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Abstract. The aim of this paper is to give a mass transportation proof

for a full family of sharp Gagliardo–Nirenberg inequalities in dimension one.
In fact, we shall establish a duality principle which derives this family of
inequalities as a consequence. We also characterize all optimizers for these

inequalities via the mass transportation method.

1. Introduction.

In this paper, we consider the following family of one-dimensional Gagliardo–

Nirenberg inequalities that can be written as

∥f∥Lm(R) ≤ CGN (p, q,m)∥f ′∥θLp(R)∥f∥
1−θ
Lq(R) (1.1)

for p > 1 and 1 ≤ q < m < ∞, where θ = (m− q)p/m(p+ pq − q) and

CGN (p, q,m)

=

(
2p(p− 1)1−p((p− 1)m+ p)

(p−1)m+p
m−q

(m− q)2p−1((p− 1)q + p)
(p−1)q+p

m−q

B

(
(p− 1)q + p

p(m− q)
,
2p− 1

p

)p
) q−m

m((p−1)q+p)

. (1.2)

Here we use the notation ∥g∥Lr(R) = (
∫
R |g|rdx)1/r for any r ≥ 1 and for any measurable

function g on R. This family was obtained by Szőkefalvi-Nagy [26]. The equality holds

in (1.1) for function f of the form

f(x) =

(
1−B−1

(
|x|; 1− 1

p
,

p− q

p(m− q)

))1/(m−q)

,

if q ≥ p, and

f(x) =

(
B−1

(
B

(
p− q

p(m− q)
,
p− 1

p

)
(1− |x|)+;

p− q

p(m− q)
, 1− 1

p

))1/(m−q)

,

if q < p. Here we use the notation a+ = max{a, 0}, and B−1(x; a, b) with a > 0 denotes

the inverse function of the incomplete beta function B(x; a, b) which is defined as
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B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt, 0 ≤ x < 1. (1.3)

A new proof of (1.1) was recently given by Liu and Wang [19]. Indeed, a simple varia-

tional argument shows that a minimizer for the functional

J(f) =
∥f ′∥pLp(R)∥f∥

p(1−θ)/θ
Lq(R)

∥f∥p/θLm(R)

exists and satisfies an Euler–Lagrange equation. Using the positivity and uniqueness of

solutions to this Euler–Lagrange equation (see [24], [25]), Liu and Wang found out the

explicit form of the solution to this Euler–Lagrange equation in terms of incomplete beta

function (1.3) above and hence compute exactly the sharp constant in (1.1).

The Gagliardo–Nirenberg inequalities were established in the higher dimensions in-

dependently by Gagliardo and Nirenberg. We refer the readers to [15], [16], [23] for the

original papers. Among the Gagliardo–Nirenberg inequalities, there are only a few cases

for which best constants are explicit and optimal functions can be characterized. For

example, the sharp constant and optimal functions in Nash’s inequality (see [20]) were

found by Carlen and Loss [8] and some sharp interpolation inequalities on the sphere were

established by Beckner [5] and by Bidaut-Véron and Véron [6]. Another subfamily of

Gagliardo–Nirenberg inequalities for which the best constants and the optimal functions

are explicit was obtained by Del Pino and Dolbeault [11], [12],

∥f∥Lαp(Rn) ≤ DGN∥∇f∥θLp(Rn)∥f∥
1−θ
Lα(p−1)+1(Rn)

,

if α ∈ (1, n/(n− p)) when n > p and α < ∞ when n ≤ p, and

∥f∥Lα(p−1)+1(Rn) ≤ DGN∥∇f∥θLp(Rn)∥f∥
1−θ
Lαp(Rn),

if α ∈ (0, 1) with appropriate values of θ. Another proof of these inequalities was given by

Cordero-Erausquin, Nazaret and Villani by using the mass transportation method [10].

A systematical study on the best constants and the optimal functions of the Gagliardo–

Nirenberg inequalities can be found in the paper of Liu and Wang [19]. In that paper,

Liu and Wang use the variational method to obtain some explicit results for the best

constants and optimal functions of the Gagliardo–Nirenberg inequality which includes

the one of Del Pino and Dolbeault. The weighted Gagliardo–Nirenberg inequalities in

the half space were proved by the author in [21] via the mass transportation method.

The aim of this paper is to show that the mass transportation method can be applied

to give an alternative proof of (1.1). A proof by using the mass transportation method of

(1.1) in the case p = 2 was given by Dolbeault, Esteban, Laptev and Loss [13]. In that

paper, they also gave another proof of (1.1) in this case by using the nonlinear flows.

