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Abstract. For a relatively minimal fibration f : X → P1 of non-
hyperelliptic curves of genus g, we know the Picard number ρ(X) ≤ 3g + 8.
We study the case where ρ(X) = 3g + 8 and the Mordell–Weil group of f is
trivial. Such an f occurs only if g ≡ 0 or 1 (mod 3), and we describe such

f : X → P1 explicitly.

1. Introduction.

The theory of the Mordell–Weil lattices are sufficiently developed by Oguiso and

Shioda in [13] for minimal elliptic rational surfaces. In their work, the even unimodular

root lattice E8 of rank eight played very important role as the predominant frame. For

example, it was shown that the Mordell–Weil group is trivial if and only if there exists a

singular fibre of type II∗ in the sense of Kodaira [7] (see [10, Theorem 4.1]), and its dual

graph contains the Dynkin diagram of E8 as a subgraph. The lattice E8 also appears

in another application by Shioda [15] to describe a hierarchy of deformations of rational

double points.

Let X be a smooth rational surface defined over C and f : X → P1 a relatively

minimal fibration of curves of genus g ≥ 2 with a section, and let K be the rational

function field of P1. The Mordell–Weil group of K-rational points on the Jacobian variety

of the generic fibre of f is finitely generated, and its rank r is called the Mordell–Weil rank.

We know the Picard number ρ(X) ≤ 4g+6 ([14, Theorem 2.8]), further ρ(X) ≤ 3g+8 if

a general fibre F of f is non-hyperelliptic ([12, Proposition 2.2]). Saito and Sakakibara

showed in [14] that r ≤ 4g+4, and that the fibration with maximal rank r = 4g+4 is of

hyperelliptic type, and ρ(X) = 4g + 6. The maximal Mordell–Weil lattice is isomorphic

to the unimodular integral lattice D+
4g+4. After that, the second named author gave

necessary and sufficient conditions for the Mordell–Weil group of f : X → P1 with

ρ(X) = 4g + 6 to be trivial. One of the conditions is the existence of a reducible fibre of

f whose dual graph contains, as a subgraph, the extended Dynkin diagram of D+
4g+4 as

in [6, Figure 4].

If F is non-hyperelliptic, then r ≤ 3g + 6 ([12, Theorem 1.1]). The fibration with

maximal rank r = 3g+6 is either of plane quintic or of trigonal type (so Clifford index 1)
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and ρ(X) = 3g + 8. Moreover the structure of the corresponding Mordell–Weil lattices

are completely determined in [12]. There are three types, depending on 0, 1, 2 (mod 3).

In this paper we treat the case of trigonal fibrations (i.e., the case where F is a

non-hyperelliptic curve, but has a three-to-one map onto P1, so Clifford index is 1). We

consider the case where ρ(X) attains the maximum 3g + 8. Unlike [12], we discuss the

other extremal case: Mordell–Weil group is trivial. We prove the following.

Main Theorem (see Theorem 4.1). Let X be a smooth rational surface, and

f : X → P1 a relatively minimal fibration of trigonal curves of genus g ≥ 3, and let

n = [g/3], the greatest integer not exceeding g/3. Suppose that its Picard number ρ(X)

equals maximal possible 3g + 8.

(1) If g ≡ 0 (mod 3), then the Mordell–Weil group of f is trivial if and only if f has

a reducible fibre whose dual graph corresponds to the graph as in Figure 1.
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Figure 1.

Here, C is a (−3)-curve, D is a (−n − 1)-curve, and the other circles denote

(−2)-curves. The numbers indicated outside the circles denote the multiplicities of

components in the degenerated fibre.

(2) If g ≡ 1 (mod 3), then the Mordell–Weil group of f is trivial if and only if f has

a reducible fibre whose dual graph corresponds to the graph as in Figure 2.
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Figure 2.

Here, the same remarks apply as above.

(3) If g ≡ 2 (mod 3), then the Mordell–Weil group of f cannot be trivial.
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Section 2 is for preliminaries, we review the definition of the reduction (see [4,

Section 1]) of (X,F ), and prove some related properties. Consider a relatively minimal

fibration of trigonal curves of genus g ≧ 3 on a rational surface with ρ(X) = 3g + 8

whose Mordell–Weil group is not necessarily trivial. Then we obtain such an f from a

pencil Λ on Hirzebruch surface Σd of degree d by blowing Σd up at (3g + 6) base points

(see Theorem 2.4 below).

In Section 3, we restrict ourselves to the case where f has a reducible fibre whose dual

graph corresponds to the graph as in Figures 1 (resp. 2). We describe the irreducible

components of the reducible fibre in the Néron–Severi group NS(X) explicitly. As a

consequence, we see that the Mordell–Weil group is trivial. In fact, the graphs as in

Figures 1 and 2 respectively contain, as subgraphs, the extended Dynkin diagrams of

the unimodular lattices Γ0
3g+6 and Γ1

3g+6 as in [12, Figures 1 and 2]. We also give the

defining equations of the corresponding pencil Λ.

In Section 4, we prove the main theorem.

In Section 5, we discuss some examples that satisfy with the main theorem. By the

main theorem, we know that if g ≡ 2 (mod 3), then the Mordell–Weil group of f cannot

be trivial. In this section, we also give a trigonal fibration f : X → P1 with g = 3n + 2

and ρ(X) = 3g+8 whose Mordell–Weil group is Z/3Z for an arbitrary positive integer n.

Acknowledgements. The authors would like to express their heartfelt gratitude

to Professor Tadashi Ashikaga and Professor Kazuhiro Konno for their valuable advice,

guidance and encouragement. The authors are also grateful to the referee for useful

comments and suggestions.

2. Preliminaries.

We briefly review basic notation and results on fibred rational surfaces and Mordell–

Weil lattices. Here, a fibred rational surface means a smooth projective rational surface

X/C together with a relatively minimal fibration f : X → P1 whose general fibre F is a

smooth projective curve of genus g ≥ 1. In particular, any fibre of f is connected and

contains no (−1)-curves as components. Since X is rational, the first Betti number of

X equals zero. The second Betti number of X is equal to the Picard number ρ(X) since

the geometric genus of X is zero. Hence, we see that

ρ(X) = 10−K2
X = 4g + 6− (KX + F )2 (2.1)

by virtue of Noether’s formula. The adjoint divisor (KX + F ) is nef when g ≥ 2 (see

[4, Lemma 1.1]). Thus we have that ρ(X) ≤ 4g + 6. By means of slope inequalities

[8, Corollary 4.4], we also have that (KX + F )2 ≥ g − 2 and ρ(X) ≤ 3g + 8 if F is

non-hyperelliptic (see [12, Proposition 2.2]).

Lemma 2.1 (see [4, Lemma 1.2]). Let C be an irreducible curve on X such that

(KX +F ).C = 0. If (KX +F )2 > 0, then C is a smooth rational curve satisfying one of

the following:

(1) C is a (−2)-curve contained in a fibre.

