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Abstract. We derive an explicit formula for the well-known Chern—
Moser—Weyl tensor for nondegenerate real hypersurfaces in complex space in
terms of their defining functions. The formula is considerably simplified when
applying to “pluriharmonic perturbations” of the sphere or to a Fefferman
approximate solution to the complex Monge-Ampere equation. As an appli-
cation, we show that the CR invariant one-form X, constructed recently by
Case and Gover is nontrivial on each real ellipsoid of revolution in C3, unless
it is equivalent to the sphere. This resolves affirmatively a question posed
by these two authors in 2017 regarding the (non-) local CR invariance of the
T'-pseudohermitian invariant in dimension five and provides a counterexample
to a recent conjecture by Hirachi.

1. Introduction.

The Chern—Moser—Weyl tensor S, 3., introduced in [4], is one of the most important
biholomorphic invariants of nondegenerate real hypersurfaces in C**!', n > 2. When
n = 1, it vanishes identically by default and its role is played by the Cartan invariant. A
fundamental property of it is that S,3,; = 0 characterizes CR spherical hypersurfaces.
These are hypersurfaces which are CR equivalent to the sphere or a real hyperquadric,
see [4]. Moreover, S, 3,5 Plays an important role in recent studies of higher CR invariants
and “secondary” invariants, similar to the role of the Weyl tensor in conformal geometry;
see, e.g., [2], [3], [13], [14] and the references therein. There exist explicit formulas
for S,5.5 in the literature, see [4], [11], [27], [28]. However, the formulas given in
the aforementioned papers are difficult to compute in certain examples. For instance,
although S, 3., is given by appropriate coefficients in a normal form [4], the normalization
process is often too complicated; even for a hypersurface which is already given in normal
form at a centered point, it is not practical to renormalize the hypersurface at nearby
points to compute the tensor. Due to this complexity, it is hard to apply them in certain
situations, e.g., when locating the CR umbilics or studying the CR invariance of the
T’-curvature; see, e.g., [2], [27], [28].

This motivates the first goal of this paper. We provide an explicit formula for
the Chern—Moser—Weyl tensor of nondegenerate real hypersurfaces in terms of arbitrary
defining functions, which has a rather concise representation and allows for direct appli-

cations, as we demonstrate in this paper. In order to describe the formula, we need to
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introduce some notation. Let M C C"*! be a real hypersurface and ¢ a (smooth) defin-
ing function for M, i.e., M = {9 =0} and dp # 0 on M. Let (z,w) = (21,.- -, Zn, Zn+1)
be coordinates on C" !, § = 1*(idp) the pseudohermitian structure (in the sense of [26])
induced by o, ¢ : M — C™*! is the inclusion, and V the associated Tanaka—Webster con-
nection introduced in [25] and [26] (see [5] for more details). Since dp # 0 on M, for local
considerations we may assume, without loss of generality, that g, := do/0w # 0. Under
this condition, the vector fields of (1,0)-type Zy := 04 — (0a/0w) Ow, @ = 1,2,... 0,
form a basis of T9M . In this paper, tensorial quantities will be expressed in this frame.
A dual coframe {#*: a =1,2,...,n} to {Z,} is given by

0% = dz* — i£*0, (1.1)
where the ¢*’s are the components of the (1,0)-complex vector field ¢ defined by
€ 4000 = irdo, 0o(&) = 1. (1.2)

This coframe is admissible in the sense that df = ih, 50 A 6” for some hermitian matrix
hqp, which is called the Levi matriz.

Various expressions in this paper can be written concisely by using the following
second order differential operator (introduced earlier in [19]):

Oa 0B 0alp
D? . = 0,05 — — 005 — —=050q + Ow Oy . 1.3
ob 0w P 0w |owl? (13)
Notice that h,z in the frame Z, is given by
ha,g = —idG(Za,ZE) = 0,7 (Za, ZB_) = DiB(Q)’ (1.4)
where o, is the hermitian Hessian of p. Similarly, we define
D2, = 0,05 — 220,05 — 20,0, + 222052, (1.5)
Ow Ow Oy
which satisfies
Dgs(p) = vz2(Za, Zp), (1.6)

where ¢z 7 is the Hessian of ¢ in holomorphic coordinates. Since M is nondegenerate, h,, 3
is invertible with inverse 2°® and we shall use these matrices to lower and raise the Greek
indices, which run over 1,...,n. Throughout this article the summation convention is
used and performed with respect to repeated indices.

In our first result, the defining function ¢ has nondegenerate complex Hessian, i.e.,
0,5 1s invertible. In this case, the inverse of the Levi matrix is given by (see, e.g., [18,

2.7))):
_ _ B .a
pha — pa 20
¢ |00?

(1.7)
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Here |0g|?> := |0p|2 is the squared norm of g in the Kéhler metric w := i00p and
oF = oFlo;. We also use p,; and its inverse p'* to lower and raise the lowercase Latin

indices, which run over 1,...,n 4+ 1.

THEOREM 1.1.  Suppose that M s defined by 0 = 0 with g;;; = djx and 6 := i0o.
Put hap = DZ4(0), hgs = hgo, and h% = hpzh"?. Then the pseudohermitian curvature
and the Chern—Moser—Weyl tensor are given by

RaB'ya = |6Q|72 (hoéBh’w? + h'Cva'h"yB - ha’yhﬁa) , (18)
S - _ hoé—yhéa. h,u,uhghrya— + huryh%h(xﬁ + huahghWB + hM’thhaB
oo |00l (n +2)[00f?

Tk (haghns + hash )
(n+1)(n+ 2)|00|? ’

(1.9)

in the local frame Zy := 0o — 00,/ 0w) Ow -

Note that in, e.g., [6], a formula for the Chern-Moser—Weyl tensor similar to (1.9)
was established in terms of coefficients of the second fundamental form of a CR immersion
into the sphere which were not explicit.

