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Abstract. Relying on the main results of [GT], we classify all unitary t-
groups for t ≥ 2 in any dimension d ≥ 2. We also show that there is essentially

a unique unitary 4-group, which is also a unitary 5-group, but not a unitary
t-group for any t ≥ 6.

1. Introduction.

Unitary t-designs have recently attracted a lot of interest in quantum information

theory. The concept of unitary t-design was first conceived in physics community as a

finite set that approximates the unitary group Ud(C), like any other design concept. It

seems that works of Gross–Audenaert–Eisert [GAE] and Scott [Sc] marked the start

of the research on unitary t-designs. Roy–Scott [RS] gives a comprehensive study of

unitary t-designs from a mathematical viewpoint.

It is known that unitary t-designs in Ud(C) always exist for any t and d, but explicit
constructions are not so easy in general. A special interesting case is the case where a

unitary t-design itself forms a group. Such a finite group in Ud(C) is called a unitary t-

group. Some examples of unitary 5-groups are known in U2(C). For d ≥ 3, some unitary

3-groups have been known in Ud(C). But no example of unitary 4-groups in dimensions

d ≥ 3 was known. It seems that the difficulty of finding 4-groups in Ud(C) for d ≥ 3 has

been noticed by many researchers (see e.g. Section 1.2 of [ZKGG]). The purpose of this

paper is to clarify this situation. Namely, we point out that this problem in dimensions

≥ 5 is essentially solved in the context of finite group theory by Guralnick–Tiep [GT].

We also show that the classification of unitary 2-groups in Ud(C) for d ≥ 5 is derived from

[GT] as well. Building on this, we provide a complete description of unitary t-groups in

Ud(C) for all t, d ≥ 2.
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2. Unitary t-groups in dimension d ≥ 5.

We now recall the notion of unitary t-groups, following [RS, Corollary 8]. Let

V = Cd be endowed with standard Hermitian form and let H = U(V ) = Ud(C) denote

the corresponding unitary group. Then a finite subgroup G < H is called a unitary

t-group for some integer t ≥ 1, if

1

|G|
∑
g∈G

|tr(g)|2t =
∫
X∈H

|tr(X)|2tdX. (1)

Note that the right-hand-side in (1) is exactly the 2t-moment M2t(H, V ) as defined in

[GT], whereas the left-hand-side is the 2t-moment M2t(G,V ). Recall, see e.g. [FH,

Subsection 26.1], that the complex irreducible representations of the real Lie algebra sud
and the complex Lie algebra sld are the same. It follows that M2t(H, V ) = M2t(G, V )

for G = GL(V ). Given these basic observations, we can recast the main results of [GT]

in the finite setting as follows.

Theorem 1. Let V = Cd with d ≥ 5 and G = GL(V ). Assume that G < G is a

finite subgroup. Then M8(G,V ) > M8(G, V ). In particular, if d ≥ 5 and t ≥ 4, then

there does not exist any unitary t-group in Ud(C).

Proof. The first statement is precisely [GT, Theorem 1.4]. The second statement

then follows from the first and [GT, Lemma 3.1]. □

We note that [GT, Theorem 1.4] also considers any Zariski closed subgroups G of

G with the connected component G◦ being reductive. Then the only extra possibility

with M8(G,V ) = M8(G, V ) is when G ≥ [G,G] = SL(V ). In fact, [GT] also considers

the problem in the modular setting.

Combined with Theorem 10 (below), Theorem 1 yields the following consequence,

which gives the complete classification of unitary t-groups for any t ≥ 4:

Corollary 2. Let G < Ud(C) be a finite group and d ≥ 2. Then G is a unitary

t-group for some t ≥ 4 if and only if d = 2, t = 4 or 5, and G = Z(G)SL2(5).

Next, we obtain the following consequences of [GT, Theorems 1.5, 1.6], where

F ∗(G) = F (G)E(G) denotes the generalized Fitting subgroup of any finite group G

(respectively, F (G) is the Fitting subgroup and E(G) is the layer of G); furthermore, we

follow the notation of [Atlas] for various simple groups. If G is a finite group and V is

a CG-module, then V ↓H denotes the restriction of V to a subgroup H ≤ G. We also

refer the reader to [GMST] and [TZ2] for the definition and basic properties of Weil

representations of (certain) finite classical groups.