(2) C is a (−1)-section, i.e., a (−1)-curve with F.C = 1.
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From now on, we assume that f : X → P1 is a relatively minimal fibration of

genus g ≥ 2 such that (KX + F )2 > 0. Suppose that there exists a (−1)-curve E with

(KX + F ).E = 0 and let µ1 : X → X1 be its contraction. Since F.E = 1, F1 := (µ1)∗F

is smooth on X1. Furthermore, we have µ∗
1(KX1 + F1) = KX + F . If there exists

a (−1)-curve E1 with (KX1 + F1).E1 = 0, then, by contracting it, we get the pair

(X2, F2) with F2 smooth and KX2 + F2 pulls back to KX + F . We can continue the

procedure until we arrive at a pair (Xn, Fn) such that we cannot find a (−1)-curve En

with (KXn
+ Fn).En = 0. We put Y := Xn and G := Fn. If µ : X → Y denotes the

natural map, then µ∗(KY + G) = KX + F and G = µ∗F is a smooth curve isomorphic

to F . The original fibration f : X → P1 corresponds to a pencil Λf ⊂ |G| with at most

simple (but not necessarily transversal) base points. From the assumption (KX+F )2 > 0,

KX + F is nef and big. This implies that, Y is the minimal resolution of singularities of

the surface Proj(R(X,KX+F )), which has at most rational double points by Lemma 2.1,

where R(X,KX + F ) =
⊕

n≥0H
0(X,n(KX + F )). Therefore, such a model is uniquely

determined. We call the pair (Y,G) the reduction of (X,F ).

Assume that Y = P2. Then G is a smooth plane curve of degree b ≥ 4. We

have g = (b − 1)(b − 2)/2 and (KX + F )2 = (KY + G)2 = (b − 3)2. In particular,

(KX + F )2 = g − 2 + (b − 4)(b − 5)/2 ≥ g − 2. Furthermore, it is well known that the

gonality of F is b− 1.

Now, for a non-negative integer d, we put

Σd = {((X0 : X1 : X2), (Y0 : Y1))|X1Y
d
1 = X2Y

d
0 } ⊂ P2 × P1

and call it Hirzebruch surface of degree d. The restriction of the second projection to

Σd gives a structure of P1-bundle. We also remark that Σ0 ≃ P1 × P1. Conversely, any

P1-bundle over P1 is isomorphic to Σd for some d. We often consider on the Zariski open

subset defined by X0Y0 ̸= 0 and take (x, y) = (X1/X0, Y1/Y0) as an affine coordinate.

Let ∆[d] be a minimal section of Σd defined by x = 0 and Γ[d] the fibre defined by y = 0.

Then we have that ∆2
[d] = −d, Γ2

[d] = 0 and ∆[d].Γ[d] = 1. For any curve C on Σd, there

exist non-negative integers α and β such that C ∼ α∆[d] + βΓ[d], where the symbol ∼
means the linear equivalence of divisors. Martens gave a simple proof of the following.

Lemma 2.2 (see [9, Corollary 1]). Let C ∼ α∆[d] + βΓ[d] (α ̸= 0; and β ≥ α for

d = 0) be a smooth and irreducible curve on Σd, and in the case d = 1 let α ̸= β. Then

the gonality of C is α.

We now return to the situation we are interested in, and consider the case where

Y ̸= P2. Then we can find at least one base-point-free pencil of rational curves on Y .

Among them, we choose a pencil |R| of rational curves with R2 = 0 in such a way that

a := (KY +G).R is minimal. We call a the minimal ruling degree of (Y,G). Note that

we have G.R = a + 2 ≥ 3 from KY .R = −2 and Lemma 2.1. Let ψ : Y → P1 be the

morphism defined by |R|. We take a relatively minimal model of Y with respect to ψ and

consider the image of G. Then we perform a succession of elementary transformations

at singular points of the image curve to arrive at a particular relatively minimal model

(Y #, G#), called a #-minimal model in [3]. By utilizing the properties of (Y #, G#), we

get lower bounds of (KX + F )2 according to the Clifford index of F , which is closely
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related to the minimal ruling degree a of (Y,G), in [4, Section 2] and [5, Section 2]. The

following is an analogy of them.

Theorem 2.3. Let X be a smooth rational surface, and f : X → P1 a relatively

minimal fibration whose general fibre F is a non-hyperelliptic curve of genus g ≥ 3. Then

ρ(X) ≤ 3g + 8.

Assume that ρ(X) = 3g + 8. Then the reduction (Y,G) of (X,F ) satisfies one of the

following:

(1) Y = P2 and G is a quartic curve.

(2) Y = P2 and G is a quintic curve.

(3) Y = Σd and G ∼ 3∆[d] + (1 + (g + 3d)/2)Γ[d] for some d such that d ≡ g (mod 2)

and 0 ≤ d ≤ (g + 2)/3.

In particular, f has at least one (−1)-section. Furthermore, f has at most sixteen (−1)-

sections when (Y,G) is as in (1), f has at most twenty five (−1)-sections when (Y,G) is

as in (2), and f has at most (3g + 6) (−1)-sections otherwise.

Proof. Let X be a smooth rational surface and f : X → P1 a relatively minimal

fibration whose general fibre F is a non-hyperelliptic curve of genus g ≥ 3. From (2.1)

and [6, Theorem 2.2], we have (KX+F )2 > 0. Let (Y,G) denote the reduction of (X,F ).

Assume that Y = P2. Then G is a smooth plane curve of degree b ≥ 4. By the

definition of reduction, f has at least one (−1)-section and has at most b2 (−1)-sections.

Furthermore, we have g = (b − 1)(b − 2)/2 and (KX + F )2 = (KY + G)2 = (b − 3)2.

In particular, (KX + F )2 = g − 2 + (b − 4)(b − 5)/2 ≥ g − 2. This and (2.1) imply

ρ(X) ≤ 3g + 8. If the equality holds, then G is either a quartic curve or a quintic curve.

We next assume that Y ̸= P2. Let a be the minimal ruling degree of (Y,G). When

a ≥ 3, we have (KX+F )2 ≥ g+1, which is a weaker bound than as in [5, Lemmas 2.6 and

2.7], in the same argument as in [5, Lemmas 2.6 and 2.7]. Similarly, we get (KX +F )2 ≥
g− 1 when a = 2. When a = 1, G# must be smooth. Hence we have (Y,G) = (Y #, G#)

and (KX + F )2 = g − 2 (see [4, p. 188]). Therefore, we have ρ(X) ≤ 3g + 8 from (2.1).

Furthermore, ρ(X) = 3g + 8 leads to a = 1 with Y = Σd for some d. Then we get

G ∼ 3∆[d] + (1 + (g + 3d)/2)Γ[d] from G.(G + KΣd
) = 2g − 2. Since ∆[d].G is a non-

negative integer, we show that d ≡ g (mod 2) and 0 ≤ d ≤ (g + 2)/3. By the definition

of reduction with X ̸= Y , we see that f has at least one (−1)-section. The number of

(−1)-sections of f is less than or equal to G2 = 3g + 6.

This completes the proof of Theorem 2.3. □

As a corollary, we have the following.

Theorem 2.4. Let X be a smooth rational surface, and f : X → P1 a relatively

minimal fibration whose general fibre F is a trigonal curve of genus g ≥ 3. Assume that

ρ(X) = 3g+8. Then there exists a birational morphism µ : X → Σd with d ≡ g (mod 2)

and 0 ≤ d ≤ (g + 2)/3, and it satisfies conditions (i), (ii).
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(i) µ∗F is linearly equivalent to (3∆[d] + (1 + (g + 3d)/2)Γ[d]).

(ii) The pull-back to X of a (−1)-curve contracted by µ intersects with F at just one

point.

In particular, f has at least one (−1)-section.

