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Abstract. We study a “div-grad type” sub-Laplacian with respect to a
smooth measure and its associated heat semigroup on a compact equiregular

sub-Riemannian manifold. We prove a short time asymptotic expansion of the
heat trace up to any order. Our main result holds true for any smooth measure
on the manifold, but it has a spectral geometric meaning when Popp’s measure
is considered. Our proof is probabilistic. In particular, we use Watanabe’s

distributional Malliavin calculus.

1. Introduction and main result.

In Introduction of his textbook on sub-Riemannian geometry [29], Montgomery em-

phasized the importance of spectral geometric problems in sub-Riemannian geometry

by asking “Can you ‘hear’ the subriemannian metric from the spectrum of its sublapla-

cian?” (Of course, this is a slight modification of Kac’s renowned question.) In the same

paragraph, he also mentioned Malliavin calculus, which is a powerful infinite-dimensional

functional analytic method for studying stochastic differential equations (SDEs) under

the Hörmander condition on the coefficient vector fields.

However, there is no canonical choice of measure on a general sub-Riemannian man-

ifold and hence no canonical choice of sub-Laplacian. Therefore, in order to pose spectral

geometric questions, one should consider a subclass of sub-Riemannian manifolds. In this

regard, the class of equiregular sub-Riemannian manifolds seems suitable for the follow-

ing reason. As Montgomery himself proved in [29, Section 10.6], there exists a canoni-

cal smooth volume called Popp’s measure on an equiregular sub-Riemannian manifold.

Popp’s measure is determined by the sub-Riemannian metric only.

In the present paper, we contribute to this topic by proving a short time asymptotic

expansion of the heat trace up to an arbitrary order on a compact equiregular sub-

Riemannian manifold. Our main tool is Watanabe’s distributional Malliavin calculus.

To state our main result, we start by recalling the definition of an equiregular sub-

Riemannian manifold. Note that in many literatures an equiregular sub-Riemannian

manifold is simply called regular.

We say that (M,D, g) is a sub-Riemannian manifold if (i)M is a connected, smooth

manifold of dimension d, (ii) D ⊂ TM , TM being the tangent bundle of M , is a smooth
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distribution of constant rank n (1 ≤ n ≤ d) which satisfies the Hörmander condition at

every x ∈ M and (iii) g = (gx)x∈M , where each gx is an inner product on the fiber Dx,

and x 7→ gx is smooth as a function of x. (When there is no risk of confusion, we simply

say that M is a sub-Riemannian manifold.)

The precise statement of the Hörmander condition on D at x ∈ M is as follows:

Define D0(x) = {0}, D1(x) = D(x) and

Dk(x) = linear span of
{
[[[A1, A2], . . .], Al]︸ ︷︷ ︸

(l−1)brackets

(x)
∣∣∣ 1 ≤ l ≤ k, A1, . . . , Al ∈ C∞(M ;D)

}

for k ≥ 2. Here, C∞(M ;D) stands for the C∞-module of smooth sections of D over M .

We say that D satisfies the Hörmander condition at x if there exists N = N(x) such that

DN (x) = TxM .

A sub-Riemannian manifold (M,D, g) is said to be equiregular if dimDk(x) is con-

stant in x ∈ M for all k ≥ 1. The smallest constant N0 such that DN0(x) = TxM

is called the step of the Hörmander condition. In this case, ν :=
∑N0

k=1 k(dimDk(x) −
dimDk−1(x)), is also constant in x and equals the Hausdorff dimension of M equipped

with the usual sub-Riemannian distance.

Now we define a “div-grad type” sub-Laplacian on a sub-Riemannian manifold M .

Let µ be a smooth volume on M , that is, µ is a measure on M whose restriction to every

local coordinate chart is written as a strictly positive smooth density function times the

Lebesgue measure on the chart. In the equiregular case, the most important example

of smooth volume is Popp’s measure introduced in [29, Section 10.6] (see also [3]) since

Popp’s measure is determined solely by the equiregular sub-Riemannian structure.

We study the second-order differential operator of the form ∆ = divµ∇D, where ∇D

is the horizontal gradient in the direction of D and divµ is the divergence with respect to

µ. (In our convention, ∆ is a non-positive operator.) By the way it is defined, ∆ with its

domain being C∞
0 (M) is clearly symmetric on L2(µ). If M is compact, then ∆ is known

to be essentially self-adjoint on C∞(M) and et∆/2 is of trace class for every t > 0, where

(et∆/2)t≥0 is the heat semigroup associated with ∆/2.

Now we are in a position to state our main result in this paper. The proof of this

theorem is immediate from Theorem 6.1. As we have already mentioned, it has a spectral

geometric meaning when µ is Popp’s measure.

Theorem 1.1. Let M be a compact equiregular sub-Riemannian manifold of

Hausdorff dimension ν and let µ be a smooth volume on M . Then, we have the fol-

lowing asymptotic expansion of the heat trace :

Trace(et∆/2) ∼ 1

tν/2
(c0 + c1t+ c2t

2 + · · · ) as t↘ 0 (1.1)

for certain constants c0 > 0 and c1, c2, . . . ∈ R.

Since the asymptotic expansion in Theorem 1.1 is up to an arbitrary order, we can

prove meromorphic prolongation of the spectral zeta function associated with ∆ by a

standard argument. Denote by 0 = λ0 < λ1 ≤ λ2 ≤ · · · be all the eigenvalues of −∆ in
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increasing order with the multiplicities being counted and set

ζ∆(s) =
∞∑
i=1

λ−s
i

(
s ∈ C, ℜs > ν

2

)
.

By the Tauberian theorem, the series on the right-hand side absolutely converges and

defines a holomorphic function on {s ∈ C | ℜs > ν/2}.

Corollary 1.2. Let assumptions be the same as in Theorem 1.1. Then, ζ∆ admits

a meromorphic prolongation to the whole complex plane C.

To the best of our knowledge, Theorem 1.1 and Corollary 1.2 seem new for a general

compact equiregular sub-Riemannian manifold. It should be noted, however, that the

leading term of the asymptotics (1.1) is already known. (See [20], [28] for example. No

explicit value of c0 is known in general.) For some concrete examples or relatively small

classes of compact equiregular sub-Riemannian manifolds, the full asymptotic expansion

(1.1) or the meromorphic extension of the spectral zeta function was proved. (See [4],

[5], [7], [13], [32], [34] and references therein.) Most of such classes are subclasses of

step-two or corank-one sub-Riemannian manifolds.

Our proof of Theorem 1.1 is based on Takanobu’s result [35] on the short time

asymptotic expansion of hypoelliptic heat kernels on the diagonal. A preceding work

by Ben Arous [8] should also be mentioned. Both of [8], [35] are probabilistic and

formulated on Rd. Compared to [8], [35] has the following features: (i) The SDE has

a drift term. Unlike most of the problems for SDEs, a drift term makes this kind of

asymptotic quite complicated. (ii) The Hörmander condition is assumed only at the

starting point. (iii) The asymptotics expansion takes place at the level of Watanabe

distributions, which is stronger than an asymptotic expansion of the heat kernel. On the

other hand, [8] proves a uniform asymptotic expansion of the heat kernel with respect

to the starting point as it varies in a compact “equiregular” subset of Rd. (It seems that

Takanobu’s motivation was to investigate what happens when the Hörmander condition

is not so nice. He discovered that a pathological phenomenon happens when the condition

is weak enough. Later, this phenomenon was further studied by Ben Arous and Léandre

[9], [10].)

We first prove a uniform asymptotic expansion at the level of Watanabe distributions

under the equiregular Hörmander condition for a driftless SDE on Rd (Theorem 5.4).

Although it is similar to the main results in [8], [35], this theorem, precisely speaking,

is not included in these papers. We basically follow the argument in [35] to prove this

theorem, but we believe that our proof is simpler and more readable for reasons that will

be specified later (Remark 5.13).

Thanks to recent developments of the stochastic parallel transport on sub-

Riemannian manifolds, we can construct the ∆/2-diffusion process onM as a strong solu-

tion to an SDE of Eells–Elworthy–Malliavin type. Since the solution is non-degenerate in

the sense of Malliavin calculus, a standard localization procedure for heat kernels works.

Thus, our asymptotic problem onM reduces to one on Rd. (The reason why it suffices to

consider the driftless case in Theorem 5.4 is as follows. The SDE corresponding to ∆/2

on M and its localized version have a drift term, but it can be dealt with by Girsanov’s
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theorem fortunately. Hence, our asymptotic problem reduces to the driftless case.)

In our view, (possible) advantages of the probabilistic approach to analytic problems

on sub-Riemannian manifolds are as follows. (For more information on this approach,

see Thalmaier’s recent survey [39].) Unlike in the elliptic (i.e., Riemannian) case, ana-

lytic methods (in particular, the theory of pseudo differential operators) does not work

perfectly under a general bracket-generating condition (except for the corank-one or the

step-two case). On the other hand, Malliavin calculus works under a general bracket-

generating condition and the step of the condition does not really matter. Therefore,

there seems to be a good chance that probability theory turns out to be more powerful

than analysis at least for certain problems in sub-Riemannian geometry.

Merits of using Watanabe’s version of Malliavin calculus in sub-Riemannian geom-

etry could be as follows. First, it is probably the most powerful among a few versions

of Malliavin calculus. In particular, it has a nice asymptotic theory. Second, it is highly

self-contained. (For example, existence of the heat kernel can be shown within this theory

and the heat kernel is expressed by a generalized Feynman–Kac formula. See Section 6.)

This aspect of Watanabe’s theory has not been paid much attention in the Riemannian

case, probably because properties of many important objects on Riemannian manifolds

were already obtained by analytic methods and one could just borrow them. On sub-

Riemannian manifolds, however, analysis has not been fully developed. Hence, there is a

possibility that the self-containedness will turn out to be of great advantage in the future

development of this research topic.

The organization of this paper is as follows. In Section 2, a very brief review of

Watanabe’s distributional Malliavin calculus is given. In Section 3, the free nilpotent

groups/algebras and canonical diffusion processes on them are introduced. These pro-

cesses approximate the diffusion process we actually investigate. In Section 4, we sum-

marize many non-trivial properties of vector fields on Rd that satisfy the (equiregular)

Hörmander condition. The main purpose of Section 5 is to present and prove our key

theorem on Rd (Theorem 5.4) by using Malliavin calculus. This theorem is a “uniform

version” of the main result in [35] and can also be considered as a “Watanabe distribution

version” of the main result in [8]. In Section 6, we prove our main theorem (Theorem 1.1)

by showing a uniform asymptotic expansion of the heat kernel on a compact equiregular

sub-Riemannian manifold M . By localization and Girsanov’s theorem, the proof of this

fact is reduced to that of the Euclidean case (Theorem 5.4). In Section 7, we give ex-

plicit expressions of the leading constants of the asymptotic expansions for some special

examples of sub-Riemannian manifold.

In a paper of this kind, the term distribution may have three different meanings:

(i) a subbundle of the tangent bundle of a manifold (e.g., Martinet distribution, contact

distribution), (ii) a generalized function (e.g., Schwartz distribution, Watanabe distri-

bution), (iii) a probability measure, in particular, the law of a random variable (e.g.,

normal distribution, chi-squared distribution). We use this term only for (i) and (ii) in

this paper. Since (i) and (ii) are very different, we believe there is no risk of confusion.
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2. Preliminaries from Malliavin calculus.

Let W = C0([0, 1],Rn) be the set of continuous functions from [0, 1] to Rn which

start at 0. This is equipped with the usual sup-norm. The n-dimensional Wiener measure

on W is denoted by P. We denote by

H =

{
h ∈W

∣∣∣∣∣ absolutely continuous and ∥h∥2H :=

∫ 1

0

|h′s|2 ds <∞

}

the Cameron–Martin subspace of W . The triple (W,H,P) is called the classical Wiener

space. The canonical realization on W of n-dimensional Brownian motion is denoted by

(wt)0≤t≤1 = (w1
t , . . . , w

n
t )0≤t≤1.

We recall Watanabe’s theory of generalized Wiener functionals (i.e., Watanabe dis-

tributions) in Malliavin calculus. Most of the contents and the notations in this section

are contained in Sections V.8–V.10, Ikeda and Watanabe [23] with trivial modifications.

We also refer to Shigekawa [33], Nualart [30], Hu [22] and Matsumoto and Taniguchi

[27].

The following are of particular importance in this paper:

(a) Basics of Sobolev spaces: We denote by Dp,r(X ) the Sobolev space of X -valued

(generalized) Wiener functionals, where p ∈ (1,∞), r ∈ R, and X is a real separa-

ble Hilbert space. As usual, we will use the spaces D∞(X ) =
∩∞

k=1

∩
1<p<∞ Dp,k(X ),

D̃∞(X ) =
∩∞

k=1

∪
1<p<∞ Dp,k(X ) of test functionals and the spaces D−∞(X ) =∪∞

k=1

∪
1<p<∞ Dp,−k(X ), D̃−∞(X ) =

∪∞
k=1

∩
1<p<∞ Dp,−k(X ) of Watanabe distributions

as in [23]. When X = R, we simply write Dp,r, etc. The Dp,r(X )-norm is denoted by

∥ · ∥p,r. The precise definition of an asymptotic expansion up to any order in these spaces

can be found in [23, Section V.9]. We denote by D the gradient operator (H-derivative)

and by L = −D∗D the Ornstein–Uhlenbeck operator.

(b) Meyer’s equivalence of Sobolev norms: See [23, Theorem 8.4]. A stronger

version can be found in [33, Theorem 4.6], [30, Theorem 1.5.1] or Bogachev [12,

Theorem 5.7.1]. It states that the Sobolev norms ∥F∥p,k = ∥(I − L)k/2F∥Lp and

∥F∥Lp + ∥DkF∥Lp are equivalent for every k ∈ N and 1 < p <∞.

(c) Watanabe’s pullback: For F = (F 1, . . . , Fm) ∈ D∞(Rm), we denote by

σ[F ](w) = σF (w) the Malliavin covariance matrix of F , whose (i, j)-component is given

by σij
F (w) = ⟨DF i(w), DF j(w)⟩H∗ . Now we assume that F is non-degenerate in the

sense of Malliavin, that is, (detσ[F ])−1 ∈ Lp for every 1 < p <∞.

Then, pullback T ◦ F = T (F ) ∈ D̃−∞ of a tempered Schwartz distribution T ∈
S ′(Rm) on Rm by a non-degenerate Wiener functional F ∈ D∞(Rm) is well-defined and

has nice properties. (See [23, Section V.9].) The key to justify this pullback is an

integration by parts formula in the sense of Malliavin calculus. (Its generalization is

given in Item (d) below.)

(d) A generalized version of the integration by parts formula in the sense of Malliavin

calculus for Watanabe distribution, which is given as follows (see [23, p.377]):

For a non-degenerate Wiener functional F = (F 1, . . . , Fm) ∈ D∞(Rm), we denote

by γijF (w) the (i, j)-component of the inverse matrix σ−1
F . Note that σij

F ∈ D∞ and
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DγijF = −
∑

k,l γ
ik
F (Dσkl

F )γljF . Hence, derivatives of γijF can be written in terms of γijF ’s

and the derivatives of σij
F ’s. Suppose G ∈ D∞ and T ∈ S ′(Rm). Then, the following

integration by parts holds:

E
[
(∂iT ◦ F )G

]
= E

[
(T ◦ F )Φi( · ;G)

]
(1 ≤ i ≤ m), (2.1)

where E stands for the generalized expectation and Φi(w;G) ∈ D∞ is given by

Φi(w;G) =
m∑
j=1

D∗
(
γijF (w)G(w)DF j(w)

)
. (2.2)

(e) Watanabe’s asymptotic expansion theorem is a key theorem in his distributional

Malliavin calculus, which can be found in [23, Theorem 9.4, pp.387–388]. It can be

summarized as follows:

Let F (ε, · ) ∈ D∞(Rm) for 0 < ε ≤ 1. We say F (ε, · ) is uniformly non-degenerate

in the sense of Malliavin if

sup
0<ε≤1

∥∥(detσ[DF (ε, · )])−1∥∥
Lp <∞ for every 1 < p <∞.