The above statements follow from a more general result, given in Theorem 3.1. In the
general case, the formula is inevitably complicated. However, in the case of plurihamonic
perturbations of the sphere, i.e., when o = || Z||*+Re()(Z)) for some holomorphic function
¥, (1.9) only involves 2nd order derivatives of the defining function although the Chern—
Moser-Weyl tensor contains 4th order derivatives in general.

Another important situation where our formula for the Chern—-Moser—Weyl tensor
is simplified is that of Fefferman approximate solution to the complex Monge—Ampére
equation, i.e., when J (o) = 1+ O(o""?). Here, J(p) is the Levi-Feffermann determinant
defined by

J(g) := —det (Q gk) . (1.10)
2; Ok
In this case, the formula for S, 3, is also considerably simplified; see Corollary 3.2.

To derive our results we use the Gaufl equation for “semi-isometric” immersions of
pseudohermitian manifolds into Kéhler manifolds. More precisely, we consider (M, 6 :=
—i0p) as a pseudohermitian submanifold of the Kihler manifold C**! equipped with the
metric w := i99p. Then, df = 1*w and hence ¢ is semi-isometric in the sense of [24].
By the Gaufl equation, the pseudohermitian curvature of € is obtained from the K&ahler
curvature of w and the second fundamental form. Using this fact, our computations
become rather simple, since the second fundamental form II only involves derivatives of
o of order at most three.

The second purpose of this paper is to give an affirmative answer to a question posed
recently by Case and Gover. In [2], Case and Gover constructed a pseudohermitian
invariant Z’ in dimension five (n = 2), namely,

1 1 5|2 1
T = =2 B4lSuirol + 7 [Sane, |+ T3 FlSaaol (1.11)
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where R is the Webster’s scalar curvature. The formula for 7’ was stated in an equivalent
form in [2] as for the middle term the CR analogue of the Cotton tensor V5., was used
(see [2], [12]). They proved that the total Z’-curvature is a secondary invariant, at least
in the case co(H"?) = 0, in the sense that

/ f/%(dé)?:/ 70 A (d0)2, (1.12)
M5

M5

for arbitrary pseudo-Einstein structures 6 and 0. Moreover, as a local pseudohermitian
invariant, 7’ transforms as follows: If § = ¢76, then by [2, (8.17)]

YT =T +2Re X'V, T, (1.13)

where
Xo = 28,5557 % 4 2ValS.5.0 2 1.14
o = 5Pafe & T3 alSepyal™ (1.14)

As discussed in [2, Remark 8.11], Z’ can be formally regarded as the “prime analogue”

of the conformal invariant ‘ﬁf{?nr of Fefferman and Graham, where V and Rm are
the covariant derivative and Riemannian curvature tensor, respectively, of the ambient
metric; see [10, (9.3)]. A question posed by Case and Gover in [2] asks whether there
exists a H-dimensional pseudo-Einstein manifold for which X, is nonzero. By using
Theorem 1.1, we show that in fact X, is a nontrivial CR invariant for generic real
ellipsoidal hypersurfaces of revolution in C?, which appeared in [28], and consequently,
7' is not a local CR invariant.

THEOREM 1.2.  The CR invariant one-form X, is nontrivial on real ellipsoids of
revolution E(a) in C? defined by

o0(z1, 20, w) = |21]* + |22* + |w|? + Re(aw?®) —1 =0, a€R, (1.15)
unless a = 0.

In fact, we shall give an explicit formula for the CR invariant one-form X, on E(a)
which is manifestly nontrivial.

As briefly explained in [2, Remark 8.12], a pseudo-Einstein CR manifold for which
X, # 0 provides a counterexample to a conjecture by Hirachi regarding the decompo-
sition of the scalar secondary invariants on compact CR manifolds. Precisely, in [13,
p.242], it is conjectured that a pseudohermitian scalar invariant for which the integral
is a secondary invariant can be decomposed into the sum of a constant multiple of the
Q'-curvature, a local CR invariant, and a divergence. As [2] does not contain full details,
we sketch an argument suggested to the authors by a referee that disproves the Hirachi
conjecture as follows. It can be shown that in the situation of Theorem 1.2 the divergence
ReV* X, is not identically zero on E(a), see Remark 1 at the end of Section 4. Then
there exists a smooth function T on E(a) such that
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Re XV, TOA(dF)? = —/ TRe(V*X,)0 A (d8)? # 0.
E(a) E(a)

Therefore, using (1.13) above, we obtain

4 / T g™ 0 A (dO)* = 2Re XV, TOA (dF)? # 0.
dt |,y J 5a) B(a)

Thus, the total Z’ is not CR invariant and hence Z’ cannot be the sum of a local CR
invariant and a pure divergence.

We note that the one-form X, vanishes identically on CR spherical manifolds. More
generally, it vanishes identically on CR manifolds for which there exists a pseudohermitian
structure with parallel Chern-Moser-Weyl tensor, i.e., when VS,3., = 0. Thus, it is
still an interesting open question whether Hirachi’s conjecture is true on CR spherical
manifolds. It is worth pointing out that there exist examples showing that the CR
sphericity of the manifold is not necessary for the vanishing of X,; see Example 5.1.

The paper is organized as follows. In Section 2, we study the second fundamental
form of real hypersurfaces that are semi-isometrically immersed in a K&hler manifold.
The result in this section is crucial for the next section. In Section 3, we give explicit
formulas for the pseudohermitian curvature tensor and the Chern—-Moser—Weyl tensor for
general real hypersurfaces and prove Theorem 1.1. In Section 4, we compute the one-form
X, on the real ellipsoids of revolution in C3 and prove Theorem 1.2. In the last section,
we provide in Example 5.2 a family of locally equivalent nonspherical CR manifolds with
parallel Chern—-Moser—Weyl tensor and, as a simple application of our formula (1.9), show
that the hypersurfaces in this family are pairwise inequivalent globally.