We also refer the readers to the papers [1], [2] for an earlier proof of (1.1) with p = 2 by

exploiting the relation between the Gagliardo–Nirenberg inequalities and mass transport

theory. In particular, in those papers, Agueh investigated how Barenblatt functions are

transformed into optimal functions for the inequalities, and gave and expression of the

explicit transport map in the case of optimal functions.
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Let us denote by D1,p
q (R) the space of all functions f ∈ Lq(R) such that f ′ (in the

distributional sense) belongs to Lp(R). By this notation, we have D1,p
p (R) = W 1,p(R)

the usual Sobolev space on R. We also denote by L1
q(R) the space of G ∈ L1(R) such

that
∫
R |G||x|qdx < ∞. We define the constant

cp,q,m =

(
m(p− 1) + p

p

)p(m−q)/(m(2p−1)−p(q−1))

. (1.4)

Using the mass transportation method, we shall establish the following duality principle

related to the Gagliardo–Nirenberg inequality (1.1).

Theorem 1.1. Let p > 1 and 1 ≤ q < m < ∞. Then the following relation holds,

sup
G∈L1

p′ (R),G≥0

∫
R G

m(p−1)+p
m(2p−1)−p(q−1) dy(∫

R G|y|
p

p−1 dy
) (m−q)(p−1)

m(2p−1)−p(q−1) (∫
R Gdy

) p+q(p−1)
m(2p−1)−p(q−1)

= cp,q,m inf
f∈D1,p

q (R),f≥0

∥f ′∥
p(m−q)

m(2p−1)−p(q−1)

Lp(R) ∥f∥
q(m(p−1)+p)

m(2p−1)−p(q−1)

Lq(R)

∥f∥
m(p+q(p−1))

m(2p−1)−p(q−1)

Lm(R)

(1.5)

with p′ = p/(p− 1).

Moreover, we have the following conclusions :

(i) If q ≥ p, then the right-hand side of (1.5) is minimized by

f(x) =

(
1−B−1

(
|x|; 1− 1

p
,

p− q

p(m− q)

))1/(m−q)

,

while the left-hand side of (1.5) is maximized by

G(y) = (1 + |y|p
′
)−(m(2p−1)−p(q−1))/p(m−q).

(ii) If 1 ≤ q < p, then the right-hand side of (1.5) is minimized by

f(x) =

(
B−1

(
B

(
p− q

p(m− q)
,
p− 1

p

)
(1− |x|)+;

p− q

p(m− q)
, 1− 1

p

))1/(m−q)

,

while the left-hand side of (1.5) is maximized by

G(y) = (1 + |y|p
′
)−(m(2p−1)−p(q−1))/p(m−q).

In the case p = 2, Theorem 1.1 was established by Dolbeault, Esteban, Laptev and

Loss (see Theorem 1.1 in [13]). From Theorem 1.1, we see that all variational problems

in (1.5) have explicit extremal functions. This fact gives us an efficient method for

computing the sharp constant CGN (p, q,m) in (1.1).

The rest of this paper is organized as follows. In Section 2, we give the proof of

Theorem 1.1 via the mass transportation method. We also consider the threshold case
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m = q = p to establish a dual principle for the general one-dimensional logarithmic

Sobolev inequality in this section. Section 3 is devoted to compute the sharp constant in

(1.1) and to discuss the optimal functions for (1.1). In particular, we shall characterize

all the optimal functions for (1.1) up to a translation, a dilation and a multiplicative

constant by using the mass transportation method in this section.

2. Proof of Theorem 1.1 via mass transportation method.

This section is devoted to prove Theorem 1.1. We also investigate the thresholds case

corresponding to m = p = q to establish a dual principle for the general one-dimensional

logarithmic Sobolev inequality. Our proof is based on the mass transportation method

in dimension one. The mass transportation method is now an useful tool to prove several

sharp inequalities analysis and geometry (e.g., see [1–4], [7], [9], [10], [14], [21], [22] and

references therein). We refer the readers to the book [27] for more background on this

method and its developments.

Proof of Theorem 1.1. We first prove (1.5). By density, it is enough to con-

sider the infimum on the right-hand side of (1.5) for functions f ∈ C∞
0 (R), f ≥ 0. We

start the proof by recalling some basic facts from optimal transportation theory in di-

mension one. Let F,G be two probability densities on R, i.e., F and G are non-negative

functions, F ∈ C1
0 (R) and

∫
R F (x)dx =

∫
R G(x)dx = 1. For any t ∈ R, define

Φ(t) =

∫ t

−∞
F (x)dx, and Ψ(t) =

∫ t

−∞
G(x)dx.

Then Φ,Ψ : R → [0, 1] are non-decreasing functions. Define φ(t) = Ψ−1(Φ(t)). Then φ

is increasing function and we have∫ t

−∞
F (x)dx =

∫ φ(t)

−∞
G(x)dx.