Proof. Let X be a smooth rational surface and f : X → P1 a relatively minimal

fibration whose general fibre F is a trigonal curve of genus g ≥ 3. Assume that ρ(X) =

3g + 8. Let (Y,G) denote the reduction of (X,F ). We first consider the case (3) of

Theorem 2.3, the natural map (X,F ) → (Y,G) is a unique birational morphism µ : X →
Σd satisfying the desired properties. The case where (Y,G) is as in (2) of Theorem 2.3

does not occur since the smooth quintic curves are tetragonal. Now, we consider the last

case where (Y,G) is as in (1) of Theorem 2.3. Let ν : Σ1 → P2 be a blowing-up at a base

point of a pencil Λf ⊂ |G| corresponding to f . Then the composite map of ν−1 and the

natural map (X,F ) → (Y,G) satisfies the desired properties of µ. □

Put n = [g/3], the greatest integer not exceeding g/3. Let (Σd, G) be the image

of (X,F ) by µ as in Theorem 2.4. We remark that Γ[d].G = 3 and d ≡ g (mod 2),

0 ≤ d ≤ n+ 1,

∆[d].G =
g + 2− 3d

2
=



1 +
3(n− d)

2
≥ 1, when g = 3n,

3(n+ 1− d)

2
≥ 0, when g = 3n+ 1,

2 +
3(n− d)

2
≥ 2, when g = 3n+ 2.

Therefore, we have the following.

Corollary 2.5. Put n = [g/3]. Let (Σd, G) be the image of (X,F ) by µ as in

Theorem 2.4 and D an irreducible reduced curve on Σd. Then the following holds.

(1) D.G = 0 if and only if D = ∆[n+1] with d = n+ 1 and g = 3n+ 1.

(2) D.G = 1 if and only if D = ∆[n] with d = n and g = 3n.

(3) D.G = 2 if and only if D = ∆[n] with d = n and g = 3n+ 2.

Remark 2.6. Put n = [g/3]. Let (Σd, G) be the image of (X,F ) by µ as in

Theorem 2.4. ThenG is very ample except when (d, g) = (n+1, 3n+1). In the exceptional

case, f have at least one reducible fibre (cf. [12, (3.1)]). Furthermore, KΣd
+ G is also

very ample except when (d, g) = (2, 4) (cf. [12, Lemma 3.1]).

Via f , we can regard X as a smooth projective curve of genus g defined over the

rational function field K = f∗C(P1). We assume that it has a K-rational point O. Let

JF/K be the Jacobian variety of the generic fibre F/K of f . The Mordell–Weil group

of f is the group of K-rational points JF (K). It is a finitely generated Abelian group,

since X/C is a rational surface. The rank rkJF (K) of the group is called the Mordell–

Weil rank. There is a formula, often referred as the Shioda–Tate formula, relating the

Mordell–Weil rank and the Picard number:
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rkJF (K) = ρ(X)− 2−
∑
t∈P1

(vt − 1), (2.2)

where vt denotes the number of irreducible components of the fibre f−1(t). There is a

natural one-to-one correspondence between the set of K-rational points F(K) and the set

of sections of f . For P ∈ F(K), we denote by (P ) the section corresponding to P which is

regarded as a horizontal curve on X. In particular, (O) corresponding to the origin O of

JF (K) is called the zero section. Let T be the subgroup of NS(X) generated by (O) and

the irreducible components of the fibres of f . In [16, Theorem 3], we have the natural

isomorphism of groups JF (K) ≃ NS(X)/T . As a corollary, we have the following.

Lemma 2.7. Keep the notation and assumptions as above. JF (K) is trivial if and

only if T = NS(X).

3. Explicit constructions.

Let X be a smooth projective rational surface and f : X → P1 a relatively minimal

fibration of genus g ≥ 1. Assume that g = 1 and f has a section. Then Miranda and

Persson [10] studied extremal rational elliptic surfaces, where “extremal” means that

the Mordell–Weil rank of f is zero (see also [11]). We next assume that g ≥ 2 and

ρ(X) = 4g + 6. Then the second named author gave necessary and sufficient conditions

for the Mordell–Weil group of f to be trivial. One of the conditions is the existence of

a special fibre of f , which is an extension of a singular fibre of type II∗ in the sense of

Kodaira [7]. In particular, its dual graph contains, as a subgraph, the extended Dynkin

diagram of the unimodular integral lattice D+
4g+4 as in [6, Figure 4]. From now on we

assume that f is trigonal and ρ(X) = 3g + 8. In order to construct f : X → P1 whose

Mordell–Weil group is trivial, we consider a reducible fibre whose dual graph contains,

as a subgraph, the extended Dynkin diagram of the unimodular lattice Γ0
3g+6 as in [12,

Figure 1].

Proposition 3.1. Let n be a positive integer, X a smooth rational surface and

f : X → P1 a relatively minimal fibration of trigonal curves of genus g = 3n. Assume

that ρ(X) = 3g + 8. Then the following conditions are equivalent.

(1) f has a reducible fibre whose dual graph corresponds to the graph as in Figure 1.

(2a) f : X → P1 can be obtained from Σn by eliminating the base points of the following

pencil Λ: Let ∆[n] be the minimal section of Σn and Γ[n] a fibre of Σn. Take a

curve D[n],0 satisfying the following three conditions.

(i) D[n],0 ∼ 3∆[n] + (3n+ 1)Γ[n].

(ii) D[n],0 is smooth at the intersection point of Γ[n] and ∆[n].

(iii) D[n],0 has a contact of order 3 with Γ[n] at the above intersection point.

Then the pencil Λ is defined by D[n],0 and (3∆[n] + (3n+ 1)Γ[n]).

(2b) f : X → P1 can be obtained from Σn by eliminating the base points of the following

pencil Λ: For t ∈ C, each member of Λ is defined by
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tx3y3n+1 = y + x3 +
3∑

i=1

in+1∑
j=1

ci,jx
iyj , (3.3)

where ci,j are complex numbers. The member of Λ corresponding to ∞ is (3∆[n] +

(3n+ 1)Γ[n]), which is defined by x3y3n+1 = 0.

Proof. (1) ⇒ (2a): We denote by F a general fibre of f . Let Θk, k = 0, 1, . . . ,

9n+ 6 be components of the reducible fibre F∞ that satisfy the following condition:

(Θi−1.Θj−1)1≤i,j≤9n+7 =



−2 1 0 · · · 0 0 0 0 0

1 −2
. . .

. . .
...

...
...

...
...

0
. . .

. . . 1 0
...

...
...

...
...

. . . 1 −2 1 0 0 0 0

0 · · · 0 1 −2 1 0 1 0

0 · · · · · · 0 1 −2 1 0 0

0 · · · · · · 0 0 1 −2 0 1

0 · · · · · · 0 1 0 0 −3 0

0 · · · · · · 0 0 0 1 0 −n− 1



.

We know that f has a (−1)-section E9n+6 by the last assertion of Theorem 2.4. Since

Θ0 is a unique component whose multiplicity in F∞ is one, E9n+6 intersects with

Θ0. Let µ be the birational morphism contracting E9n+6,Θ0,Θ1, . . . ,Θ9n+4 in turn.

