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Abstract. We derive an explicit formula for the well-known Chern–
Moser–Weyl tensor for nondegenerate real hypersurfaces in complex space in

terms of their defining functions. The formula is considerably simplified when
applying to “pluriharmonic perturbations” of the sphere or to a Fefferman
approximate solution to the complex Monge–Ampère equation. As an appli-

cation, we show that the CR invariant one-form Xα constructed recently by
Case and Gover is nontrivial on each real ellipsoid of revolution in C3, unless
it is equivalent to the sphere. This resolves affirmatively a question posed
by these two authors in 2017 regarding the (non-) local CR invariance of the

I′-pseudohermitian invariant in dimension five and provides a counterexample
to a recent conjecture by Hirachi.

1. Introduction.

The Chern–Moser–Weyl tensor Sαβ̄γσ̄, introduced in [4], is one of the most important

biholomorphic invariants of nondegenerate real hypersurfaces in Cn+1, n ≥ 2. When

n = 1, it vanishes identically by default and its role is played by the Cartan invariant. A

fundamental property of it is that Sαβ̄γσ̄ ≡ 0 characterizes CR spherical hypersurfaces.

These are hypersurfaces which are CR equivalent to the sphere or a real hyperquadric,

see [4]. Moreover, Sαβ̄γσ̄ plays an important role in recent studies of higher CR invariants

and “secondary” invariants, similar to the role of the Weyl tensor in conformal geometry;

see, e.g., [2], [3], [13], [14] and the references therein. There exist explicit formulas

for Sαβ̄γσ̄ in the literature, see [4], [11], [27], [28]. However, the formulas given in

the aforementioned papers are difficult to compute in certain examples. For instance,

although Sαβ̄γσ̄ is given by appropriate coefficients in a normal form [4], the normalization

process is often too complicated; even for a hypersurface which is already given in normal

form at a centered point, it is not practical to renormalize the hypersurface at nearby

points to compute the tensor. Due to this complexity, it is hard to apply them in certain

situations, e.g., when locating the CR umbilics or studying the CR invariance of the

I ′-curvature; see, e.g., [2], [27], [28].

This motivates the first goal of this paper. We provide an explicit formula for

the Chern–Moser–Weyl tensor of nondegenerate real hypersurfaces in terms of arbitrary

defining functions, which has a rather concise representation and allows for direct appli-

cations, as we demonstrate in this paper. In order to describe the formula, we need to
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introduce some notation. Let M ⊂ Cn+1 be a real hypersurface and ϱ a (smooth) defin-

ing function for M , i.e., M = {ϱ = 0} and dϱ ̸= 0 on M . Let (z, w) = (z1, . . . , zn, zn+1)

be coordinates on Cn+1, θ = ι∗(i∂̄ϱ) the pseudohermitian structure (in the sense of [26])

induced by ϱ, ι :M → Cn+1 is the inclusion, and ∇ the associated Tanaka–Webster con-

nection introduced in [25] and [26] (see [5] for more details). Since dϱ ̸= 0 onM , for local

considerations we may assume, without loss of generality, that ϱw := ∂ϱ/∂w ̸= 0. Under

this condition, the vector fields of (1, 0)-type Zα := ∂α − (ϱα/ϱw) ∂w, α = 1, 2, . . . , n,

form a basis of T 1,0M . In this paper, tensorial quantities will be expressed in this frame.

A dual coframe {θα : α = 1, 2, . . . , n} to {Zα} is given by

θα = dzα − iξαθ, (1.1)

where the ξk’s are the components of the (1, 0)-complex vector field ξ defined by

ξ ⌋ i∂∂̄ϱ = ir∂̄ϱ, ∂ϱ(ξ) = 1. (1.2)

This coframe is admissible in the sense that dθ = ihαβ̄θ
α ∧ θβ̄ for some hermitian matrix

hαβ̄ , which is called the Levi matrix.

Various expressions in this paper can be written concisely by using the following

second order differential operator (introduced earlier in [19]):

Dϱ

αβ̄
:= ∂α∂β̄ − ϱα

ϱw
∂w∂β̄ −

ϱβ̄
ϱw̄
∂w̄∂α +

ϱαϱβ̄
|ϱw|2

∂w∂w̄. (1.3)

Notice that hαβ̄ in the frame Zα is given by

hαβ̄ := −idθ(Zα, Zβ̄) = ϱZZ̄(Zα, Zβ̄) = Dϱ

αβ̄
(ϱ), (1.4)

where ϱZZ̄ is the hermitian Hessian of ϱ. Similarly, we define

Dϱ
αβ := ∂α∂β − ϱα

ϱw
∂w∂β − ϱβ

ϱw
∂w∂α +

ϱαϱβ
ϱ2w

∂2w, (1.5)

which satisfies

Dϱ
αβ(φ) = φZZ(Zα, Zβ), (1.6)

where φZZ is the Hessian of φ in holomorphic coordinates. SinceM is nondegenerate, hαβ̄
is invertible with inverse hβ̄α and we shall use these matrices to lower and raise the Greek

indices, which run over 1, . . . , n. Throughout this article the summation convention is

used and performed with respect to repeated indices.

In our first result, the defining function ϱ has nondegenerate complex Hessian, i.e.,

ϱjk̄ is invertible. In this case, the inverse of the Levi matrix is given by (see, e.g., [18,

(2.7)]):

hβ̄α = ϱβ̄α − ϱβ̄ϱα

|∂ϱ|2
. (1.7)
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Here |∂ϱ|2 := |∂ϱ|2ω is the squared norm of ∂ϱ in the Kähler metric ω := i∂∂̄ϱ and

ϱk = ϱkl̄ϱl̄. We also use ρkl̄ and its inverse ρl̄k to lower and raise the lowercase Latin

indices, which run over 1, . . . , n+ 1.

Theorem 1.1. Suppose that M is defined by ϱ = 0 with ϱjk̄ = δjk and θ := i∂̄ϱ.

Put hαβ = Dϱ
αβ(ϱ), hβ̄σ̄ = hβσ, and h

µ

β̄
= hβ̄σ̄h

µσ̄. Then the pseudohermitian curvature

and the Chern–Moser–Weyl tensor are given by

Rαβ̄γσ̄ = |∂ϱ|−2
(
hαβ̄hγσ̄ + hασ̄hγβ̄ − hαγhβ̄σ̄

)
, (1.8)

Sαβ̄γσ̄ = −
hαγhβ̄σ̄
|∂ϱ|2

+
hµαh

µ

β̄
hγσ̄ + hµγh

µ

β̄
hασ̄ + hµαh

µ
σ̄hγβ̄ + hµγh

µ
σ̄hαβ̄

(n+ 2)|∂ϱ|2

−
hµνh

νµ
(
hαβ̄hγσ̄ + hασ̄hγβ̄

)
(n+ 1)(n+ 2)|∂ϱ|2

, (1.9)

in the local frame Zα := ∂α − (ϱα/ϱw) ∂w.

Note that in, e.g., [6], a formula for the Chern–Moser–Weyl tensor similar to (1.9)

was established in terms of coefficients of the second fundamental form of a CR immersion

into the sphere which were not explicit.

The above statements follow from a more general result, given in Theorem 3.1. In the

general case, the formula is inevitably complicated. However, in the case of plurihamonic

perturbations of the sphere, i.e., when ϱ = ∥Z∥2+Re(ψ(Z)) for some holomorphic function

ψ, (1.9) only involves 2nd order derivatives of the defining function although the Chern–

Moser–Weyl tensor contains 4th order derivatives in general.