Theorem 3. Let V = Cd with d ≥ 5 and let G = GL(V ). For any finite subgroup

G < G, set S̄ = S/Z(S) for S := F ∗(G). Then M4(G,V ) =M4(G, V ) if and only if one

of the following conditions holds.

(i) Lie-type case: One of the following holds.
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(a) S̄ = PSp2n(3), n ≥ 2, G = S, and V ↓S is a Weil module of dimension

(3n ± 1)/2.

(b) S̄ = Un(2), n ≥ 4, [G : S] = 1 or 3, and V ↓S is a Weil module of dimension

(2n − (−1)n)/3.

(ii) Extraspecial case: d = pa for some prime p and F ∗(G) = F (G) = Z(G)E, where

E = p1+2a
+ is an extraspecial p-group of order p1+2a and type +. Furthermore,

G/Z(G)E is a subgroup of Sp(W ) ∼= Sp2a(p) that acts transitively on W ∖ {0} for

W = E/Z(E), and so is listed in Theorem 5 (below). If p > 2 then E�G ; if p = 2

then F ∗(G) contains a normal subgroup E1 � G, where E1 = C4 ∗ E is a central

product of order 22a+2 of Z(E1) = C4 ≤ Z(G) with E.

(iii) Exceptional cases: S = Z(G)[G∗, G∗], and (dim(V ), S̄, G∗) is as listed in Table I.

Furthermore, in all but lines 2–6 of Table I, G = Z(G)G∗. In lines 2–6, either

G = S or [G : S] = 2 and G induces on S̄ the outer automorphism listed in the

fourth column of the table.

In particular, G < H = U(V ) is a unitary 2-group if and only if G is as described in

(i)–(iii).

Table I. Exceptional examples in G = GLd(C) with d ≥ 5.

d S̄ G∗ Outer
The largest 2k with

M2k(G,V ) = M2k(G, V )

M2k+2(G,V ) vs.

M2k+2(G, V )

6 A7 6A7 4 21 vs. 6

6 L3(4)
(⋆) 6L3(4) · 21 21 6 56 vs. 24

6 U4(3)
(⋆) 61 ·U4(3) 22 6 25 vs. 24

8 L3(4) 41 · L3(4) 23 4 17 vs. 6

10 M12 2M12 2 4 15 vs. 6

10 M22 2M22 2 4 7 vs. 6

12 Suz (⋆) 6Suz 6 25 vs. 24

14 2B2(8)
2B2(8) · 3 4 90 vs. 6

18 J3
(⋆) 3J3 6 238 vs. 24

26 2F4(2)
′ 2F4(2)

′ 4 26 vs. 6

28 Ru 2Ru 4 7 vs. 6

45 M23 M23 4 817 vs. 6

45 M24 M24 4 42 vs. 6

342 O′N 3O′N 4 3480 vs. 6

1333 J4 J4 4 8 vs. 6

Note that in Table I, the data in the sixth column is given when we take G = G∗.

Proof. We apply [GT, Theorem 1.5] to (G,G). Then case (A) of the theorem is

impossible as G is finite, and case (D) leads to case (iii) as G = GL(V ).

In case (B) of [GT, Theorem 1.5], we have that S̄ = PSp2n(q) with n ≥ 2 and

q = 3, 5, or S̄ = PSUn(2) with n ≥ 4, and V ↓S is irreducible. It is easy to see that
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the latter condition implies that G/S has order 1 or 3. Next, L = E(G) is a quotient of

Sp2n(q) or SUn(2) by a central subgroup, and S = Z(S)L. Let χ denote the character

of the G-module V . As d > 4, the condition M4(G,V ) =M4(G, V ) is equivalent to that

G act irreducibly on both Sym2(V ) and ∧2(χ) (see the discussion in [GT, Section 2]).

Hence, if χ ↓L is real-valued, then either Sym2(χ ↓L) or ∧2(χ ↓L) contains 1L, whence

either Sym2(χ ↓S) or ∧2(χ ↓S) contains a linear character. But both Sym2(V ) and ∧2(V )

have dimension at least d(d − 1)/2 ≥ 10 and [G : S] ≤ 3, so G cannot act irreducibly

on them, a contradiction. We have shown that χ ↓L is not real-valued. Now using

Theorems 4.1 and 5.2 of [TZ1], we can rule out the case S̄ = PSp2n(5) and the case

(S̄,dim(V )) = (PSUn(2), (2
n + 2(−1)n)/3), as χ ↓L is real-valued in those cases.