Then (µ∗Θ9n+5)
2 = 0 and (µ∗Θ9n+6)

2 = −n. Since ρ(X) = 3g + 8 = 9n + 8,

the image of X by µ is Σn with the minimal section ∆[n] = µ∗Θ9n+6 and a fibre

Γ[n] = µ∗Θ9n+5 of Σn. Furthermore, multiplicities of Θ9n+6 and Θ9n+5 in F∞ imply

that µ∗F∞ = 3∆[n] + (3n + 1)Γ[n], which provides the assertion (i). Let D[n],0 be the

image by µ of f−1(0). By the Shioda–Tate formula (2.2) and its non-negativity, D[n],0

is an irreducible curve. The original fibration f : X → P1 corresponds to a pencil Λ

generated by D[n],0 and (3∆[n] + (3n + 1)Γ[n]). Since E9n+6 intersects with f−1(0) at

one point transversely, the assertion (ii) follows. The assertion (iii) also follows from the

configuration of E9n+6,Θ0,Θ1, . . . ,Θ9n+5 and Θ9n+6.

(2a) ⇒ (2b): Let Γ[n] be the fibre of Σn defined by y = 0. The assertion (i) implies

that the defining equation of D[n],0 can be

3∑
i=0

in+1∑
j=0

ci,jx
iyj = 0

for some complex numbers ci,j . Since D[n],0 is an irreducible curve, Γ[n] is not a compo-

nent of D[n],0. This and (iii) yield that c2,0 = c1,0 = c0,0 = 0 and c3,0 ̸= 0. Furthermore,

(ii) implies c0,1 ̸= 0. We may put c0,1 = c3,0 = 1 without loss of generality.

(2b) ⇒ (1): We consider a pencil Λ on Σn defined by (3.3), namely, each member

D[n],t in Λ is defined by (3.3) for t ∈ C and the member D[n],∞ in Λ corresponding to

∞ is (3∆[n] + (3n + 1)Γ[n]), which is defined by x3y3n+1 = 0. Then D[n],t is smooth at
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the intersection point of Γ[n] with ∆[n] for all t ∈ C. Furthermore, D[n],t has a contact

of order 3 with Γ[n] at the smooth point (x, y) = (0, 0). Thus any two members in Λ

are disjoint on Σn \ {(0, 0)}. In particular, the (9n + 6) base points of Λ consist of the

point (0, 0) and its infinitely near points. Hence a general member in Λ is a smooth

and irreducible curve of genus g = 3n, which is trigonal by Lemma 2.2. Therefore, we

obtain a relatively minimal fibration f : X → P1 of trigonal curves of genus g = 3n from

ΦΛ : Σn 99K P1 by eliminating the base points of Λ as follows:

Let µ9n+6 : W1 → Σn be the blowing-up at the point (x, y) = (0, 0) with the

exceptional curve E1, i.e., µ9n+6(E1) = (0, 0). Let P2 be the intersection point of E1 and

the strict transform to W1 of Γ[n]. The strict transform to W1 of D[n],t has a contact

of order 2 with that of Γ[n] at P2 for all t ∈ C. Next let µ9n+5 : W2 → W1 be the

blowing-up at the base point P2 with E2 = µ−1
9n+5(P2). Let P3 denote the intersection

point of E2 and the strict transform to W2 of Γ[n]. For all t ∈ C the strict transform to

W2 of D[n],t meets that of Γ[n] transversally at P3. Denote the pull-back of curves by the

same symbols for simplicity. Then we get the irreducible decomposition

D[n],∞−E1−E2 = 3(∆[n]−E1)+(3n+1)(Γ[n]−E1−E2)+(3n+3)(E1−E2)+(6n+3)E2.

Furthermore, D[n],t − E1 − E2 has a contact of order (9n + 4) with the other members

at P3 for all t ∈ C. Denote by µ9n+4 : W3 → W2 the blowing-up at the base point P3

with E3 = µ−1
9n+4(P3). Let P4 be the intersection point of E3 and the strict transform

to W3 of D[n],t. In fact, P4 corresponds to a tangent direction of D[n],t − E1 − E2 at

P3 on W2 by µ9n+4, and D[n],t − E1 − E2 − E3 has a contact of order (9n + 3) with

the other members at P4 for all t ∈ C. In the same way, for i = 4, 5, . . . , 9n + 5, after

the blowing-up µ9n+7−i : Wi → Wi−1 at the base point Pi with Ei = µ−1
9n+7−i(Pi),

D[n],t − E1 − E2 − · · · − Ei has a contact of order (9n + 6 − i) with the other members

at Pi+1. Let µ1 : X → W9n+5 be the blowing-up at the base point P9n+6 with E9n+6 =

µ−1
1 (P9n+6). Put f = ΦΛ ◦ µ9n+6 ◦ µ9n+5 ◦ · · · ◦ µ1. Then f : X → P1 is a relatively

minimal fibration whose general fibre F is D[n],t − E1 − E2 − · · · − E9n+6 for general

t ∈ C and f−1(∞) = D[n],∞ − E1 − E2 − · · · − E9n+6 is a reducible fibre. We remark

that E9n+6 is a (−1)-section of f . The configuration of E9n+6, F and the irreducible

components of f−1(∞) is as in Figure 3. Furthermore, we see that the dual graph of the

reducible fibre f−1(∞) corresponds to the graph as in Figure 1. □

Corollary 3.2. Let f : X → P1 be as in Proposition 3.1. Then the Mordell–Weil

group of f is trivial.

Proof. We use the same notation as in Proof of Proposition 3.1. The irre-

ducible components of f−1(∞) are ∆[n] − E1, Γ[n] − E1 − E2 − E3 and Ei − Ei+1, i =

1, 2, . . . , 9n + 5. These and E9n+6, which is a (−1)-section of f , generate ∆[n],Γ[n] and

Ej , j = 1, 2, . . . , 9n+6, and form a Z-basis of NS(X). Therefore the Mordell–Weil group

of f is trivial by Lemma 2.7. □

Now, we consider a reducible fibre whose dual graph contains, as a subgraph, the

extended Dynkin diagram of the unimodular lattice Γ1
3g+6 as in [12, Figure 2]. The proof

of Proposition 3.3 below is similar to that of Proposition 3.1. For the convenience of the

reader, we still give the details of the proof.
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On X

D[n],t − E1 − E2 − · · · − E9n+6

(−1)-section of f E9n+6

E9n+5 − E9n+6

E9n+4 − E9n+5

qqq
E6 − E7

E5 − E6

E4 − E5

Γ[n] − E1 − E2 − E3

E3 − E4

E2 − E3

E1 − E2

∆[n] − E1

Figure 3.

Proposition 3.3. Let n be a positive integer, X a smooth rational surface and

f : X → P1 a relatively minimal fibration of trigonal curves of genus g = 3n+1. Assume

that ρ(X) = 3g + 8. Then the following conditions are equivalent.

(1) f has a reducible fibre whose dual graph corresponds to the graph as in Figure 2.

(2a) f : X → P1 can be obtained from Σn+1 by eliminating the base points of the

following pencil Λ: Let ∆[n+1] be the minimal section of Σn+1 and Γ[n+1] a fibre

of Σn+1. Let p denote a point on Γ[n+1] except the intersection point of Γ[n+1] and

∆[n+1]. Take a curve D[n+1],0 satisfying the following three conditions.

(i) D[n+1],0 ∼ 3∆[n+1] + (3n+ 3)Γ[n+1].

(ii) D[n+1],0 is smooth at p.

(iii) D[n+1],0 has a contact of order 3 with Γ[n+1] at p.

Then the pencil Λ is defined by D[n+1],0 and (3∆[n+1] + (3n+ 3)Γ[n+1]).