Differentiating in t, we get

F (t) = G(φ(t))φ′(t), for almost everywhere t ∈ R. (2.1)

Let θ ∈ (0, 1) be fixed later, by making the change of variable y = φ(x) and using (2.1),

we have ∫
R
G(y)θdy =

∫
R
G(φ(x))θφ′(x)dx =

∫
R
F (x)θφ′(x)1−θdx. (2.2)

For any α ∈ (0, θ), by using Hölder’s inequality, we get∫
R
F (x)θφ′(x)1−θdx =

∫
R
F (x)θ−αF (x)αφ′(x)1−θdx

≤
(∫

R
F (x)1−α/θdx

)θ (∫
R
F (x)α/(1−θ)φ′(x)dx

)1−θ

. (2.3)
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Considering the last integral and using integration by parts, we have∫
R
F (x)α/(1−θ)φ′(x)dx = − α

1− θ

∫
R
F (x)α/(1−θ)−1F ′(x)φ(x)dx. (2.4)

We now choose θ and α such that

1− α

θ
=

q

m
, and

α

1− θ
− 1

m
=

p− 1

p
.

A simple computation shows that

α =
m− q

m

m(p− 1) + p

m(2p− 1)− p(q − 1)
, and θ =

m(p− 1) + p

m(2p− 1)− p(q − 1)
. (2.5)

Applying Hölder’s inequality to (2.4) and using (2.1), we get∫
R
F (x)

α
1−θφ′(x)dx = −p(m+ 1)−m

p

∫
R
F (x)

p−1
p φ(x)(F

1
m )′(x)dx

≤ p(m+ 1)−m

p

(∫
R
F (x)|φ(x)|

p
p−1 dx

)p−1
p
(∫

R
|(F 1

m )′|pdx
)1

p

=
p(m+ 1)−m

p

(∫
R
G(y)|y|

p
p−1 dy

)p−1
p
(∫

R
|(F 1

m )′|pdx
)1

p

. (2.6)

By taking F = fm, we have from (2.2), (2.3) and (2.6) and the choice (2.5) of α and θ∫
R Gθdy(∫

R G(y)|y|
p

p−1 dy
)(1−θ)(p−1)

p

≤
(
p(m+ 1)−m

p

)1−θ (∫
R
fqdx

)θ (∫
R
|f ′|pdx

)1−θ
p

(2.7)

for any non-negative function f,G such that
∫
R Gdy =

∫
R fmdx = 1 with θ given by

(2.5). Taking into account the homogeneity, the inequality (2.7) yields∫
R G

m(p−1)+p
m(2p−1)−p(q−1) dy(∫

R G|y|
p

p−1 dy
) (m−q)(p−1)

m(2p−1)−p(q−1) (∫
R Gdy

) p+q(p−1)
m(2p−1)−p(q−1)

≤ cp,q,m
∥f ′∥

p(m−q)
m(2p−1)−p(q−1)

Lp(R) ∥f∥
q(m(p−1)+p)

m(2p−1)−p(q−1)

Lq(R)

∥f∥
m(p+q(p−1))

m(2p−1)−p(q−1)

Lm(R)

,

for any non-negative functions G ∈ L1
p′(R) and f ∈ D1,p

q (R). In other words, we have

the following inequality

sup
G∈L1

p′ (R),G≥0

∫
R G

m(p−1)+p
m(2p−1)−p(q−1) dy(∫

R G|y|
p

p−1 dy
) (m−q)(p−1)

m(2p−1)−p(q−1) (∫
R Gdy

) p+q(p−1)
m(2p−1)−p(q−1)
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≤ cp,q,m inf
f∈D1,p

q (R),f≥0

∥f ′∥
p(m−q)

m(2p−1)−p(q−1)

Lp(R) ∥f∥
q(m(p−1)+p)

m(2p−1)−p(q−1)

Lq(R)

∥f∥
m(p+q(p−1))

m(2p−1)−p(q−1)

Lm(R)

. (2.8)

We next prove that (2.8) is indeed an equality. To do this, we trace back to the

equality case in the previous applications of Hölder’s inequality. We have the following

observations. Firstly, equality holds in (2.3) if

λF (x)1−α/θ = φ′(x)F (x)α/(1−θ),

for some λ > 0, or equivalently

φ′(x) = λF (x)1−α/θ(1−θ). (2.9)

Equality holds in (2.6) if

φ(x)|φ(x)|p
′−2 = µ(−F ′(x))F (x)1/m−1/p−1, (2.10)

for some µ > 0. Hence, it holds

φ′(x)φ(x)|φ(x)|p
′−2 = c(−F ′(x))F (x)1/m−1/p−α/θ(1−θ),

for some c > 0. Let x0 be a point where φ(x0) = 0, the previous equality implies

|φ(x)|p
′
= c1

(
F (x)−(m−q)/m − F (x0)

−(m−q)/m
)
,

for some c1 > 0, here we used 1/m−1/p−α/θ(1− θ)+1 = −(m− q)/m. Hence we have

F (x) =

(
F (x0)

−(m−q)/m +
|φ(x)|p′

c1

)−m/(m−q)

.