2. Real hypersurfaces in Kéihler manifolds and second fundamental
form.

As briefly explained in the introduction, our approach to the Chern-Moser—Weyl
tensor is via the Gaufl equation, derived recently in [24]. For this approach, we shall
compute explicitly the second fundamental form of a real hypersurface in C"*!, viewed
as a CR submanifold of a Kahler manifold with an appropriate metric.

Let M C C"*! be a nondegenerate real hypersurface defined by ¢ = 0 with do # 0
on M. It is well-known (see, e.g., [8], [21]) that there is a vector field & of type (1,0)
such that

€ ] 4000 =irdo, 0o(&) = 1. (2.1)

The function r, given by r = pj,;@f’;, is often called the transverse curvature of the
defining function.

We first suppose that the complex Hessian g;; is nondegenerate so that o is a
Kiihler potential for a (pseudo-) Kéhler metric w on a neighborhood U of M in C"*1,
In this situation, it can be shown that r = [£|? = |dp|?, for w being the Kihler metric
with potential o, i.e., w = i0dp. Moreover, ¢: (M,0) — (U,w) is a semi-isometric CR
immersion in the sense of [24], i.e., t*w = d#.
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Let V and V be the Tanaka—Webster connection of (M, 0) and the Chern connection
of (U,w), respectively. Then the second fundamental form of M is defined by the Gaufl
formula (see [24])

(Z,W) =V ;W — VW. (2.2)

Here Z and W are smooth extensions of Z and W to a neighborhood of M in U.
Taking the trace of IT on horizontal directions, we obtain the (1,0)-mean curvature
vector field H. Namely,

- % zn: 11(Za, Z0). (2.3)

Basic properties of I have been studied in [24]. In particular, GauB—Codazzi-Mainardi
equations relating the Tanaka—Webster curvature and the torsion to the curvature of w
have been proved. In the following, the convention for the curvature operator of V is

R(X,Y)Z =VxVyZ -VyVxZ -V xy|Z. (2.4)
The torsion Ty of the Tanaka—Webster connection is defined as:
Ty(X,Y)=VxY - VyX — [X,Y]. (2.5)

If T is the characteristic direction associated to 6, i.e., T' is the unique real vector field
on M that satisfies

T|d0=0, 0(T)=1, (2.6)
then the pseudohermitian torsion is defined by
77X =Tv(T, X). (2.7)

The curvature of the Chern connection of w will be denoted by R. The aforementioned
Gauf} equations are given as follows:

PROPOSITION 2.1 (Gaufl equations [24]). Let ¢: (M,0) — (X,w) be a pseudoher-
mitian CR submanifold of a Kdahler manifold. Let R and R be the curvature operators of
the Tanaka—Webster and Chern connection on M and X, respectively. Then

(1) for X, Z e D(TY°M) and Y, W € T'(T"' M), the following Gauf equation holds:
(R(X,Y)Z,W) = (R(X,Y)Z, W)+ (II(X, 2), (Y, W))
— [HP? (Y, Z)(X, W) + (X, Y)(Z,W)), (2.8)
(2) for X, Z € T(TY'M),

(rX,Z) = —i(ll(X, Z), H). (2.9)
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We point out that although the proof given in [24] is for the strictly pseudoconvex
case, it also works for the Levi-nondegenerate case.

In order to apply these equations, we need to compute the second fundamental form
II in terms of the defining function. In fact, it was proved in [24] that, using our notation,

I(Zs, Zp) = —hga&, (2.10)

which implies H = —¢ and r = |H|2.

Below, we shall compute the “holomorphic” part II(Zg, Zg) of the second funda-
mental form. For this purpose, we need the following formula for the Tanaka—Webster
connection forms wg? computed by Li and Luk [19] (see also [26]). Recall that the
connection forms are defined by VZg = wg” ® Z,, and

wg? = (K7 Z,hps — £36))) 0" + & hppb —iZpE70, (2.11)

where {3 = hgz&7, see [19, (2.19)].
Then we have the following formula for II(Z,, Z3):

PROPOSITION 2.2. Let M be a nondegenerate real hypersurface in C*1 defined by
0 =0 with do # 0. Assume that o has nondegenerate complex Hessian. Put w = id0o
and 0 = 1*(i0p). Then the inclusion v: (M,0) — (U,w) is a semi-isometric immersion.
Moreover, if 0 #0 and Zo, = 0o — (00 0w)O0w, then

11(Za, Z5) = (0" D24 (05) — has ) & (2.12)
where wa is the 2nd order differential operator defined in (1.5) and hop = wa(g).