Case (C), together with [GT, Lemma 5.1], leads to case (ii) listed above, except

for the explicit description of E and E1. Suppose p > 2. Then at least one element in

E ∖Z(E) has order p, whence all elements in E ∖Z(E) have order p by the transitivity

of G/Z(G)E on W ∖ {0}, i.e. E has type +. Also, note that E is generated by all

elements of order p in Z(G)E, and so E � G. Next suppose that p = 2 and let E1 � G

be generated by all elements of order at most 4 in Z(G)E. If |Z(G)| < 4, then F ∗(G) =

E1 = E is an extraspecial 2-group of order 21+2a of type ϵ for some ϵ = ±. In this case,

G/Z(G)E ↪→ Oϵ
2a(2) and so cannot be transitive on W ∖ {0} (as a ≥ 2), a contradiction.

So |Z(G)| ≥ 4. In this case, one can show that E1 = C4 ∗ E with Z(E) < C4 ≤ Z(G),

and since C4 ∗ 21+2a
+

∼= C4 ∗ 21+2a
− , we may choose E to have type +. □

We note that the case of Theorem 3 where G is almost quasisimple was also treated

in [M]. More generally, the classification of subgroups of a classical group Cl(V ) in

characteristic p that act irreducibly on the heart of the tensor square, symmetric square,

or alternating square of V ⊗Fp Fp, is of particular importance to the Aschbacher–Scott

program [A] of classifying maximal groups of finite classical groups. See [Mag], [MM],

[MMT] for results on this problem in the modular case.

Theorem 4. Let V = Cd with d ≥ 5 and let G = GL(V ). Assume G is a finite

subgroup of G. Then M6(G,V ) = M6(G, V ) if and only if one of the following two

conditions holds.

(i) Extraspecial case: d = 2a for some a > 2, and G = Z(G)E1 · Sp2a(2), where

E ∼= 21+2a
+ is extraspecial and of type + and E1 = C4 ∗ E with C4 ≤ Z(G).

(ii) Exceptional cases: Let S̄ = S/Z(S) for S = F ∗(G). Then

S̄ ∈ {L3(4),U4(3), Suz, J3},

and (dim(V ), S̄, G∗) is as listed in the lines marked by (⋆) in Table I. Furthermore,

either G = Z(G)G∗, or S̄ = U4(3) and S = Z(G)G∗.

In particular, G < H = U(V ) is a unitary 3-group if and only if G is as described in (i),

(ii).

Proof. Apply [GT, Theorem 1.6] and also Theorem 3(ii) to (G,G). □
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The transitive subgroups of GLn(p) are determined by Hering’s theorem [He] (see

also [L, Appendix 1]), which however is not easy to use in the solvable case. For the

complete determination of unitary 2-groups in Theorem 3(ii), we give a complete classi-

fication of such groups in the symplectic case that is needed for us. The notations such

as SmallGroup(48, 28) are taken from the SmallGroups library in [GAP].

Theorem 5. Let p be a prime and let W = F2n
p be endowed with a non-degenerate

symplectic form. Assume that a subgroup H ≤ Sp(W ) acts transitively on W ∖ {0}.
Then (H, p, 2n) is as in one of the following cases.

(A) Infinite classes:

(i) n = bs for some integers b, s ≥ 1, and Sp2b(p
s)′ �H ≤ Sp2b(p

s)⋊ Cs.

(ii) p = 2, n = 3s for some integer s ≥ 2; and G2(2
s)�H ≤ G2(2

s)⋊ Cs.

(B) Small cases:

(i) (2n, p) = (2, 3), and H = Q8.

(ii) (2n, p) = (2, 5), and H = SL2(3).

(iii) (2n, p) = (2, 7), and H = SL2(3).C2 = SmallGroup(48, 28).

(iv) (2n, p) = (2, 11), and H = SL2(5).

(v) (2n, p) = (4, 3), and H = SmallGroup(160, 199), SmallGroup(320, 1581),

2.S5, SL2(9), SL2(9)⋊ C2 = SmallGroup(1440, 4591), or

C2.((C2 × C2 × C2 × C2)⋊A5) = SmallGroup(1920, 241003).

(vi) (2n, p) = (6, 2), and H = SL2(8), SL2(8)⋊ C3, SU3(3), SU3(3)⋊ C2.

(vii) (2n, p) = (6, 3) and H = SL2(13).