Another important situation where our formula for the Chern–Moser–Weyl tensor

is simplified is that of Fefferman approximate solution to the complex Monge–Ampère

equation, i.e., when J(ϱ) = 1+O(ϱn+2). Here, J(ϱ) is the Levi–Feffermann determinant

defined by

J(ϱ) := − det

(
ϱ ϱk̄
ϱj ϱjk̄

)
. (1.10)

In this case, the formula for Sαβ̄γσ̄ is also considerably simplified; see Corollary 3.2.

To derive our results we use the Gauß equation for “semi-isometric” immersions of

pseudohermitian manifolds into Kähler manifolds. More precisely, we consider (M, θ :=

−i∂ϱ) as a pseudohermitian submanifold of the Kähler manifold Cn+1 equipped with the

metric ω := i∂∂̄ϱ. Then, dθ = ι∗ω and hence ι is semi-isometric in the sense of [24].

By the Gauß equation, the pseudohermitian curvature of θ is obtained from the Kähler

curvature of ω and the second fundamental form. Using this fact, our computations

become rather simple, since the second fundamental form II only involves derivatives of

ϱ of order at most three.

The second purpose of this paper is to give an affirmative answer to a question posed

recently by Case and Gover. In [2], Case and Gover constructed a pseudohermitian

invariant I ′ in dimension five (n = 2), namely,

I ′ = −1

8
∆b|Sαβ̄γσ̄|2 +

1

4

∣∣Sαβ̄γσ̄,
σ̄
∣∣2 + 1

12
R|Sαβ̄γσ̄|2, (1.11)
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where R is the Webster’s scalar curvature. The formula for I ′ was stated in an equivalent

form in [2] as for the middle term the CR analogue of the Cotton tensor Vαβ̄γ was used

(see [2], [12]). They proved that the total I ′-curvature is a secondary invariant, at least

in the case c2(H
1,0) = 0, in the sense that∫

M5

Ĩ ′θ̃ ∧ (dθ̃)2 =

∫
M5

I ′θ ∧ (dθ)2, (1.12)

for arbitrary pseudo-Einstein structures θ and θ̃. Moreover, as a local pseudohermitian

invariant, I ′ transforms as follows: If θ̃ = eΥθ, then by [2, (8.17)]

e3ΥĨ ′ = I ′ + 2ReXγ∇γΥ, (1.13)

where

Xα =
1

2
Sαβ̄γσ̄S

β̄γσ̄
ϵ̄,
ϵ̄ +

1

4
∇α|Sϵβ̄γσ̄|2. (1.14)

As discussed in [2, Remark 8.11], I ′ can be formally regarded as the “prime analogue”

of the conformal invariant
∣∣∣∇̃R̃m

∣∣∣2 of Fefferman and Graham, where ∇̃ and R̃m are

the covariant derivative and Riemannian curvature tensor, respectively, of the ambient

metric; see [10, (9.3)]. A question posed by Case and Gover in [2] asks whether there

exists a 5-dimensional pseudo-Einstein manifold for which Xα is nonzero. By using

Theorem 1.1, we show that in fact Xα is a nontrivial CR invariant for generic real

ellipsoidal hypersurfaces of revolution in C3, which appeared in [28], and consequently,

I ′ is not a local CR invariant.

Theorem 1.2. The CR invariant one-form Xα is nontrivial on real ellipsoids of

revolution E(a) in C3 defined by

ϱ(z1, z2, w) := |z1|2 + |z2|2 + |w|2 +Re(aw2)− 1 = 0, a ∈ R, (1.15)

unless a = 0.

In fact, we shall give an explicit formula for the CR invariant one-form Xα on E(a)

which is manifestly nontrivial.

As briefly explained in [2, Remark 8.12], a pseudo-Einstein CR manifold for which

Xα ̸≡ 0 provides a counterexample to a conjecture by Hirachi regarding the decompo-

sition of the scalar secondary invariants on compact CR manifolds. Precisely, in [13,

p.242], it is conjectured that a pseudohermitian scalar invariant for which the integral

is a secondary invariant can be decomposed into the sum of a constant multiple of the

Q′-curvature, a local CR invariant, and a divergence. As [2] does not contain full details,

we sketch an argument suggested to the authors by a referee that disproves the Hirachi

conjecture as follows. It can be shown that in the situation of Theorem 1.2 the divergence

Re∇αXα is not identically zero on E(a), see Remark 1 at the end of Section 4. Then

there exists a smooth function Υ on E(a) such that



81

On the Chern–Moser–Weyl tensor of real hypersurfaces 81

Re

∫
E(a)

Xα∇αΥ θ ∧ (dθ)2 = −
∫
E(a)

ΥRe(∇αXα) θ ∧ (dθ)2 ̸= 0.

Therefore, using (1.13) above, we obtain

d

dt

∣∣∣∣
t=0

∫
E(a)

I ′
etΥθe

3tΥ θ ∧ (dθ)2 = 2Re

∫
E(a)

Xα∇αΥ θ ∧ (dθ)2 ̸= 0.

Thus, the total I ′ is not CR invariant and hence I ′ cannot be the sum of a local CR

invariant and a pure divergence.

We note that the one-form Xα vanishes identically on CR spherical manifolds. More

generally, it vanishes identically on CRmanifolds for which there exists a pseudohermitian

structure with parallel Chern–Moser–Weyl tensor, i.e., when ∇Sαβ̄γσ̄ = 0. Thus, it is

still an interesting open question whether Hirachi’s conjecture is true on CR spherical

manifolds. It is worth pointing out that there exist examples showing that the CR

sphericity of the manifold is not necessary for the vanishing of Xα; see Example 5.1.

The paper is organized as follows. In Section 2, we study the second fundamental

form of real hypersurfaces that are semi-isometrically immersed in a Kähler manifold.

The result in this section is crucial for the next section. In Section 3, we give explicit

formulas for the pseudohermitian curvature tensor and the Chern–Moser–Weyl tensor for

general real hypersurfaces and prove Theorem 1.1. In Section 4, we compute the one-form

Xα on the real ellipsoids of revolution in C3 and prove Theorem 1.2. In the last section,

we provide in Example 5.2 a family of locally equivalent nonspherical CR manifolds with

parallel Chern–Moser–Weyl tensor and, as a simple application of our formula (1.9), show

that the hypersurfaces in this family are pairwise inequivalent globally.

2. Real hypersurfaces in Kähler manifolds and second fundamental

form.

As briefly explained in the introduction, our approach to the Chern–Moser–Weyl

tensor is via the Gauß equation, derived recently in [24]. For this approach, we shall

compute explicitly the second fundamental form of a real hypersurface in Cn+1, viewed

as a CR submanifold of a Kähler manifold with an appropriate metric.

Let M ⊂ Cn+1 be a nondegenerate real hypersurface defined by ϱ = 0 with dϱ ̸= 0

on M . It is well-known (see, e.g., [8], [21]) that there is a vector field ξ of type (1, 0)

such that

ξ ⌋ i∂∂̄ϱ = ir∂̄ϱ, ∂ϱ(ξ) = 1. (2.1)

The function r, given by r = ρjk̄ξ
jξk̄, is often called the transverse curvature of the

defining function.

We first suppose that the complex Hessian ϱjk̄ is nondegenerate so that ϱ is a

Kähler potential for a (pseudo-) Kähler metric ω on a neighborhood U of M in Cn+1.