Let us assume that F (ε, · ) ∈ D∞(Rm) (0 < ε ≤ 1) is uniformly non-degenerate in

the sense of Malliavin and admits the following asymptotic expansion:

F (ε, · ) ∼ f0 + ε1f1 + ε2f2 + · · · in D∞(Rm) as ε↘ 0

with fj ∈ D∞(Rm) for all j ∈ N. Then, for any T ∈ S ′(Rm), T ◦ F (ε, w) admits the

following asymptotic expansion:

T ◦ F (ε, · ) ∼ ψ0 + ε1ψ1 + ε2ψ2 + · · · in D̃−∞ as ε↘ 0, (2.3)

where ψj ∈ D̃−∞ is given by the formal Taylor expansion. (For example, ψ0 = T (f0)

and ψ1 =
∑m

i=1 f
i
1 · (∂T/∂xi)(f0), etc.)

3. Free nilpotent Lie group and lift of Brownian motion.

In this section we introduce the free nilpotent Lie groups and algebras, following Friz–

Victoir [16, Chapter 7]. The set of iterated integrals (i.e., multiple Wiener integrals) of

Brownian motion becomes a left-invariant hypoelliptic diffusion process on this Lie group.

See [40] for example. (According to [36], a similar fact also holds for the iterated integrals

of a continuous local semimartingale.) The logarithm of this process will play a major

role since it approximates the diffusion process under investigation in short times.

Let N ≥ 1, which is the step of nilpotency. We denote by TN (Rn) =
⊕N

i=0(Rn)⊗i

the truncated tensor algebra of step N , where (Rn)⊗0 = R by convention. The dilation by

c ∈ R is denoted by ∆N
c , that is, ∆N

c (1, a1, . . . , aN ) = (1, c1a1, . . . , c
NaN ). For N ≤ M ,

ΠM
N denotes the canonical projection from TM (Rn) onto TN (Rn).

We write tN (Rn) = {0 + A | 0 ∈ R, A ∈
⊕N

i=1(Rn)⊗i}. This is a Lie algebra

under the bracket [A,B] := A ⊗ B − B ⊗ A. Then, 1 + tN (Rn) = {1 + A | 1 ∈ R, A ∈
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i=1(Rn)⊗i} = exp(tN (Rn)) is a Lie group. The unit element is denoted by 1. Here,

exp = expN : tN (Rn) → 1 + tN (Rn) is the exponential map defined in the usual way.

Its inverse is the logarithm map log = logN . By the correspondence 1 + A 7→ A ∈⊕N
i=1(Rn)⊗i, 1 + tN (Rn) is diffeomorphic to the linear space

⊕N
i=1(Rn)⊗i ∼= tN (Rn).

This map gives a (global) chart on this group.

The free nilpotent Lie algebra of step N is denoted by gN (Rn), which is a sub-Lie

algebra of tN (Rn) generated by the elements of Rn. More precisely,

gN (Rn) := Rn ⊕ [Rn,Rn]⊕ · · · ⊕ [[[Rn,Rn], . . .],Rn]︸ ︷︷ ︸
(N−1)brackets

.

The set GN (Rn) = exp(gN (Rd)) is called the free nilpotent Lie group of step N . It is a

sub-Lie group of 1+ tN (Rn). Note that log : GN (Rn) → gN (Rn) is a diffeomorphism and

its inverse is the exponential map exp : gN (Rn) → GN (Rn). Using this diffeomorphism,

we can define a new group product on gN (Rn) by

A×B := log(exp(A) exp(B)) (A,B ∈ gN (Rn)).

Thanks to the Baker–Campbell–Hausdorff formula, the right-hand side has an explicit

expression:

log(exp(A) exp(B)) = A+B +
1

2
[A,B]

+
1

12
([A, [A,B]] + [B, [B,A]])− 1

24
[B, [A, [A,B]]] + · · · .

Here, terms of degree greater than N should be neglected. This is in fact a finite sum

due to nilpotency and hence is a well-defined Lie polynomial in A and B.

Now we fix some symbols for linear basis on free nilpotent Lie algebra and words. The

canonical basis of Rn is denoted by {ei | 1 ≤ i ≤ n}. Set I(N) =
∪N

k=1{(i1, . . . , ik) | 1 ≤
i1, . . . , ik ≤ n} for 1 ≤ N ≤ ∞. This is the set of words of n letters with length at most

N , where the length of a word is defined by |(i1, . . . , ik)| =: k. For I = (i1, . . . , ik) ∈
I(∞), we set eI = ei1 ⊗ · · · ⊗ eik . When k = 1, we will often write i1 for (i1). For

I = (i1, . . . , ik) ∈ I(∞), we define e[I] as follows:

e[i1] := ei1 , e[i1,...,ik] :=
[
e[i1,...,ik−1], eik

]
(k ≥ 2).

Here and in what follows, we write [i1, . . . , ik] for [(i1, . . . , ik)] for simplicity of notations.

Let G(N) ⊂ I(N) (N = 1, 2, . . .) be such that G(N) ⊂ G(N + 1) for all N ≥ 1 and

{e[I] | I ∈ G(N)} forms a linear basis of gN (Rn). The choice of such G(N) (N = 1, 2, . . .)

is not unique. We write G(∞) =
∪∞

k=1 G(k). (For example, we can take G(1) = {(i) | 1 ≤
i ≤ n} and G(2) = G(1) ∪ {(i, j) | 1 ≤ i < j ≤ n}.)

Now we introduce vector fields on the Lie group and the Lie algebra. Note that

ei ∈ Rn ⊂ tN (Rn) ∼= T0t
N (Rn). Here, since tN (Rn) is a linear space, it is identified

with its tangent space at the origin. Since 1 + tN (Rn) and GN (Rn) are submanifolds

of a linear space TN (Rn), their tangent space can naturally be identified with a linear

subspace of TN (Rn). By straightforward computation,
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exp∗ ei :=
d

ds

∣∣∣∣
s=0

exp(sei) = ei ∈ T1(g
N (Rn)) ∼= gN (Rn).

Let QN
i be the unique left-invariant vector field on 1 + tN (Rn) or on GN (Rn) such

that QN
i (1) = ei (1 ≤ i ≤ n). More concretely,

QN
i (A) =

d

ds

∣∣∣∣
s=0

A⊗ exp(sei) (A ∈ 1 + tN (Rn)).

The above limit is taken in TN (Rn). If we choose {eI | I ∈ I(N)} as a basis of tN (Rn),

an element of this linear space can be expressed as (yI)I∈I(N) ∈ RI(N). In this coordinate

we have

QN
i (A) =

∂

∂yi
+

∑
(j1,...,jk)∈I(N−1)

y(j1,...,jk)
∂

∂y(j1,...,jk,i)

(
A = 1+

∑
I∈I(N)

yIeI ∈ 1+tN (Rn)

)

for N ≥ 2. See [35, p.174]. As vector fields on GN (Rn), {QN
i }1≤i≤n satisfy Hörmander’s

bracket-generating condition at 1 and hence at every point in GN (Rn) by the left-

invariance.

Define Q̂N
i = log∗Q

N
i . Then, {Q̂N

i }1≤i≤n are smooth vector fields on tN (Rn) and

satisfy the Hörmander condition as vector fields on gN (Rn) at every point in gN (Rn).

By way of construction, these are left-invariant with respect to the product ×. The

Baker–Campbell–Hausdorff formula implies that, if we write

Q̂N
i (A) =

∑
I∈G(N)

(Q̂N
i )I(A)

∂

∂yI

(
A =

∑
I∈G(N)

yIe[I] ∈ gN (Rn)

)
,

then the coefficient (Q̂N
i )I is actually a real-valued polynomial in (yI)I∈G(N).

If N = 3 for example, we have for A =
∑

I∈G(3) y
Ie[I] ∈ g3(Rn) that

Q̂3
i (A) =

d

ds

∣∣∣∣
s=0

A× (sei) = ei +
1

2
[A, ei] +

1

12
[A, [A, ei]],

which is a second order polynomial in (yI)I∈G(3). Here, the linear space g3(Rn) and its

tangent space are identified in the usual way.

Consider the following ODE on GN (Rn) driven by an Rn-valued Cameron–Martin

path h ∈ H:

dyNt =

n∑
i=1

QN
i (yNt )dhit with yN0 = 1. (3.1)

It is well-known that a unique solution of (3.1) has the following explicit expression in

the form of iterated path integrals (e.g., [16, Chapter 7]):

yNt = yNt (h) =
∑

I∈I(N)

hIteI ,
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where we set

h
(i1)
t := hi1t , h

(i1,...,ik)
t :=

∫ t

0

h(i1,...,ik−1)
s dhiks (k ≥ 2).

In rough path theory, yN is called the level N rough path lift of h. By (a trivial modifi-

cation of) [16, Theorem 7.30], we have GN (Rn) = {yNT (h) | h ∈ H} for every T > 0.

The corresponding Stratonovich-type SDE on GN (Rn) driven by an n-dimensional

Brownian motion w is as follows:

dY N
t =

n∑
i=1

QN
i (Y N

t ) ◦ dwi
t with Y N

0 = 1. (3.2)

A unique solution of (3.2) has the following explicit expression in the form of iterated

Stratonovich integrals:

Y N
t = Y N

t (w) =
∑

I∈I(N)

wI
t eI , almost surely,

where we set

w
(i1)
t := wi1

t , w
(i1,...,ik)
t :=

∫ t

0

w(i1,...,ik−1)
s ◦ dwik

s (k ≥ 2).

In rough path theory, Y N is called the level N rough path lift of w or Brownian rough

path of level N . (In most of the cases in rough path theory, N = 2.)

Set UN
t = log Y N

t . We can easily see that (UN
t ) is a diffusion process on gN (Rn)

which satisfies the following Stratonovich-type SDE:

dUN
t =

n∑
i=1

Q̂N
i (UN

t ) ◦ dwi
t with UN

0 = 0. (3.3)

Note that (i) the processes (∆N
c U

N
t ) and (UN

c2t) have the same law for every c ∈ R
(i.e., the scaling property) and (ii) UN,I

t (−w) = (−1)|I|UN,I
t (w) almost surely for every

I ∈ G(N). One can show these facts by first showing the counterparts for (Y N
t ) and then

taking the logarithm.

Since {(UN
t )t≥0 | N ≥ 1} are consistent with the projection system, that is,

ΠM
N (UM

t ) = UN
t for M ≥ N , we have UN,I

t = UM,I
t if |I| ≤ N ≤ M . Therefore, we

may and will simply write U I
t for this object.

Remark 3.1. Before we apply Malliavin calculus to (3.3), we make a comment on

the regularity of smooth coefficient vector fields. A standard assumption requires that

all the derivatives of the coefficients of (Q̂N
i )I of order ≥ 1 be bounded. (However, this

is not satisfied in our case.)

The main reason why this cannot be relaxed so easily is because a solution of the

SDE may explode in finite time without this kind of assumption. However, if existence of

a time-global solution is known for some reason, then it is enough to assume that all the
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derivatives of the coefficients of (Q̂N
i )I are of at most polynomial growth. Then, most

of standard results in Malliavin calculus for SDEs still hold. (In our present case, the

coefficients of (Q̂N
i )I are literally polynomials, as we have seen.)

Precisely, it suffices to check that

sup
0≤t≤1

(
∥UN

t ∥Lp + ∥∂UN
t ∥Lp + ∥(∂UN

t )−1∥Lp

)
<∞ (1 < p <∞). (3.4)

Here, ∂UN is the Jacobian process (at 0) associated with SDE (3.3) and takes values in

GL(gN (Rn)). More explicitly, if we denote by UN (t, A) the solution of SDE (3.3) which

starts at A ∈ gN (Rn), then ∂UN
t := ∇UN (t, A)|A=0, where ∇ is the gradient operator

with respect to A-variable on gN (Rn).

The reason why this is sufficient is as follows: The higher order H-derivatives

DkUN (k = 1, 2, . . .) can be written as a stochastic integral which only involves

w,UN , ∂UN , (∂UN )−1 and DUN , D2UN , . . . , Dk−1UN . (See [33, Section 6.1] for ex-

ample.) Due to this “triangular structure” of the integral expression, verifying (3.4) is

enough.

Since UN
t = log Y N

t , every component of UN
t is a polynomial in w

(i1,...,ik)
t (1 ≤ k ≤

N), Lp-norm of UN
t clearly satisfies (3.4). By the left-invariance, we have UN (t, A) =

A×UN
t . Let {e[I] | I ∈ G(N)} be a basis of gN (Rn) and arrange them in increasing order

of the step number. From the Baker–Campbell–Hausdorff formula and straightforward

computation, we can see that ∂UN
t is represented with respect to this basis by an lower

triangular matrix with all the diagonal entries being 1. Other non-zero entries of this

matrix are polynomials in w
(i1,...,ik)
t (1 ≤ k ≤ N − 1). Therefore, Lp-norms of ∂UN

t and

its inverse satisfy (3.4).

Let σ[UN
1 ] = (⟨DUN,I

1 , DUN,J
1 ⟩H)I,J∈G(N) be the Malliavin covariance matrix of U1

and λ[UN
1 ] its smallest eigenvalue. (This means that gN (Rn) is implicitly equipped with

an inner product with respect to which {e[I] | I ∈ G(N)} forms an orthonormal basis.)

Proposition 3.2. Let the notations be as above. Then, λ[UN
1 ] > 0 almost

surely and λ[UN
1 ]−1 ∈

∩
1<p<∞ Lp. In particular, UN

1 is non-degenerate in the sense

of Malliavin.

Proof. By using a standard stopping time argument, we only need information

of the coefficient vector fields near the starting point 0. Then, this problem reduces

to the one under the standard regularity assumption in Malliavin calculus presented in

Remark 3.1 above. See Kusuoka–Stroock [26] for example. □

We need the following estimate of the exit probability: For every κ > 0, there exists

positive constants CN,κ, ĈN,κ such that

P
(

sup
0≤s≤t

|∆N
ε U

N
s | > κ

)
≤ ĈN,κ exp

(
−CN,κ

4tε2

)
(if 0 < tε2 < CN,κ) (3.5)

([35, p.181]). This follows form the scaling property for UN and a standard argument

for the exit probability for (local) semimartingales.
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Remark 3.3. Although N is an arbitrarily fixed number in this section, all the

objects are in fact consistent with the system of projections {ΠM
N }M≥N . For example,

ΠM
N (GM (Rn)) = GN (Rn), ΠM

N (gM (Rn)) = gN (Rn), ΠM
N ◦ expM = expN ◦ΠM

N , ΠM
N ◦

logM = logN ◦ΠM
N , (ΠM

N )∗Q
M
i = QN

i , ΠM
N (UM

t ) = UN
t , etc. The projections of course

commute with the dilations, too. This consistency indicates that these objects actually

live in the projective limit spaces, but we do not take this viewpoint in this paper.

Remark 3.4. The Lie group product A × B on gN (Rn) in [35] equals B × A

in the present paper. Concerning this, the vector field Q̂N
i is left-invariant here, not

right-invariant as in [35]. This modification is only for the aesthetic reason and of no

mathematical importance.

Remark 3.5. In many literatures (gN (Rn),×), instead of GN (Rn), is called the

free nilpotent group of step N . See Cygan [14] for example.

4. Vector fields on Rd.

In this section we discuss vector fields on Rd. We fix notations and recall some basic

facts for later use. There are no new results in this section. The set of all the vector

fields on Rd is denoted by X(Rd). An element of Rd is denoted by x = (x1, . . . , xd) as

usual. The set of all linear mappings from a vector space X to another vector space Y is

denoted by L(X ,Y).

For V ∈ X(Rd), we write V i(x) = ⟨dxi, V (x)⟩ and hence V (x) =
∑d

i=1 V
i(x)(∂/∂xi).

Note that a vector field is always regarded as a first order differential operator. The Rd-

valued function (V 1(x), . . . , V d(x))∗ is denoted by (V Id)(x), where Id stands for the

identity map of Rd. Here and in what follows, the superscript ∗ stands for the transpose

of a matrix.

For the rest of this section, let n ≥ 1 and V1, . . . , Vn ∈ X(Rd). For I = (i1, . . . , ik) ∈
I(∞), we set VI = Vi1Vi2 · · ·Vik , which is a differential operator of order n. We also set

V[I] ∈ X(Rd) as follows:

V[i1] = Vi1 , V[i1,...,ik] =
[
V[i1,...,ik−1], Vik

]
(k ≥ 2).

The correspondence e[I] 7→ V[I] naturally extends to a Lie algebra homomorphism from

the free Lie algebra generated by Rd to X(Rd). In particular, every linear relation for

{e[I] | I ∈ I(N)} still holds for {V[I] | I ∈ I(N)}.
Now we give a simple lemma for later use. This lemma is essentially implied by [35,

Corollary 2.3, Propositions 3.9 and 4.4]. Our proof below is, however, different from the

one in [35] and more straightforward and algebraic.