PROOF. Let V be the Chern connection of w = i00p and let F?l be its Christoffel
symbols given by T'% = 0""0; 1. Put

I 0 0 0a 0
Uifﬂ = leDig(Qz’) = FI;,H - Q%FZ,B - irﬁa + ag 'Brﬁw- (2-13)

Since Z, = 0o — (0a/0w)0w, we have, after some simplification,
V2,25 = ULsdk — (hap/0w)Ou. (2.14)
From (2.11), we obtain
V2.2 = (W7 Zahgs — €362)0y + (1/0w) (0as — 0vh77 Zaligs) O (2.15)
We obtain,
H(Za,23) =Vg.%3—Vz. 25
= (V25 = W Zalhy) + €667 ) 0,
+ (1/0w) (0P Za(hpg) — 0 — hap + 0wUL3) Ow- (2.16)
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To simplify (2.16), we compute directly that

ha ha
Zol08/0w) = Q—B, Zo(05/00) = Q—? (2.17)

hence

Oa 085w . hozﬁgﬂw . 08 0fwa + 0a 08 0fww . hozﬁ@ﬁﬁ)

Za(hﬂﬁ) = O0Bpa —

Ow Ow Ow 0% 0w
_ QufBia | Qalplpiw  haplpQuww | hopsluww | 0i0Cwwa | 0a0n08lwww
0w 0w/ low|? 0w |? 0w/ 0w [?0w
(2.18)
Multiplying (2.18) with 2%, we obtain, after simplification, that
7 o % 0" hap 080ws 08w
WP Zo(hgp) =U" s — ——=0"D% ,(0z) + — == 6. 2.19
( 5#) afB |8Q|2 a,@( k) ‘8Q|2 |Qw|2 0w ¢ ( )
Plugging &7 = ¢7/|00|? into (2.19), we find that
Uls = W Zalhpp) + €803 = (¢°D25(05) = hap ) €. (2.20)
Similarly, using (2.19) and (2.13), we obtain that
i w _ Qw0 ([}
Q'yh’WZoe(hﬁﬁ) — 0a8p — hap + 0w aB — |(;Q|2 (QkDiﬁ(QE) - haﬁ) . (2.21)
Plugging (2.20) and (2.21) into (2.16), we find that
1(Za, Zg) = (0" D% (0r) = has ) €90, (2.22)
which finishes the proof. O

In a local frame Z,, the torsion tensor 7 has components denoted by A,g, i.e.,
770 = A" Z5. (2.23)

We obtain the following formula for the torsion tensor which may be of independent
interest.

COROLLARY 2.3. Let M be defined by 0 = 0 with do # 0 and 6 = iDp. Suppose
that o, # 0, then the torsion tensor A.p in the local frame Zy = 0o — (0a/0w) Ow s
given by:

—idag = €"DZ4(08) = € hap. (2.24)

An alternative formula for the torsion was given in [20, Theorem 1.1]. In fact, it
was proved that, for strictly plurisubharmonic g,
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_ ¢t ] 2

One can check that (2.24) and (2.25) are equivalent when g is strictly plurisubharmonic.

ProOOF OF COROLLARY 2.3. We first assume that ;5 is invertible. Since A,p5 =
(TZ4, Z3), it follows from the Gauf equation (2.9) that

Aaﬁ = _Z.<II(ZOU Zﬁ)7H>

= ill,p|H|?
_ i ke N
=i (€ Dy0r) — €Phas) (2:26)

Here we have used the fact that H = —¢ and |H|? = r = |0g|~2. Thus, (2.24) is proved
in the case when g, is nondegenerate.

To remove the assumption that g;; is invertible, we use an idea taken from [19].
Precisely, we can replace ¢ by g := o + C¢?, for C > 0 large enough, so that Ej;; is non-
degenerate. Observe that § = —idp = —idp. To conclude the proof, we need to verify
that the right-hand side of (2.24) does not change when p is replaced by p. Indeed, we
can verify directly (or alternatively use [24, Lemma 7.1]) that the following holds on M:

&= [¢3 = Iel2 +2C. (2.27)
Moreover, on M, Dgﬁ = D¢, and thus

DZ5(8%) = D25 (0x) +2C0ghag. (2.28)

Consequently, the right-hand side of (2.24) does not change when ¢ is replaced by g,

since gz¢* = 1, which completes the proof. O
3. The Chern—Moser—Weyl tensor.

Similarly to the definitions of Dg; and D? 5> we define a 4th order linear differential

operator Ri o by the following equation:

Riﬁwa—(‘ﬂ) = @Z?Z?(ZaazﬁyszZg-). (3.1)

In particular,

Qang’yJ' B QBQ(X’LT)’yE’ . Q’YQQBwJ' N Qﬁgang QO&QBQUJE}W&

R 5 (0 = 0apys —
oo (@) = Caiys Ow 0w Ow 0w | 0w |?
0a0v0wBws , Calclupyw , PQ30v0awws = 05050awyw = Ov050afww
+ 2 | 2 | |2 2 |2
02, Ow| Ow 0% |Ow

_ Qa@ﬁ@wgwu’)wﬁ _ QaQBQ&Qw'LD'y'LD _ QEQVQé'Qoawa _ QaQ'yQ&QwEwﬁ;
|ow|? 0w |ow|? 0w low|? 0w |ow|? 0w
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0a 030~ 05 Qwwww
—|Qw|4 . (3.2)

To work with general defining functions, we need to introduce some notation. Let 15 =
0;% + (1 —7)0;05, then det(v;;) = J(o) (see [21]), and hence 1,7 is invertible. Let 1"
be the inverse of 1,3 and

Wk = yi* — gigk, (3.3)

Then AP is the inverse of h,g, which can be verified by a direct computation, and when
|00]? # 0,

W = o —|0Peler. (34)
Our main result in this section is the following:

THEOREM 3.1. Let M be a nondegenerate real hypersurface in C*t! defined by
0 =0 with do # 0 and J(9) # 0 on M. Assume o, # 0. Then the pseudohermitian
curvature is given by

Ropys = —RE5 5(0) + WFDE (05)D5, (0)) + &I (hashos + hashy)

afyo

+ hﬁagk (Qk) + homijg (QJ) |§| ha'yhﬁav (3.5)
and the Chern—Moser—Weyl tensor is given by
Sapno = —RE4. . (0) + WFDE (00) D5 (05) + hn€* DL (0F) + hav& DE_(0))

- ‘€| ho/yhﬁa
.
C(n+D(n+2)