Proof. We may assume that (2n, p) is not in one of the small cases listed in (B),

which are computed using [GAP]. We have that [H : CH(v)] = p2n − 1, for every

v ∈ W ∖ {0}. Now we apply Hering’s theorem, as given in [L, Appendix 1] and analyze

possible classes for H.

(a) Suppose that H ≤ ΓL1(p
2n), which is the semidirect product of Γ0 (the mul-

tiplicative field of Fp2n) and the Galois automorphism σ of order 2n. If n = 1, then

H ≤ SL2(p), which has order p(p − 1)(p + 1), and we may assume that p ≥ 13. As

the smallest index of proper subgroups of SL2(p) is p+ 1 (see e.g. [TZ1, Table VI]), we

conclude that H = SL2(p). So we may assume that n > 1. We may also assume that

(2n, p) ̸= (2, 6). Hence, we can consider a Zsigmondy (odd) prime divisor r of p2n − 1

[Zs], and have that the order of p mod r is 2n. Thus 2n divides r − 1. Let C = H ∩ Γ0.

Note that r divides |C| (because r does not divide 2n), and hence C acts irreducibly on

W . Since C < Sp(W ), by [Hu, Satz II.9.23] we have that |C| divides pn +1. Hence, |H|
divides 2n(pn + 1), and thus pn − 1 divides 2n. This is not possible.

(b) Aside from the possibilities listed in (A) and (B), we need only consider the

possibility 2n = as with a ≥ 3, pn ̸= 22, 32, 23, 33, and H � SLa(p
s). Let d(X)

denote the smallest degree of faifthful complex representations of a finite group X. Since

H ≤ Sp2n(p), by [TZ1, Theorem 5.2] we have that
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d(X) ≤ (pn + 1)/2 = (pas/2 + 1)/2.

On the other hand, since H � SLa(p
s), by [TZ1, Theorem 3.1] we also have that

d(X) ≥ (pas − ps)/(ps − 1) > ps(a−1).

As a ≥ 3, this is impossible. □

3. An infinite family of “almost” unitary 3-groups in high dimensions.

As follows from Theorem 4, the Weil representations Φ : G → GL(V ) of dimen-

sions (3m ± 1)/2 of the symplectic group Sp2m(3), do not give rise to unitary 3-groups,

even though they yield unitary 2-groups (see Theorem 3(i)). However, we record the

following result, which shows that the failure is minimal: M6(G/Ker(Φ), V ) = 7 whereas

M6(GL(V ), V ) = 6, and thus the Weil representations lead to “almost” unitary 3-groups.

Theorem 6. Let m ≥ 3 be an integer, and let Φ : G → GL(V ) be an irreducible

Weil representation for G = Sp2m(3) of degree (3m± 1)/2. Then M6(G/Ker(Φ), V ) = 7.

Proof. Recall, see [GMT, Section 3], that G has four (distinct) irreducible Weil

characters, ξ, ξ̄ of degree (3m + 1)/2, and η, η̄ of degree (3m − 1)/2. Now, by [GMT,

Theorem 1.3] and its proof,

ξ3 = (Sym3(ξ)− ξ̄) + 2S2,1(ξ) + ∧3(ξ) + ξ̄

is a decomposition of ξ3 into irreducible summands, and the listed irreducible summands

are pairwise distinct. It follows that [ξ3, ξ3]G = 7, and so M6(G/Ker(Φ), V ) = 7 if Φ

affords the character ξ or ξ̄. (Here, S2,1 denotes the Schur functor labeled by the partition

(2, 1) of 3, see [FH, (6.8), (6.9)].) Similarly,

η3 = Sym3(η) + 2S2,1(η) + (∧3(η)− η̄) + η̄

is a decomposition of η3 into irreducible summands, and the listed irreducible summands

are pairwise distinct. It follows that [η3, η3]G = 7, and so M6(G/Ker(Φ), V ) = 7 if Φ

affords the character η or η̄. □

Note that Ker(Φ) = 1 if dimV is even, and Ker(Φ) = Z(G) ∼= C2 if dimV is odd.

4. Unitary t-groups in dimensions at most 4.

In this section we complete the classification of unitary t-groups in dimension ≤ 4.

First we introduce some key groups for this classification, where we use the notation of

[GAP] for SmallGroup(64, 266) and PerfectGroup(23040, 2).