Lemma 4.1. Let N ≥ 1. Then, for every x ∈ Rd and u =
∑

J∈G(N) u
Je[J] ∈

gN (Rn),

∑
I∈I(N)

(VIId)(x)πI
(
exp(u)

)
=

N∑
k=1

1

k!

∑
|J1|+···+|Jk|≤N

(V[J1] · · ·V[Jk]Id)(x)u
J1 · · ·uJk (4.1)
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(the summation runs over all (J1, . . . , Jk) ∈ G(N)k such that |J1| + · · · + |Jk| ≤ N ).

Here, πI is the linear functional on TN (Rn) that picks up the coefficient of eI and exp

is the exponential map from gN (Rn) to GN (Rn).

Proof. Let αK
J ∈ R be such that

e[J] =
∑

K∈I(N)

αK
J eK (J ∈ G(N)).

Note that αK
J = 0 if |J | ̸= |K|. Then, it holds that

V[J] =
∑

K∈I(N)

αK
J VK (J ∈ G(N)). (4.2)

The left-hand side of (4.1) is equal to

∑
I∈I(N)

(VIId)(x)πI

(
N∑

k=0

1

k!

( ∑
J∈G(N)

uJ
∑

K∈I(N)

αK
J eK

)⊗k)
,

which is a polynomial in uI ’s. Let us compute its kth order term. For k = 0, it vanishes

since |I| ≥ 1. For k = 1, we see from (4.2) that

∑
I∈I(N)

(VIId)(x)πI

( ∑
J∈G(N)

uJ
∑

K∈I(N)

αK
J eK

)
=

∑
J∈G(N)

uJ
∑

K∈I(N)

αK
J (VKId)(x)

=
∑

J∈G(N)

uJ(V[J]Id)(x).

For k ≥ 2, the computation gets a little bit complicated. Let us consider the case k = 2.

The concatenation of two words, K1 and K2, is denoted by (K1,K2). By summing over

I first, we see that

∑
I∈I(N)

(VIId)(x)πI

( ∑
J1,J2∈G(N)

uJ1uJ2

∑
K1,K2∈I(N)

αK1

J1
αK2

J2
e(K1,K2)

)

=
∑

J1,J2∈G(N)

uJ1uJ2

∑
K1,K2∈I(N),|K1|+|K2|≤N

αK1

J1
αK2

J2
(VK1VK2Id)(x). (4.3)

For any l,m ≥ 1 with l +m ≤ N , we have by (4.2) that∑
|K1|=l

∑
|K2|=m

αK1

J1
αK2

J2
(VK1VK2Id)(x) = (V[J1]V[J2]Id)(x)δ|J1|,lδ|J2|,m.

Hence, the left-hand side of (4.3) is equal to∑
J1,J2∈G(N),|J1|+|J2|≤N

uJ1uJ2(V[J1]V[J2]Id)(x).
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This proves the case for k = 2. We can prove the case k ≥ 3 essentially in the same way.

Thus, we have shown (4.1). □

Next we give two types of bracket-generating condition for the vector fields. For

x ∈ Rd and k ≥ 1, define Ak(x) to be the linear span of {V[I](x) | I ∈ I(k)} in

TxRd ∼= Rd. Note that it equals the linear span of {V[I](x) | I ∈ G(k)}.

(HC)x: We say that {V1, . . . , Vn} satisfies the Hörmander condition at x if there

exists N ≥ 1 such that AN (x) = Rd.

The smallest number N with this property is called the step of the Hörmander

condition at x and denoted by N0(x). We set ν(x) =
∑N0(x)

k=1 k(dimAk(x)−dimAk−1(x))

with A0(x) := {0} by convention.

(ER)x: We say that {V1, . . . , Vn} satisfies the equiregular Hörmander condition on

O ⊂ Rd if (i) it satisfies (HC)x at every x ∈ O and (ii) for all k, dimAk(x) is constant

in x ∈ O. If the equiregular Hörmander condition holds on some neighborhood of x, we

simply say {V1, . . . , Vn} satisfies the equiregular Hörmander condition near x and denote

it by (ER)x.

Assume (HC)x at some x ∈ Rd. Then, we can find H(x) ⊂ G(N0(x)) such that

#H(x) = d and Ak(x) equals the linear span of {V[I](x) | I ∈ G(k) ∩ H(x)} for all

k = 1, . . . , N0(x). Take J ∈ G(N0(x)) and write V[J](x) as a unique linear combination

of {V[I](x)}I∈H(x):

V[J](x) =
∑

I∈H(x)

cIJ(x)V[I](x).

Then, we can immediately see from the definition of H(x) that cIJ (x) = 0 is |I| > |J |.
Now we assume (ER)x0

for x0 ∈ Rd. Then, on a certain neighborhood O of x0, we

can choose H(x) independently from x and in that case we simply write H. The linear

subspace of gN0(Rn) generated by {e[I] | I ∈ H} is denoted by R⟨H⟩. Likewise, N0(x)

and ν(x) are independent of x ∈ O and denoted by N0 and ν, respectively. We will fix

such O for a while.

We introduce some linear maps for each x ∈ O. First, set BH(x) ∈ L(R⟨H⟩,Rd) by

BH(x) =
(
V i
[I](x)

)
1≤i≤d,I∈H, (4.4)

which is clearly invertible. Next, set Γ(x) = (γIJ(x))I∈H,J∈G(∞) ∈ L(g∞(Rn),R⟨H⟩) by

Γ(x) = BH(x)−1 ·
[(
V i
[I](x)

)
1≤i≤d,I∈G(∞)

]
.

Here, g∞(Rn)(∼= RG(∞)) is the free Lie algebra generated by Rn. Then, from Lemma 4.2

below and the fact that cIJ (x) = 0 is |I| > |J | for I ∈ H and J ∈ G(N0), it follows that

γIJ(x) =

{
δIJ if J ∈ H,

0 if J ∈ G(N0) and |I| > |J |.
(4.5)
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For N ≥ N0, we set ΓN (x) = (γIJ (x))I∈H,J∈G(N) ∈ L(gN (Rn),R⟨H⟩). It immediately

follows from (4.5) that ΓN (x)ΓN (x)∗ ≥ IdH.

Here, we give a simple lemma on linear algebra in a general setting.

Lemma 4.2. Suppose that {b1, . . . ,bd} is a linear basis of Rd. Let a1, . . . ,am
(m ≥ 1) be given by linear combinations of bj’s as follows :

ak =
d∑

j=1

c jkbj (1 ≤ k ≤ m).

Set an invertible matrix B = [b1, . . . ,bd] and a d × m matrix C = (c jk)1≤j≤d,1≤k≤m.

Then, we have

B−1[b1, . . . ,bd,a1, . . . ,am] = [Idd|C]

as a d× (d+m) matrix. Here, Idd stands for the identity matrix of size d.

Proof. The proof is immediate if we note that B−1bi = ei for all i, where

{e1, . . . , ed} is the canonical linear basis of Rd. □

We fix a few more notations for N ≥ 1. In this paragraph we do not assume (HC),

(ER) nor N ≥ N0(x). Set BN ∈ C∞(Rd,L(gN (Rn),Rd)) by

BN (x) =
(
V i
[I](x)

)
1≤i≤d,I∈G(N)

. (4.6)

Next, define VI1,...,IN = (Vij
I1,...,IN

)1≤i,j≤d ∈ C∞(Rd,L(Rd,Rd)) for I1, . . . , IN ∈ I(∞)

by

Vij
I1,...,IN

=
∂

∂xj
(V[I1] · · ·V[IN ]x

i), (4.7)

where xi stands for the ith coordinate function x 7→ xi on Rd. By convention we set

V∅ = Idd. It is obvious that

V[I1] · · ·V[IN ]x
i =

d∑
j=1

V j
[I1]

Vij
I2,...,IN

(4.8)

for N ≥ 2. We also define MN = (M ij
N )1≤i,j≤d ∈ C∞(Rd × gN (Rd),L(Rd,Rd)) by

M ij
N (x, u) = δij +

N−1∑
k=1

1

(k + 1)!

∑
I1,...,Ik∈G(N)

Vij
I1,...,Ik

(x)uI1 · · ·uIk

(
u =

∑
I∈G(N)

uIe[I]

)
.

(4.9)

Finally, set FN ∈ C∞(Rd × gN (Rd),Rd) by
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FN (x, u) =MN (x, u)BN (x)u. (4.10)

Let us assume (ER)x0
again and that x is sufficiently close to x0 and N ≥ N0.

It immediately follows that MN (x, 0) = Idd and (∂IF
i
N (x, 0))1≤i≤d,I∈G(N0) = BN0(x).

Here, ∂I is a shorthand for ∂/∂uI . Therefore, there exist a neighborhood ON of x0 and

positive constants κN , r such that if |u| ≤ κN and x ∈ ON , then

detMN (x, u) ≥ 1

2
, MN (x, u)∗MN (x, u) ≥ 1

2
Idd (4.11)

and (
∂IF

i
N (x, u)

)
1≤i≤d,I∈G(N0)

[
(∂IF

i
N (x, u))1≤i≤d,I∈G(N0)

]∗
≥ 1

2
BN0(x0)BN0(x0)

∗ ≥ 1

2
BH(x0)BH(x0)

∗ ≥ rIdd. (4.12)

We continue to assume (ER)x0
and let ON be as above. We define four linear maps

for N ≥ N0, 0 < ε ≤ 1 and x ∈ ON as follows:

Γ̃ε
N (x) =

(
ε|J|−|I|γIJ(x)

)
I∈H,J∈G(N)

∈ L(gN (Rn),R⟨H⟩), (4.13)

Γ̃0
N (x) =

(
δ
|I|
|J|γ

I
J(x)

)
I∈H,J∈G(N)

∈ L(gN (Rn),R⟨H⟩), (4.14)

PN =
(
δIJ
)
I∈G(N)\H,J∈G(N)

∈ L(gN (Rn), gN (Rn)/R⟨H⟩), (4.15)

∆H
ε =

(
ε|J|δIJ

)
I∈H,J∈H ∈ L(R⟨H⟩,R⟨H⟩). (4.16)

Note that ∆H
ε is the dilation by ε restricted to R⟨H⟩ and that PN is just the canonical

projection. Via the inner product on gN (Rn), gN (Rn)/R⟨H⟩ is canonically identified with

the orthogonal complement of R⟨H⟩ in gN (Rn). In this way PN can be regarded as the

orthogonal projection. In fact, no negative power of ε is involved in the components of

Γ̃ε
N (x), thanks to (4.5). By definition, we have Γ̃0

N (x)u = Γ̃0
N0

(x)ΠN0

N u for all u ∈ gN (Rn)

and N ≥ N0. The linear mapping(
Γ̃ε
N (x)

PN

)
∈ L(gN (Rd), gN (Rd)) (4.17)

will play an important role.

Now we give two simple lemmas for later use.

Lemma 4.3. Let the notations be as above and let N ≥ N0, 0 < ε ≤ 1. Then, if

we take ON small enough, we have the following :

(1) limε↘0 Γ̃
ε
N (x) = Γ̃0

N (x) uniformly in x ∈ ON .

(2) ΓN (x)∆N
ε = ∆H

ε Γ̃ε
N (x) for all x ∈ ON .

(3) det∆H
ε = εν . In particular, ∆H

ε is invertible.

(4) Γ̃0
N (x)Γ̃0

N (x)∗ ≥ IdR⟨H⟩ for all x ∈ ON .
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(5) The linear mapping defined in (4.17) is invertible and there exists a positive constant

rN such that, for all x ∈ ON ,(
Γ̃0
N (x)

PN

)(
Γ̃0
N (x)

PN

)∗
≥ rN IdgN (Rd).

(6) There exists ε0 = ε0(N) ∈ (0, 1] such that, for all ε ∈ (0, ε0] and x ∈ ON ,

Γ̃ε
N (x)Γ̃ε

N (x)∗ ≥ 1

2
IdR⟨H⟩,

(
Γ̃ε
N (x)

PN

)(
Γ̃ε
N (x)

PN

)∗
≥ rN

2
IdgN (Rd).

Proof. (2) and (3) are obvious. By (4.5) no component has a negative power of

ε, from which (1) immediately follows. Noting that Γ̃0
N (x) = [IdR⟨H⟩| ∗ ], where ∗ is a

certain smooth function in x, we have (4). In a similar way, we show (5). Obviously,(
Γ̃0
N (x)

PN

)
=

(
IdR⟨H⟩ ∗

0 IdgN (Rd)/R⟨H⟩

)
is invertible for all x ∈ ON . A standard compactness argument implies existence of such

a positive constant rN . (6) is immediate from (1), (4), (5). □

Lemma 4.4. Assume (ER)x0
and N ≥ N0. For convenience we set Zε

N (x) to be

either Γ̃ε
N (x)UN

1 or (
Γ̃ε
N (x)

PN

)
UN
1 .

Then, there exist a neighborhood ON of x0 and ε0 = ε0(N) ∈ (0, 1] such that Zε
N (x) is

non-degenerate in the sense of Malliavin uniformly in x ∈ ON and ε ∈ (0, ε0], that is,

sup
x∈ON

sup
0<ε≤ε0

∥∥σ[Zε
N (x)]−1

∥∥
Lp <∞ (for every 1 < p <∞).

Proof. It is easy to see that

σ
[
Γ̃ε
N (x)UN

1

]
≥ Γ̃ε

N (x)σ
[
UN
1

]
Γ̃ε
N (x)∗ ≥ λ

[
UN
1

]
· Γ̃ε

N (x) Γ̃ε
N (x)∗.

The other Wiener functional also satisfies a similar estimate. Then, this lemma easily

follows from Lemma 4.3 (6), and Proposition 3.2. □

5. Stochastic differential equation on Rd.

For V1, . . . , Vn ∈ X(Rd) and 0 < ε ≤ 1, we consider the following Stratonovich-type

SDE on Rd:

dXε(t, x) = ε
n∑

i=1

Vi(X
ε(t, x)) ◦ dwi

t with Xε(0, x) = x. (5.1)
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When ε = 1, we simply write X(t, x) for Xε(t, x). By the well-known scaling property,

(Xε(t, x))t≥0 and (X(ε2t, x))t≥0 have the same law.

For SDE (5.1), we always assume that V j
i := ⟨dxj , Vi⟩ has bounded derivatives of all

order ≥ 1 (1 ≤ i ≤ n, 1 ≤ j ≤ d). This is a standard assumption in Malliavin calculus.

The aim of this section is to prove that δx(X
ε(1, x)) admits an asymptotic expansion

as ε ↘ 0 in the space of Watanabe distributions uniformly in x under the equiregular

Hörmander condition on the coefficient vector fields (Theorem 5.4). The expansion for

each fixed x under the usual Hörmander condition was already proved in [35]. We

carefully follow the argument in [35] and show the uniformity of the expansion under

the equiregular condition. At the end of the section, we discuss the case of SDE with a

nice drift term (Corollary 5.12).

Now we recall the stochastic Taylor expansion in ε. Note that (5.2)–(5.4) is an

asymptotic expansion in D∞-topology for each fixed x and t. The aim of the next

proposition is to make sure the uniformity of the expansion in x as x varies in a compact

subset.

Proposition 5.1. Let the notations be as above and let N ≥ 1. Then, we have

Xε(t, x) = x+ Eε
N (t, x) +Rε

N+1(t, x), (5.2)

where we set

Eε
N (t, x) =

∑
I∈I(N)

ε|I|(VIId)(x)w
I
t , (5.3)

Rε
N+1(t, x) = εN+1

∑
I∈I(N+1)\I(N)∫ t

0

· · ·
∫ t3

0

∫ t2

0

(VIId)(X
ε(t1, x)) ◦ dwi1

t1 ◦ dw
i2
t2 · · · ◦ dw

iN+1

tN+1
. (5.4)

Moreover, for each compact set K ⊂ Rd, the asymptotic expansion (5.2) is uniform in

(t, x) ∈ [0, 1]×K, that is,

sup
0≤t≤1

sup
x∈K

∥Rε
N+1(t, x)∥p,k ≤ CεN+1 (N ≥ 1, 1 < p <∞, k ∈ N) (5.5)

holds for all ε ∈ (0, 1]. Here, C = C(N, p, k) is a certain positive constant independent

of ε.

Proof. This is well-known at least when x is fixed. So we only give a sketch

of proof so that one can see the uniformity in x. In this proof the positive constant

C = C(N, p, k) may change from line to line.