(2b) f : X → P1 can be obtained from Σn+1 by eliminating the base points of the

following pencil Λ: For t ∈ C, each member of Λ is defined by

tx3y3n+3 = 1 + x3y +

3∑
i=1

i(n+1)∑
j=1

ci,jx
iyj , (3.4)
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where ci,j are complex numbers with c3,1 ̸= −1. The member of Λ corresponding to

∞ is (3∆[n+1] + (3n+ 3)Γ[n+1]), which is defined by x3y3n+3 = 0.

Proof. (1) ⇒ (2a): We denote by F a general fibre of f . Let Θk, k = 0, 1, . . . ,

9n+ 9 be components of the reducible fibre F∞ that satisfy the following condition:

(Θi−1.Θj−1)1≤i,j≤9n+10 =



−2 1 0 · · · 0 0 0 0 0

1 −2
. . .

. . .
...

...
...

...
...

0
. . .

. . . 1 0
...

...
...

...
...

. . . 1 −2 1 0 0 0 0

0 · · · 0 1 −2 1 0 1 0

0 · · · · · · 0 1 −2 1 0 0

0 · · · · · · 0 0 1 −2 0 0

0 · · · · · · 0 1 0 0 −3 1

0 · · · · · · 0 0 0 0 1 −n− 1



.

We know that f has a (−1)-section E9n+9 by the last assertion of Theorem 2.4. Since

Θ0 is a unique component whose multiplicity in F∞ is one, E9n+9 intersects with Θ0.

Let µ be the birational morphism contracting E9n+9,Θ0,Θ1, . . . ,Θ9n+7 in turn. Then

(µ∗Θ9n+8)
2 = 0 and (µ∗Θ9n+9)

2 = −n−1. Since ρ(X) = 3g+8 = 9n+11, the image ofX

by µ is Σn+1 with the minimal section ∆[n+1] = µ∗Θ9n+9 and a fibre Γ[n+1] = µ∗Θ9n+8

of Σn+1. Furthermore, multiplicities of Θ9n+9 and Θ9n+8 in F∞ imply that µ∗F∞ =

3∆[n+1] + (3n + 3)Γ[n+1], which provides the assertion (i). Let D[n+1],0 be the image

by µ of f−1(0). By the Shioda–Tate formula (2.2) and its non-negativity, D[n+1],0 is an

irreducible curve. The original fibration f : X → P1 corresponds to a pencil Λ generated

by D[n+1],0 and (3∆[n+1] + (3n + 3)Γ[n+1]). Remark that base points of Λ are not on

∆[n+1]. Since E9n+9 intersects with f−1(0) at one point transversely, the assertion (ii)

follows. The assertion (iii) also follows from the configuration of E9n+9,Θ0,Θ1, . . . ,Θ9n+8

and Θ9n+9.

(2a) ⇒ (2b): Let Γ[n+1] be the fibre of Σn+1 defined by y = 0. The assertion (i)

implies that the defining equation of D[n+1],0 can be

3∑
i=0

i(n+1)∑
j=0

ci,jx
iyj = 0

for some complex numbers ci,j . We define the intersection point p of Γ[n+1] with D[n+1],0

by (x, y) = (−1/o, 0). Since D[n+1],0 is an irreducible curve, Γ[n+1] is not a component of

D[n+1],0. This and (iii) yield that c3,0 = c0,0o
3, c2,0 = 3c0,0o

2, c1,0 = 3c0,0o and c0,0 ̸= 0.

Furthermore, (ii) implies c3,1 ̸= 0. We may put c0,0 = c3,1 = 1 and o = 0 without loss of

generality.

(2b) ⇒ (1): We consider a pencil Λ on Σn+1 defined by (3.4), namely, each member

D[n+1],t in Λ is defined by (3.4) for t ∈ C and the member D[n+1],∞ in Λ corresponding to



516(188)

516 C. Gong, S. Kitagawa and J. Lu

∞ is (3∆[n+1]+(3n+3)Γ[n+1]), which is defined by x3y3n+3 = 0. Then D[n+1],t is smooth

at the point ((X0 : X1 : X2), (Y0 : Y1)) = ((0 : 1 : 0), (1 : 0)) for all t ∈ C. Furthermore,

D[n+1],t has a contact of order 3 with Γ[n+1] at the smooth point ((0 : 1 : 0), (1 : 0)).

Thus any two members in Λ are disjoint on Σn+1 \ {((0 : 1 : 0), (1 : 0))}. In particular,

the (9n + 9) base points of Λ consist of the point ((0 : 1 : 0), (1 : 0)) and its infinitely

near points. Hence a general member in Λ is a smooth and irreducible curve of genus

g = 3n + 1, which is trigonal by Lemma 2.2. Therefore, we obtain a relatively minimal

fibration f : X → P1 of trigonal curves of genus g = 3n + 1 from ΦΛ : Σn+1 99K P1 by

eliminating the base points of Λ as follows:

Let µ9n+9 :W1 → Σn+1 be the blowing-up at the point ((X0 : X1 : X2), (Y0 : Y1)) =

((0 : 1 : 0), (1 : 0)) with the exceptional curve E1, i.e., µ9n+9(E1) = ((0 : 1 : 0), (1 : 0)).

Let P2 be the intersection point of E1 and the strict transform to W1 of Γ[n+1]. The

strict transform to W1 of D[n+1],t has a contact of order 2 with that of Γ[n+1] at P2

for all t ∈ C. Next let µ9n+8 : W2 → W1 be the blowing-up at the base point P2 with

E2 = µ−1
9n+8(P2). Let P3 denote the intersection point of E2 and the strict transform to

W2 of Γ[n+1]. For all t ∈ C the strict transform to W2 of D[n+1],t meets that of Γ[n+1]

transversally at P3. Denote the pull-back of curves by the same symbols for simplicity.

Then we get the irreducible decomposition

D[n+1],∞−E1−E2 = 3∆[n+1]+(3n+3)(Γ[n+1]−E1−E2)+(3n+2)(E1−E2)+(6n+4)E2.

Furthermore, D[n+1],t −E1 −E2 has a contact of order (9n+7) with the other members

at P3 for all t ∈ C. Denote by µ9n+7 : W3 → W2 the blowing-up at the base point P3

with E3 = µ−1
9n+7(P3). Let P4 be the intersection point of E3 and the strict transform to

W3 of D[n+1],t. In fact, P4 corresponds to a tangent direction of D[n+1],t − E1 − E2 at

P3 on W2 by µ9n+7, and D[n+1],t − E1 − E2 − E3 has a contact of order (9n + 6) with

the other members at P4 for all t ∈ C. In the same way, for i = 4, 5, . . . , 9n + 8, after

the blowing-up µ9n+10−i : Wi → Wi−1 at the base point Pi with Ei = µ−1
9n+10−i(Pi),

D[n+1],t −E1 −E2 − · · · −Ei has a contact of order (9n+9− i) with the other members

at Pi+1. Let µ1 : X → W9n+8 be the blowing-up at the base point P9n+9 with E9n+9 =

µ−1
1 (P9n+9). Put f = ΦΛ ◦ µ9n+9 ◦ µ9n+8 ◦ · · · ◦ µ1. Then f : X → P1 is a relatively

minimal fibration whose general fibre F is D[n+1],t − E1 − E2 − · · · − E9n+9 for general

t ∈ C and f−1(∞) = D[n+1],∞ − E1 − E2 − · · · − E9n+9 is a reducible fibre. We remark

that E9n+9 is a (−1)-section of f . The configuration of E9n+9, F and the irreducible

components of f−1(∞) is as in Figure 4. Furthermore, we see that the dual graph of the

reducible fibre f−1(∞) corresponds to the graph as in Figure 2. □

Corollary 3.4. Let f : X → P1 be as in Proposition 3.3. Then the Mordell–Weil

group of f is trivial.