Proposition 7. Consider an irreducible subgroup

E4 = C4 ∗ 21+4
+ = SmallGroup(64, 266)
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of order 26 of GL(V ), where V = C4, and let Γ4 := NGL(V )(E4). Then the following

statements hold.

(i) Γ4 induces the subgroup A+ ∼= C4
2 · S6 of all automorphisms of E4 that act trivially

on Z(E4) = C4.

(ii) The last term Γ
(∞)
4 of the derived series of Γ4 is L = PerfectGroup(23040, 2), a

perfect group of order 23040 and of shape E4 ·A6. Furthermore, Γ
(∞)
4 is a unitary

3-group.

Proof. (i) It is well known, see e.g. [Gr, p. 404], that A+ ∼= Inn(E4) · S6 with

Inn(E4) ∼= C4
2 . Certainly, Γ4/CΓ4(E4) ↪→ A+. Let ψ denote the character of E4 afforded

by V , and note that ψ and ψ are the only two irreducible characters of degree 4 of E4,

and they differ by their restrictions to Z(E4). Now for any α ∈ A+, ψα = ψ. It follows

that there is some g ∈ GL(V ) such that gxg−1 = α(x) for all x ∈ E4; in particular,

g ∈ Γ4. We have therefore shown that Γ4/CΓ4(E4) ∼= A+.

(ii) Using [GAP], one can check that L := PerfectGroup(23040, 2) embeds in GL(V ),

with a character say χ, and F ∗(L) ∼= E4. So without loss we may identify F ∗(L) with

E4 and obtain that L < Γ4. Again using [GAP] we can check that [χ3, χ3]L = 6 =

M6(GL(V )), which means that L is a unitary 3-group. As L is perfect, we have that

L ≤ Γ
(∞)
4 . Next, L acting on E4 induces the perfect subgroup A++ ∼= C4

2 · A6 of index

2 in A+, and the same also holds for Γ
(∞)
4 . Hence, for any g ∈ Γ

(∞)
4 , we can find h ∈ L

such that the conjugations by g and by h induce the same automorphism of E4. By

Schur’s Lemma, gh−1 ∈ Z(Γ4), whence Γ
(∞)
4 ≤ Z(Γ4)L. Taking the derived subgroup,

we see that Γ
(∞)
4 ≤ L, and so Γ

(∞)
4 = L, as stated. □

Next, we recall three complex reflection groups G29, G31, and G32 in dimension 4,

namely, the ones listed on lines 29, 31, and 32 of [ST, Table VII]. A direct calculation

using the computer packages GAP3 [Mi], [S+], and Chevie [GHMP], shows that each

of these 3 groups G, being embedded in H = U4(C), is a unitary 2-group. Also,

F (G29) ∼= F (G31) ∼= SmallGroup(64, 266), F (G32) = Z(G32) ∼= C6,

and

G29/F (G29) ∼= S5, G31/F (G31) ∼= S6, G32
∼= C3 × Sp4(3).

In what follows, we will identify F (G29) and F (G31) with the subgroup E4 defined in

Proposition 7. Let us denote the derived subgroup of Gk by G′
k for k ∈ {29, 31, 32}.

With this notation, we can give a complete classification of unitary 2-groups and unitary

3-groups in the following statement.

Theorem 8. Let V = C4, G = GL(V ), and let G < G be any finite subgroup.

Then the following statements hold.

(A) With E4, Γ4 and L as defined in Proposition 7, we have that [Γ4,Γ4] = L = G′
31

and Γ4 = Z(Γ4)G31. Furthermore, M4(G,V ) =M4(G, V ) if and only if one of the

following conditions holds
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(A1) G = Z(G)H, where H ∼= 2A7 or H ∼= Sp4(3)
∼= G′

32.

(A2) L = [G,G] ≤ G < Γ4.

(A3) E4 �G < Γ4, and, after a suitable conjugation in Γ4,

G′
29 = [G,G] ≤ G ≤ Z(Γ4)G29.

In particular, G < H = U(V ) is a unitary 2-group if and only if G is as described

in (A1)–(A3).

(B) M6(G,V ) =M6(G, V ) if and only if G is as described in (A1)–(A2). In particular,

G < U(V ) is a unitary 3-group if and only if G is as described in (A1)–(A2).

(C) M8(G,V ) > M8(G, V ). In particular, no finite subgroup of U4(C) can be a unitary

4-group.