Firstly, it is well-known that

sup
0≤t≤1

sup
x∈K

∥DkXε(t, x)∥Lp ≤ Cεk (1 < p <∞, k ∈ N).

The proof is standard, although it is long and may not be so easy. Secondly, we can see
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from (5.4) that

sup
0≤t≤1

sup
x∈K

∥Rε
N+1(t, x)∥Lp ≤ CεN+1 (N ≥ 1, 1 < p <∞, k ∈ N).

Thirdly, DN+1Eε
N (t, x) = 0.

Now we use the stronger form of Meyer’s inequality. If k ≥ N + 1, then

∥Rε
N+1(t, x)∥p,k ≤ C(∥Rε

N+1X
ε(t, x)∥Lp + ∥DkRε

N+1(t, x)∥Lp)

≤ C(∥Rε
N+1X

ε(t, x)∥Lp + ∥DkXε(t, x)∥Lp) ≤ CεN+1.

Since the Sobolev norm is increasing in k, we are done. □

We modify the stochastic Taylor expansion (5.2)–(5.4) for later use. The definition

of FN was given in (4.10).

Proposition 5.2. Let N ≥ 1. Then, we have

Xε(t, x) = x+ FN

(
x,∆N

ε U
N
t

)
+ R̂ε

N+1(t, x). (5.6)

Here we set

R̂ε
N+1(t, x) = Rε

N+1(t, x)

−
N∑

k=1

1

k!

∑
|I1|+···+|Ik|>N

ε|I1|+···+|Ik|(V[I1] · · ·V[Ik]Id)(x)U
I1
t · · ·U Ik

t , (5.7)

where the second summation runs over all (I1, . . . , Ik) ∈ G(N)k such that |I1|+· · ·+|Ik| >
N . Moreover, for each compact set K ⊂ Rd, R̂ε

N+1(t, x) satisfies the same estimate as

in (5.5) for a different constant C > 0.

Proof. The second assertion is almost obvious. Since it is immediate from (4.7)–

(4.10) that

FN

(
x,∆N

ε U
N
t

)
=

N∑
k=1

1

k!

∑
I1,...,Ik∈G(N)

ε|I1|+···+|Ik|(V[I1] · · ·V[Ik]Id)(x)U
I1
t · · ·U Ik

t ,

it is enough to see that

Eε
N (t, x) =

N∑
k=1

1

k!

∑
|I1|+···+|Ik|≤N

ε|I1|+···+|Ik|(V[I1] · · ·V[Ik]Id)(x)U
I1
t · · ·U Ik

t . (5.8)

Here, the second summation runs over all (I1, . . . , Ik) ∈ G(N)k such that |I1|+· · ·+|Ik| ≤
N . Equality (5.8) immediately follows from Lemma 4.1 and the definition of UN

t . □

Recall Kusuoka–Stroock’s estimate for Malliavin covariance matrix ofXε(1, x) under

the Hörmander condition at x0. Our aim here is to make sure the estimate is uniform in
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x as it varies in a small neighborhood of x0. Note that the equiregular condition is not

needed here.

Proposition 5.3. Assume (HC)x0
at x0 ∈ Rd. Then, there exist a neighborhood

O of x0 and a positive constants M independent of p, x and ε such that

sup
x∈O

sup
0<ε≤1

εM∥ detσ[Xε(1, x)]−1∥Lp <∞ for every p ∈ (1,∞).

In particular, Xε(1, x) is non-degenerate in the sense of Malliavin for every ε ∈ (0, 1]

and x ∈ O.

Proof. This is proved in [26, Theorem (2.17)]. □

Due to the non-degeneracy ofXε(1, x) in the sense of Malliavin, Watanabe’s pullback

of the delta function δx(X
ε(1, x)) ∈ D̃−∞ is well-defined. Takanobu [35] showed that

δx(X
ε(1, x)) = δ0(X

ε(1, x)−x) admits an asymptotic expansion up to any order as ε↘ 0

in D̃−∞-topology.

Now we present our main result in this section. This is a uniform version of

Takanobu’s main theorem in [35]. To prove the uniformity in the starting point x,

we need to assume the equiregular Hörmander condition near x0. (Note that the SDE in

[35] has a drift term. On the other hand, the dependency on x is not studied in [35].)

Theorem 5.4. Assume (ER)x0
. Then, there exists a decreasing sequence {Oj}j≥0

of neighborhoods of x0 such that the asymptotic expansion

δx(X
ε(1, x)) ∼ ε−ν

(
Θ0(x) + εΘ1(x) + ε2Θ2(x) + · · ·

)
in D̃−∞ as ε↘ 0 (5.9)

holds for every x ∈ O0 with the following properties : (i) infx∈O0
E[Θ0] > 0, (ii) for every

j ≥ 0 there exists k = k(j) > 0 such that

sup
x∈Oj

{
∥Θj(x)∥p,−k + sup

0<ε≤1

∥∥ε−(j+1−ν)rεj+1(x)
∥∥
p,−k

}
<∞

for all p ∈ (1,∞). Here, we set

rεj+1(x) = δx(X
ε(1, x))− ε−ν

(
Θ0(x) + · · ·+ εjΘj(x)

)
.

Moreover, Θ2j−1(x; · ) is odd as a Wiener functional for every j ≥ 1 and x ∈ O0, that

is, Θ2j−1(x;−w) = −Θ2j−1(x;w).

Remark 5.5. In fact, Oj ∋ x 7→ Θj(x) ∈ D̃−∞ is continuous for every j. This

follows from the uniformity of the asymptotic expansion (5.9) and continuity of x 7→
δx(X

ε(1, x)) = δ0(X
ε(1, x)−x) ∈ D̃−∞. The latter, in turn, follows from Proposition 5.3

and the continuity of x 7→ Xε(1, x)− x ∈ D∞.

The rest of this section is devoted to proving the above theorem. The neighborhoods

O and Oj , j ≥ 0, may change from line to line.
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We introduce a few functions for technical purposes. Take ψ ∈ C∞(R, [0, 1]) such

that ψ(s) = 0 if |s| ≥ 1 and ψ(s) = 1 if |s| ≤ 1/2. Take any κ > 0 and set

ψN (x) = ψ(x/(κ/2)2) for N ≥ N0. Define a smooth Wiener function χε
N ∈ D∞ by

χε
N = ψN (|∆N

ε U
N
1 |2).

Lemma 5.6. Assume (HC)x0
and N ≥ N0. Then, there exist a positive constant

k independent of N and a neighborhood ON of x0 such that the following property holds :

For every p ∈ (1,∞), there exist positive constants c1 and c2 independent of ε and x ∈ ON

such that

sup
x∈ON

∥δx(Xε(1, x))− χε
N · δx(Xε(1, x))∥p,−k ≤ c1e

−c2/ε
2

as ε↘ 0.

Proof. We use [23, p.374, Formula (8.47)]: For every q, r ∈ (1,∞) such that

1/p := 1/q + 1/r < 1 and every k ∈ N, there exists a positive constant Cq,r,k such that

∥FG∥p,−k ≤ Cq,r,k∥F∥q,k∥G∥r,−k (F ∈ Dq,k, G ∈ Dr,−k).

We use this formula with F = 1 − χε
N and G = δx(X

ε(1, x)). By Proposition 5.3

and Watanabe’s pullback theorem, we can find k and M ′ > 0 such that

sup
x∈O

sup
0<ε≤1

εM
′
∥δx(Xε(1, x))∥r,−k <∞

for any r ∈ (1,∞). On the other hand, we can easily see from (3.5) that

∥1− χε
N∥q,k = O(e−CN,κ/4ε

2

) as ε↘ 0

for every q ∈ (1,∞) and k ∈ N. This completes the proof. □

The following is a slight extension of [35, Lemma 5.8]. Under the equiregular

Hörmander condition near x0, we prove a uniform version of the lemma. Recall that,

for a Wiener functional G, λ[G] stands for the lowest eigenvalue of Malliavin covariance

matrix σ[G].

Proposition 5.7. Assume (ER)x0
and let r > 0 be the constant in (4.12) and

N ≥ N0. Then, there exist a neighborhood ON of x0 and κN > 0 such that, for all

ε ∈ (0, 1] and x ∈ ON , it holds that

λ
[
FN

(
x,∆N

ε U
N
1

)]
≥ rε2N0λ

[
UN
1

]
on
{∣∣∆N

ε U
N
1

∣∣ < κN
}
. (5.10)

In particular, for ε ∈ (0, 1] and x ∈ ON , we have λ[FN (x,∆N
ε U

N
1 )] > 0 almost surely on

{|∆N
ε U

N
1 | < κN} and

E
[
λ
[
FN

(
x,∆N

ε U
N
1

)]−p
;
∣∣∆N

ε U
N
1

∣∣ < κN
]1/p ≤ r−1ε−2N0

∥∥λ[UN
1

]−1∥∥
Lp <∞ (5.11)

for every 1 < p <∞.
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Proof. Inequality (5.11) is immediate from (5.10) and Proposition 3.2. We give

a quick proof of (5.10). In the same way as in the proof of [35, Lemma 5.8], it holds

that, for every z ∈ Rd,⟨
σ
[
FN

(
x,∆N

ε U
N
1

)]
z, z
⟩

=
∑

I,J∈G(N)

σ
[
UN
1

]IJ( d∑
i=1

ziε|I|∂IF
i
N

(
x,∆N

ε U
N
1

))( d∑
j=1

zjε|J|∂JF
j
N

(
x,∆N

ε U
N
1

))

≥ λ
[
UN
1

] ∑
I∈G(N)

ε2|I|

(
d∑

i=1

zi∂IF
i
N

(
x,∆N

ε U
N
1

))2

≥ λ
[
UN
1

] ∑
I∈G(N0)

ε2|I|

(
d∑

i=1

zi∂IF
i
N

(
x,∆N

ε U
N
1

))2

.

The first equality is immediate from the chain rule for the H-derivative D. By (4.12),

the right-hand side is bounded from below by

ε2N0λ
[
UN
1

]
·
∣∣[(∂IF i

N

(
x,∆N

ε U
N
1

))
1≤i≤d,I∈G(N0)

]∗
z
∣∣2 ≥ rε2N0λ

[
UN
1

]
|z|2

uniformly in x ∈ ON . □

In what follows, we choose κN > 0 as in Proposition 5.7 and set ψN (x) =

ψ(x/(κN/2)
2) and χε

N = ψN (|∆N
ε U

N
1 |2) for N ≥ N0.

Since non-degeneracy of FN (x,∆N
ε U

N
1 ) is not known, we cannot use the standard

version of Watanabe’s pullback (see Item (c), Section 2) to justify δ0(FN (x,∆N
ε U

N
1 )).

However, thanks to Proposition 5.7 above, a modified version of Watanabe’s pullback is

available.

Proposition 5.8. Assume (ER)x0
, N ≥ N0 and let ON be as in Proposition 5.7.

Fix any ε ∈ (0, 1] and x ∈ ON . Then, the mapping S(Rd) ∋ ϕ 7→ χε
N ·ϕ(FN (x,∆N

ε U
N
1 )) ∈

D∞ uniquely extends to a continuous linear mapping

S ′(Rd) ∋ Φ 7→ χε
N · Φ

(
FN

(
x,∆N

ε U
N
1

))
∈ D̃−∞.

Proof. This fact is actually well-known to experts of Malliavin calculus. The

key point is the integrability (5.11) in Proposition 5.7. For a detailed proof, see Yoshida

[41]. □

The next lemma states that δx(X
ε(1, x)) can be approximated by δ0(FN (x,∆N

ε U
N
1 ))

uniformly in x if N is large enough. Therefore, the problem reduces to the expansion of

the latter Watanabe distribution.

Lemma 5.9. Assume (ER)x0
. Then, there exist k > 0, a sequence of {ON}N≥N0

neighborhoods of x0 and a sequence {lN}N≥N0 of real numbers diverging to +∞ such

that, for every p ∈ (1,∞) and N ≥ N0,
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sup
x∈ON

∥∥δx(Xε(1, x))− χε
N · δ0

(
FN

(
x,∆N

ε U
N
1

))∥∥
p,−k

= O(εlN ) as ε↘ 0.

Proof. Due to Lemma 5.6, it is sufficient to show that

sup
x∈ON

∥∥χε
N · δ0(Xε(1, x)−x)−χε

N · δ0
(
FN

(
x,∆N

ε U
N
1

))∥∥
p,−k

= O(εlN ) as ε↘ 0. (5.12)

As always, the key tool is the integration by parts formula for Watanabe distribu-

tions. We also use the estimates in Proposition 5.2 (ii), Proposition 5.3, Proposition 5.7,

Proposition 5.8. In this proof we write Aε = Xε(1, x) − x and Bε = FN (x,∆N
ε U

N
1 ) for

simplicity.

First, we prove the case d = 1 to observe what is happening. Set g(x) = x ∨ 0

for x ∈ R. Then, g′′(x) = δ0(x) in the distributional sense. Choose smooth functions

ψi : R → R (i = 1, 2, 3) so that ψ1 = ψ, ψi ≡ 1 on the support of ψi−1 (i = 2, 3), and

the support of ψ3 is contained in (−2, 2). Set χε
N,i = ψi(|∆N

ε U
N
1 |2/(κN/2)2). Note that

Proposition 5.8 still holds even if χε
N = χε

N,1 is replaced by χε
N,2 or χε

N,3. Note also that

∥χε
N,i∥p,k is bounded in ε for any 1 < p <∞, k ≥ 0, 1 ≤ i ≤ 3.

Take any G ∈ D∞. By integration by parts formula and the way ψi (i = 1, 2, 3) are

defined, we have⟨
χε
N · δ0(Bε), G

⟩
=
⟨
χε
N,2χ

ε
N,3g

′′(Bε), χε
N,1G

⟩
=

⟨
D
[
χε
N,2χ

ε
N,3g

′(Bε)
]
,

DBε

∥DBε∥2H
χε
N,1G

⟩
=

⟨
χε
N,2χ

ε
N,3g

′(Bε), D∗
[

DBε

∥DBε∥2H
χε
N,1G

]⟩
,

where D is the H-derivative (the gradient operator) and D∗ is its adjoint. (Thanks to

Proposition 5.7, the right-hand side is well-defined.) Note that ∥DBε∥2H = detσ[Bε]

since d = 1. Therefore, the second component of the pairing on the right-hand side

coincides at least formally with Φ in (2.2) with m = 1 and F and G being replaced by

Bε and χε
N,1G, respectively.

Using the formula again, we have

⟨
χε
N · δ0(Bε), G

⟩
=

⟨
g(Bε), χε

N,3D
∗
[

DBε

∥DBε∥2H
χε
N,2D

∗
[

DBε

∥DBε∥2H
χε
N,1G

]]⟩
=

⟨
g(Bε), D∗

[
DBε

∥DBε∥2H
χε
N,2D

∗
[

DBε

∥DBε∥2H
χε
N,1G

]]⟩
.

This equation still holds for Aε instead of Bε for the same reason. Observe that on the

right-hand side Bε is plugged into a (Lipschitz) continuous function g, not a Schwartz

distribution. Hence, the difference ∥g(Aε) − g(Bε)∥Lp is dominated by ∥Aε − Bε∥Lp =

O(εN+1), where Proposition 5.2 (ii) is used.

By straight forward calculations, we can show the following estimate: There exist

constants a ∈ N (independent of ε,N, p, x) and Cp > 0 (independent of ε,N, x) such that∣∣⟨χε
N · δ0(Aε)− χε

N · δ0(Bε), G
⟩∣∣ ≤ Cp∥G∥q,2 εN+1−a(M+N0) (5.13)
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for every p ∈ (1,∞), where 1/p+ 1/q = 1 and every ε ∈ (0, 1] and x ∈ O. Here, we used

Propositions 5.2 (ii), 5.3, 5.7, and 5.8 (M is the positive constant in Propositions 5.3).

This implies (5.12) when d = 1 with k = 2 and lN = N + 1− a(M +N0).

The proof for d ≥ 2 is essentially the same in spirit, but the notations get quite

complicated and we have to use the integration by parts formula many times (2d-times is

enough). Note that the differentiability index −k in (5.12) is determined by this number

and hence depends only on d.