1
n -+ 2 (h"/UD + h’yﬂD + haBD'Qy& + h(u}DsB) log J(Q)
(hoghae + hashsz) K D% log J(0), (3.6)

in the local frame Zy := 0o — (00 /0w) Ow

PrROOF. We first assume that o;; is invertible. Recall that the curvature of the

Kihler metric 1000 is given by Rjklm = =0k + 0" 0mrporj, in the coordinates z;,j =
1,2,...,n+ 1 (see [23, Proposition 6.2], but mind our opposite sign convention for the
curvature operator on Kéhler manifolds). Then

-R/(ZcmZBvZ'YvZ*) = _Rig-},g( ) + Q] Da'y(gk)D (QJ) (37)

Plugging this into the Gaufl equation (2.8), we have that

Rofne = —R%5 (0) + 0" DS, (05) D5, (05) + € (haghas + hash,j5)

affye
- ‘€|2 (Qngc'y(@ﬁ) - hOf’Y) (QQDE[—;(QQ) - hEl?)
= —R%5. ,(0) + W D, (0r) D5, (0j) + € (haphye + hashys)

+ha€° D2 () + hay€ DY_(0;) — [€1*harhzs, (3.8)
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which shows (3.5), as desired.

The Chern—Moser—Weyl tensor can be obtained by taking the complete tracefree
part of R,3,,. To this end, we use the formula for the Ricci tensor obtained by Li-Luk
[19], namely,

R.5=—D25log J(0) + (n+ D)[€]Phg 3. (3.9)

This and (3.5) immediately imply (3.6), using Webster’s formula [26, (3.8)].

In order to remove the assumption that g,z is invertible, we use an idea taken from
[19] as before. We denote by ¢*/ the adjugate matrix of 0, then as in [21] we have,
¢kj 0y det( j )
J(e)’ J(o)
Thus, the right-hand sides of (3.5) and (3.6) are rational expressions in terms of deriva-
tives of o with denominators which are some powers of J(g). We replace ¢ by ¢ := o+ C o>
for some constant C' > 0. By a direct calculation, det(g;5) = det(g;3) +2CJ(0) on M.
Therefore, g,;, is invertible on M for every C' > 0 small enough since J(g) # 0. Observe
that § = —i0p = —idg on M. Therefore, the right-hand sides of (3.5) and (3.6) do not
change when C' > 0 varies. Passing through the limit when C' — 0, which is allowed
since J(p) # 0 and J(g) # 0 for all C' > 0 small enough, we conclude the proof. O

¢k = €17 =

(3.10)

It was proved by Fefferman [9] that for each nondegenerate real hypersurface M,
there exists a defining function gy such that J(gp) = 1 + O(gj*?). In this case, the
formula for the Chern—-Moser—Weyl tensor is greatly simplified. Indeed, we have the
following:

COROLLARY 3.2. Let M be a nondegenerate real hypersurface defined by o = 0.
Assume that 0, # 0 and J(0) = 1+ O(¢®), then the Chern—-Moser—Weyl tensor of
(M, 0 := —idp) is given in the frame Zy := 0o — (00/ 0w)Ow by

S —RE; (o) +WFDE (07) D3 (0;)

apye = a,BVU

+hs€" DS () + har€' DY (05) — €[ har s (3.11)

PrROOF. If J(p) =1+ O(g?), then clearly DEB log J(0) = D zlog J(0) = 0 on M
and the conclusion follows immediately from Theorem 3.1. O

PROOF OF THEOREM 1.1.  Since g;; = d;; we immediately obtain that all the
terms involving 3rd order derivatives in (3.5) vanish, which proves (1.8), since [£|? =
|00|72. To show (1.9), we use (1.8) and compute,

Rys = h*PR.j5 , = |a g7 ((n +1)hs — hwhﬂ?) . (3.12)

Together with (3.9) we obtain
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0 haeh%
D? 5 log J(o) = Rk (3.13)

which proves (1.9). O

Let us conclude this section by discussing the relation between our formula (1.9)
and the Chern-Moser normal form in [4]. It is well-known (Equation (6.20) in [4]) that
if a defining function is given in the normal form, then the Chern-Moser-Weyl tensor
at the centered point can be identified with the coefficient of the 4th order term. This
relation was further elaborated in [16], see also [15]. First, we suppose that the defining
function takes the following form:

0 =Im(w) — [|z|* + Fu(z, 2) + R(z, Z, Re(w)), (3.14)
where the fourth order term is
_ 1 _
Fy(z,2) = 1 Z CaBry52aZB2yZss (3.15)

and the remainder term R(z,Z, Re(w)) has “weight” and degree at least five; see [4] for
details. Since F} is real-valued, the coefficients in Fj; can be arranged to satisfy

Cafnys = CyBas = Cydafs  Caprd = CBasy- (3.16)
Since po(0) =0 for « =1,2,...,n, it is readily seen that
Riﬁ«,é(@)lo = Qa,é’yg(o) = caﬁvg' (317)
Moreover, the terms involving derivatives of order < 3 are
hOlB|O: 6OLB’ h@ﬁ|0: 0, D§7(9§)|0= 0. (3.18)

Furthermore, since det[o;z] = 0 at the origin, we obtain that [£|* = 0 at the origin. Thus,
the full curvature tensor and the torsion tensor at the origin are

RaB'ys ’0 =R (aa|076,@|078'y|0765|0) = Ca,é»yg, (319)
Aaglo = (7(0al0), 85 |,) = 0. (3.20)

If the defining function is normalized such that the coefficients c¢,3.5 are completely
tracefree (which is the case for the Chern-Moser normal form), then

Rag o= anﬁw =0, Rfo=0. (3.21)
v

Consequently, in this case

SOéBVg ‘0 = Ra,@vg 0= Capys- (3.22)

This is Equation (6.20) in [4] modulo a sign convention.
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4. The CR invariant one-form X, on the real ellipsoids of revolution.