In this situation, it can be shown that r = |ξ|2ω = |∂ϱ|−2
ω , for ω being the Kähler metric

with potential ϱ, i.e., ω = i∂∂̄ϱ. Moreover, ι : (M, θ) → (U, ω) is a semi-isometric CR

immersion in the sense of [24], i.e., ι∗ω = dθ.
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Let ∇ and ∇̃ be the Tanaka–Webster connection of (M, θ) and the Chern connection

of (U, ω), respectively. Then the second fundamental form of M is defined by the Gauß

formula (see [24])

II(Z,W ) := ∇̃Z̃W̃ −∇ZW. (2.2)

Here Z̃ and W̃ are smooth extensions of Z and W to a neighborhood of M in U .

Taking the trace of II on horizontal directions, we obtain the (1, 0)-mean curvature

vector field H. Namely,

H :=
1

n

n∑
α=1

II(Zᾱ, Zα). (2.3)

Basic properties of II have been studied in [24]. In particular, Gauß–Codazzi–Mainardi

equations relating the Tanaka–Webster curvature and the torsion to the curvature of ω

have been proved. In the following, the convention for the curvature operator of ∇ is

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (2.4)

The torsion T∇ of the Tanaka–Webster connection is defined as:

T∇(X,Y ) = ∇XY −∇YX − [X,Y ]. (2.5)

If T is the characteristic direction associated to θ, i.e., T is the unique real vector field

on M that satisfies

T ⌋ dθ = 0, θ(T ) = 1, (2.6)

then the pseudohermitian torsion is defined by

τX := T∇(T,X). (2.7)

The curvature of the Chern connection of ω will be denoted by R̃. The aforementioned

Gauß equations are given as follows:

Proposition 2.1 (Gauß equations [24]). Let ι : (M, θ) ↪→ (X , ω) be a pseudoher-

mitian CR submanifold of a Kähler manifold. Let R and R̃ be the curvature operators of

the Tanaka–Webster and Chern connection on M and X , respectively. Then

(1) for X,Z ∈ Γ(T 1,0M) and Y ,W ∈ Γ(T 0,1M), the following Gauß equation holds :

⟨R̃(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩+ ⟨II(X,Z), II(Y ,W )⟩

− |H|2
(
⟨Y , Z⟩⟨X,W ⟩+ ⟨X,Y ⟩⟨Z,W ⟩

)
, (2.8)

(2) for X,Z ∈ Γ(T 1,0M),

⟨τX,Z⟩ = −i⟨II(X,Z),H⟩. (2.9)



83

On the Chern–Moser–Weyl tensor of real hypersurfaces 83

We point out that although the proof given in [24] is for the strictly pseudoconvex

case, it also works for the Levi-nondegenerate case.

In order to apply these equations, we need to compute the second fundamental form

II in terms of the defining function. In fact, it was proved in [24] that, using our notation,

II(Zᾱ, Zβ) = −hβᾱξ, (2.10)

which implies H = −ξ and r = |H|2.
Below, we shall compute the “holomorphic” part II(Zα, Zβ) of the second funda-

mental form. For this purpose, we need the following formula for the Tanaka–Webster

connection forms ωβ
γ computed by Li and Luk [19] (see also [26]). Recall that the

connection forms are defined by ∇Zβ = ωβ
γ ⊗ Zγ , and

ωβ
γ =

(
hγσ̄Zµhβσ̄ − ξβδ

γ
µ

)
θµ + ξγhβµ̄θ

µ̄ − iZβξ
γθ, (2.11)

where ξβ = hβσ̄ξ
σ̄, see [19, (2.19)].

Then we have the following formula for II(Zα, Zβ):

Proposition 2.2. Let M be a nondegenerate real hypersurface in Cn+1 defined by

ϱ = 0 with dϱ ̸= 0. Assume that ϱ has nondegenerate complex Hessian. Put ω = i∂∂̄ϱ

and θ = ι∗(i∂̄ϱ). Then the inclusion ι : (M, θ) → (U, ω) is a semi-isometric immersion.

Moreover, if ϱw ̸= 0 and Zα = ∂α − (ϱα/ϱw)∂w, then

II(Zα, Zβ) =
(
ϱk̄Dϱ

αβ(ϱk̄)− hαβ

)
ξ, (2.12)

where Dϱ
αβ is the 2nd order differential operator defined in (1.5) and hαβ = Dϱ

αβ(ϱ).

Proof. Let ∇̃ be the Chern connection of ω := i∂∂̄ϱ and let Γk
jl be its Christoffel

symbols given by Γk
jl = ϱkm̄∂jϱlm̄. Put

Uk
αβ = ϱkl̄Dϱ

αβ(ϱl̄) = Γk
αβ − ϱα

ϱw
Γk
wβ − ϱβ

ϱw
Γk
wα +

ϱαϱβ
ϱ2w

Γk
ww. (2.13)

Since Zα = ∂α − (ϱα/ϱw)∂w, we have, after some simplification,

∇̃ZαZβ = Uk
αβ∂k − (hαβ/ϱw)∂w. (2.14)

From (2.11), we obtain

∇ZαZβ = (hγσ̄Zαhβσ̄ − ξβδ
γ
α)∂γ + (1/ϱw)

(
ϱαξβ − ϱγh

γσ̄Zαhβσ̄
)
∂w. (2.15)

We obtain,

II(Zα, Zβ) = ∇̃ZαZβ −∇ZαZβ

=
(
Uγ
αβ − hγµ̄Zα(hβµ̄) + ξβδ

γ
α

)
∂γ

+ (1/ϱw)
(
ϱγh

γµ̄Zα(hβµ̄)− ϱαξβ − hαβ + ϱwU
w
αβ

)
∂w. (2.16)
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To simplify (2.16), we compute directly that

Zα(ϱβ/ϱw) =
hαβ
ϱw

, Zα(ϱβ̄/ϱw̄) =
hαβ̄
ϱw̄

, (2.17)

hence

Zα(hβµ̄) = ϱβµ̄α − ϱαϱβµ̄w
ϱw

− hαβϱµ̄w
ϱw

− ϱβϱµ̄wα

ϱw
+
ϱαϱβϱµ̄ww

ϱ2w
− hαµ̄ϱβw̄

ϱw̄

− ϱµ̄ϱβw̄α

ϱw̄
+
ϱαϱµ̄ϱβw̄w

|ϱw|2
+
hαβϱµ̄ϱw̄w

|ϱw|2
+
hαµ̄ϱβϱw̄w

|ϱw|2
+
ϱµ̄ϱβϱw̄wα

|ϱw|2
+
ϱαϱµ̄ϱβϱw̄ww

|ϱw|2ϱw
.