Set g(x) =
∏d

i=1(xi ∨ 0) for x = (x1, . . . , xd) ∈ Rd. Then, (∂21 · · · ∂2dg)(x) = δ0(x) in

the distributional sense. Choose smooth functions ψi : R → R (i ≥ 0) so that ψ0 = ψ,

ψi ≡ 1 on the support of ψi−1 (i ≥ 1), and the support of ψi is contained in (−2, 2). Set

χε
N,i = ψi(|∆N

ε U
N
1 |2/(κN/2)2). For every i ≥ 0, Proposition 5.8 still holds for χε

N,i and

∥χε
N,i∥p,k is bounded in ε for any 1 < p <∞, k ≥ 0.

For a multi-index α = (α1, . . . , αd) ∈ Nd, set iα = max{i;αi ̸= 0} and define

α′ = (α1 − δ1iα , . . . , αd − δdiα), δij being Kronecker’s delta. We define Φ(α) with respect

to Bε as follows. If |α| :=
∑d

k=1 αk = 1, we set

Φ(α)( · ;G) = Φiα( · ;χε
N,1G).

Recall that Φi is given in (2.2) with F being replaced by Bε. Thanks to the “cutoff”

functional χε
N,1, Φiα( · ;χε

N,1G) is well-defined, though Bε is not non-degenerate in the

standard sense of Malliavin calculus. If |α| ≥ 2, we set

Φ(α)( · ;G) = Φiα

(
· ;χε

N,|α|Φ(α′)(·;G)
)
.

Using the integration by parts formula (2.1) repeatedly in the same way as above,

we can show that

⟨χε
N · δ0(Bε), G⟩ = ⟨g(Bε),Φ(α)( · ;G)⟩ (5.14)

for every G ∈ D∞, where α = (2, 2, . . . , 2) ∈ Nd. Note that (5.14) can be viewed as the

definition of the Watanabe distribution χε
N · δ0(Bε).

One can also define Φ(α)( · ;G) for Aε instead of Bε in the same way. Then, (5.14)

holds for Aε, too. Once we have (5.14) for both Bε and Aε, it is straightforward to check

that (5.13) also holds in the multi-dimensional case for with the differentiability index

2d instead of 2 (and possibly different a). □

In what follows we expand χε
N · δ0(FN (x,∆N

ε U
N
1 )) for each fixed N ≥ N0. In the

next lemma the same ε0 = ε0(N) as in Lemmas 4.3 and 4.4 will do. Note that (4.11) is

implicitly used.

Lemma 5.10. Assume (ER)x0
and N ≥ N0. Then, there exist a neighborhood ON

of x0 and ε0 = ε0(N) ∈ (0, 1] such that

χε
N · δ0

(
FN

(
x,∆N

ε U
N
1

))
= ε−ν |detBH(x)|−1 χε

N

detMN (x,∆N
ε U

N
1 )

· δ0
(
Γ̃ε
N (x)UN

1

)
(5.15)
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holds for all x ∈ ON and ε ∈ (0, ε0]. Here, δ0 on the right-hand side is the delta function

defined on R⟨H⟩.

Proof. We follow [35, pp.189–191]. Since (5.15) is an equality and have nothing

to do with the uniformity in x of the asymptotic expansion, some parts of the proof here

is not so detailed as the corresponding part in [35].

It is easy to see that

UN
1 =

[
Γ̃ε
N (x)

PN

]−1 [
Γ̃ε
N (x)

PN

]
UN
1 =

[
Γ̃ε
N (x)

PN

]−1 [
Γ̃ε
N (x)UN

1

PNU
N
1

]
.

From Lemma 4.3 (2) and an obvious fact that ΓN = B−1
H BN we see easily that

FN

(
x,∆N

ε U
N
1

)
=MN

(
x,∆N

ε U
N
1

)
BH(x)∆H

ε Γ̃ε
N (x)UN

1 .

Next, take a non-negative test function g on Rd such that
∫
g = 1 and set gκ(x) =

κ−dg(x/κ) for κ > 0. Then, gκ → δ0 in S ′(Rd) as κ → 0. By the modified version of

Watanabe’s theory (Proposition 5.8),

χε
N · gκ

(
FN

(
x,∆N

ε U
N
1

))
→ χε

N · δ0
(
FN

(
x,∆N

ε U
N
1

))
in D̃−∞ as κ→ 0.

Before we start computing this quantity, we set some notations for simplicity. Set

T = ∆N
ε ,[

V

W

]
=

[
Γ̃ε
N (x)UN

1

PNU
N
1

]
and C =

[
Γ̃ε
N (x)

PN

]
, then UN

1 = C−1

[
V

W

]
.

Then, we have for every G ∈ D∞ that

E
[
Gχε

N · gκ
(
FN

(
x,∆N

ε U
N
1

))]
= E

[
GψN

(∣∣∣∣TC−1

[
V

W

]∣∣∣∣2)gκ(MN

(
x, TC−1

[
V

W

])
BH(x)∆H

ε V

)]
=

∫
R⟨H⟩

dv

∫
R⟨H⟩⊥

dw

⟨
G, δ(v,w)

([
V

W

])⟩
ψN

(∣∣∣∣TC−1

[
v

w

]∣∣∣∣2)
× gκ

(
MN

(
x, TC−1

[
v

w

])
BH(x)∆H

ε v

)
.

(Since it is difficult to put a column vector as a subscript of δ, we wrote δ(v,w).) We

change variables by v 7→ (∆H
ε )−1κv and use Lemma 4.3 (3). Then,

E
[
Gχε

N · gκ
(
FN

(
x,∆N

ε U
N
1

))]
= ε−ν

∫
R⟨H⟩

dv

∫
R⟨H⟩⊥

dw

⟨
G, δ(∆H

ε κv,w)

([
V

W

])⟩
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× ψN

(∣∣∣∣TC−1

[
∆H

ε κv

w

]∣∣∣∣2)g(MN

(
x, TC−1

[
∆H

ε κv

w

])
BH(x)v

)
.

Now, we use the dominated convergence theorem for dvdw-integration as κ↘ 0. Due

to (4.11), we can find a large constant R > 0 independent of κ such that the integrand

above is dominated by R ·1{|v|<R,|w|<R}. (R may depend on other parameters.) Letting

κ↘ 0, we have

E
[
Gχε

N · δ0
(
FN

(
x,∆N

ε U
N
1

))]
= ε−ν

∫
R⟨H⟩

dv

∫
R⟨H⟩⊥

dw

⟨
G, δ(0,w)

([
V

W

])⟩
· ψN

(∣∣∣∣TC−1

[
0

w

]∣∣∣∣2)g(MN

(
x, TC−1

[
0

w

])
BH(x)v

)
.

Changing variables again by v 7→ {MN (x, TC−1[ 0w ])BH(x)}−1v, we have

E
[
Gχε

N · δ0
(
FN

(
x,∆N

ε U
N
1

))]
= ε−ν |detBH(x)|−1

×
⟨
G,

χε
N

detMN (x, TUN
1 )

∫
R⟨H⟩⊥

dwδ(0,w)

([
V

W

])⟩
.

It is easy to see from Lemma 4.4 that∫
R⟨H⟩⊥

dwδ(0,w)

([
V

W

])
= δ0(V ).

This completes the proof. □

Now we are in a position to prove our main result in this section.

Proof of Theorem 5.4. We expand the (generalized) Wiener functionals on the

right-hand side of (5.15). First, note that

∆N
ε U

N
1 =

∑
I∈G(N)

ε|I|U I
1 .

This is just a polynomial in ε whose coefficients belong to an inhomogeneous Wiener

chaos.

By the choice of ψ and a routine argument, we have

χε
N = ψ

(∣∣∆N
ε U

N
1

∣∣2
(κN/2)2

)
= 1 +O(ε∞) in D∞ (5.16)

as ε ↘ 0. Therefore, this is actually a dummy factor introduced for technical purposes

and makes no contribution to the asymptotic expansion. Obviously, x is not involved in

this functional.

By the definition in (4.13) and (a comment after that), Γ̃ε
N (x)UN

1 is also a polynomial

in ε that takes values in L(gN (Rd),R⟨H⟩) whose coefficients belong to an inhomogeneous
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Wiener chaos. (Moreover, it depends smoothly in x.) Since this is uniformly non-

degenerate (see Lemma 4.4), we can use the standard version of Watanabe’s theory (2.3)

to obtain the following asymptotic expansion:

δ0
(
Γ̃ε
N (x)UN

1

)
= YN

0 (x) + εYN
1 (x) + ε2YN

2 (x) + · · · in D̃−∞ (5.17)

as ε ↘ 0. Since Lemma 4.4 claims uniform dependency in x, this expansion is uniform

in x ∈ ON . By Lemma 4.3 (1) and a comment after (4.14), YN
0 (x) = δ0(Γ̃

0
N (x)UN

1 ) =

δ0(Γ̃
0
N0

(x)UN0
1 ).

By the explicit definition of MN in (4.9) and the uniform lower bound of detMN in

(4.11), we also obtain the following asymptotic expansion uniformly in x ∈ ON :

detMN

(
x,∆N

ε U
N
1

)−1
= 1 + εZN

1 (x) + ε2ZN
2 (x) + · · · in D∞ (5.18)

as ε↘ 0.

Take L > 0 arbitrarily large. We will show that δx(X
ε(1, x)) admits an asymptotic

expansion up to order L as ε↘ 0. For this L, we choose N ≥ N0 so that lN ≥ L+ ν+1.

Here, {lN} is the diverging sequence given in Lemma 5.9. We also take ON small enough

so that all the previous results are available.

From Lemma 5.9, Lemma 5.10 and (5.16)–(5.18), we obtain the following asymp-

totics in D̃−∞ as ε↘ 0 uniformly in x ∈ ON :

δx(X
ε(1, x)) = | detBH(x)|−1ε−ν

×
{
δ0
(
Γ̃0
N0

(x)UN0
1

)
+ εΘN

1 (x) + · · ·+ εL+νΘN
L+ν(x)

}
+O(εL+1) (5.19)

for some ΘN
j (x) ∈ D̃−∞ (1 ≤ j ≤ L+ν). Since the coefficients of an asymptotic expansion

are uniquely determined, ΘN
j (x) is actually independent of the choice of N . This proves

(5.9).

By a routine argument, ΘN
j (x;−w) = −ΘN

j (x;w) as a generalized Wiener functional

if j is odd. This implies E[ΘN
j (x)] = 0 if j is odd.

Finally, we show E[δ0(Γ̃0
N0

(x)UN0
1 )] > 0. Recall that Γ̃0

N0
(x) = [IdR⟨H⟩| ∗ ] is a

(possibly non-orthogonal) projection from gN0(Rd) to R⟨H⟩. If we denote by qN0 the

smooth density of the law of UN0
1 on gN0(Rd), then

E
[
δ0
(
Γ̃0
N0

(x)UN0
1

)]
= Kx

∫
ker Γ̃0

N0
(x)

qN0(u)du,

where du is the Lebesgue measure on the subspace ker Γ̃0
N0

(x) and Kx > 0 is a constant

which depends on “the angle” of the kernel and the image of the projection Γ̃0
N0

(x). (If

the projection is orthogonal, then Kx = 1.)

Since the everywhere positivity of qN0 is shown in [35, p.202] or originally in Kunita

[25], we have E[δ0(Γ̃0
N0

(x)UN0
1 )] > 0 and the proof of Theorem 5.4 is done. □

Remark 5.11. There is another way to prove that qN is everywhere positive. Let

uN (h) be the solution of the skeleton ODE which corresponds to SDE (3.3) driven by h ∈
H. In other words, uN (h) = log yN (h). It is sufficient to show that, for every u ∈ gN (Rd),
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there exists h ∈ H such that uN1 (h) = u and the tangent map DuN1 (h) : H → gN (Rd) is

surjective. (See Aida–Kusuoka–Stroock [1] for example. See also Remark 3.1.)

Such an h can be found as follows. Take any Cameron–Martin path k : [0, 1/2] → Rn

such that DuN1/2(k) is surjective (it does exist). Since G
N (Rn) = {yN1/2(h) | h ∈ H}, there

exists a Cameron–Martin path k̂ : [0, 1/2] → Rn such that uN1/2(k̂) = uN1/2(k)
−1×u. Then,

the concatenated path k ∗ k̂ ∈ H is the desired path. Here, k ∗ k̂ is defined to be k on

[0, 1/2] and k̂( · −1/2)+k(1/2) on [1/2, 1]. Here, we used the left-invariance with respect

to the product ×.

As a corollary of Theorem 5.4, we consider an SDE with drift instead of the drift-

less SDE (5.1) and prove an asymptotic expansion of the associated heat kernel under

an assumption that the drift vector field V0 can be written as a linear combination of

V1, . . . , Vn. It is important that the leading positive constant in the expansion is inde-

pendent of such V0.

For V0, V1, . . . , Vn ∈ X(Rd) and 0 < ε ≤ 1, we consider the following SDE on Rd:

dX̂ε(t, x) = ε
n∑

i=1

Vi(X̂
ε(t, x)) ◦ dwi

t + ε2V0(X̂
ε(t, x))dt with X̂ε(0, x) = x. (5.20)

We continue to assume that V j
i := ⟨dxj , Vi⟩ has bounded derivatives of all order ≥ 1

(0 ≤ i ≤ n, 1 ≤ j ≤ d). By the scaling property, (X̂ε(t, x))t≥0 and (X̂(ε2t, x))t≥0 have

the same law. Here, we simply write X̂(t, x) for X̂ε(t, x) when ε = 1. When it exists, we

denote by pt(x, x
′) the heat kernel associated with X̂(t, x), which is the density of the

law of X̂(t, x) with respect to the Lebesgue measure.

Corollary 5.12. Let the notations be as above. Suppose (ER)x0
for {V1, . . . , Vn}

at x0 ∈ Rd. Suppose also that there exist smooth, bounded functions a1, . . . , an : Rd → R
with bounded derivatives of all order which satisfy that V0(x) =

∑n
i=1 ai(x)Vi(x) for every

x ∈ Rd.

Then, there exists a decreasing sequence {Oj}j≥0 of neighborhoods of x0 such that

the asymptotic expansion

pt(x, x) ∼ t−ν/2
(
c0(x) + c1(x)t+ c2(x)t

2 + · · ·
)

as t↘ 0

holds for every x ∈ O0 with the following properties : (i) infx∈O0 c0(x) > 0, (ii) for every

j ≥ 0,

sup
x∈Oj

{
|cj(x)|+ sup

0<t≤1
t(ν/2)−j−1

∣∣∣pt(x, x)− t−ν/2
(
c0(x) + · · ·+ cj(x)t

j
)∣∣∣} <∞.

Moreover, c0(x) = E[Θ0(x)] and hence is independent of {a1, . . . , an}.

Proof. We prove the corollary by combining the driftless case (Theorem 5.4) and

Girsanov’s theorem. Set
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Mε,x
t = exp

(
ε

n∑
i=1

∫ t

0

ai(X
ε(s, x))dwi

s −
ε2

2

n∑
i=1

∫ t

0

|ai(Xε(s, x))|2ds

)
.

Since ai (1 ≤ i ≤ n) are bounded, t 7→Mε,x
t is a true martingale. By the scaling property

of Brownian motion and Girsanov’s theorem, we have

pε2(x, x) = E
[
δx(X̂(ε2, x))

]
= E

[
δx(X̂

ε(1, x))
]
= E

[
Mε,x

1 δx(X
ε(1, x))

]
.

Since we have already seen in Theorem 5.4 that δx(X
ε(1, x)) admits an asymptotic

expansion in D̃−∞, it is sufficient to show that Mε,x
1 admits an asymptotic expansion in

D∞ uniformly in x ∈ O0.

By Proposition 5.1, Xε(s, x) admits an asymptotic expansion in D∞ uniformly in

s ∈ [0, 1] and x ∈ O0. Moreover, each term in the expansion is measurable with respect to

σ(wu | 0 ≤ u ≤ s). Therefore,
∑n

i=1

∫ 1

0
ai(X

ε(s, x))dwi
s admits an asymptotic expansion

in D∞ uniformly in x ∈ O0 and so does
∑n

i=1

∫ t

0
|ai(Xε(s, x))|2ds. Since ai (1 ≤ i ≤ n)

and their derivatives are all bounded, we can easily see that

Mε,x
1 ∼ 1 + εΞ1(x) + ε2Ξ2(x) + · · · in D∞ as ε↘ 0 uniformly in x ∈ O0. (5.21)

Moreover, Ξ2j−1(x; · ) is odd as a Wiener functional for every j ≥ 1 and x ∈ O0, that is,

Ξ2j−1(x;−w) = −Ξ2j−1(x;w).

