walk defined by

U= (“Zl _1;51>, reRbeCr?+ b =1,

acting on f5(Z)®C?. This quantum walk is related to the walks with self-loops studied by

Hoyer and Meyer [HMO09]. The weak limit theorem for this walk can be easily deduced

from that of the last subsection, but to observe the eigenvalue function, we proceed.
The characteristic function of the inverse Fourier transform U (z) is

f2) =A% —r(z+1) A+ 2.
Define an analytic function A1(¢): T — T by

A (e?) = re® cos§ 4 ie?®\/1 — r2 cos? 6.

The characteristic function is expressed as follows:

fsz2) = [ A=)

C:(2=z2

The calculation is straightforward. Since A1(—¢) # A1(¢), the polynomial f(A) € Op[A]
is irreducible, by Lemma 4.7. For the quantum walk U, ((2,A1)) is an indecomposable
system of eigenvalue functions defined in Subsection 4.3. By Proposition 5.10, the quan-
tum walk is indecomposable. The winding number of the eigenvalue function A\; is 1.
By Theorem 5.14, the quantum walk is not a restriction of a continuous-time analytic
homogeneous quantum walk.
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9.3. 3-state Grover walk.
The 3-state Grover walk is given by

-S_1 25, 285,
U= 3 2 -1 2
251 281 =5

The weak limit theorem for this walk was given in [IKS05]. The characteristic function
of the inverse Fourier transform U(z) is

1 1

2+ cosl

f(A;ew)—<A2+2 3 >\+1>()\—1).

The eigenvalues of U (ew) are

2 9 2 0\ 2
Alﬂosii\/1<+608) WY

3 3

Let us observe the first eigenvalues A\;. The eigenvalues do not define single-valued
analytic functions. The eigenvalues A; of U (621‘9) are

2 2 21
A= —m + ‘ nf+/3 — sin 62.

3 § si
If we add 7 to €, then we get the other root. We choose

24 cos20 2
_2tcosib Sisingv/3 — sin®0,

3

as the definition of the eigenvalue function \;(e?). The eigenvalues of U (z) are

MO 1¢2=23u {1}

The pair ((2, 1), (1,1)) is an indecomposable system of eigenvalues. The characteristic
function is expressed as follows:

fsz)==1)- J[ =M.
¢: 2=z

By Proposition 5.10, the 3-state Grover walk is decomposable. The winding numbers
of the eigenvalue functions are both 0. By Theorem 5.14, the walk is a restriction of a
continuous-time analytic homogeneous quantum walk.
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