(2.18)

Multiplying (2.18) with hγµ̄, we obtain, after simplification, that

hγµ̄Zα(hβµ̄) = Uγ
αβ − ϱγ

|∂ϱ|2
ϱk̄Dϱ

αβ(ϱk̄) +
ϱγhαβ
|∂ϱ|2

+

(
ϱβϱww̄

|ϱw|2
− ϱβw̄

ϱw̄

)
δγα. (2.19)

Plugging ξγ = ϱγ/|∂ϱ|2 into (2.19), we find that

Uγ
αβ − hγµ̄Zα(hβµ̄) + ξβδ

γ
α =

(
ϱk̄Dϱ

αβ(ϱk̄)− hαβ

)
ξγ . (2.20)

Similarly, using (2.19) and (2.13), we obtain that

ϱγh
γµ̄Zα(hβµ̄)− ϱαξβ − hαβ + ϱwU

w
αβ =

ϱwϱ
w

|∂ϱ|2
(
ϱk̄Dϱ

αβ(ϱk̄)− hαβ

)
. (2.21)

Plugging (2.20) and (2.21) into (2.16), we find that

II(Zα, Zβ) =
(
ϱk̄Dϱ

αβ(ϱk̄)− hαβ

)
ξj∂j , (2.22)

which finishes the proof. □

In a local frame Zα, the torsion tensor τ has components denoted by Aαβ , i.e.,

τZα = Aα
β̄Zβ̄ . (2.23)

We obtain the following formula for the torsion tensor which may be of independent

interest.

Corollary 2.3. Let M be defined by ϱ = 0 with dϱ ̸= 0 and θ = i∂̄ϱ. Suppose

that ϱw ̸= 0, then the torsion tensor Aαβ in the local frame Zα := ∂α − (ϱα/ϱw) ∂w is

given by :

−iAαβ = ξk̄Dϱ
αβ(ϱk̄)− |ξ|2hαβ . (2.24)

An alternative formula for the torsion was given in [20, Theorem 1.1]. In fact, it

was proved that, for strictly plurisubharmonic ϱ,
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Aαβ = − i

|∂ϱ|2
Zα(ϱk̄)Zβ

(
ϱk̄

)
. (2.25)

One can check that (2.24) and (2.25) are equivalent when ϱ is strictly plurisubharmonic.

Proof of Corollary 2.3. We first assume that ϱjk̄ is invertible. Since Aαβ =

⟨τZα, Zβ⟩, it follows from the Gauß equation (2.9) that

Aαβ = −i⟨II(Zα, Zβ), H̄⟩
= iIIαβ |H|2

=
i

|∂ϱ|2
(
ϱk̄Dϱ

αβ(ϱk̄)− hαβ

)
= i

(
ξk̄Dϱ

αβ(ϱk̄)− |ξ|2hαβ
)
. (2.26)

Here we have used the fact that H = −ξ and |H|2 = r = |∂ϱ|−2. Thus, (2.24) is proved

in the case when ϱjk̄ is nondegenerate.

To remove the assumption that ϱjk̄ is invertible, we use an idea taken from [19].

Precisely, we can replace ϱ by ϱ̃ := ϱ+ Cϱ2, for C > 0 large enough, so that ϱ̃jk̄ is non-

degenerate. Observe that θ = −i∂ϱ = −i∂ϱ̃. To conclude the proof, we need to verify

that the right-hand side of (2.24) does not change when ϱ is replaced by ϱ̃. Indeed, we

can verify directly (or alternatively use [24, Lemma 7.1]) that the following holds on M :

ξ̃k̄ = ξk̄, |ξ̃|2ω̃ = |ξ|2ω + 2C. (2.27)

Moreover, on M , Dϱ̃
αβ = Dϱ

αβ and thus

Dϱ̃
αβ(ϱ̃k̄) = Dϱ

αβ(ϱk) + 2Cϱk̄hαβ . (2.28)

Consequently, the right-hand side of (2.24) does not change when ϱ is replaced by ϱ̃,

since ϱk̄ξ
k̄ = 1, which completes the proof. □

3. The Chern–Moser–Weyl tensor.

Similarly to the definitions of Dϱ
αβ and Dϱ

αβ̄
, we define a 4th order linear differential

operator Rϱ

αβ̄γσ̄
by the following equation:

Rϱ

αβ̄γσ̄
(φ) = φZZZZ(Zα, Zβ̄ , Zγ , Zσ̄). (3.1)

In particular,

Rϱ

αβ̄γσ̄
(ϱ) = ϱαβ̄γσ̄ −

ϱαϱwβ̄γσ̄

ϱw
−
ϱβ̄ϱαw̄γσ̄

ϱw̄
−
ϱγϱαβ̄wσ̄

ϱw
−
ϱσ̄ϱαβ̄γw̄
ϱw̄

+
ϱαϱβ̄ϱww̄γσ̄

|ϱw|2

+
ϱαϱγϱwβ̄wσ̄

ϱ2w
+
ϱαϱσ̄ϱwβ̄γw̄

|ϱw|2
+
ϱβ̄ϱγϱαw̄wσ̄

|ϱw|2
+
ϱβ̄ϱσ̄ϱαw̄γw̄

ϱ2w̄
+
ϱγϱσ̄ϱαβ̄ww̄

|ϱw|2

−
ϱαϱβ̄ϱγϱww̄wσ̄

|ϱw|2ϱw
−
ϱαϱβ̄ϱσ̄ϱww̄γw̄

|ϱw|2ϱw̄
−
ϱβ̄ϱγϱσ̄ϱαw̄ww̄

|ϱw|2ϱw̄
−
ϱαϱγϱσ̄ϱwβ̄ww̄

|ϱw|2ϱw
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+
ϱαϱβ̄ϱγϱσ̄ϱww̄ww̄

|ϱw|4
. (3.2)

To work with general defining functions, we need to introduce some notation. Let ψjk̄ =

ϱjk̄ + (1− r)ϱjϱk̄, then det(ψjk̄) = J(ϱ) (see [21]), and hence ψjk̄ is invertible. Let ψk̄j

be the inverse of ψjk̄ and

hjk̄ = ψjk̄ − ξjξk̄. (3.3)

Then hβ̄α is the inverse of hαβ̄ , which can be verified by a direct computation, and when

|∂ϱ|2 ̸= 0,

hjk̄ = ϱjk̄ − |∂ϱ|2ξjξk̄. (3.4)

Our main result in this section is the following:

Theorem 3.1. Let M be a nondegenerate real hypersurface in Cn+1 defined by

ϱ = 0 with dϱ ̸= 0 and J(ϱ) ̸= 0 on M . Assume ϱw ̸= 0. Then the pseudohermitian

curvature is given by

Rαβ̄γσ̄ = −Rϱ

αβ̄γσ̄
(ϱ) + hjk̄Dϱ

αγ(ϱk̄)D
ϱ

β̄σ̄
(ϱj) + |ξ|2

(
hαβ̄hγσ̄ + hασ̄hγβ̄

)
+ hβ̄σ̄ξ

k̄Dϱ
αγ(ϱk̄) + hαγξ

jDϱ

β̄σ̄
(ϱj)− |ξ|2hαγhβ̄σ̄, (3.5)

and the Chern–Moser–Weyl tensor is given by

Sαβ̄γσ̄ = −Rϱ

αβ̄γσ̄
(ϱ) + hjk̄Dϱ

αγ(ϱk̄)D
ϱ

β̄σ̄
(ϱj) + hβ̄σ̄ξ

k̄Dϱ
αγ(ϱk̄) + hαγξ

jDϱ

β̄σ̄
(ϱj)

− |ξ|2hαγhβ̄σ̄ +
1

n+ 2

(
hγσ̄D

ϱ

αβ̄
+ hγβ̄D

ϱ
ασ̄ + hαβ̄D

ϱ
γσ̄ + hασ̄D

ϱ

γβ̄

)
log J(ϱ)

− 1

(n+ 1)(n+ 2)

(
hαβ̄hγσ̄ + hασ̄hγβ̄

)
hϵδ̄Dϱ

ϵδ̄
log J(ϱ), (3.6)

in the local frame Zα := ∂α − (ϱα/ϱw) ∂w.