By multiplying (5.9) and (5.21) and taking the generalized expectation, we have the

desired expansion of pε2(x, x). Note that the odd-numbered terms in the expansion of

Mε,x
1 δx(X

ε(1, x)) are also odd as generalized Wiener functionals and hence their gener-

alized expectations vanish. Note also that since the leading term on the right-hand side

of (5.21) is 1, c0(x) does not depend on ai (1 ≤ i ≤ n).

It is a routine to check that x 7→ Ξj(x) is continuous. By Remark 5.5, we can easily

check the continuity of cj(x) in x. Positivity of c0(x) is immediate from Theorem 5.4. □

Remark 5.13. Sections 3–5 basically follow its counterpart in [35]. However, we

believe that our argument here is simpler and more readable for the following reasons.

(i) Fortunately, it suffices to consider a driftless SDE (5.1) for our purpose. Hence,

we need not use the “anisotropic dilation” on the tensor algebra. This simplifies our

notations much. (ii) In [35] (originally in Yamato [40]) proofs of important properties

of the free nilpotent groups/algebras are done via computations in the coordinates with

respect to a linear basis G(N). This could be compared to doing all the differential

geometric computation on a manifold via local coordinates and therefore does not provide

a very clear view of what is going on. In recent developments of rough path theory and

numerical analysis of SDEs, the study of the free nilpotent groups/algebras advanced

much (cf. e.g., [16, Chapter 7] for a summary). It provides us a clear view of these

objects and helps us simplify our argument. In particular, proofs via the flow of ODEs

on the nilpotent Lie groups/algebra in [35] are replaced by (linear or Lie) algebraic

proofs. (iii) Some non-trivial facts on Malliavin calculus are presented without proofs in

[35]. We added proofs and explanations for non-experts.
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6. On sub-Riemannian manifolds.

Let (M,D, g) be a sub-Riemannian manifold as in Section 1; hence d, n, ν and N0

are all as described there. In this section we prove the uniform asymptotic expansion

of the heat kernel on M via localization method. We emphasize that our argument

is almost purely probabilistic. Two key tools to achieve this goal are the stochastic

parallel transport for the ∆/2-diffusion process and Malliavin calculus for manifold-

valued SDEs. The stochastic parallel transport, or the Eells–Elworthy–Malliavin method

of constructing diffusion processes on a general sub-Riemannian manifolds was done in

[18], [39]. Methods in these papers are slightly different and the latter is used in this

paper. Malliavin calculus for manifold-valued SDEs was done in [37]. It was shown there

that a solution to an SDE at a fixed time is non-degenerate in the sense of Malliavin

under the partial Hörmander condition on the coefficient vector fields of the SDE.

We shall define a “div-grad type” sub-Laplacian. The horizontal gradient of f ∈
C∞(M) is defined to be the unique section ∇Df ∈ C∞(M ;D) such that

g(∇Df,A) = Af, A ∈ C∞(M ;D).

Let A1, . . . , Ak be a local orthonormal frame for D, i.e., a family of local sections

A1, . . . , An ∈ C∞(U ;D) over an open set U ⊂ M with gx((Ai)x, (Aj)x) = δij for x ∈ U

and 1 ≤ i, j ≤ n. Then

∇Df =
n∑

i=1

(Aif)Ai. (6.1)

Take a smooth measure µ on M . For A ∈ C∞(M ;TM), define its µ-divergence

divµA by ∫
M

f(divµA)dµ = −
∫
M

Af dµ, f ∈ C∞
0 (M). (6.2)

The sub-Laplacian associated with a positive volume form µ is the second order differ-

ential operator given by

∆f = divµ(∇Df), f ∈ C∞(M).

In terms of a local orthonormal frame A1, . . . , An for D,

∆ =

n∑
i=1

(
A2

i + divµ(Ai)Ai

)
. (6.3)

In what follows, for the sake of simplicity, we assume that M is compact.

The goal of this section is to show

Theorem 6.1. Let (M,D, g) and µ be as above. Then, the following hold.

(i) There exists a diffusion process generated by ∆/2 and it possesses a transition

density function pt(x, y), which is smooth in (t, x, y) ∈ (0,∞)×M ×M , with respect to

µ.
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(ii) Suppose M is equiregular. Then, the asymptotic expansion

pt(x, x) ∼ t−ν/2
(
c0(x) + c1(x)t+ c2(x)t

2 + · · ·
)

as t↘ 0

holds for every x ∈M with the following properties : (a) infx∈M c0(x) > 0, (b) for every

j ≥ 0,

sup
x∈M

{
|cj(x)|+ sup

0<t≤1
t(ν/2)−j−1

∣∣∣ pt(x, x)− t−ν/2
(
c0(x) + · · ·+ tjcj(x)

)∣∣∣} <∞.

We shall show the theorem by constructing the diffusion process via the Eells–

Elworthy–Malliavin method modified for sub-Riemannian manifolds, and then applying

Corollary 5.12. It should be noted that the method gives us strong solutions to sto-

chastic differential equations, which enable us to treat systematically the assertions in

the theorem together. In fact, to construct diffusion process, a weak solution is enough;

since ∆/2 is smooth, the associated martingale problem is well-posed, and hence the dif-

fusion process exists. In this case, by (6.3) and Hörmander’s theorem, one can prove the

assertion (i) in the theorem, but proving the short time asymptotics is another matter.

Let

O(D)x =
{
u : Rn → Dx

∣∣u is a bijective linear isometry
}

and O(D) =
⊔

x∈M

O(D)x

and define π : O(D) →M by π(u) = x for u ∈ O(D)x, x ∈M . Then, π : O(D) →M is an

O(n)-principal bundle, where O(n) is the space of n× n orthogonal matrices. To apply

the Eells–Elworthy–Malliavin method to a sub-Riemannian manifold, we first recall the

horizontal vector fields on O(D) (cf. [39]). To do this, let∇ be a partial metric connection

on (M,D, g); that is, ∇ is a bilinear mapping

∇ : C∞(M ;D)× C∞(M ;D) ∋ (A,B) 7→ ∇AB ∈ C∞(M ;D)

such that∇A(fB) = f∇AB+(Af)B for f ∈ C∞(M) and∇g = 0, where (∇Ag)(B,C) :=

∇Ag(B,C) − g(∇AB,C) − g(B,∇AC) for A,B,C ∈ C∞(M ;D). A typical example of

partial metric connections is a restriction of Levi-Civita connection. In fact, let g̃ be a

Riemannian metric tensor on M and ∇̃ be its Levi-Civita connection. If g̃ tames g, i.e.,

g̃|D×D = g, then ∇AB = prD∇̃AB, prD being the projection onto D, is a partial metric

connection.

In terms of a local orthonormal frame A1, . . . , An for D, define ωj
i ∈ C∞(M ;D∗),

where D∗ is the dual subbundle of D, by

∇Ai =
n∑

j=1

ωj
iAj , i.e., ∇BAi =

n∑
j=1

ωj
i (B)Aj for i = 1, . . . , n and B ∈ C∞(M ;D).

Since ∇g = 0, ωi
j = −ωj

i , 1 ≤ i, j ≤ n. We now extend the partial connection form

ω = (ωj
i ) to a smooth partial 1-form on O(D) with values in the Lie algebra o(n) of

O(n), say ω again, given by
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s−1ωs+ s−1ds,

where we have used the local trivializationM×O(n) of O(D) and then s is the coordinate

of O(n); more precisely, s−1ds is the Maurer–Cartan form θ given by θ(X) = s−1X for

X ∈ TsO(n) and s ∈ O(n).

Define the horizontal subspace Ku ⊂ TuO(D), u ∈ O(D), by

Ku = {A ∈ TuO(D) | (π∗)uA ∈ Dπ(u), ωu(Au) = 0}.

In terms of a local orthonormal frame A1, . . . , An for D, it holds

Ku =

{
n∑

α=1

aαAα −
n∑

p,q,r,s=1

ωp
qre

q
sa

r ∂

∂eps

∣∣∣∣∣ (a1, . . . , an) ∈ Rn

}
,

where

ωp
qr = ωp

q (Ar) = g(∇ArAq, Ap), 1 ≤ p, q, r ≤ n,

and (epq)1≤p,q≤n stands for the matrix coordinate of O(n). Then the horizontal lift

ℓu : Dπ(u) → Ku defined by

ℓu

(
n∑

i=1

aiAi

)
=

n∑
i=1

aiAi −
n∑

p,q,r,s=1

ωp
qre

q
sa

r ∂

∂eps

is bijective.

Let {ei | 1 ≤ i ≤ n} be the canonical basis of Rn. Define the canonical horizontal

vector fields V1, . . . , Vn on O(D) by

(Li)u = ℓu(uei), 1 ≤ i ≤ n.

In terms of an orthonormal frame A1, . . . , An for D, it holds

Li =
n∑

j=1

ejiAj −
n∑

p,q,r,s=1

ωp
qre

q
se

r
i

∂

∂eps
, 1 ≤ i ≤ n. (6.4)

The following lemma asserts that the operator (1/2)
∑n

i=1 L
2
i corresponds to another

sub-Laplacian ∆′ given by

∆′f = tr∇df, f ∈ C∞(M), (6.5)

where the Hessian ∇df is given by

(∇df)(A,B) = ABf − (∇AB)f, A,B ∈ C∞(M ;D), (6.6)

and tr∇df is the trace at each point in M of the bilinear form (A,B) 7→ (∇df)(A,B).

Lemma 6.2. For f ∈ C∞(M), set f̃ = f ◦ π. Then
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LiLj f̃(u) = (∇df)π(u)(uei, uej), u ∈ O(D), 1 ≤ i, j ≤ n.

In particular,

1

2

n∑
i=1

L2
i f̃ =

1

2
(∆′f) ◦ π.

Proof. By (6.4), we have

Lj f̃ =
n∑

p=1

epj Ãpf.

Hence

LiLj f̃ =

n∑
p,q=1

eqi e
p
j ÃqApf −

n∑
p,q,r=1

ωp
qre

q
je

r
i Ãpf.

Since

∇uei
(uej) = ∇∑n

p=1 epi Ap

(
n∑

q=1

eqjAq

)
=

n∑
p,q,r=1

eri e
q
jω

p
qrAp,

we obtain the first identity by (6.6). The second identity immediately follows from the

first one. □

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. (i) Extend the metric g to a Riemannian metric g̃ on

M . Let ∇̃ be the Levi-Civita connection associated with g̃, and define the partial metric

connection ∇ by ∇AB = prD∇̃AB. Denote by ∆′ the sub-Laplacian on M given by

(6.5).

In a local orthonormal frame A1, . . . , An for D, it holds

∆′ =
n∑

i=1

A2
i −

n∑
i=1

(
n∑

j=1

ωi
j(Aj)

)
Ai.

Hence N = (∆−∆′)/2 satisfies

N =
1

2

n∑
i=1

{
divµAi +

n∑
j=1

ωi
j(Aj)

}
Ai.

In particular, N ∈ C∞(M ;D).

Set

L0(u) = ℓu(Nπ(u)), u ∈ O(D).

Let (r(t))t≥0 be the unique solution to the stochastic differential equation on O(D)
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dr(t) =
n∑

i=1

Li(r(t)) ◦ dwi(t) + L0(r(t))dt, r(0) = u ∈ O(D),

and put X(t) = π(r(t)), t ≥ 0. Since π∗L0 = N , by Lemma 6.2, the projected process

(X(t))t≥0 solves the ∆/2-martingale problem, i.e.,(
f(X(t))−

∫ t

0

1

2
∆f(X(s))ds

)
t≥0

is a martingale for any f ∈ C∞(M). Thus the ∆/2-diffusion process is realized as the

projected process (X(t))t≥0. In particular, the law of (X(t))t≥0 is independent of the

choice of u ∈ π−1(x).

By the Hörmander condition at every x ∈ M , {L1, . . . , Ln} satisfies the partial

Hörmander condition at every u ∈ O(D), that is, the linear span of {(π∗)uL[I](u) |
I ∈ I(∞)} is equal to Tπ(u)M . Then, we know from [37] the non-degeneracy of the

Malliavin covariance of X(t) for all t > 0 and r(0) = u ∈ O(D). By the integration by

parts formula for manifold-valued Wiener functionals, we obtain the existence of pt(x, y)

and the smoothness in y ∈ M (cf. [24]). The smoothness in (t, x) ∈ (0,∞) × M is

obtained as an application of Itô’s formula and the stochastic flow property of (r(t))t≥0.

By the way, the heat kernel admits the following explicit expression as in the Euclidean

case:

pt(x, y) = E[δy(X(t))],

where δy is the delta function at y with respect to µ.

(ii) Since M is compact, it suffices to show that for each x0 ∈ M , there exists a

decreasing sequence {Oj}j≥0 of neighborhoods of x0 such that the asymptotic expansion

pt(x, x) ∼ t−ν/2
(
c0(x) + c1(x)t+ c2(x)t

2 + · · ·
)

as t↘ 0

holds for every x ∈ O0 with the following properties: (a) infx∈O0 c0(x) > 0, (b) for every

j ≥ 0,

sup
x∈Oj

{
|cj(x)|+ sup

0<t≤1
t(ν/2)−j−1

∣∣∣ pt(x, x)− t−ν/2
(
c0(x) + · · ·+ tjcj(x)

)∣∣∣} <∞.

To do this, let U1 and U2 be open sets in M such that x0 ∈ U1, U1 ⊂ U2 and

there exists a local orthonormal frame A1, . . . , An for D over U2. Viewing U2 as a part

of Rd, we extends A1, . . . , An on U2 to C∞
b -vector fields V1, . . . , Vn on Rd, respectively,

and extend each (divµAi)/2 on U2 to ai ∈ C∞
b (Rd). Let p̃t(x, y) be the heat kernel with

respect to the Lebesgue measure on Rd associated with

1

2

n∑
i=1

V 2
i +

n∑
i=1

aiVi.

Denote by (X̃(t, x))t≥0 the solution to the SDE



1082(58)

1082 Y. Inahama and S. Taniguchi

dX̃(t) =
n∑

i=1

Vi(X̃(t)) ◦ dwi + V0(X̃(t))dt, X̃(0) = x,

where V0 =
∑n

i=1 aiVi. Then p̃t(x, y) is the transition density function of (X̃(t, x))t≥0

with respect to the Lebesgue measure.

In repetition of the argument employed to show the estimation (10.57) in [23, p.421],

we obtain positive constants c1 and c2 such that

sup
x,y∈U1

|ρ(y)pt(x, y)− p̃t(x, y)| ≤ c1e
−c2/t as t↘ 0, (6.7)

where dµ(y) = ρ(y)dy1 · · · dyd, (y1, . . . , yd) is the local coordinates on U1 identified with

that on Rd.

Indeed, we can show (6.7) by combining the following two observations:

(i) uf (t, x) :=
∫
U1
{ρ(y)pt(x, y) − p̃t(x, y)}f(y)dy, where f ∈ C∞(Rd) whose support

is contained in U1, satisfies the estimation |uf (t, x)| ≤ sups∈[0,t],z∈∂U2
|uf (s, z)|, ∂U2

being the boundary of U2. (ii) There exist positive constants c3 and c4 such that

ps(z, y) ∨ p̃s(z, y) ≤ c3e
−c4/s, y ∈ U1, z ∈ ∂U2, s ∈ (0, 1]. (6.8)

A rough sketch of proof of (6.8) is as follows. The non-degeneracy of the Malliavin

covariances of X(s) and X̃(s) under the (partial) Hörmander condition enables us to use

the integration by parts formula. So we can replace the delta functions in the Feynman–

Kac type representation formulae for the heat kernels by continuous functions as in the

proof of Lemma 5.10. Then, the exponential decay of exit times of semimartingales like

(3.5) and Kusuoka–Stroock’s estimate like Proposition 5.3 for both X and X̃ imply (6.8).

It immediately follows from the two observations that |uf (t, x)| ≤ c3(1 +

∥ρ∥∞)∥f∥L1e−c4/t for every t ∈ (0, 1] and x ∈ U1. Letting f tend to ±δy (y ∈ U1),

we prove (6.7).

One should note that the equiregular condition has not been used so far. Once (6.7)

is obtained, the desired asymptotic expansion of pt(x, x) follows from that of p̃t(x, x).

Thus, the assertion (ii) follows by applying Corollary 5.12 to p̃t(x, x). □

7. Leading constant: Examples.

From the viewpoint of spectral geometry, it is very important to obtain an explicit

expression of the leading constant of the asymptotic expansion of the heat trace. However,

it seems quite difficult in general. Therefore, in this section we provide some examples

for which the leading constant is explicitly computable by our method and we check that

these leading constants coincide with known results.