The preceding expression of F together with (2.9) and (2.1) suggests us to consider the

function G having the form G(y) = (1 + |y|p′
)−(m(2p−1)−p(q−1))/p(m−q). On the other

hand, from (2.10), we have

(−F ′(x))F (x)
p−m
mp −1

(
F (x)−

m−q
m − F (x0)

−m−q
m

)− 1
p

= c2sign(x− x0), (2.11)

for some c2 > 0. If q ≥ p, integrating the equality (2.11) from x0 to x, we get

F (x) = F (x0)

(
1−B−1

(
c3|x− x0|;

1

p′
,

p− q

p(m− q)

))m/(m−q)

,

for some c3 > 0. If q < p, integrating the equality (2.11) from x0 to x, we get

c2|x− x0| =
∫ x

x0

(−F ′(y))F (y)
p−m
mp −1+m−q

mp

(
1−

(
F (y)

F (x0)

)m−q
m

)− 1
p

dy
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=
m

m− q
F (x0)

p−q
mp

∫ 1(
F (x)
F (x0)

)m−q
m

(1− s)−
1
p s

p−q
p(m−q)

−1ds

=
m

m− q
F (x0)

p−q
mp

(
B

(
p− q

p(m− q)
,
1

p′

)
−B

((
F (x)

F (x0)

)m−q
m

;
p− q

p(m− q)
,
1

p′

))
.

Since p > q, then the function F must have compact support and have the form

F (x) = F (x0)

(
B−1

(
B

(
p− q

p(m− q)
,
1

p′

)(
1− |x− x0|

R

)
+

;
p− q

p(m− q)
,
1

p′

))m/(m−q)

,

for some R > 0. The observations above suggest us the functions which are optimizers

for the variational problems on the left-hand side and right-hand side of (1.5).

Proof of (1.5) for p ≤ q and part (i). Following the previous observations, let

us consider the function

f∗(x) = C

(
1−B−1

(
|x|; 1− 1

p
,

p− q

p(m− q)

))1/(m−q)

,

where C is chosen such that
∫
R fm

∗ dx = 1. A simple computation shows that

Cm =
1

2

[
B

(
p− 1

p
,
p(m+ 1)− q

p(m− q)

)]−1

.

We next define the function G∗ ∈ L1
p′(R) by

G∗(x) = p′Cm(1 + |x|p
′
)−(m(2p−1)−p(q−1))/p(m−q).

Obviously,
∫
R G∗dy = 1. Denote F∗(x) = f∗(x)

m. It is easy to check that

F∗(x) = G∗(φ(x))φ
′(x),

with

φ(x) = sign(x)

(
B−1

(
|x|; 1− 1/p, (p− q)/p(m− q)

)
1−B−1

(
|x|; 1− 1/p, (p− q)/p(m− q)

))1/p′

.

With this choice of φ, we have equalities in (2.3) and (2.6) for F,G replaced by F∗,

and G∗ respectively. Thus, (2.7) becomes an equality for G∗ and f∗ which implies the

equality in (2.8). This proves (1.5) for q ≥ p and part (i).

Proof of (1.5) for q < p and part (ii). Following the previous observations,

let us consider the function

f⋆(x) = D

(
B−1

(
B

(
p− q

p(m− q)
,
1

p′

)
(1− |x|)+;

p− q

p(m− q)
, 1− 1

p

))1/(m−q)

,
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where D is chosen such that
∫
R fm

⋆ dx = 1. A simple computation shows that

Dm = B

(
p− q

p(m− q)
,
1

p′

)
Cm.

We next define the function G∗ ∈ L1
p′(R) by

G∗(x) = p′Cm(1 + |x|p
′
)−(m(2p−1)−p(q−1))/p(m−q).

Obviously,
∫
R G∗dy = 1. Denote F⋆(x) = f⋆(x)

m. It is easy to check that

F⋆(x) = G∗(φ(x))φ
′(x), −1 < x < 1,

with

φ(x) = sign(x)

1−B−1
(
B
(

p−q
p(m−q) ,

1
p′

)
(1− |x|)+; p−q

p(m−q) ,
1
p′

)
B−1

(
B
(

p−q
p(m−q) ,

1
p′

)
(1− |x|)+; p−q

p(m−q) ,
1
p′

)


1
p′

.

With this choice of φ, we have equalities in (2.3) and (2.6) for F,G replaced by F⋆, and

G∗ respectively (notice that the integral of F⋆ is taken in (−1, 1)). Thus, (2.7) becomes

an equality for G∗ and f⋆ which implies the equality in (2.8). This proves (1.5) for q < p

and part (ii). □

We next investigate the threshold case p = q and m ↓ p. If we apply (1.5) for p = q,

take the logarithm of both sides of the obtained inequality, multiply by (m(2p − 1) −
p(p− 1))/(m− p)(p− 1) and pass to the limit as m ↓ p, then we have

− p′
∫
R G lnGdy∫

R Gdy
− ln

∫
R
G|y|p

′
dy +

2p− 1

p− 1
ln

∫
R
Gdy

≤ 1

p− 1
ln

∫
R
|f ′|pdx+ ln

∫
R
fpdx− p′

∫
R fp ln fpdx∫

R fpdx
+ p′ ln p.