Proof. We first assume that ϱjk̄ is invertible. Recall that the curvature of the

Kähler metric i∂∂̄ϱ is given by R̃j̄kl̄m = −ϱml̄kj̄ + ϱp̄qϱmkp̄ϱl̄j̄q in the coordinates zj , j =

1, 2, . . . , n + 1 (see [23, Proposition 6.2], but mind our opposite sign convention for the

curvature operator on Kähler manifolds). Then

R̃(Zα, Zβ̄ , Zγ , Zσ̄) = −Rϱ

αβ̄γσ̄
(ϱ) + ϱjk̄Dϱ

αγ(ϱk̄)D
ϱ

β̄σ̄
(ϱj). (3.7)

Plugging this into the Gauß equation (2.8), we have that

Rαβ̄γσ̄ = −Rϱ

αβ̄γσ̄
(ϱ) + ϱjk̄Dϱ

αγ(ϱk̄)D
ϱ

β̄σ̄
(ϱj) + |ξ|2

(
hαβ̄hγσ̄ + hασ̄hγβ̄

)
− |ξ|2

(
ϱp̄Dϱ

αγ(ϱp̄)− hαγ
) (
ϱqDϱ

β̄σ̄
(ϱq)− hβ̄σ̄

)
= −Rϱ

αβ̄γσ̄
(ϱ) + hjk̄Dϱ

αγ(ϱk̄)D
ϱ

β̄σ̄
(ϱj) + |ξ|2

(
hαβ̄hγσ̄ + hασ̄hγβ̄

)
+hβ̄σ̄ξ

k̄Dϱ
αγ(ϱk̄) + hαγξ

jDϱ

β̄σ̄
(ϱj)− |ξ|2hαγhβ̄σ̄, (3.8)
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which shows (3.5), as desired.

The Chern–Moser–Weyl tensor can be obtained by taking the complete tracefree

part of Rαβ̄γσ̄. To this end, we use the formula for the Ricci tensor obtained by Li–Luk

[19], namely,

Rαβ̄ = −Dϱ

αβ̄
log J(ϱ) + (n+ 1)|ξ|2hαβ̄ . (3.9)

This and (3.5) immediately imply (3.6), using Webster’s formula [26, (3.8)].

In order to remove the assumption that ϱjk̄ is invertible, we use an idea taken from

[19] as before. We denote by ϕk̄j the adjugate matrix of ϱjk̄, then as in [21] we have,

ξk =
ϕk̄jϱj
J(ϱ)

, |ξ|2 =
det(ϱjk̄)

J(ϱ)
. (3.10)

Thus, the right-hand sides of (3.5) and (3.6) are rational expressions in terms of deriva-

tives of ϱ with denominators which are some powers of J(ϱ). We replace ϱ by ϱ̃ := ϱ+Cϱ2

for some constant C > 0. By a direct calculation, det(ϱ̃jk̄) = det(ϱjk̄) + 2CJ(ϱ) on M .

Therefore, ϱ̃jk̄ is invertible on M for every C > 0 small enough since J(ϱ) ̸= 0. Observe

that θ = −i∂ϱ = −i∂ϱ̃ on M . Therefore, the right-hand sides of (3.5) and (3.6) do not

change when C > 0 varies. Passing through the limit when C → 0, which is allowed

since J(ϱ) ̸= 0 and J(ϱ̃) ̸= 0 for all C > 0 small enough, we conclude the proof. □

It was proved by Fefferman [9] that for each nondegenerate real hypersurface M ,

there exists a defining function ϱ0 such that J(ϱ0) = 1 + O(ϱn+2
0 ). In this case, the

formula for the Chern–Moser–Weyl tensor is greatly simplified. Indeed, we have the

following:

Corollary 3.2. Let M be a nondegenerate real hypersurface defined by ϱ = 0.

Assume that ϱw ̸= 0 and J(ϱ) = 1 + O(ϱ3), then the Chern–Moser–Weyl tensor of

(M, θ := −i∂ϱ) is given in the frame Zα := ∂α − (ϱα/ϱw)∂w by

Sαβ̄γσ̄ = −Rϱ

αβ̄γσ̄
(ϱ) + hjk̄Dϱ

αγ(ϱk̄)D
ϱ

β̄σ̄
(ϱj)

+hβ̄σ̄ξ
k̄Dϱ

αγ(ϱk̄) + hαγξ
jDϱ

β̄σ̄
(ϱj)− |ξ|2hαγhβ̄σ̄. (3.11)

Proof. If J(ϱ) = 1 + O(ϱ3), then clearly Dϱ

αβ̄
log J(ϱ) = Dϱ

αβ log J(ϱ) = 0 on M

and the conclusion follows immediately from Theorem 3.1. □

Proof of Theorem 1.1. Since ϱjk̄ = δjk we immediately obtain that all the

terms involving 3rd order derivatives in (3.5) vanish, which proves (1.8), since |ξ|2 =

|∂ϱ|−2. To show (1.9), we use (1.8) and compute,

Rγσ̄ = hαβ̄Rαβ̄γσ̄ =
1

|∂ϱ|2
(
(n+ 1)hγσ̄ − hγϵh

ϵδ̄
)
. (3.12)

Together with (3.9) we obtain
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Dϱ

αβ̄
log J(ϱ) =

hαϵh
ϵ
β̄

|∂ϱ|2
, (3.13)

which proves (1.9). □

Let us conclude this section by discussing the relation between our formula (1.9)

and the Chern–Moser normal form in [4]. It is well-known (Equation (6.20) in [4]) that

if a defining function is given in the normal form, then the Chern–Moser–Weyl tensor

at the centered point can be identified with the coefficient of the 4th order term. This

relation was further elaborated in [16], see also [15]. First, we suppose that the defining

function takes the following form:

ϱ = Im(w)− ∥z∥2 + F4(z, z̄) +R(z, z̄,Re(w)), (3.14)

where the fourth order term is

F4(z, z̄) =
1

4

∑
cαβ̄γδ̄zαz̄βzγ z̄δ, (3.15)

and the remainder term R(z, z̄,Re(w)) has “weight” and degree at least five; see [4] for

details. Since F4 is real-valued, the coefficients in F4 can be arranged to satisfy

cαβ̄γδ̄ = cγβ̄αδ̄ = cγδ̄αβ̄ , cαβ̄γδ̄ = cβᾱδγ̄ . (3.16)

Since ρα(0) = 0 for α = 1, 2, . . . , n, it is readily seen that

Rϱ

αβ̄γδ̄
(ϱ)

∣∣
0
= ϱαβ̄γδ̄(0) = cαβ̄γδ̄. (3.17)

Moreover, the terms involving derivatives of order ≤ 3 are

hαβ̄
∣∣
0
= δαβ̄ , hαβ

∣∣
0
= 0, Dϱ

αγ(ϱk̄)
∣∣
0
= 0. (3.18)

Furthermore, since det[ϱjk̄] = 0 at the origin, we obtain that |ξ|2 = 0 at the origin. Thus,

the full curvature tensor and the torsion tensor at the origin are

Rαβ̄γδ̄

∣∣
0
= R

(
∂α|0, ∂β̄ |0, ∂γ |0, ∂δ̄|0

)
= cαβ̄γδ̄, (3.19)

Aαβ |0 =
⟨
τ(∂α|0), ∂β

∣∣
0

⟩
= 0. (3.20)

If the defining function is normalized such that the coefficients cαβ̄γδ̄ are completely

tracefree (which is the case for the Chern–Moser normal form), then

Rαβ̄

∣∣
0
=

∑
γ

cαβ̄γγ̄ = 0, R|0 = 0. (3.21)

Consequently, in this case

Sαβ̄γδ̄

∣∣
0
= Rαβ̄γδ̄

∣∣
0
= cαβ̄γδ̄. (3.22)

This is Equation (6.20) in [4] modulo a sign convention.
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4. The CR invariant one-form Xα on the real ellipsoids of revolution.