Proof. We use the same notation as in Proof of Proposition 3.3. The irreducible

components of f−1(∞) are ∆[n+1], Γ[n+1]−E1−E2−E3 and Ei−Ei+1, i = 1, 2, . . . , 9n+8.

These and E9n+9, which is a (−1)-section of f , generate ∆[n+1],Γ[n+1] and Ej , j =

1, 2, . . . , 9n+ 9, and form a Z-basis of NS(X). Therefore the Mordell–Weil group of f is

trivial by Lemma 2.7. □
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On X

D[n+1],t − E1 − E2 − · · · − E9n+9

(−1)-section of f E9n+9

E9n+8 − E9n+9

E9n+7 − E9n+8

qqq
E6 − E7

E5 − E6

E4 − E5

Γ[n+1] − E1 − E2 − E3

E3 − E4

E2 − E3

E1 − E2

∆[n+1]

Figure 4.

4. Main theorem.

Let X be a smooth projective rational surface and f : X → P1 a relatively minimal

fibration of genus g ≥ 1. Assume that ρ(X) = 4g + 6. Then, for all g, there exists

f : X → P1 whose Mordell–Weil group is trivial. From now on we assume that f is

trigonal and ρ(X) = 3g + 8. Then we see a difference in existence of f : X → P1 whose

Mordell–Weil group is trivial according to g as follows.

Theorem 4.1. Let X be a smooth rational surface, and f : X → P1 a relatively

minimal fibration of trigonal curves of genus g ≥ 3. Suppose that its Picard number ρ(X)

equals maximal possible 3g + 8.

(1) If g ≡ 0 (mod 3), then the Mordell–Weil group of f is trivial if and only if f is as

in Proposition 3.1.

(2) If g ≡ 1 (mod 3), then the Mordell–Weil group of f is trivial if and only if f is as

in Proposition 3.3.

(3) If g ≡ 2 (mod 3), then the Mordell–Weil group of f cannot be trivial.

Proof. Combining Corollaries 3.2 and 3.4, it is sufficient to show the following

to prove Theorem 4.1.
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Lemma 4.2. Let X be a smooth rational surface, and f : X → P1 a relatively

minimal fibration of trigonal curves of genus g ≥ 3. Let n = [g/3], the greatest integer

not exceeding g/3. Assume that ρ(X) = 3g+8 and the Mordell–Weil group of f is trivial.

Then g = 3n or 3n + 1. Furthermore, if g = 3n (resp. 3n + 1), f has a reducible fibre

whose dual graph corresponds to the graph as in Figures 1 (resp. 2).

Proof. Let X be a smooth rational surface and f : X → P1 a relatively minimal

fibration whose general fibre F is a trigonal curve of genus g ≥ 3. Assume that ρ(X) =

3g + 8. Let (Σd, G) be the image of (X,F ) by µ as in Theorem 2.4. We know G ∼
3∆[d] + (1+ (g+3d)/2)Γ[d]. Assume that the Mordell–Weil group of f is trivial. Then a

section of f is unique. We shall denote by E3g+6 the (−1)-section of f . Furthermore, in

the process of contracting by µ, we may assume that Ei+1 corresponds to an infinitely

near point of the point corresponding to Ei for i = 1, 2, . . . , 3g + 5. Since (3g + 5) (−2)-

curves Ei − Ei+1, i = 1, 2, . . . , 3g + 5 are connected, a reducible singular fibre F∞ of f

contains all of them. However, they do not generate F∞. By the Shioda–Tate formula

(2.2) and ρ(X) = 3g + 8, the number of reducible fibres of f is at most two.

We suppose that f has a reducible fibre F1 other than F∞. Let Θ1,0 be the identity

component of F1. By the Shioda–Tate formula (2.2), we show that F1 has exactly one

component Θ1,1 other than Θ1,0. Since Θ1,1 is disjoint from the zero section (O) = E3g+6

and the (3g+5) irreducible components (Ei −Ei+1) of the other reducible fibre F∞, we

can regard Θ1,1 as an irreducible curve on Σd by µ. Thus, Θ1,1.G = Θ1,1.F = 0 by µ.

Therefore, by virtue of Corollary 2.5, we conclude that Θ1,1 must be identified with the

minimal section ∆[n+1] of Σd with d = n + 1 and g = 3n + 1. Similarly, F∞ also has

exactly one component Θ∞,1 other than the (3g+5) irreducible components (Ei−Ei+1).

Furthermore, the image of Θ∞,1 on Σn+1 is linearly equivalent to 3∆[n+1]+(3n+3)Γ[n+1]

by Theorem 2.4. Hence, we have

T ≃ ZΘ1,1 ⊕ ZΘ∞,1 ⊕
3g+5⊕
i=1

Z(Ei − Ei+1)⊕ Z(O)

≃ Z∆[n+1] ⊕ (3n+ 3)ZΓ[n+1] ⊕
3g+6⊕
i=1

ZEi.

This contradicts the assumption that the Mordell–Weil group of f is trivial by Lemma 2.7.

In this way, F∞ is the unique reducible fibre of f . By the Shioda–Tate formula

(2.2) and ρ(X) = 3g + 8, the number of irreducible components of F∞ is 3g + 7. Let

Θ3g+5−i = Ei−Ei+1, i = 1, 2, . . . , 3g+5. We denote by Θ3g+6,Θ3g+5 the two components

other than them. We remark that µ does not contract Θ3g+6 and Θ3g+5. Let D1 and

D2, respectively, be the images of Θ3g+6 and Θ3g+5 on Σd. Since
⊕3g+4

i=0 ZΘi ⊕ Z(O) ≃⊕3g+6
i=1 ZEi, by Lemma 2.7 we have

ZD1 ⊕ ZD2 ≃ Z∆[d] ⊕ ZΓ[d]. (4.5)

If one of the two curves D1 and D2 is a trisection of Σd, which means a horizontal curve

meeting a fibre of Σd at three points, then the other one must be a fibre of Σd. Therefore,

ZD1 ⊕ ZD2 ≃ 3Z∆[d] ⊕ ZΓ[d], which contradicts (4.5). Thus, at least one of them is a

section of Σd.
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In what follows, we assume thatD1 is a section of Σd. In particular, D1 ∼ ∆[d]+γΓ[d]

for some non-negative integer γ and is smooth. For h = 0, 1, . . . , 3g + 4 and j = 3g + 5,

3g + 6, we know Θh.Θj ≥ 0 and F.Θj = (O).Θj = 0. Hence we have

Θ3g+6 = ∆0 + γΓ− E1 − E2 − · · · − ED1.G, D1.G ≤ 3g + 5,

Θ3g+5 = α∆0 + βΓ−
3g+5∑
i=1

δiEi, 2 ≥ α ≥ δ1 ≥ δ2 ≥ · · · ≥ δ3g+5 ≥ 0,

3g+5∑
i=1

δi = D2.G,

δD2.G+1 = 0 for some non-negative integers α, β. Therefore we have

0 ≤ Θ3g+6.Θ3g+5 =


D1.D2 −

D2.G∑
i=1

δi = D1.D2 −D2.G if D2.G ≤ D1.G,

D1.D2 −
D1.G∑
i=1

δi ≤ D1.D2 −D1.G otherwise.