Let M C C"*! be a strictly pseudoconvex CR manifold defined by o = 0. There
exists a unique pseudohermitian structure # on M which is volume-normalized with
respect to ¢ := ¢* (dz; Adza A -+ Adzny1). Indeed, it follows from [8] that if J(o) =1
on M, then ¢*(i0p) is the volume-normalized structure with respect to . In general, for
an arbitrary defining function o, if we define o; = J(p)~%/("*2 g, then g, is a defining
function for M which satisfies J(p1) = 1 on M. Thus, 6 := J(0)~Y/"*+2ido does not
depend on the choice of the defining function and is volume-normalized. Consequently,
there is a universal partial differential operator P such that the CR invariant one-form
X, defined by (1.14) is represented in the volume-normalized scale 0 by P(g){ ay for an
arbitrary defining function g. Theorem 1.2, which follows from the proposition below,
implies that P is nontrivial and hence the nonvanishing of X, is a “generic” phenomenon.

In the rest of this section, we prove the following:

PROPOSITION 4.1.  Let E(a) be given as in Theorem 1.2 and 6 be the unique
pseudohermitian structure on E(a) that is volume-normalized with respect to the section
C:=dz Ndza N dw|E(a). Then,

~  a’|2]5(100* 0w + 9allz]|*0w) )
Xa(e) = 96|89|17 (a”Z”ZQw +4‘8Q|2Qw)zad«za

+all2[*(ef, — 4100/ dw. (4.1)

Hence, Xa(a) is not identically zero on E(a) for a # 0.

PROOF. The proof is a matter of calculations, using the procedure described in
the previous section and in particular Theorem 1.1. To simplify notations, put g(w) =
|w|? + Re(aw?) — 1 so that o = ||2]|? + ¢(w), with ||2]|> = |21]2 + -+ + |z.|>. On E(a),
q(w) = —|]z||>. Since g;z = &;x, we have |9g|* := [Do|2 = ||z||* + |ow|*. As proved in
[24], |H|? = |0p|~? is the transverse curvature of o. We have by (1.4), (1.5) and (1.7)
azZaZp

Za28 2028

hafz(sa +77 ha :Di 0) = , hozﬁ_:é-a _ ZaZB 49
T TP PPl = g f g Y
such that
2
v vB G1vB _ AZy 2,0y
B = WY = hyghTRP = = (43)
Do)
Then, Theorem 1.1 gives
SB& G — _GQZBZQEPZO. _ a2HZH4 (hﬂ(ihp& + hP@hBE')
’ |00]?|0w|* (n+1)(n + 2)|00|®
+ (]42”2”2 (hﬁdzpza + hpﬁzéﬁzo’ + hﬁﬁgpza + hpaigza) . (44)

(n+2)|ow[?|00|*

Raising the indices, using,
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B Za|9w|2
hB g = , 4.5
"= Toep 4
we obtain,
o @louPzazzz @l (0 + V)
: |9of? (n+1)(n +2)[0el°
- a?[|2]1* (SapuZu 2yl 0wl*/100]* + B Zazy + by 2uZul0w[*/100]® + P77 2 Z0)
(n+2)[00l® ’
(4.6)
and
i X et el W P R
(n+1)(n +2)|90/° |00|*°
a?|\zl12|0w|? (RP¥2p20 + hP¥2p%5 + hP7 2,20 + hP7 257,
+ (n 5 2)|00F . (4.7
From this, and since,
__ l=l*log
hogzaZp = — 5 —» (4.8)
0w
we can calculate the norm of the Chern—-Moser—Weyl tensor:
o -1 4 8
‘S|2 _ Sﬁapasﬂam? _ 71(71 ) a HZH (49)

(n+1)(n+2) |9g|*2"

We point out that we have used the completely tracefree property of the Chern—Moser—
Weyl tensor to simplify our computations.

To determine the unique volume-normalized pseudohermitian structure on F(a) with
respect to ¢ := t*dz, observe that the Levi-Fefferman determinant satisfies (see [19,
Lemma 2.2] and its proof),

J(0) = det [0;3] (—o+ |90]), (4.10)

such that J(g) = |0¢|? on E(a). If we put

1

v=- n+2

log J(0) = — log |0pl?, (4.11)

n+2

and
0 =e"o, (4.12)

then by [8], 0 is volume-normalized with respect to ¢ and hence is pseudo-Einstein by
[17].

The pseudohermitian invariants of 0 will be indicated with a tilde. It is well-known
that the Chern-Moser—Weyl tensor transforms as follows ([26]):
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~ ~ s _
SB&p& = €u5ﬁap5—7 Sawj’y =€ uSauV’y7 (413)

and

n(n — 1)a*

8 4/(n+2)—12. 4.14
e Pl g

|SI2 = e7*|S]; =

For 5, we shall use the same holomorphic frame Z, so that the Levi matrix becomes

hop = —id0(Za, Z5) = €"hyjs. (4.15)
Differentiating (4.14) with respect to Z,, we have

n(n — 1)a* 211 Za
(n+1)(n +2) [g|4=4/(n+2)

ValSP = (400 + a(6 —2/(n + 2))|2]0w/0w) - (4.16)

> = —¢ and |9g]* =

Since ¢ only involves the variable w, the differentiation reduces essentially

To simplify computations, we can use the fact that, on E(a), ||z
—q + |qu*-
to Oy .