Let M ⊂ Cn+1 be a strictly pseudoconvex CR manifold defined by ϱ = 0. There

exists a unique pseudohermitian structure θ on M which is volume-normalized with

respect to ζ := ι∗ (dz1 ∧ dz2 ∧ · · · ∧ dzn+1). Indeed, it follows from [8] that if J(ϱ) = 1

on M , then ι∗(i∂̄ϱ) is the volume-normalized structure with respect to ζ. In general, for

an arbitrary defining function ϱ, if we define ϱ1 = J(ϱ)−1/(n+2)ϱ, then ϱ1 is a defining

function for M which satisfies J(ϱ1) = 1 on M . Thus, θ̃ := J(ϱ)−1/(n+2)i∂̄ϱ does not

depend on the choice of the defining function and is volume-normalized. Consequently,

there is a universal partial differential operator P such that the CR invariant one-form

Xα defined by (1.14) is represented in the volume-normalized scale θ̃ by P(ϱ)
∣∣
M

for an

arbitrary defining function ϱ. Theorem 1.2, which follows from the proposition below,

implies that P is nontrivial and hence the nonvanishing of Xα is a “generic” phenomenon.

In the rest of this section, we prove the following:

Proposition 4.1. Let E(a) be given as in Theorem 1.2 and θ̃ be the unique

pseudohermitian structure on E(a) that is volume-normalized with respect to the section

ζ := dz1 ∧ dz2 ∧ dw
∣∣
E(a)

. Then,

Xα(θ̃) =
a4∥z∥6(|∂ϱ|2ϱw + 9a∥z∥2ϱw̄)

96|∂ϱ|17
(a∥z∥2ϱw + 4|∂ϱ|2ϱw̄)z̄αdzα

+ a∥z∥2(ϱ2w − 4|∂ϱ|2)dw. (4.1)

Hence, Xα(θ̃) is not identically zero on E(a) for a ̸= 0.

Proof. The proof is a matter of calculations, using the procedure described in

the previous section and in particular Theorem 1.1. To simplify notations, put q(w) =

|w|2 + Re(aw2) − 1 so that ϱ = ∥z∥2 + q(w), with ∥z∥2 = |z1|2 + · · · + |zn|2. On E(a),

q(w) = −∥z∥2. Since ϱjk̄ = δjk, we have |∂ϱ|2 := |∂ϱ|2ω = ∥z∥2 + |ϱw|2. As proved in

[24], |H|2 = |∂ϱ|−2 is the transverse curvature of ϱ. We have by (1.4), (1.5) and (1.7)

hαβ̄ = δαβ +
z̄αzβ
|ϱw|2

, hαβ = Dϱ
αβ(ϱ) =

az̄αz̄β
ϱ2w

, hαβ̄ = δαβ − zαz̄β
|∂ϱ|2

, (4.2)

such that

hµν = hµ
β̄
hνβ̄ = hβ̄σ̄h

µσ̄hνβ̄ =
azνzµϱ

2
w

|∂ϱ|4
. (4.3)

Then, Theorem 1.1 gives

Sβᾱρσ̄ = −a
2z̄βzαz̄ρzσ
|∂ϱ|2|ϱw|4

− a2∥z∥4 (hβᾱhρσ̄ + hρᾱhβσ̄)

(n+ 1)(n+ 2)|∂ϱ|6

+
a2∥z∥2 (hβᾱz̄ρzσ + hρᾱz̄βzσ + hβσ̄ z̄ρzα + hρσ̄ z̄βzα)

(n+ 2)|ϱw|2|∂ϱ|4
. (4.4)

Raising the indices, using,
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hαβ̄zβ =
zα|ϱw|2

|∂ϱ|2
, (4.5)

we obtain,

Sα
µν̄γ = −a

2|ϱw|2z̄αzµz̄νzγ
|∂ϱ|8

− a2∥z∥4 (hγν̄δαµ + hµν̄δαγ)

(n+ 1)(n+ 2)|∂ϱ|6

+
a2∥z∥2

(
δαµz̄νzγ |ϱw|2/|∂ϱ|2 + hµν̄ z̄αzγ + δαγzµz̄ν |ϱw|2/|∂ϱ|2 + hγν̄zµz̄α

)
(n+ 2)|∂ϱ|6

,

(4.6)

and

Sβᾱρσ̄ = −
a2∥z∥4

(
hβᾱhρσ̄ + hρᾱhβσ̄

)
(n+ 1)(n+ 2)|∂ϱ|6

− a2|ϱw|4zβ z̄αzρz̄σ
|∂ϱ|10

+
a2∥z∥2|ϱw|2

(
hβᾱzρz̄σ + hρᾱzβ z̄σ + hβσ̄zρz̄α + hρσ̄zβ z̄α

)
(n+ 2)|∂ϱ|8

. (4.7)

From this, and since,

hαβ̄zαz̄β =
∥z∥2|∂ϱ|2

|ϱw|2
, (4.8)

we can calculate the norm of the Chern–Moser–Weyl tensor:

|S|2 = Sβᾱρσ̄Sβᾱρσ̄ =
n(n− 1)

(n+ 1)(n+ 2)

a4∥z∥8

|∂ϱ|12
. (4.9)

We point out that we have used the completely tracefree property of the Chern–Moser–

Weyl tensor to simplify our computations.

To determine the unique volume-normalized pseudohermitian structure on E(a) with

respect to ζ := ι∗dz, observe that the Levi–Fefferman determinant satisfies (see [19,

Lemma 2.2] and its proof),

J(ϱ) = det
[
ϱjk̄

]
(−ϱ+ |∂ϱ|2), (4.10)

such that J(ϱ) = |∂ϱ|2 on E(a). If we put

u = − 1

n+ 2
log J(ϱ) = − 1

n+ 2
log |∂ϱ|2, (4.11)

and

θ̃ = euθ, (4.12)

then by [8], θ̃ is volume-normalized with respect to ζ and hence is pseudo-Einstein by

[17].

The pseudohermitian invariants of θ̃ will be indicated with a tilde. It is well-known

that the Chern–Moser–Weyl tensor transforms as follows ([26]):
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S̃βᾱρσ̄ = euSβᾱρσ̄, S̃α
µν̄γ = e−2uSα

µν̄γ , (4.13)

and

|S̃|2
θ̃
= e−2u|S|2θ =

n(n− 1)a4

(n+ 1)(n+ 2)
∥z∥8|∂ϱ|4/(n+2)−12. (4.14)

For θ̃, we shall use the same holomorphic frame Zα so that the Levi matrix becomes

h̃αβ̄ = −idθ̃(Zα, Zβ̄) = euhαβ̄ . (4.15)

Differentiating (4.14) with respect to Zα, we have

∇α|S̃|2 =
n(n− 1)a4

(n+ 1)(n+ 2)

∥z∥6z̄α
|∂ϱ|14−4/(n+2)

(
4|∂ϱ|2 + a(6− 2/(n+ 2))∥z∥2ϱw̄/ϱw

)
. (4.16)

To simplify computations, we can use the fact that, on E(a), ∥z∥2 = −q and |∂ϱ|2 =

−q + |qw|2. Since q only involves the variable w, the differentiation reduces essentially

to ∂w.