Thus, we obtain the following result.

Proposition 2.1. If p > 1, then the following relation holds,

sup
G∈L1

p′ (R)\{0},G≥0

(
ln

∫
R Gdy∫

R G|y|p′dy
− p′

∫
R G lnGdy −

∫
R Gdy ln

∫
R Gdy∫

R Gdy

)

= p′ inf
f∈W 1,p(R)\{0},f≥0

(
ln

(
p
∥f ′∥Lp(R)

∥f∥Lp(R)

)
−
∫
R fp ln fpdx−

∫
R fpdx ln

∫
R fpdx∫

R fpdx

)
.

(2.12)

Moreover, the functions G(y) = e−|y|p
′

and f(x) = e−|x|p
′
/p solve both the variational

problems on the left-hand side and right-hand side of (2.12) respectively.
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The equality (2.12) provides a dual principle for the general one-dimensional Lp

logarithmic Sobolev inequality. The general Lp logarithmic Sobolev inequality was first

proved by Del Pino and Dolbeault (see [11] for p = 2 and [12] for 1 < p < n) by

considering it as the limiting case of their sharp Gagliardo–Nirenberg inequalities. This

inequality then was extended to any 1 < p < ∞ by Gentil [17] by another method based

on the hypercontractivity of the solution of a special Jacobi–Hamilton type equation.

The equality (2.12) with p = 2 was recently proved in [13]. A direct proof based on

optimal transportation method, in any dimension, can be found in [9].

3. Sharp constants and optimal functions.

This section is devoted to compute the best constants in the Gagliardo–Nirenberg

inequality (1.1) and to discuss the optimal functions for (1.1).

3.1. Sharp constants in the Gagliardo–Nirenberg inequality.

Let us compute the sharp constant CGN (p, q,m) in (1.1). Notice that

1

CGN (p, q,m)
= inf

f∈D1,p
q (R),f≥0

∥f ′∥θLp(R)∥f∥
1−θ
Lq(R)

∥f∥Lm(R)

=

 inf
f∈D1,p

q (R),f≥0

∥f ′∥
p(m−q)

m(2p−1)+p(q−1)

Lp(R) ∥f∥
q(m(p−1)+p)

m(2p−1)−p(q−1)

Lq(R)

∥f∥
m(p+q(p−1))

m(2p−1)−p(q−1)

Lm(R)


m(2p−1)−p(q−1)

m(q(p−1)+p)

.

Combining the previous equality together with (1.5), we get

1

CGN (p, q,m)

=

 1

cp,q,m
sup

G∈L1
p′ (R),

G≥0

∫
R G

m(p−1)+p
m(2p−1)−p(q−1) dy(∫

R G|y|
p

p−1 dy
) (m−q)(p−1)

m(2p−1)−p(q−1) (∫
R Gdy

) p+q(p−1)
m(2p−1)−p(q−1)


m(2p−1)−p(q−1)

m(q(p−1)+p)

.

(3.1)

It follows from Theorem 1.1 that the right-hand side of (3.1) is maximized by the function

G(y) = (1 + |y|p
′
)−(m(2p−1)−p(q−1))/p(m−q).

The direct computations show that∫
R
G(y)dy =

2

p′
B

(
m(2p− 1)− p(q − 1)

p(m− q)
,
1

p′

)
= 2

q(p− 1) + p

p(m− q)
B

(
q(p− 1) + p

p(m− q)
,
2p− 1

p

)
,

∫
R
G(y)|y|p

′
dy = 2

p− 1

p
B

(
q(p− 1) + p

p(m− q)
,
2p− 1

p

)
,

and
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R
G(y)(m(2p−1)−p(q−1))/p(m−q)dy = 2

m(p− 1) + p

p(m− q)
B

(
q(p− 1) + p

p(m− q)
,
2p− 1

p

)
.

Inserting the preceding integrals into (3.1), we obtain the value of CGN (p, q,m) as given

in (1.2).

In the threshold case m = p = q, Proposition 2.1 gives the following one-dimension

Lp logarithmic Sobolev inequality (see [17] for more general inequalities in any dimen-

sional)∫
R
fp ln fpdx−

∫
R
fpdx ln

∫
R
fpdx ≤ 1

p
∥f∥pLp(R) ln

(
pp

(ep′)p−1
(
2Γ(1 + 1

p′ )
)p ∥f ′∥pLp(R)

∥f∥pLp(R)

)
,

for any f ∈ W 1,p(R). In the special case p = 2, we get∫
R
f2 ln f2dx−

∫
R
f2dx ln

∫
R
f2dx ≤ 1

2
∥f∥2L2(R) ln

(
2

πe

∥f ′∥2L2(R)

∥f∥2L2(R)

)
,

for any function f ∈ H1(R), which is equivalent to Gross’s famous logarithmic Sobolev

inequality for Gaussian measure (see [18]).