To compute the term in X, which involves the torsion, we use the following formula
(Equation (2.16) in [17])

—igag = —iAag + Uq,p — UUB, (4.17)

where A,g is computed in Corollary 2.3, which in this case is given by

i azZa2g
Ay = B 4.18
* = BloeP 1)
By a direct calculation, we have
a@u’wga
Uy = ol = —————————. 4.19
" A T 2)gu 007 (419
Furthermore, by using the formula for the connection forms (2.11), we have
AZaZB %
wo ' (Zp) = ————, 4.20
o) = g oeP 420
and hence
Uap = Zptia — wa (Zp)Uy
B azZaZg < ‘19125 4 a0y ) a22a25\|z|\2g@
(n+2)0,|00P \ 100> 0w (n+2)03,|00l*
aZaZs 2a0% >
= —1]. 4.21
e G 2
Therefore,

—Z'Avag = —1A.3 + Ua,8 — UaUp
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1 azZaZs a(2n + 3)0% )
= — n+l4+——=—2). 4.22
AR (" et 2
Differentiating this with respect to Z5, we have that
. T a _ _ _
_ZZ;/AQB = m (Q(&aryzﬁ + 55’YZQ) + ZaZ/@Z,YP) 5 (423)
where
a(2n + 3)0%
=414 BEVT V)00 4.24
R ORI 20
and
2 ) 2n + 3)a? |2 2
P—( -+ a@; >Q+(n )a (|Qu|4_ 2)
lowl® 100/ 0w n+2  \[|0g* |0¢]
2(n+1 a(n+ 1)ow 2a(2n + 3) 0w 2a2(2n + 3)|2||?
L2t ) et Doy | 0G0t Hou 2 B
|owl 00?06 (n+2)0w|00| (n+2)|0¢]
The connection forms with respect to 6 are given as follows (see [5, p.137, (2.41))):
Wa*(Zy) = wa'(Z5) — u"hay = (£ — u") hay. (4.26)
Thus,
Aap s = Z5Aap = Wa'(Z5) App — 0" (Z5) Ay
= 2, A — bphay — Gahisr. (127)

Here ¢ :=>"_, /Tw (& — ut). Note that ¢g is not tensorial.
Recall from [12] and Section 2.3 of [2] that the CR analogue of the Cotton tensor
Vop- is defined by

v

[e3

By = Aa’Y,B + iPaB,'y — iTWhaB - QiTah—yB, (4.28)

which satisfies [2, Lemma 2.1]

Sl = —inVz,. (4.29)

aBys,

Here the pseudohermitian Schouten tensor P,z is given by

1 Rh,js
p . e 4.
BT 42 <Raﬁ 2(n + 1)) (4.30)

and

1 Ro
T,=—— | —"——i4.,,° ). 4.31
n—|—2<2(n+1) ! > (4:31)

These expressions are simplified on pseudo-Einstein manifolds as follows:
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LEMMA 4.2.  Let (M,n) be a pseudo-Einstein CR manifold of dimension 2n+1 > 5.
Then

i(RWh 5+Rah ﬂ_)
- = A RN e’ 4.32
By ay,B + n(n ¥ 1) ’ ( )

Spaﬁ'yvaﬁ_w — Spo‘ﬁ'VA

V.

[e4

. (4.33)

Proor. If 0 is pseudo-Einstein, then R,3 = (R/n)h,z and thus from (4.30) it
follows that

1
Ps,=——-—=R- h,3 4.34
By 2n(n +1) Rahag (4.34)
Using the identity R o —i(n — 1)Aqe,” = RQB’B (Equation (2.11) in [17]), we find that
(4.31) becomes

1

To=————Ra,.
2n(n+1)

(4.35)

Plugging these expressions into (4.28) we obtain that

i(R,Vha,@ + R’ah,yg)
By = Aay 5

\%
avB T nn+1)

[e%

Then, (4.33) follows since the Chern-Moser—Weyl tensor is completely tracefree. The
proof is complete. O

To compute further in the proof of Proposition 4.1, we observe that

ZozpZw iy (Zu0oy + Z,0,u) = 2||2]|* Za, (4.36)
17 17 - - - 2|9w|2
(hV Oap + RH 5,”) (Zubyw + Z40p0) = 224 <n -1+ 0 ) (4.37)
SapnZuvzy|owl? . ey ZuZv| 0w |? s\ ~
<M|3;|2 + W z2azy + %T + W zuz0 | (Zubyw + 2y 0u0)
_ EENERE o 112]1°Za
=2((n—1)|00]* + 4]0w|?) IR (4.38)

Since S,*7Phy5 = S,°7Phgy = 0, we have by Lemma 4.2 and using the identities (4.36)—
(4.38), that,

7i§auﬁv‘7uﬁ'v = *ieizusamwg/ry,p
nn—1) ___ a’|lz|'% )
(n+1)(n+ 2)2 |9g]10-4/(n+2) o2 ( Q — | 0wl )
_ n(n— 1) a4||Z||65a 2(2n+3)a|\z||29w
T (n+1)(n+2)2 9144/ (n+2) T Doy

- (n+ lof?).
(4.39)
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Therefore, putting (4.16), (4.29) and (4.39) together and setting n = 2, we obtain:

-~ 1 . 1 4 6*05
X, = _iSaHV’YVMD'\/ + 1VO[‘S|2 _La ||Z|| Z

= 21 1ggm - (00 +90l2Pea/eu) . (440)

Thus, X, # 0 on E(a), as desired. Plugging in the coframe 0% = dzo + (u® — £%)0p and
simplifying the result, we obtain (4.1). The proof is complete. O

REMARK 1. Using (4.40), we can further show that the divergence VX, is non-
trivial by direct calculations. Indeed, computing at w # 0, using

VOX, = e " (Zs(Xa)h — 2(6" — u)X,),
and letting w — 0, we find that
VoXa| = ~Lat9a? 1 1) 20
w=0" " 24

if a # 0. Thus, as briefly sketched in Section 1, F(a) furnishes a counterexample for the
Hirachi conjecture in the nonspherical case.