Proof. (A) First we assume that M4(G,V ) = M4(G, V ), and let χ denote the

character of G afforded by V . The same proof as of [GT, Theorem 1.5] and Theorem 3

shows that one of the following two possibilities must occur.

• Almost quasisimple case: S�G/Z(G) ≤ Aut(S) for some finite non-abelian simple

group S. By the results of [M], we have that S ∼= A7 or PSp4(3). It is straightforward

to check that E(G) ∼= 2A7, respectively Sp4(3), and furthermore G cannot induce a

nontrivial outer automorphism on S. Recall that in this case we have F ∗(G) = Z(G)E(G)

and soCG(E(G)) = CG(F
∗(G)) = Z(G). It follows thatG = Z(G)E(G), and (A1) holds.

Moreover, using [GAP] we can check that [α2, α2] = 2, [α3, α3] = 6, but [α4, α4] = 38,

respectively 25, for α := χ ↓E(G). Thus we have checked in the case of (A1) that

M2t(G,V ) = M2t(G, V ) for t ≤ 3, but M8(G,V ) > M8(G, V ), since M8(G, V ) = 24 by

[GT, Lemma 3.2].

• Extraspecial case: F ∗(G) = F (G) = Z(G)E4 and E4 � G, in particular, G ≤ Γ4;

furthermore, G/Z(G)E4 ≤ Sp(W ) satisfies conclusion (A)(i) of Theorem 5 for W =

E4/Z(E4) ∼= F4
2. Suppose first that G/Z(G)E4 ≥ Sp4(2)

′ ∼= A6. In this case, G induces

(at least) all the automorphisms of E4 that belong to the subgroup A++ in the proof

of Proposition 7. As in that proof, this implies that Z(Γ4)G ≥ L. Taking the derived

subgroup, we see that

[G,G] ≥ L, (2)

i.e. we are in the case of (A2). Moreover,

6 =M6(G, V ) ≤M6(G,V ) ≤M6(L, V ),

and M6(L, V ) = 6 as shown above. Hence M2t(G,V ) = M2t(G, V ) for t ≤ 3. Applying

(2) to G = G31 and recalling that |L| = |G′
31|, we see that L = G′

31. Next, G31 and Γ4

induce the same subgroup A+ of automorphisms of E4, hence Γ4 = Z(Γ4)G31. Taking

the derived subgroup, we obtain that L = [Γ4,Γ4], and so (2) implies that [G,G] = L.

Next we consider the case where G/Z(G)E4 = SL2(4) ∼= A5 or SL2(4) ⋊ C2
∼= S5.

Using [Atlas], it is easy to check that Sp(W ) ∼= S6 has two conjugacy classes C1,2
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of (maximal) subgroups that are isomorphic to S5, and two conjugacy classes C′
1,2 of

subgroups that are isomorphic to A5. Any member of one class, say C′
1, is irreducible,

but not absolutely irreducible on W , that is, preserves an F4-structure on W , and is

contained in a member of, say C1. Any member of the other class C2 is absolutely

irreducible on W and preserves a quadratic form Q of type − on W ; in particular, it has

two orbits of length 5 and 10 on W ∖{0} (corresponding to singular vectors, respectively

non-singular vectors, in W with respect to Q), and is contained in a member of C2. On

the other hand, since G is transitive on W ∖ {0} by [GT, Lemma 5.1], the last term

G(∞) of the derived series of G must have orbits of only one size on W ∖ {0}. Applying

this analysis to K := G29, we see that K/E4 must belong to C1 and the derived subgroup

of K/Z(K)E4 as well as [K,K]/E4 belong to C′
1. Hence, after a suitable conjugation in

Γ4, we may assume that

G29/E4 ≥ G/Z(G)E4 ≥ G′
29/E4;

in particular, the subgroup of automorphisms of E4 induced by G is either the one

induced by G29, or the one induced by G′
29. In either case, we have that

G ≤ Z(Γ4)G29, G
′
29 ≤ Z(Γ4)[G,G].

As G′
29 is perfect, taking the derived subgroup we obtain that [G,G] = G′

29, i.e. (A3)

holds.

(B) We have already mentioned above that M6(G,V ) =M6(G, V ) for the groups G

satisfying (A1) or (A2). By [GT, Lemma 3.1], it remains to show that for the groups

G satisfying (A3), M6(G,V ) ̸=M6(G, V ). Assume the contrary: M6(G,V ) =M6(G, V ).