3.2. The optimal functions.

Let us discuss about the optimal functions for the sharp Gagliardo–Nirenberg in-

equality (1.1). Suppose that f is an optimizer for the sharp Gagliardo–Nirenberg in-

equality (1.1). We write f as f = f+ − f− where f+ = max{f, 0} and f− = max{−f, 0}.
Notice that ∥f∥rLr(R) = ∥f+∥rLr(R) + ∥f−∥rLr(R) for any r ∈ [1,∞). An simple argument

based on convexity shows that either f+ = 0 or f− = 0 almost everywhere in R. Hence

up to a multiplicative constant ±1, we can assume that f is a nonnegative function.

By the homogeneity of (1.1), we can assume
∫
R fmdx = 1. Denote F (x) = fm(x) and

G(y) = p′Cm(1 + |y|p′
)−(m(2p−1)−p(q−1))/p(m−q) with the constant C given

Cm =
1

2

[
B

(
p− 1

p
,
p(m+ 1)− q

p(m− q)

)]−1

and chosen such that
∫
R G(y)dy = 1. Notice that G is positive and continuous on R.

Define

Φ(t) =

∫ t

−∞
F (x)dx, and Ψ(t) =

∫ t

−∞
G(y)dy.

Then Φ is a non-decreasing and continuous function from R to [0, 1] and Ψ is a diffeo-

morphism form R to (0, 1). Let a = inf{t : Φ(t) > 0} and b = sup{t : Φ(t) < 1}. Notice

that if a > −∞ then F (x) = 0 almost everywhere in {x ≤ a}, similarly if b < ∞ then

F (x) = 0 for almost everywhere x ≥ b. Let φ(t) = Ψ−1(Φ(t)) with t ∈ (a, b). Notice that

φ : (a, b) → R is an increasing function. Moreover, for almost everywhere t ∈ (a, b), we

have

F (t) = G(φ(t))φ′(t). (3.2)
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Let θ, α be defined by (2.5). Using (3.2) and making the change of variable y = φ(t), we

have ∫
R
Gθdy =

∫ b

a

G(φ(t))θφ′(t)dt =

∫ b

a

F (t)θφ′(t)1−θdt.

Using Hölder inequality, we get the following form of (2.3)∫ b

a

F (t)θφ′(t)1−θdt ≤
(∫ b

a

F (t)1−α/θdt

)θ(∫ b

a

F (t)α/(1−θ)φ′(t)dt

)1−θ

. (3.3)

Our next aim is to apply integration by parts in the last integral in the right-hand

side of (3.3). We shall follow the argument in [10, Lemma 7]. Let x0 = min{x ∈ (a, b) :

φ(x) = 0}. We have x0 ∈ (a, b) and φ(x0) = 0. For ϵ > 0, define fϵ(x) = min{f(x0+(x−
x0)/(1−ϵ)), f(x)χ(ϵ(x−x0))}, where χ is cut-off function, i.e., χ ∈ C∞

0 ((−2, 2)) is radial

function, 0 ≤ χ ≤ 1, and χ(x) = 1 if |x| ≤ 1. For ϵ > 0 small enough, we have the support

of fϵ is contained in Iϵ = (x0+(1−ϵ)(a−x0), x0+(1−ϵ)(b−x0))∩(x0−2ϵ−1, x0+2ϵ−1).

Notice that Iϵ ⊂ (a, b). For δ > 0 small enough (smaller the distance from ∂Iϵ to {a, b}),
we define fϵ,δ = fϵ ⋆ ϕδ, where ϕδ = δ−1ϕ(·/δ), and ϕ ∈ C∞

0 (R) is radial nonnegative

function such that
∫
R ϕdx = 1. We then have fϵ,δ ∈ C∞

0 ((a, b)). Denote Fϵ,δ = fm
ϵ,δ and

Fϵ = fm
ϵ then Fϵ ≤ F . By integration by parts, we have∫ b

a

Fϵ,δ(t)
α/(1−θ)φ′(t)dt = −p(m+ 1)−m

p

∫ b

a

fϵ,δ(t)
m(p−1)/pφ(t)(fϵ,δ)

′(t)dt. (3.4)

Notice that fϵ,δ → fϵ in Lq(R) ∩ Lm(R) and f ′
ϵ,δ → f ′

ϵ in Lp(R) as δ → 0. Let I ⊂ (a, b)

be an interval such that Iϵ ⊂ I ⊂ I ⊂ (a, b), then the support of fϵ,δ is contained in I

for δ > 0 small enough. Moreover, φ is bounded in I. Letting δ → 0 in (3.4), and using