Thus,

min{D1.G, D2.G} ≤ D1.D2 (4.6)

is a necessary condition for the Mordell–Weil group of f to be trivial.

At first, we concentrate on the case of Γ[d].D2 = 1. Without loss of generality, we

may assume that G = D1 +2D2. When D2.G ≤ D1.G, we have D1.D2 +2D2
2 = D2.G ≤

D1.D2 from (4.6). This implies D2
2 ≤ 0. Thus D2 = ∆[d]. However, ZD1 ⊕ ZD2 ≃

Z∆[d] ⊕ (1 + (g + 3d)/2)ZΓ[d], which contradicts (4.5). When D1.G ≤ D2.G, we have

D2
1 + 2D1.D2 = D1.G ≤ D1.D2 from (4.6). This and D1.D2 ≥ 0 imply D2

1 ≤ 0. Hence

D1 = ∆[d], which also leads a contradiction to (4.5). Therefore, the case of Γ[d].D2 = 1

does not occur.

By an argument similar to the previous case, we can show that the case of Γ[d].D2 = 2

does not occur again.

At last, we consider the case of Γ[d].D2 = 0. Then D2 must be a fibre of Σd. This

implies that D1.D2 = 1 and D2.G = 3. With the aid of (4.6), we have D1.G ≤ 1.

Therefore, by Corollary 2.5 we conclude that γ = 0 and

(D1.G, g, d) = (1, 3n, n), (0, 3n+ 1, n+ 1).

Conversely, the both situations provide (4.5). Furthermore, since Θ0,Θ1, . . . ,Θ3g+6

and (O) form a Z-basis of NS(X), their multiplicities in F∞ are uniquely determined.

Thus we see that F∞ is a reducible fibre whose dual graph corresponds to the graph as

in Figures 1 (resp. 2), when g = 3n (resp. 3n+ 1). □

This completes the proof of Theorem 4.1. □
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5. Examples.

In [1], Beauville pointed out that the minimum number of singular fibres is two over

P1, if f : X → P1 is not a trivial fibration. There are many interesting arithmetic and

geometric properties in this extreme case (see [2]). In this section, first we will discuss

some examples of fibrations with only two singular fibres on rational surfaces X. In these

examples, the general fibre F is a trigonal curve of genus g ≥ 3 and ρ(X) = 3g + 8.

Example 5.1. Let f : X → P1 be as in Proposition 3.1. Consider the case

where ci,j = 0 for the defining equation (3.3). Let D[n],t be a curve on Σn defined

by tx3y3n+1 = y + x3. We consider D[n],t on the Zariski open subset of Σn defined

by X2Y1 ̸= 0 and take (u, z) = (X0/X2, Y0/Y1) as an affine coordinate. Then a local

equation of D[n],t on X2Y1 ̸= 0 is t = z3n+1 + u3, which is the transition function u3z

times that on X0Y0 ̸= 0 with putting x = zn/u and y = 1/z. Hence D[n],t is smooth

unless t = 0,∞, namely, the number of singular fibres of f is two.

Example 5.2. Let f : X → P1 be as in Proposition 3.3. Consider the case where

ci,j = 0 for the defining equation (3.4). Let D[n+1],t be a curve on Σn+1 defined by

tx3y3n+3 = 1 + x3y. We consider D[n+1],t on the Zariski open subset of Σn+1 defined

by X2Y1 ̸= 0 and use the same affine coordinate (u, z) as in Example 5.1. Then a local

equation of D[n+1],t on X2Y1 ̸= 0 is t = u3 + z3n+2, which is the transition function u3

times that on X0Y0 ̸= 0 with putting x = zn+1/u and y = 1/z. Therefore, D[n+1],t is

smooth unless t = 0,∞, namely, the number of singular fibres of f is also two.

For the converse of Examples 5.1 and 5.2, we have the following.

Theorem 5.3. Let X be a smooth rational surface, and f : X → P1 a relatively

minimal fibration of trigonal curves of genus g ≥ 3. Assume that ρ(X) = 3g + 8, that

the Mordell–Weil group of f is trivial and that the number of singular fibres of f is two.

Then g ≡ 0, 1 (mod 3) and f is defined explicitly by the equation : u3 = zg+1 + t.

Proof. We can check that such an equation of f satisfies the following conditions:

X is rational, ρ(X) = 3g + 8, and f−1(0) and f−1(∞) are the only two singular fibres.

Especially, f−1(∞) is the fibre appearing in Proposition 3.1 or 3.3 according as g ≡ 0 or

1 (mod 3), respectively. In particular, the Mordell–Weil group of f is trivial.

We claim that such f is unique. Because the number of singular fibres of f is two, f is

isotrivial by [1]. It is enough to prove that a general fibre of f is uniquely determined. Let

F0 = f−1(0) be the singular fibre with a topological monodromy σ1/λ1 + σ2/λ2 + σ3/λ3
and a principal component Γ ∼= P1. Consider the base change π : P1 → P1 defined by

t = wn. Then we get a trivial fibration f̃ : F×P1 → P1 where F is isomorphic to a general

fibre of f . Restricting f̃ to the fibre F = f̃−1(0), we has a cyclic cover f̃ |F : F → Γ

ramified over three points 0, 1,∞ on Γ by taking a suitable Möbius transform. More

precisely, the cyclic cover is defined by zn = xnσ1/λ1(x − 1)nσ2/λ2 . So F is uniquely

determined by the topological monodromy of F0. □

By Theorem 4.1, we know that if g ≡ 2 (mod 3), then the Mordell–Weil group of f

cannot be trivial. Here, for an arbitrary positive integer n, we give a trigonal fibration

f : X → P1 with g = 3n+ 2 and ρ(X) = 3g + 8 whose Mordell–Weil group is Z/3Z.
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Example 5.4. On Σn we consider the pencil Λ whose members D[n],t are defined

by y + x3 + tx3y3n+2 = 0 on X0Y0 ̸= 0, and u3z + z3n+2 + t = 0 on X2Y1 ̸= 0 with

t ∈ P1, where (u, z) denotes the same affine coordinate as in Example 5.1. In particular,

D[n],∞ = 3∆[n]+(3n+2)Γ[n]. Let G0,0 be a unicuspidal curve defined by u3+z3n+1 = 0.

Remark that D[n],0 = Γ[n],∞+G0,0 and G0,0 is linearly equivalent to 3∆[n]+(3n+1)Γ[n],

where Γ[n],∞ is the fibre of Σn defined by z = 0. Furthermore, it has a contact of order 3

with Γ[n] at the point P4 defined by (x, y) = (0, 0). So the other members D[n],t (with

t ̸= 0,∞) has a contact of order 3 with Γ[n] at P4 and also has a contact of order 3

with Γ[n],∞ at the point P1 defined by ((X0 : X1 : X2), (Y0 : Y1)) = ((1 : 0 : 0), (0 : 1)).

Furthermore, we can check the other members D[n],t are smooth curves.