By [GT, Remark 2.3], this equality implies that G is irreducible on all the simple G-
submodules of V ⊗V ⊗V ∗, which can be seen using [Lu, Appendix A.7] to decompose as

the direct sum of simple summands of dimension 4 (with multiplicity 2), 20, and 36. Let

θ denote the character of G afforded by the simple G-summand of dimension 36. Note

that χ vanishes on F (G)∖ Z(G) and faithful on Z(G). It follows that

χ2χ ↓F (G)= 16χ ↓F (G) .

As χ ↓F (G) is irreducible, we see that θ ↓F (G)= 9(χ ↓F (G)). But χ ↓F (G) obviously

extends to G�F (G). It follows by Gallagher’s theorem [Is, (6.17)] that G/F (G) admits

an irreducible character β of degree 9 (such that θ ↓G= (χ ↓G)β). This is a contradiction,

since G/F (G) ∼= A5 or S5.

(C) Assume the contrary: M8(G,V ) = M8(G, V ). Then M6(G,V ) = M6(G, V ) by

[GT, Lemma 3.1]. By (B), we may assume that G satisfies (A1) or (A2). By [GT,

Remark 2.3], the equality M8(G,V ) = M8(G, V ) implies that G is irreducible on the

simple G-submodule Sym4(V ) (of dimension 35) of V ⊗4. This in turn implies, for instance

by Ito’s theorem [Is, (6.15)] that 35 divides |G/Z(G)|. The latter condition rules out

(A2) since |G/Z(G)| divides 24 · |Sp4(2)| in that case. Finally, we already mentioned

above that M8(G,V ) > M8(G, V ) in the case of (A1). □

To handle the remaining cases d = 2, 3, we first note:
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Lemma 9. Let G = SL(V ) for V = C2. Then the following statements hold.

(i) M6(G, V ) = 5, M8(G, V ) = 14, and M10(G, V ) = 42.

(ii) Suppose M2t(G,V ) = M2t(G, V ) for a finite group G < G. If t ≥ 4 then 5 divides

|G/Z(G)|. If t ≥ 6 then 7 divides |G/Z(G)|.

(iii) Suppose SL2(5) ∼= G < G. Then M2t(G,V ) = M2t(G, V ) for 1 ≤ t ≤ 5 but

M2t(G,V ) > M2t(G, V ) for t ≥ 6.

Proof. Note that the symmetric powers Symk(V ), k ≥ 0, are pairwise non-

isomorphic irreducible CG-modules, with Sym0(V ) ∼= C ∼= ∧2(V ), and V ⊗ V ∼=
Sym2(V )⊕ C. Now using [FH, Exercise 11.11] we obtain for all a ≥ 1 that

Syma(V )⊕ V ∼= Syma+1(V )⊕ Syma−1(V )

as CG-modules. It follows that

V ⊗3 ∼= Sym3(V )⊕ V ⊕2,

V ⊗4 ∼= Sym4(V )⊕ (Sym2(V ))⊕3 ⊕ C⊕2,

V ⊗5 ∼= Sym5(V )⊕ (Sym3(V ))⊕4 ⊕ V ⊕5

as CG-modules (with the superscripts indicating the multiplicities), implying (i).

For (ii), note by Remark 2.3 and Lemma 3.1 of [GT] that the assumption implies

that G is irreducible on Sym4(V ) of dimension 5 if t ≥ 4, and on Sym6(V ) of dimension

7 if t ≥ 6.

The first assertion in (iii) can be checked using (i) and [GAP], and the second

assertion follows from (ii). □

Now we recall three complex reflection groups G4
∼= SL2(3), G12

∼= GL2(3), and

G16
∼= C5 × SL2(5) in dimension d = 2, listed on lines 4, 12, and 16 of [ST, Table VII],

and three complex reflection groups G24
∼= C2 × SL3(2), G25

∼= 31+2
+ ⋊ SL2(3), and

G27
∼= C2 × 3A6 in dimension d = 3, listed on lines 24, 25, and 27 of [ST, Table VII]. As

above, for any of these 6 groups Gk, G
′
k denotes its derived subgroup. A direct calculation

using the computer packages GAP3 [Mi], [S+], and Chevie [GHMP], shows that each of

these 6 groups G, being embedded in H = Ud(C), is a unitary 2-group; furthermore, G12,

G′
16, and G

′
27 are unitary 3-groups. One can check that F (G4) ∼= F (G12) is a quaternion

group Q8 = 21+2
− , and we will identify them with an irreducible subgroup E2

∼= Q8 of

GL2(C). Also, E3 := F (G25) ∼= 31+2
+ is an extraspecial 3-group of order 27 and exponent

3, which is an irreducible subgroup of GL3(C). Let Γd := NGLd(C)(Ed) for d = 2, 3. Now

we can give a complete classification of unitary t-groups in dimensions 2 and 3.