To compute the term in Xα which involves the torsion, we use the following formula

(Equation (2.16) in [17])

−iÃαβ = −iAαβ + uα,β − uαuβ , (4.17)

where Aαβ is computed in Corollary 2.3, which in this case is given by

−iAαβ =
az̄αz̄β
ϱ2w|∂ϱ|2

. (4.18)

By a direct calculation, we have

uα = Zαu =
aϱw̄z̄α

(n+ 2)ϱw|∂ϱ|2
. (4.19)

Furthermore, by using the formula for the connection forms (2.11), we have

ωα
γ(Zβ) =

az̄αz̄βzγ
ϱ2w|∂ϱ|2

, (4.20)

and hence

uα,β = Zβuα − ωα
γ(Zβ)uγ

=
az̄αz̄β

(n+ 2)ϱ2w|∂ϱ|2

(
aϱ2w̄
|∂ϱ|2

+
aϱw̄
ϱw

− 1

)
− a2z̄αz̄β∥z∥2ϱw̄

(n+ 2)ϱ3w|∂ϱ|4

=
az̄αz̄β

(n+ 2)ϱ2w|∂ϱ|2

(
2aϱ2w̄
|∂ϱ|2

− 1

)
. (4.21)

Therefore,

−iÃαβ = −iAαβ + uα,β − uαuβ
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=
1

n+ 2

az̄αz̄β
ϱ2w|∂ϱ|2

(
n+ 1 +

a(2n+ 3)ϱ2w̄
(n+ 2)|∂ϱ|2

)
. (4.22)

Differentiating this with respect to Zγ̄ , we have that

−iZγ̄Ãαβ =
a

(n+ 2)ϱ2w|∂ϱ|2
(Q(δαγ z̄β + δβγ z̄α) + z̄αz̄βzγP ) , (4.23)

where

Q := n+ 1 +
a(2n+ 3)ϱ2w̄
(n+ 2)|∂ϱ|2

, (4.24)

and

P =

(
2

|ϱw|2
+

aϱw
|∂ϱ|2ϱw̄

)
Q+

(2n+ 3)a2

n+ 2

(
|ϱw|2

|∂ϱ|4
− 2

|∂ϱ|2

)
=

2(n+ 1)

|ϱw|2
+
a(n+ 1)ϱw
|∂ϱ|2ϱw̄

+
2a(2n+ 3)ϱw̄
(n+ 2)ϱw|∂ϱ|2

− 2a2(2n+ 3)∥z∥2

(n+ 2)|∂ϱ|4
. (4.25)

The connection forms with respect to θ̃ are given as follows (see [5, p.137, (2.41)]):

ω̃α
µ(Zγ̄) = ωα

µ(Zγ̄)− uµhαγ̄ = (ξµ − uµ)hαγ̄ . (4.26)

Thus,

Ãαβ,γ̄ = Zγ̄Ãαβ − ω̃α
µ(Zγ̄)Ãµβ − ω̃β

µ(Zγ̄)Ãαµ

= Zγ̄Ãαβ − ϕβhαγ̄ − ϕαhβγ̄ . (4.27)

Here ϕβ :=
∑n

µ=1 Ãµβ(ξ
µ − uµ). Note that ϕβ is not tensorial.

Recall from [12] and Section 2.3 of [2] that the CR analogue of the Cotton tensor

Vαβ̄γ is defined by

Vαβ̄γ = Aαγ,β̄ + iPαβ̄,γ − iTγhαβ̄ − 2iTαhγβ̄ , (4.28)

which satisfies [2, Lemma 2.1]

Sαβ̄γσ̄,
σ̄ = −inVαβ̄γ . (4.29)

Here the pseudohermitian Schouten tensor Pαβ̄ is given by

Pαβ̄ =
1

n+ 2

(
Rαβ̄ −

Rhαβ̄
2(n+ 1)

)
(4.30)

and

Tα =
1

n+ 2

(
R,α

2(n+ 1)
− iAασ,

σ

)
. (4.31)

These expressions are simplified on pseudo-Einstein manifolds as follows:
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Lemma 4.2. Let (M,η) be a pseudo-Einstein CR manifold of dimension 2n+1 ≥ 5.

Then

Vαβ̄γ = Aαγ,β̄ +
i(R,γhαβ̄ +R,αhγβ̄)

n(n+ 1)
, (4.32)

Sρ
αβ̄γVαβ̄γ = Sρ

αβ̄γAαγ,β̄ . (4.33)

Proof. If θ is pseudo-Einstein, then Rαβ̄ = (R/n)hαβ̄ and thus from (4.30) it

follows that

Pαβ̄,γ =
1

2n(n+ 1)
R,γhαβ̄ . (4.34)

Using the identity R,α − i(n − 1)Aασ,
σ = Rαβ̄,

β̄ (Equation (2.11) in [17]), we find that

(4.31) becomes

Tα = − 1

2n(n+ 1)
R,α. (4.35)

Plugging these expressions into (4.28) we obtain that

Vαβ̄γ = Aαγ,β̄ +
i(R,γhαβ̄ +R,αhγβ̄)

n(n+ 1)
.

Then, (4.33) follows since the Chern–Moser–Weyl tensor is completely tracefree. The

proof is complete. □

To compute further in the proof of Proposition 4.1, we observe that

z̄αzµz̄νzγ (z̄µδγν + z̄γδµν) = 2∥z∥4z̄α, (4.36)(
hγν̄δαµ + hµν̄δαγ

)
(z̄µδγν + z̄γδµν) = 2z̄α

(
n− 1 +

2|ϱw|2

|∂ϱ|2

)
, (4.37)(

δαµz̄νzγ |ϱw|2

|∂ϱ|2
+ hµν̄ z̄αzγ +

δαγzµz̄ν |ϱw|2

|∂ϱ|2
+ hγν̄zµz̄α

)
(z̄µδγν + z̄γδµν)

= 2
(
(n− 1)|∂ϱ|2 + 4|ϱw|2

) ∥z∥2z̄α
|∂ϱ|2

. (4.38)

Since Sρ
αγ̄βhαγ̄ = Sρ

αγ̄βhβγ̄ = 0, we have by Lemma 4.2 and using the identities (4.36)–

(4.38), that,

−iS̃α
µν̄γ Ṽµν̄γ = −ie−2uSα

µν̄γÃµγ,ν̄

=
n(n− 1)

(n+ 1)(n+ 2)2
a3∥z∥6z̄α

|∂ϱ|10−4/(n+2)ϱ2w

(
2Q− |ϱw|2P

)
=

n(n− 1)

(n+ 1)(n+ 2)2
a4∥z∥6z̄α

|∂ϱ|14−4/(n+2)

(
2(2n+ 3)a∥z∥2ϱw̄

(n+ 2)ϱw
− (n+ 1)|∂ϱ|2

)
.