Fatou’s lemma (notice that φ′ ≥ 0), we get∫ b

a

Fϵ(t)
α/(1−θ)φ′(t)dt ≤ −p(m+ 1)−m

p

∫ b

a

fϵ(t)
m(p−1)/pφ(t)(fϵ)

′(t)dt. (3.5)

It is easy to check that fϵ → f in Lm(R) ∩ Lq(R) as ϵ → 0, and ∥f ′
ϵ∥Lp(R) = (1 −

ϵ)−1/p′∥f ′∥Lp(R) is bounded as ϵ → 0. Hence by extracting a subsequence ϵk → 0, we

have fϵk → f in Lm(R) ∩ Lq(R) and almost everywhere in R as k → ∞, and f ′
ϵk

⇀ f ′

weakly in Lp(R). Notice that
∫
R G|y|p′

dy < ∞, which implies
∫ b

a
fm(t)|φ(t)|p′

dt < ∞.

Since fϵ ≤ f , hence by dominated convergence theorem we have f
m/p′

ϵ φ → fm/p′
φ in

Lp′
(R) as ϵ → 0. Consequently, applying (3.5) for sequence ϵk and letting k → ∞ and

using again Fatou’s lemma, we have∫ b

a

F (t)α/(1−θ)φ′(t)dt ≤ −p(m+ 1)−m

p

∫ b

a

f(t)m(p−1)/pφ(t)f ′(t)dt. (3.6)

Now, applying Hölder’s inequality to (3.6), we get
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∫ b

a

F (t)
α

1−θφ′(t)dt ≤ p(m+ 1)−m

p

(∫ b

a

f(t)m|φ(t)|
p

p−1 dx

)p−1
p
(∫

R
|f ′|pdt

)1
p

=
p(m+ 1)−m

p

(∫
R
G(y)|y|

p
p−1 dy

)p−1
p
(∫ b

a

|f ′|pdx
)1

p

. (3.7)

Combining (3.3) and (3.7), we get

∥f ′∥θLp(R)∥f∥
1−θ
Lq(R)

∥f∥Lm(R)
≥ 1

CGN (p, q,m)
.

Since f is an optimizer then it holds

∥f ′∥θLp(R)∥f∥
1−θ
Lq(R)

∥f∥Lm(R)
=

1

CGN (p, q,m)
.

Consequently, we must have equality in (3.3) and (3.7). Equality holds true in (3.3) if

and only if

φ′(t) = λF (t)1−α/θ(1−θ) (3.8)

for almost everywhere t ∈ (a, b) and for some λ > 0. Equality holds true in (3.7) if and

only if

φ(t)|φ(t)|p
′−2 = µ(−F ′(t))F (t)1/m−1/p−1,

for almost everywhere t ∈ (a, b) and for some µ > 0. Notice that φ(x0) = 0. Combining

the previous two equalities, we get

c|φ(t)|p
′
= F (t)−(m−q)/m − F (x0)

−(m−q)/m, t ∈ (a, b),

for some c > 0, or equivalently,

F (t) =
(
F (x0)

−(m−q)/m + c|φ(t)|p
′)−m/(m−q)

, t ∈ (a, b). (3.9)

From (3.2), we get

φ′(t) = Cm(1 + |φ(t)|p
′
)−

m(2p−1)−p(q−1)
p(m−q)

(
F (x0)

−m−q
m + c|φ(t)|p

′
)− m

m−q

, t ∈ (a, b).

Since φ(t) → −∞ as t → a+ (and φ(t) → ∞ as t → b−), then φ′(t) ∼ |φ(t)|1+
p−q

(p−1)(m−q)

as t → a+ (and t → b−). Fix a number t0 ∈ (a, x0), then∫ t0

t

φ′(s)(−φ(s))−1+(q−p)/(p−1)(m−q)ds ∼ (t0 − t),

as t → a+. Consequently, we must have a = −∞ if q ≥ p, and a > −∞ if q < p. Indeed,

if q ≥ p, we have
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∫ t0

t

φ′(s)(−φ(s))−1+(q−p)/(p−1)(m−q)ds ∼

{
(−φ(t))(q−p)/(p−1)(m−q) if q > p,

ln(−φ(t)) if q = p,

as t → a+, which forces a = −∞ since φ(t) → −∞ as t → a+. A similar argument shows

a > −∞ if q < p. By the same arguments, we have b = +∞ if q ≥ p and b < +∞ if

q < p. To continue, we divide our arguments into two cases according to q ≥ p or q < p.

Case q ≥ p. In this case we have (a, b) = R and F (t) > 0 for any t. From (3.8)

and (3.9), we have

φ′(t)
(
F (x0)

−(m−q)/m + c|φ(t)|p
′
)−(m(p−1)−p(q−1))/p(m−q)

= λ.