5. A hypersurface with parallel Chern—-Moser—Weyl tensor.

If M® is CR spherical, then both X, and Z’ are trivial. More generally, if M® admits
a contact form such that

S Sogs s =0, (5.1)

apfye,p = Pafys,p

then X, = 0 and hence 7’ is CR invariant in this case. Using Theorem 1.1 and Corol-
lary 2.3, we give an explicit example of a nonspherical CR manifold such that the condi-
tions in (5.1) hold.

ExaMPLE 5.1. Consider the ellipsoidal tube F = E(1,1,...,1) given by o = 0,
where

n+1 n+1

0:= Z|zj|2+Resz2« -1
j=1 j=1

We point out that this real hypersurface has been studied in various papers, e.g., [7],
[22]. By direct calculations,

n+1
00 = lzj + 2P =20+ 2, hap = haj = bap + ngﬁ, W= Zpin.
Jj=1 w
With 0 := i0p, the Tanaka-Webster connection forms are
v_1 I B_;
wg? = 5 (05hpub" + 05hsat" —idp, 6) , (5.2)
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and the pseudohermitian curvature tensor is

h(yyhga n haghfy& + hm}h,},B

RO&B’YE = 9 9

(5.3)

Taking the trace, we see that R,5 = (n/2)h,s and R = n?/2. Hence, 0 is pseudo-Einstein.
On the other hand, one can derive from (5.2) and (5.3), that

RocB’yE’,e = Ra,@y&,% = RaB’yé',O =0.

In other words, 6 is symmetric and, in particular, the Chern-Moser—Weyl tensor is par-
allel. This implies that X, = 0.

By removing the trace from R, 3,5, we obtain
]_ h Bhva + ha&h B
Gvs = —=ha~yhzs 2 7 4
Saﬁwa 92 Y Ba+ 2(n+1) (5 )
Thus,

—-1)
S1Z2 = n(ni 55
IS = o) (5.5)

which implies in particular that E is nonumbilical if n > 2 (the case n = 1 was treated
in [7]). Thus, in dimension five, the invariant Z’'() from (1.11) is given by
1
7)) = —.
ExXAMPLE 5.2. Note that the real hypersurface E in Example 5.1 is noncompact.
However, F is locally CR equivalent to the compact Reinhardt hypersurface defined by
Y, := {0 = 0}, where

n+1

or(2,2) =Y _(loglz))* =2 r>0. (5.6)
j=1

There is a unique pseudohermitian structure 6, on ¥, such that (5.5) holds on X,.
For this structure, the local considerations on ¥, and E agree. Moreover, with this
normalization, 6, is invariant under CR diffeomorphisms and its volume Jur 0 A (d6,)"
is a global invariant. Alternatively, for any 6, the integral [, |S,5.,|"*'0 /\ (do)™ is
invariant; the latter interpretation is valid for all cases (i.e., regardless whether M is
nowhere umbilical or not), albeit the integrand [S,,5.,|" " is not polynomial in S when
n 4+ 1 is not even.

A seemingly more refined polynomial CR invariant that is built from S is the fol-
lowing:

Sn+1 = S(xlaz Mzs%ozswﬂs - Sa Ozn+1H Hnt1 G a1 231 (n—|— 1 factors).

M1 n An+1 Hn4l

Clearly, the integral [ M SO (dB)™ is invariant. On X,., the Chern—Moser—Weyl tensor

Sapys 1s parallel and hence S+l is constant on ¥,. This constant can be computed
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explicitly from (5.4). Indeed, raising the indices on both sides of (5.4) yields

Sa1a2ulﬂ2 = Clh(xun h2H2 4 dy (50‘25#2 + 5#250‘2) s

a1 Ty a1 M1

with ¢; = —1/2 and d; = 1/(2(n 4+ 1)). For each k > 1,
Slk] := SQIOQMWSMO‘BMHS Sakak+lukﬂk+l
takes a similar form:

S[k] azmuz — Ckhozml hX2H2 + dk (5a25u2 + 5#25&2) ,

ai Q17 Q17

with corresponding coefficients ¢, and dy, satisfying the following recursion relations:
Cht1 = neicg +2cpdy +2c1dy,  die1 = 2dydy.

Solving for dj, yields dy = (n + 1)7%/2. The recursion formula for the c;’s becomes

1 /n?>+n-2 N 1
c =—= c .
k41 B ntl k (n+ 1)

This relation can be solved by setting yr. = (n + 1)*71c, + 1/(n? +n). Omitting the
detailed calculations, we present the result for cg:

(=) -]

n+1 __ «@ L @ L
S _S[n] 2#112'5012 1#2“

=n2cien + 2neid, + 2nepdy + 4did,,

:{ ! _”r“. (5.7

1
n(n + 1)k

C =

Consequently,

(631

n+1 2

Hence, S™*! is a real constant which is positive when n is odd and negative when n is
even.

Finally, one can verify that Vol(%,, gr) = Cr~"~! for some constant C' depending on
n. This and either (5.5) or (5.7) imply that ¥,’s are not globally equivalent for different
values of r. The last observation was proved in the cases n = 1 and n = 2 by Burns—
Epstein [1] and Marugame [22], respectively, using the same strategy. Precisely, in both
cases, the authors computed the Burns—Epstein invariant for ¥,.’s which turn out to be
different for different values of ». When n > 3, this invariant is difficult to compute,
however, as pointed out to the authors by the referee, Marugame’s consideration can be
generalized easily to treat the general case.

ACKNOWLEDGEMENTS. The authors would like to thank the referee for suggesting
the detailed argument that disproves the Hirachi conjecture and for many other useful
comments.
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