(4.39)
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Therefore, putting (4.16), (4.29) and (4.39) together and setting n = 2, we obtain:

X̃α = −iS̃α
µν̄γ Ṽµν̄γ +

1

4
∇α|S̃|2 =

1

24

a4∥z∥6z̄α
|∂ϱ|13

(
|∂ϱ|2 + 9a∥z∥2ϱw̄/ϱw

)
. (4.40)

Thus, X̃α ̸≡ 0 on E(a), as desired. Plugging in the coframe θ̃α = dzα + (uα − ξα)∂ϱ and

simplifying the result, we obtain (4.1). The proof is complete. □

Remark 1. Using (4.40), we can further show that the divergence ∇̃αX̃α is non-

trivial by direct calculations. Indeed, computing at w ̸= 0, using

∇̃αX̃α = e−u
(
Zσ̄(X̃α)h

σ̄α − 2(ξµ − uµ)X̃µ

)
,

and letting w → 0, we find that

∇̃αX̃α

∣∣
w=0

= − 1

24
a4(9a2 + 1) ̸= 0

if a ̸= 0. Thus, as briefly sketched in Section 1, E(a) furnishes a counterexample for the

Hirachi conjecture in the nonspherical case.

5. A hypersurface with parallel Chern–Moser–Weyl tensor.

IfM5 is CR spherical, then both Xα and I ′ are trivial. More generally, ifM5 admits

a contact form such that

Sαβ̄γσ̄,ρ = Sαβ̄γσ̄,ρ̄ = 0, (5.1)

then Xα = 0 and hence I ′ is CR invariant in this case. Using Theorem 1.1 and Corol-

lary 2.3, we give an explicit example of a nonspherical CR manifold such that the condi-

tions in (5.1) hold.

Example 5.1. Consider the ellipsoidal tube E = E(1, 1, . . . , 1) given by ϱ = 0,

where

ϱ :=
n+1∑
j=1

|zj |2 +Re
n+1∑
j=1

z2j − 1.

We point out that this real hypersurface has been studied in various papers, e.g., [7],

[22]. By direct calculations,

|∂ϱ|2 =
n+1∑
j=1

|zj + z̄j |2 = 2ϱ+ 2, hαβ = hαβ̄ = δαβ +
ϱαϱβ
ϱ2w

, w := zn+1.

With θ := i∂̄ϱ, the Tanaka–Webster connection forms are

ωβ
γ =

1

2

(
ϱγ̄hβµθ

µ + ϱγ̄hβµ̄θ
µ̄ − iδβγ θ

)
, (5.2)
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and the pseudohermitian curvature tensor is

Rαβ̄γσ̄ = −
hαγhβ̄σ̄

2
+
hαβ̄hγσ̄ + hασ̄hγβ̄

2
. (5.3)

Taking the trace, we see thatRγσ̄ = (n/2)hγσ̄ andR = n2/2. Hence, θ is pseudo-Einstein.

On the other hand, one can derive from (5.2) and (5.3), that

Rαβ̄γσ̄,ϵ = Rαβ̄γσ̄,ϵ̄ = Rαβ̄γσ̄,0 = 0.

In other words, θ is symmetric and, in particular, the Chern–Moser–Weyl tensor is par-

allel. This implies that Xα = 0.

By removing the trace from Rαβ̄γσ̄, we obtain

Sαβ̄γσ̄ = −1

2
hαγhβ̄σ̄ +

hαβ̄hγσ̄ + hασ̄hγβ̄
2(n+ 1)

. (5.4)

Thus,

|S|2 =
n(n− 1)

4(n+ 1)
, (5.5)

which implies in particular that E is nonumbilical if n ≥ 2 (the case n = 1 was treated

in [7]). Thus, in dimension five, the invariant I ′(θ) from (1.11) is given by

I ′(θ) =
1

36
.

Example 5.2. Note that the real hypersurface E in Example 5.1 is noncompact.

However, E is locally CR equivalent to the compact Reinhardt hypersurface defined by

Σr := {ϱ̃r = 0}, where

ϱ̃r(z, z̄) =

n+1∑
j=1

(log |zj |)2 − r2, r > 0. (5.6)

There is a unique pseudohermitian structure θ̃r on Σr such that (5.5) holds on Σr.

For this structure, the local considerations on Σr and E agree. Moreover, with this

normalization, θ̃r is invariant under CR diffeomorphisms and its volume
∫
M
θ̃r ∧ (dθ̃r)

n

is a global invariant. Alternatively, for any θ, the integral
∫
M

|Sαβ̄γσ̄|n+1θ ∧ (dθ)n is

invariant; the latter interpretation is valid for all cases (i.e., regardless whether M is

nowhere umbilical or not), albeit the integrand |Sαβ̄γσ̄|n+1 is not polynomial in S when

n+ 1 is not even.

A seemingly more refined polynomial CR invariant that is built from S is the fol-

lowing:

Sn+1 := Sα1

α2
µ1

µ2Sα2

α3
µ2

µ3 · · · Sαn

αn+1
µn

µn+1Sαn+1

α1
µn+1

µ1 (n+ 1 factors).

Clearly, the integral
∫
M
Sn+1θ∧(dθ)n is invariant. On Σr, the Chern–Moser–Weyl tensor

Sαβ̄γσ̄ is parallel and hence Sn+1 is constant on Σr. This constant can be computed
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explicitly from (5.4). Indeed, raising the indices on both sides of (5.4) yields

Sα1

α2
µ1

µ2 = c1hα1µ1h
α2µ2 + d1

(
δα2
α1
δµ2
µ1

+ δµ2
α1
δα2
µ1

)
,

with c1 = −1/2 and d1 = 1/(2(n+ 1)). For each k ≥ 1,

S[k] := Sα1

α2
µ1

µ2Sα2

α3
µ2

µ3 · · · Sαk

αk+1
µk

µk+1

takes a similar form:

S[k]α1

α2
µ1

µ2 = ckhα1µ1h
α2µ2 + dk

(
δα2
α1
δµ2
µ1

+ δµ2
α1
δα2
µ1

)
,

with corresponding coefficients ck and dk satisfying the following recursion relations:

ck+1 = nc1ck + 2 ckd1 + 2 c1dk, dk+1 = 2 d1dk.

Solving for dk yields dk = (n+ 1)−k/2. The recursion formula for the ck’s becomes

ck+1 = −1

2

(
n2 + n− 2

n+ 1
ck +

1

(n+ 1)k

)
.

This relation can be solved by setting yk = (n + 1)k−1ck + 1/(n2 + n). Omitting the

detailed calculations, we present the result for ck:

ck =
1

n(n+ 1)k

[(
2− n− n2

2

)k

− 1

]
.

Consequently,

Sn+1 = S[n]α1

α2
µ1

µ2 · Sα2

α1
µ2

µ1

= n2c1cn + 2nc1dn + 2ncnd1 + 4d1dn

=

[
1

n+ 1
− n

2

]n+1

. (5.7)

Hence, Sn+1 is a real constant which is positive when n is odd and negative when n is

even.

Finally, one can verify that Vol(Σr, θ̃r) = Cr−n−1 for some constant C depending on

n. This and either (5.5) or (5.7) imply that Σr’s are not globally equivalent for different

values of r. The last observation was proved in the cases n = 1 and n = 2 by Burns–

Epstein [1] and Marugame [22], respectively, using the same strategy. Precisely, in both

cases, the authors computed the Burns–Epstein invariant for Σr’s which turn out to be

different for different values of r. When n ≥ 3, this invariant is difficult to compute,

however, as pointed out to the authors by the referee, Marugame’s consideration can be

generalized easily to treat the general case.
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