Since we have already shown in Theorem 6.1 that the asymptotic expansion of the

heat kernel is uniform in the space parameter x, we may compute the leading term of

the asymptotics of pt(x, x) in the most convenient way for each fixed x ∈M .

We recall symbols and notations which will be used in subsequent examples. The

dimension of the manifoldM is d and the number of independent linear Brownian motion

is n. For a given set of vector fields {Vi | 1 ≤ i ≤ n}, which are actually the coefficients of
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the corresponding SDE, N0 stands for the step of the equiregular Hörmander condition.

Matrices BH(x) and BN0(x) are defined in (4.4) and (4.6), respectively. Recall also that

ΓN0(x) = (γIJ(x))I∈H,J∈G(N0) and Γ̃0
N0

(x) =
(
δ
|I|
|J|γ

I
J(x)

)
I∈H,J∈G(N0)

which is defined in

(4.14). The leading constant of pt(x, x) in the Euclidian case was shown in (5.19) to be

|detBH(x)|−1 E
[
δ0
(
Γ̃0
N0

(x)UN0
1

)]
.

Here, (UN0
t )t≥0 is the gN0(Rn)-valued hypoelliptic diffusion process introduced in (3.3).

In the manifold case, this constant should be adjusted by being divided by the density

function as we discussed in (6.7).

Example 7.1 (The case of Riemannian manifold). Let M be a compact

Riemannian manifold of dimension d with the Riemannian measure µ. The div-grad

type operator is the usual Laplace–Beltrami operator ∆M . In this case N0 = 1, d = n,

G(1) = H = {(i) | 1 ≤ i ≤ d}.
Take a coordinate chart (x1, . . . , xd). We denote the metric tensor by G(x) :=

(gij(x))1≤i,j≤d. Then, µ(dx) =
√
detG(x) dx1 · · · dxd on this chart. We write

G(x)−1/2 = (σij(x))1≤i,j≤d and set Vi(x) =
∑

j σ
ij(x)(∂/∂xj) so that {Vi | 1 ≤ i ≤ d}

is a local orthonormal frame. The Laplace–Beltrami operator is expressed as ∆M =∑d
i=1 V

2
i + (a vector field).

It is easy to see that BH(x) = BN0(x) = G(x)−1/2, ΓN0(x) = Γ̃0
N0

(x) = Id. Hence,

by adjusting the density function of µ as in (6.7), we see that the leading constant in the

asymptotics of pt(x, x) equals

1√
detG(x)

| detBH(x)|−1 E
[
δ0
(
Γ̃0
N0

(x)UN0
1

)]
= E

[
δ0(w

1
1, . . . , w

d
1)
]
= (2π)−d/2.

In particular, we see that Trace(e−t∆M/2) ∼ (2πt)−d/2µ(M) as t ↘ 0. Thus, we have

recovered the well-known result in Riemannian geometry.

Example 7.2 (The case of 3D contact sub-Riemannian manifold). In this exam-

ple, we calculate the leading constant for a three-dimensional contact sub-Riemannian

manifold and check that it coincides with Barilari’s result in [2].

LetM be a compact sub-Riemannian manifold with dimM = 3 with a distributionH
of rank 2. We assume that K is contact, namely, there exists a one-form ω such that ω∧dω
vanishes nowhere. As a volume onM , we choose the following measure. Let {V1, V2} be a

local orthonormal frame of K on a coordinate chart and regard λ1∧λ2∧λ3 as a measure on

the chart, where {λ1, λ2, λ3} is the dual basis of {V1, V2, [V1, V2]}. This defines a measure

µ on M . Note that µ is a constant multiple of Popp’s measure if we use the definition

(or results) in [3]. In this case N0 = 2, d = 3, n = 2, G(2) = H = {(1), (2), (2, 1)} and

the Hausdorff dimension is ν = 4.

We use the normal coordinates for three-dimensional contact manifolds in the same

way as in [2]. For every x ∈ M , we can find a local coordinate chart (u1, u2, u3) and a

local orthonormal frame {V1, V2} of K on this chart such that x corresponds to 0 ∈ R3

and
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V1(u
1, u2, u3) =

(
∂

∂u1
+
u2

2

∂

∂u3

)
+ βu2

(
u2

∂

∂u1
− u1

∂

∂u2

)
+ γu2

∂

∂u3
,

V2(u
1, u2, u3) =

(
∂

∂u2
− u1

2

∂

∂u3

)
− βu1

(
u2

∂

∂u1
− u1

∂

∂u2

)
+ γu1

∂

∂u3
,

where β = β(u1, u2, u3) and γ = γ(u1, u2, u3) are certain smooth functions which vanish

at 0. The sub-Laplacian can be written locally as ∆ = V 2
1 + V 2

2 + (a section of K).

From these explicit expressions, we can easily see that the density ρ := dµ/du1du2du3

satisfies ρ(0) = 1. Moreover, BH(0) = BN0(0) = Id and ΓN0(0) = Γ̃0
N0

(0) = Id. Hence,

the leading constant in the asymptotics of pt(x0, x0) associated with ∆/2 equals

1

ρ(0)
| detBH(0)|−1 E

[
δ0
(
Γ̃0
N0

(0)UN0
1

)]
= E

[
δ(0,0,0)

(
w1

1, w
2
1, S1(w

1, w2)
)]
, (7.1)

where

St(w
1, w2) =

1

2

∫ t

0

(w1
sdw

2
s − w2

sdw
1
s) =

1

2

∫ t

0

(w1
s ◦ dw2

s − w2
s ◦ dw1

s) (7.2)

is Levy’s stochastic area of the two-dimensional Brownian motion. A well-known formula

for Levy’s stochastic area (e.g., [27, Theorem 5.8.5, p.272]) states that

E
[
exp
(√

−1λS1(w
1, w2)

)
δ(0,0)(w

1
1, w

2
1)
]
=

1

2π

λ/2

sinh(λ/2)
(λ ∈ R). (7.3)

Then, we see that the right-hand side on (7.1) equals

E
[
δ(0,0)(w

1
1, w

2
1)δ0

(
S1(w

1, w2)
)]

= E
[
δ(0,0)(w

1
1, w

2
1)

1

2π

∫
R
exp
(√

−1λS1(w
1, w2)

)
dλ

]
=

1

(2π)2

∫
R

λ/2

sinh(λ/2)
dλ =

1

4
.

For a proof of the last equality, see [4, Lemma A.2, p.260]. This constant 1/4 coincides

with one in Theorem 1, [2]. (We need to replace t in [2] by t/2 since the heat kernel in

[2] is associated with ∆, not ∆/2.) In particular, we see that Trace(e−t∆/2) ∼ µ(M)/4t2

as t↘ 0.

Example 7.3. To state the next example, we review strictly pseudoconvex CR

manifolds. For details, see [15].

LetM be a CR-manifold, i.e.,M is a real smooth manifold with a complex subbundle

T1,0 of the complexified tangent bundle CTM such that

T1,0 ∩ T0,1 = {0} and [T1,0, T1,0] ⊂ T1,0,

where T0,1 = T1,0. Suppose that the real dimension of M is 2k + 1 and the complex

dimension of T1,0 is k (k ≥ 1).

There exists a real nowhere vanishing 1-form θ which annihilatesD := Re(T1,0⊕T0,1).
The associated Levi form Lθ is defined by
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Lθ(Z,W ) = −
√
−1 dθ(Z,W ), Z,W ∈ C∞(M ;T1,0 ⊕ T0,1).

We assume that M is strictly pseudoconvex, i.e., Lθ is positive definite.

There exists a unique real vector field T , called the characteristic direction, such

that

θ(T ) = 1, T ⌋dθ = 0,

where T ⌋ stands for the interior product by T . The Webster metric gθ on TM = D⊕RT
is defined by

gθ(X,Y ) = dθ(X, JY ), gθ(X,T ) = 0, gθ(T, T ) = 1 for X,Y ∈ C∞(M ;D),

where J is a linear mapping on T1,0 ⊕ T0,1 such that J |T1,0 =
√
−1 and J |T0,1 = −

√
−1.

In this example, let µ be the Riemannian volume measure associated with gθ and

consider ∆ associated with this µ. It should be noted that µ is a constant multiple of

Popp’s measure (cf. [3]). Moreover, ∆ is the standard sub-Laplacian on a CR-manifold,

and coincides with ∆′, which is constructed by using the Tanaka–Webster connection on

M ([15, Section 2.1]).

To compute locally around fixed x ∈ M , we introduce the Folland–Stein normal

coordinates, following [15, Section 3.2]. Let T1, . . . , Tn be a local orthonormal frame

on an open set U ⊂ M for T1,0 with respect to Lθ, i.e., (i) Tα ∈ C∞(U ;T1,0) and

(ii) Lθ(Tα, Tβ) = δαβ for 1 ≤ α, β ≤ k, where Tβ = Tβ . Set Xα = Tα + Tα and

Yα =
√
−1 (Tα − Tα). Then

gθ(Xα, Xβ) = gθ(Yα, Yβ) = 2δαβ , gθ(Xα, Yβ) = 0 for 1 ≤ α, β ≤ k.

There exists a coordinate chart u = (u1, . . . , u2k+1), called the Folland–Stein normal

coordinates, such that x corresponds to 0 ∈ R2k+1, and

Xα =
∂

∂u2α−1
+ 2u2α

∂

∂u2k+1
+

2k∑
i=1

O1 ∂

∂ui
+O2 ∂

∂u2k+1
,

Yα =
∂

∂u2α
− 2u2α−1 ∂

∂u2k+1
+

2k∑
i=1

O1 ∂

∂ui
+O2 ∂

∂u2k+1
,

T =
∂

∂u2k+1
+

2k∑
i=1

O1 ∂

∂ui
+O2 ∂

∂u2k+1
,

(7.4)

where Oj , j = 1, 2, stand for functions with the property that

Oj = O

( 2k∑
i=1

|ui|

)j

+ |u2k+1|j/2
 .

By (7.4),
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gθ

((
∂

∂ui

)
u

,

(
∂

∂uj

)
u

)
= 2δij +O1, 1 ≤ i, j ≤ 2k,

gθ

((
∂

∂up

)
u

,

(
∂

∂u2k+1

)
u

)
= δp,2k+1 +O1, 1 ≤ p ≤ 2k + 1.

Thus µ(du) = (2k + O1)du1 · · · du2k+1. In particular, the density ρ = dµ/du1 · · · du2k+1

satisfies ρ(0) = 2k.

Let

V2α−1 =
1√
2
Xα, V2α =

1√
2
Yα, 1 ≤ α ≤ k,

where, as in the proof of Theorem 6.1, we have extended Xα and Yα, 1 ≤ α ≤ k, to

R2k+1, and used the same letters to indicate the extensions. Then what we need to

investigate is the transition density function of the diffusion process generated by

1

2

2k∑
i=1

V 2
i +

2k∑
i=1

aiVi,

where ai = (divµVi)/2, 1 ≤ i ≤ 2k. Moreover, by (7.4), it holds

Vi(x) =
1√
2

(
∂

∂ui

)
0

, 1 ≤ i ≤ 2k, (7.5)

[Vi, Vj ](x) = −2

(
k∑

p=1

δi,2p−1δj,2p

)(
∂

∂u2k+1

)
0

+
2k∑
p=1

Cp
ij

(
∂

∂up

)
0

, 1 ≤ i < j ≤ 2k

(7.6)

for some Cp
ij ∈ R. Thus we are in the situation that d = 2k + 1, n = 2k, N0(x) = 2, and

ν(x) = 2k + 2.

We now proceed to the computation of Γ̃0
2(0)U

2
t . Let

G(1) = {(i) | 1 ≤ i ≤ 2k}, G(2) = G(1) ∪ {(i, j) | 1 ≤ i < j ≤ 2k}.

Set H = {(1), . . . , (2k), (1, 2)}. Then, by (7.5) and (7.6),

BH(0) =



C1
12

2−1/2Id2k

...

C2k
12

0 · · · 0 −2


,

where Id2k denotes the 2k-dimensional identity matrix. Hence
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BH(0)−1 =



2−1/2C1
12

21/2Id2k

...

2−1/2C2k
12

0 · · · 0 −1/2


and | detBH(0)| = 2−k+1.

This and (7.6) yield

BH(0)−1V[i,j] =



21/2C1
ij − 21/2C1

121G0(2)((i, j))

...

21/2C2k
ij − 21/2C2k

121G0(2)((i, j))

1G0(2)((i, j))


, 1 ≤ i < j ≤ 2k,

where G0(2) = {(2i − 1, 2i) | 1 ≤ i ≤ k} and 1G0(2) is the indicator function of G0(2).

Hence we have

Γ̃0
2(0) =


Id2k 02k×k(2k−1)

0 · · · 0
(
1G0(2)((i, j))

)
(i,j)∈G(2)\G(1)


,

where 02k×k(2k−1) is the 2k × k(2k − 1)-zero matrix. This implies that

Γ̃0
2(0)U

2
t =



w1
t

...

w2k
t∑k

i=1 St(w
2i−1, w2i)


,

where St(w
2i−1, w2i) is defined by (7.2).

As in Example 7.2, using the independence of (w2i−1, w2i), 1 ≤ i ≤ k, we have

E
[
δ0
(
Γ̃0
2(0)U

2
1

)]
=

1

2π

∫
R
E

[
δ0(w

1
1, . . . , w

2k
1 ) exp

(
√
−1λ

k∑
i=1

S1(w
2i−1, w2i)

)]
dλ

=
1

2π

∫
R

k∏
i=1

E
[
δ0(w

2i−1
1 , w2i

1 ) exp
(√

−1λS1(w
2i−1, w2i)

)]
dλ

=
1

2π

∫
R

(
1

2π

λ/2

sinh(λ/2)

)k

dλ.
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To see the last identity, we have used (7.3). Hence the leading constant in the asymptotics

of pt(x, x) associated with ∆/2 equals

1

ρ(0)
|detBH(0)|−1E

[
δ0
(
Γ̃0
2(0)U

2
1

)]
=

1

2

1

2π

∫
R

(
1

2π

λ/2

sinh(λ/2)

)k

dλ.

The right-hand side is the heat kernel p1(0, 0) associated with the sub-Laplacian on the

Heisenberg group of dimension 2k + 1 (cf. [17, Théorème 1]).

Before providing our final example, we fix some notations. Let (k1 ⊕ k2, g) be such

that (i) k1⊕ k2 is a finite-dimensional graded Lie algebra (with kj = {0} for j ∈ Z\{1, 2})
and g is an inner product on k1. Two such (k1 ⊕ k2, g) and (k̂1 ⊕ k̂2, ĝ) are said to

be isometrically isomorphic and denoted by (k1 ⊕ k2, g) ∼= (k̂1 ⊕ k̂2, ĝ) if there exists

an isomorphism ϕ : k1 ⊕ k2 → k̂1 ⊕ k̂2 of graded Lie algebras whose restriction to k1
preserves the inner product. An isometrical isomorphism class in this sense is denoted

by [(k1 ⊕ k2, g)].

Let (k1 ⊕ k2, g) be as above and write n = dim k1 and p = dim k2. An adapted

basis of this Lie algebra is defined to be a linear basis {v1, . . . , vn; z1, . . . , zp} such that

{v1, . . . , vn} is an orthonormal basis of (k1, g) and {z1, . . . , zp} be a linear basis of k2.

Write

[vi, vj ] =

p∑
k=1

Ck
ijzk (1 ≤ i, j ≤ n).

We call {Ck
ij} the structure constants with respect to this adapted basis. (Note that there

are no other non-trivial Lie brackets.) It is easy to see that (k1 ⊕ k2, g) ∼= (k̂1 ⊕ k̂2, ĝ) if

and only if we can find an adapted basis of (k1⊕ k2, g) and an adapted basis of (k̂1⊕ k̂2, ĝ)

whose structure constants exactly coincide.

Example 7.4. Let (M,D, g) be a step-two equiregular compact sub-Riemannian

manifold with dimM = n + p and rank D = n (n ≥ 1, p ≥ 1) and let µ be Popp’s

measure. In this case, the Hausdorff dimension is ν = n + 2p. By the equiregularity,

D1(x) ⊕ (D2(x)/D1(x)) has a natural structure of graded Lie algebra. Clearly, N0 = 2

and we set

G(1) = {(i) | 1 ≤ i ≤ n}, G(2) = G(1) ∪ {(i, j) | 1 ≤ i < j ≤ n}.