Any two members in Λ are disjoint on Σn \ {P1, P4}. In particular, the (9n + 12)

base points of Λ consist of the point P1, P4 and their infinitely near points. In addition,

D[n],t with t ̸= 0,∞ are trigonal curves of genus g = 3n + 2. Therefore, we obtain a

relatively minimal fibration f : X → P1 of trigonal curves of genus g = 3n + 2 from

ΦΛ : Σn 99K P1 by eliminating the base points of Λ as follows:

Let µ9n+12 :W1 → Σn be the blowing-up at the point P1 with the exceptional curve

E1, i.e., µ9n+12(E1) = P1. Let P2 be the intersection point of E1 and the strict transform

to W1 of Γ[n],∞. The strict transform to W1 of D[n],t has a contact of order 2 with that

of Γ[n],∞ at P2 for all t ∈ C \ {0}. Next let µ9n+11 :W2 →W1 be the blowing-up at the

base point P2 with E2 = µ−1
9n+11(P2). Let P3 denote the intersection point of E2 and the

strict transform to W2 of Γ[n],∞. For all t ∈ C \ {0} the strict transform to W2 of D[n],t

meets that of Γ[n],∞ transversally at P3. Denote the pull-back of curves by the same

symbols for simplicity. Then we get the irreducible decomposition

D[n],∞ − E1 − E2 = 3(∆[n] − E1) + (3n+ 2)Γ[n] + 2(E1 − E2) + E2.

Furthermore, D[n],t−E1−E2 meets the other members at P3 transversally for all t ∈ P1.

Denote by µ9n+10 :W3 →W2 the blowing-up at the base point P3 with E3 = µ−1
9n+10(P3).

We can regard P4 as a point on W3 by µ9n+12 ◦ µ9n+11 ◦ µ9n+10. Any two of

the strict transform to W3 of the members in Λ are disjoint on W3 \ {P4}. In fact,

D[n],t −E1 −E2 −E3 has a contact of order (9n+ 9) with the other members at P4 for

all t ∈ C. Let µ9n+9 :W4 →W3 be the blowing-up at the point P4 with the exceptional

curve E4, i.e., µ9n+9(E4) = P4. Let P5 be the intersection point of E4 and the strict

transform to W4 of Γ[n]. The strict transform to W4 of D[n],t has a contact of order 2

with that of Γ[n] at P5 for all t ∈ C. Next let µ9n+8 :W5 →W4 be the blowing-up at the

base point P5 with E5 = µ−1
9n+8(P5). Let P6 denote the intersection point of E5 and the

strict transform to W5 of Γ[n]. For all t ∈ C the strict transform to W5 of D[n],t meets

that of Γ[n] transversally at P6. Denote the pull-back of curves by the same symbols for

simplicity. Then we get the irreducible decomposition

D[n],∞ − E1 − E2 − E3 − E4 − E5

= (3n+ 4)(E4 − E5) + (6n+ 5)E5 + (3n+ 2)(Γ[n] − E4 − E5)

+ 2(E1 − E2) + (E2 − E3) + 3(∆[n] − E1 − E4).

Furthermore, D[n],t −E1 −E2 −E3 −E4 −E5 has a contact of order (9n+ 7) with
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the other members at P6 for all t ∈ C. Denote by µ9n+7 : W6 → W5 the blowing-up

at the base point P6 with E6 = µ−1
9n+7(P6). Let P7 be the intersection point of E6 and

the strict transform to W6 of D[n],t. In fact, P7 corresponds to a tangent direction of

D[n],t−E1−E2−E3−E4−E5 at P6 onW5 by µ9n+1, andD[n],t−E1−E2−E3−E4−E5−E6

has a contact of order (9n+ 6) with the other members at P7 for all t ∈ C.
In the same way, for i = 7, 8, . . . , 9n+11, after the blowing-up µ9n+13−i :Wi →Wi−1

at the base point Pi with Ei = µ−1
9n+13−i(Pi), D[n],t − E1 − E2 − · · · − Ei has a contact

of order (9n + 12 − i) with the other members at Pi+1. Let µ1 : X → W9n+11 be the

blowing-up at the base point P9n+12 with E9n+12 = µ−1
1 (P9n+12). Put f = ΦΛ ◦µ9n+12 ◦

µ9n+11 ◦ · · · ◦ µ1. Then f : X → P1 is a relatively minimal fibration whose general fibre

F is D[n],t −E1 −E2 − · · · −E9n+12 for t ∈ C \ {0}, and the reducible fibres are f−1(0)

and f−1(∞). We remark that E3 and E9n+12 are (−1)-sections of f . The configuration

of the two (−1)-sections, F , the irreducible components of f−1(0) and that of f−1(∞) is

as in Figure 5.

On X G0,0 − E4 − E5 − · · · − E9n+12 D[n],t − E1 − E2 − · · · − E9n+12

(−1)-section of f E9n+12

E9n+11 − E9n+12

E9n+10 − E9n+11

qqq
E9 − E10

E8 − E9

E7 − E8

Γ[n] − E4 − E5 − E6

E6 − E7

E5 − E6

E4 − E5

∆[n] − E1 − E4

E1 − E2

E2 − E3

E3

(−1)-section of f

Γ[n],∞ − E1 − E2 − E3

Figure 5.
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Let E3g+6 be the zero section and Θ0,0 = G0,0−E4−E5−· · ·−E3g+6, Θ0,1 = Γ[n],∞−
E1−E2−E3, Θ∞,3g+5−i = Ei−Ei+1, i = 4, 5, . . . , 3g+5, Θ∞,3g+2 = Γ[n]−E4−E5−E6,

Θ∞,3g+3 = E2 −E3, Θ∞,3g+4 = E1 −E2, Θ∞,3g+5 = ∆[n] −E1 −E4. Then we have the

irreducible decompositions f−1(0) = Θ0,0 +Θ0,1 and

f−1(∞) = 3Θ∞,3g+5 + 2Θ∞,3g+4 +Θ∞,3g+3 + (3n+ 2)Θ∞,3g+2

+ (3n+ 4)Θ∞,3g+1 + (6n+ 5)Θ∞,3g +

3g∑
j=1

(3g + 1− j)Θ∞,3g−j .

Furthermore, we see that the dual graph of the reducible fibre f−1(∞) corresponds to the

graph as in Figure 6. Here, C is a (−3)-curve, A is a (−n−2)-curve, and the other circles

C

g
���

3g
���

3g − 1
���

3g − 2
���

3g − 3
���

· · ·
2

���
1

���
2g + 1���
g + 2���A 3���2���1���

Figure 6.

denote (−2)-curves. The numbers indicated outside the circles denote the multiplicities

of components in the degenerated fibre. We also have

T = ZE3g+6 ⊕ ZF ⊕ ZΘ0,1 ⊕
3g+5⊕
i=1

ZΘ∞,i ≃ ZE3g+6 ⊕ ZΘ0,1 ⊕
3g+5⊕
i=0

ZΘ∞,i

≃ 3ZE3 ⊕ Z(∆[n] − E1)⊕ Z(E1 − E2)⊕ Z(E2 − E3)⊕ ZΓ[n] ⊕
3g+6⊕
i=4

ZEi.

If 2E3 ∈ T , then 3E3−2E3 = E3 ∈ T . This implies the Mordell–Weil group of f is trivial

by Lemma 2.7. However, f has two (−1)-sections, which is a contradiction. Therefore

the Mordell–Weil group of f is Z/3Z from [16, Theorem 3].

Question. Let X be a smooth rational surface, and f : X → P1 a relatively

minimal fibration of trigonal curves of genus g ≥ 3. Suppose that ρ(X) = 3g + 8, and

g ≡ 2 (mod 3), is there a fibration whose Mordell–Weil group is Z/2Z?
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