Integrating this equality implies

cF (x0)
(m−q)/m|φ(x)|p

′
=

B−1 (C|x− x0|; 1/p′, (p− q)/p(m− q))

1−B−1
(
C|x− x0|; 1/p′, (p− q)/p(m− q)

) ,
for some C > 0. Inserting this expression of φ into (3.9), we get

F (x) = F (x0)

(
1−B−1

(
C|x− x0|;

1

p′
,

p− q

p(m− q)

))m/(m−q)

,

as desired.

Case 1 ≤ q < p. In this case we have −∞ < a < b < ∞ and F (t) > 0 for t ∈ (a, b).

From (3.8) and (3.9), we have

φ′(t)
(
F (x0)

−(m−q)/m + c|φ(t)|p
′
)−(m(p−1)−p(q−1))/p(m−q)

= λ, t ∈ (a, b).

Integrating this equality implies

C(b− x) = B

(
1− cF (x0)

(m−q)/mφ(x)p
′

1 + cF (x0)(m−q)/mφ(x)p′ ;
p− q

p(m− q)
,
1

p′

)
, x ∈ [x0, b)

and

C(x− a) = B

(
1− cF (x0)

(m−q)/m(−φ(x))p
′

1 + cF (x0)(m−q)/m(−φ(x))p′ ;
p− q

p(m− q)
,
1

p′

)
, x ∈ (a, x0]

for some C > 0. Taking x = x0, we get x0 = (a+ b)/2 and

C
b− a

2
= B

(
p− q

p(m− q)
,
1

p′

)
.

Hence, it holds
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cF (x0)
m−q
m |φ(x)|p

′
=

1

B−1
(
C( b−a

2 − |x− x0|); p−q
p(m−q) ,

1
p′

) − 1, x ∈ (a, b).

Inserting this expression of φ into (3.9), we get

F (x) = F (x0)

(
B−1

(
B

(
p− q

p(m− q)
,
1

p′

)
( b−a

2 − |x− x0|)+
a

;
p− q

p(m− q)
,
1

p′

)) m
m−q

,

as desired.

We have thus shown the following result.

Theorem 3.1. Let p > 1 and m > q ≥ 1. Suppose f is an optimizer for the sharp

Gagliardo–Nirenberg inequality (1.1). Then we have the following :

(i) If q ≥ p, then

f(x) = c

(
1−B−1

(
C|x− x0|;

1

p′
,

p− q

p(m− q)

))1/(m−q)

,

for some c ∈ R, C > 0 and x0 ∈ R.

(ii) If q < p, then

f(x) = c

(
B−1

(
B

(
p− q

p(m− q)
,
1

p′

)
(a− |x− x0|)+

a
;

p− q

p(m− q)
,
1

p′

))1/(m−q)

for some c ∈ R, a > 0 and x0 ∈ R.

Theorem 3.1 was proved in [19] by solving explicitly the solution of the Euler–

Lagrange equations related to the Gagliardo–Nirenberg inequality (1.1) (see also [13,

Appendix B] for the case p = 2). Here, we give another proof of this result via the mass

transportation method. Notice that our proof above of Theorem 3.1 does not use any

decreasing rearrangement argument as done in [19] and in [13, Appendix B]. We only

use the equality case in Hölder’s inequality. This is one of the advantages of the mass

transportation method (compared with the variational method) in proving the sharp

functional inequalities and characterizing their optimal functions.

References

[ 1 ] M. Agueh, Sharp Gagliardo–Nirenberg inequalities and mass transport theory, J. Dynam. Dif-

ferential Equations, 18 (2006), 1069–1093.

[ 2 ] M. Agueh, Gagliardo–Nirenberg inequalities involving the gradient L2-norm, C. R. Math. Acad.

Sci. Paris, 346 (2008), 757–762.

[ 3 ] M. Agueh, N. Ghoussoub and X. Kang, Geometric inequalities via a general comparison principle

for interacting gases, Geom. Funct. Anal., 14 (2004), 215–244.

[ 4 ] F. Barthe, On a reverse form of the Brascamp–Lieb inequality, Invent. Math., 134 (1998),

335–361.

[ 5 ] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann.

of Math. (2), 138 (1993), 213–242.

https://doi.org/10.1007/s10884-006-9039-9
https://doi.org/10.1007/s10884-006-9039-9
https://doi.org/10.1016/j.crma.2008.05.015
https://doi.org/10.1016/j.crma.2008.05.015
https://doi.org/10.1007/s00039-004-0455-x
https://doi.org/10.1007/s002220050267
https://doi.org/10.1007/s002220050267
https://doi.org/10.2307/2946638
https://doi.org/10.2307/2946638


647(319)

A mass transportation proof of the sharp one-dimensional Gagliardo–Nirenberg inequalities 647
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