The aim of this example is to calculate the leading constant c0(x) explicitly in a

probabilistic way and show that it depends only on [(D1(x)⊕(D2(x)/D1(x)), gx)]. (More

precisely, if (M̂, D̂, ĝ) is another such sub-Riemannian manifold and(
D1(x)⊕ (D2(x)/D1(x)), gx

) ∼= (D̂1(x̂)⊕ (D̂2(x̂)/D̂1(x̂)), ĝx̂
)

(7.7)

holds for x ∈M and x̂ ∈ M̂ , then c0(x) = c0(x̂) holds.)

To this end we use (a very special case of) Bianchini–Stefani’s adapted chart. As

was already demonstrated in [19], [31], this chart looks quite useful for short time as-

ymptotic problems on sub-Riemannian manifolds. Take x ∈M arbitrarily. Then, by [11,
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Corollary 3.1], there exists a local coordinate chart (u1, . . . , un+p) around x such that x

corresponds to 0 ∈ Rn+p and D1(x) equals the linear span of {(∂/∂u1)0, . . . , (∂/∂un)0}.
Note that this equality holds only at x and such a chart is obviously not unique.

Take a local frame {V1, . . . , Vn, Z1, . . . , Zp} of TM around x such that {V1, . . . , Vn}
forms a local orthonormal frame of D = D1. Such a local frame is called an adapted

frame. As usual the structure constants {Ck
ij} is defined by

[Vi, Vj ](x) =

p∑
k=1

Ck
ijZk(x) mod D1(x) (1 ≤ i, j ≤ n).

The rank of a p× n(n− 1)/2 matrix (Ck
ij)1≤k≤p,(i,j)∈G(2)\G(1) is p due to the Hörmander

condition at x. We will denote this matrix by C for simplicity.

Changing the coordinates of (u1, . . . , un) and (un+1, . . . , un+p) by linear maps, we

may additionally assume that Vi(x) = (∂/∂ui)0 for 1 ≤ i ≤ n and Zj(x) = (∂/∂uj+n)0
modulo D1(x) for 1 ≤ j ≤ p. Then, it is obvious that

B2(0) =

(
Idn ∗
0p×n C

)
.

Choose (i1, j1), . . . , (ip, jp) ∈ G(2) \ G(1) so that (Ck
iaja

)1≤k,a≤p is an invertible p × p

matrix and we set H = G(1) ∪ {(ia, ja) | 1 ≤ a ≤ p}. Then, it is easy to see that

BH(0)Γ̃0
2(0) =

(
Idn 0p×n(n−1)/2

0p×n C

)
.

According to [3], Popp’s measure can be computed from the structure constants for

the local adapted frame as follows. Set Ckl = ⟨Ck
•⋆, C

l
•⋆⟩HS , 1 ≤ k, l ≤ p, where the

right-hand side stands for the Hilbert–Schmidt inner product for n× n-matrices. Then,

we have µ(dθ) = ρ(u)du1 · · · dun+p with ρ(0) = {det(Ckl)1≤k,l≤p}−1/2.

Combining these all, we see that

c0(x) =
1

ρ(0)
| detBH(0)|−1 E

[
δ0
(
Γ̃0
2(0)U

2
1

)]
=
√
det(Ckl)E

[
δ0
(
BH(0)Γ̃0

2(0)U
2
1

)]
=
√
det(Ckl)E

[
δ0(w

1
1, . . . , w

n
1 ) · δ0

(∑
i<j

C1
ijS

ij
1 , . . . ,

∑
i<j

Cp
ijS

ij
1

)]
,

where we wrote Sij
t for Lévy’s stochastic area St(w

i, wj) defined by (7.2) for simplicity.

The generalized expectation on the right-hand side is computed in Appendix. Thus, we

obtain

c0(x) =
√
det(Ckl)

1

(2π)(n/2)+p

∫
Rp

[
det

(
sinh(

√
−1 (ζ · C)/2)√

−1 (ζ · C)/2

)]−1/2

dζ,
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where for ζ = (ζ1, . . . , ζp) ∈ Rp, (ζ · C) is the n× n skew symmetric matrix defined by

(ζ · C) =

(
p∑

k=1

ζkCk
ij

)
1≤i,j≤n

.

Note that c0(x) depends only on the structure constants.

Finally, let us assume that x̂ ∈ M̂ satisfies (7.7). Then, we can find a local adapted

frame {V̂1, . . . , V̂n, Ẑ1, . . . , Ẑp} around x̂ which yields the same structure constants (Ck
ij).

By doing the same computation again, we see c0(x) = c0(x̂).

Appendix A. On step-two nilpotent Lie groups.

In [17], Gaveau obtained explicit expressions for the heat kernel for the Heisenberg

groups and the free nilpotent Lie groups of step-two. The heat kernels for all nilpotent

Lie groups of step-two were obtained by Cygan ([14]). They used an analytic method. In

this section, we recover such expressions by using a probabilistic method. Indeed, we shall

obtain the expressions by using an explicit expression of a stochastic oscillatory integral

with a quadratic Wiener functional as its phase function (cf. [38]). Lévy’s stochastic

area defined in (7.2) is a typical example of such a quadratic Wiener functional.

We start this section with a preliminary observation on linear combinations of Lévy’s

stochastic areas. For t ≥ 0, x ∈ Rn, 1 ≤ i, j ≤ n, and an n × n skew symmetric matrix

Ξ = (Ξij)1≤i,j≤n, set

Sij
t (x) =

∫ t

0

{
(x+ wi

s) ◦ dwj
s − (x+ wj

s) ◦ dwi
s

}
and St(Ξ;x) =

1

2

∑
1≤i<j≤n

ΞijSij
t (x).

Our first goal of this section is revisiting the following expression ([14], [17]) by using

the computation of oscillatory integrals associated with quadratic Wiener functionals in

[38]. This is a generalization of the famous formula (7.3) for Lévy’s stochastic area.

Theorem A.1. It holds that

E
[
e
√
−1St(Ξ;x)δy(x+ wt)

]
=

1

(2πt)n/2

[
det

(
sinh(

√
−1 tΞ/2)√

−1 tΞ/2

)]−1/2

× exp

(
−
√
−1

2
⟨Ξx, y⟩Rn − 1

2t
⟨T (t; Ξ)−1(y − x), (y − x)⟩Rn

)
, y ∈ Rn, (A.1)

where, for n× n matrix B,

sinh(B)

B
=

∞∑
k=1

1

(2k − 1)!
B2k−2, cosh(B) =

∞∑
k=0

1

(2k)!
B2k,

and

T (t; Ξ) =
sinh(

√
−1 tΞ/2)√

−1 tΞ/2

(
cosh(

√
−1 tΞ/2)

)−1
.
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Remark A.2. For an n× n skew symmetric matrix B, take λ1, . . . , λk ∈ R \ {0}
such that ±

√
−1λ1, . . . ,±

√
−1λk, 0, . . . , 0︸ ︷︷ ︸

n−2k

are its eigenvalues. Then

det

(
sinh(

√
−1B)√

−1B

)
=

k∏
i=1

(
sinhλi
λi

)2

̸= 0,

det
(
cosh(

√
−1B)

)
=

k∏
i=1

(coshλi)
2 ̸= 0.

Thus, the reciprocal number and the inverse matrix appearing in (A.1) are both well-

defined.

Proof. If i ̸= j, then wi
s ◦ dwj

s = wi
sdw

j
s. Since Ξ is skew symmetric,

St(Ξ;x) =
1

2

∫ t

0

⟨(−Ξ)(x+ ws), dws⟩Rn =
1

2

∫ t

0

⟨(−Ξ)ws, dws⟩Rn − 1

2
⟨Ξx,wt⟩Rn .

By the skew symmetry of Ξ again, we have

E
[
e
√
−1St(Ξ;x)δy(x+ wt)

]
= e−

√
−1 ⟨Ξx,y⟩/2E

[
exp

(√
−1

2

∫ t

0

⟨(−Ξ)ws, dws⟩
)
δy−x(wt)

]
. (A.2)

Thus it suffices to compute E[e
√
−1St(Ξ;0)δy(wt)].

Applying [38, Corollary 1.1 and Example 4.2], we obtain

E
[
e
√
−1St(Ξ;0)δy(wt)

]
=

1√
detA(0, t; Ξ)

1

(2π)n/2
√
C(t; Ξ)

exp

(
−1

2
⟨C(t; Ξ)−1y, y⟩Rn

)
(A.3)

where

A(s, t; Ξ) =
1

2

{
I + exp

(
−
√
−1 (s− t)Ξ

)}
,

C(t; Ξ) =

∫ t

0

(A(0, s; Ξ)−1)∗A(0, s; Ξ)−1ds,

and, for n×n-matrix B, exp(B) =
∑∞

k=0(1/k!)B
k and B∗ is the transposed matrix of B.

It should be emphasized that the superscript ∗ indicates just being transposed and no

complex conjugate are taken even if B is a complex matrix. We shall compute A(s, t; Ξ)

and C(t; Ξ).

First rewrite as

A(s, t; Ξ) = cosh

(√
−1

2
(s− t)Ξ

)
exp

(
−
√
−1

2
(s− t)Ξ

)
. (A.4)
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Since Ξ is skew symmetric,

det

(
exp

(
−
√
−1

2
(s− t)Ξ

))
= 1.

Thus we have

detA(0, t; Ξ) = det

(
cosh

(√
−1 t

2
Ξ

))
. (A.5)

Next, due to the skew symmetry of Ξ again, by (A.4), we have

A(s, t; Ξ)∗ = exp

(√
−1

2
(s− t)Ξ

)
cosh

(√
−1

2
(s− t)Ξ

)
.

In conjunction with (A.4) again, this implies

A(s, t; Ξ)A(s, t; Ξ)∗ =

(
cosh

(√
−1

2
(s− t)Ξ

))2

.

Hence

(A(s, t; Ξ)−1)∗A(s, t; Ξ)−1 =

(
cosh

(√
−1

2
(s− t)Ξ

))−2

.

Recall that sinh(B) = (exp(B)− exp(−B))/2 and

d

ds
s
sinh(sB)

sB

(
cosh(sB)

)−1
=
(
cosh(sB)

)−2
.

Plugging this into the definition of C(t; Ξ), we obtain

C(t; Ξ) = t
sinh(

√
−1 tΞ/2)√

−1 tΞ/2

(
cosh

(√
−1

2
tΞ

))−1

. (A.6)

Plugging (A.5) and (A.6) into (A.3), we obtain

E
[
e
√
−1St(Ξ;0)δy(wt)

]
=

1

(2πt)n/2

[
det

(
sinh(

√
−1 tΞ/2)√

−1 tΞ/2

)]−1/2

exp

(
−1

2
⟨C(t; Ξ)−1y, y⟩Rn

)
.

Combined with (A.2), this implies the desired expression (A.1). □

Remark A.3. Given Θ = (Θ1, . . . ,Θd) ∈ C∞(Rd;Rd) whose derivatives of all or-

der are at most polynomial growth, the Schrödinger operator L with the vector potential

Θ is given by

L = −1

2

d∑
α=1

(
∂

∂xα
+

√
−1Θα

)2

.
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The heat kernel qt(x, y) associated with L possesses a probabilistic expression as follows

(for example, see [27, Theorem 5.5.7]).

qt(x, y) = E[e(t, x)δy(x+ wt)],

where e(t, x) is given by

e(t, x) = exp

(
√
−1

n∑
i=1

∫ t

0

Θα(x+ ws) ◦ dwi
s

)
.

If Θ(x) = −Ξx/2 for x ∈ Rn, then e(t, x) = exp(
√
−1St(Ξ;x)) and hence the right-hand

side of (A.1) gives an explicit expression of qt(x, y).

We now proceed to step-two nilpotent Lie groups. For this purpose, letG be a (n+p)-

dimensional connected and simply connected step-two nilpotent Lie group with the Lie

algebra g, where p is the dimension of [g, g]. Using the diffeomorphism exp : g → G

and suitable bases of {Zk}pk=1 and {Xi}ni=1 of [g, g] and its complement, respectively,

we introduce a global coordinate (x, z) ∈ Rn+p on G; for g ∈ G, g = exp(
∑n

i=1 x
iXi +∑p

k=1 z
kZk), where x = (x1, . . . , xn) ∈ Rn and z = (z1, . . . , zp) ∈ Rp. In terms of this

coordinate, the product × on G is given by

(x, z)× (u, v) =

(
x+ u, z + v +

1

2

n∑
i,j=1

xiujCij

)
, (A.7)

where

[Xi, Xj ] =

p∑
k=1

Ck
ijZk and Cij =

C
1
ij
...

C p
ij

 ∈ Rp.

Let X̃i and Z̃k be the left-invariant vector fields associated withXi and Zk, 1 ≤ i ≤ n

and 1 ≤ k ≤ p, respectively. Set ei = (δij)1≤j≤n ∈ Rn and êk = (δik)1≤i≤p ∈ Rp. Since

Xi = d/dt|t=0(tei, 0) and Zk = d/dt|t=0(0, têk), we have

X̃i(x, z) =
d

dt

∣∣∣∣
t=0

(x, z)× (tei, 0) =

(
∂

∂xi

)
x

+
1

2

n∑
j=1

p∑
k=1

xjC
k
ji

(
∂

∂zk

)
z

,

Z̃k(x, z) =
d

dt

∣∣∣∣
t=0

(x, z)× (0, têk) =

(
∂

∂zk

)
z

.

This implies [X̃i, X̃j ] =
∑p

k=1 C
k
ijZ̃k, and hence X̃1(x), . . . , X̃n(x), Z̃1(x), . . . , Z̃p(x) spans

TxG for every x ∈ G. In particular, X̃1, . . . , X̃n satisfies the equiregular Hörmander

condition at every x ∈ G. Then the heat equation associated with the second order

differential operator
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L =
1

2

n∑
i=1

X̃2
i

possesses the heat kernel pt((x0, y0), (x, z)) with respect to the Lebesgue measure. Note

that the Lebesgue measure is a Haar measure on G, because, by (A.7), the Jacobian

determinant of the left translation is equal to 1. Moreover, by [3], it coincides with

Popp’s measure multiplied by (det((
∑n

i,j=1 C
k
ijC

ℓ
ij)1≤k,ℓ≤p))

1/2.

The diffusion process generated by L is((
x0 + wt, z0 +

∑
i<j

CijS
ij
t (x0)

))
t≥0

.

Due to the Hörmander condition, with the help of generalized Wiener functional, the

heat kernel is represented as

pt
(
(x0, z0), (x, z)

)
= E

[
δ(x,z)

(
x0 + wt, z0 +

∑
i<j

CijS
ij
t (x0)

)]
.

By the left invariance of X̃i, 1 ≤ i ≤ n, it holds(
x0 + wt, z0 +

∑
i<j

CijS
ij
t (x0)

)
= (x0, z0)×

(
wt,
∑
i<j

CijS
ij
t (x0)

)
.

Hence

pt
(
(x0, z0), (x, z)

)
= pt

(
(0, 0), (x0, z0)

−1 × (x, z)
)
.

Thus, in what follows, we assume (x0, z0) = (0, 0).

Using the Fourier transform of the Dirac measure, we have

pt
(
(0, 0), (x, z)

)
=

1

(2π)p

∫
Rp

e−
√
−1 ⟨ζ,z⟩E

[
e
√
−1St((ζ·C);0)δx(wt)

]
dζ, (A.8)

where for ζ = (ζ1, . . . , ζp) ∈ Rp, (ζ · C) is the n× n skew symmetric matrix

(ζ · C) =

(
p∑

k=1

ζkCk
ij

)
1≤i,j≤n

.

If we define

p̂t((x, z)) =
1

(2πt)(n/2)+p

∫
Rp

[
det

(
sinh(

√
−1 (η · C)/2)√

−1 (η · C)/2

)]−1/2

× exp

(
−1

t

{
⟨η, z⟩Rp +

1

2
⟨T (1; (η · C))−1x, x⟩Rn

})
dη,

then plugging Theorem A.1 into (A.8) and using the change variable η = tζ, we obtain
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pt
(
(0, 0), (x, z)

)
= p̂t((x, z)).

Summing up, we arrive at the following expression of the heat kernel, which was

also shown in an analytical way in [6], [14].

Theorem A.4. The heat kernel associated with L has the form

pt
(
(x0, z0), (x, z)

)
= p̂t

(
(x0, z0)

−1 × (x, z)
)
. (A.9)
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