Theorem 10. Let V = Cd with d = 2 or 3, G = GL(V ), and let G < G be any

finite subgroup. Then the following statements hold.

(A) Suppose d = 2. Then M4(G,V ) = M4(G, V ) if and only if one of the following

conditions holds
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(A1) G = Z(G)H, where H = G′
16

∼= SL2(5).

(A2) E2 �G < Γ2 and Z(G)G = Z(G)H, where H = G12
∼= GL2(3).

(A3) E2 �G < Γ2 and Z(G)G = Z(G)H, where H = G4
∼= SL2(3).

In particular, G < H = U(V ) is a unitary 2-group if and only if G is as described

in (A1)–(A3). Furthermore, G < H = U(V ) is a unitary 3-group if and only if G is

as described in (A1)–(A2). Moreover, such a subgroup G can be a unitary t-group

for some t ≥ 4 if and only if 4 ≤ t ≤ 5 and G is as described in (A1).

(B) Suppose d = 3. Then M4(G,V ) = M4(G, V ) if and only if one of the following

conditions holds

(B1) G = Z(G)H, where H = G′
27

∼= 3A6.

(B2) G = Z(G)H, where H = G′
24

∼= SL3(2).

(B3) E3 �G < Γ3. Moreover, either Z(G)G = Z(G)G′
25, or Z(G)G = Z(G)G25.

In particular, G < H = U(V ) is a unitary 3-group if and only if G is as described

in (B1), and no finite subgroup of U(V ) can be a unitary 4-group.

Proof. Let G < G be any finite subgroup such that M2t(G,V ) = M2t(G, V ) for

some t ≥ 2; in particular,

M4(G,V ) =M4(G, V ). (3)

First we note that if K < G is any finite subgroup that is equal to G up to scalars, i.e.

Z(G)G = Z(G)K, then by [GT, Remark 2.3] we see that M2t(K,V ) = M2t(G, V ). So,

instead of working with G, we will work with the following finite subgroup

K := {λg | g ∈ G,λ ∈ C×,det(λg) = 1} < SL(V ).

Next, we observe that G acts primitively on V . (Otherwise G contains a normal abelian

subgroup A with G/A ↪→ Sd. In this case, by Ito’s theorem G cannot act irreducibly on

the irreducible G-submodule of dimension d2 − 1 of V ⊗ V ∗, and so G violates (3) by

[GT, Remark 2.3].) Now, using the fact that d = dim(V ) ≤ 3 is a prime number, it is

straightforward to show that one of the following two possibilities must occur.

• Almost quasisimple case: S�G/Z(G) ≤ Aut(S) for some finite non-abelian simple

group S. By the results of [M], we have that S ∼= PSL2(5) if d = 2, and S ∼= SL3(2)

or A6 if d = 3. Arguing as in the proof of Theorem 8, we see that (A1), (B1), or

(B2) holds. In the case of (A1), M2t(G,V ) = M2t(G, V ) if and only if 2 ≤ t ≤ 5 by

Lemma 9. In the case of (B2), G cannot act irreducibly on Sym3(V ) of dimension 10,

whence M2t(G,V ) = M2t(G, V ) if and only if t = 2. Assume we are in the case of (B1).

As mentioned above, then we have M2t(G,V ) = M2t(G, V ) for t = 2, 3. However, if

ϖ1 and ϖ2 denote the two fundamental weights of [G,G] ∼= SL3(C), then V ⊗2 ⊗ (V ∗)⊗2

contains an irreducible [G,G]-submodule with highest weight 2ϖ1 +2ϖ2 of dimension 27

(see [Lu, Appendix A.6]). Clearly, G cannot act irreducibly on this submodule, and so

M8(G,V ) > M8(G, V ) by [GT, Remark 2.3].
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• Extraspecial case: F ∗(G) = F (G) = Z(G)Ed and Ed �G, in particular, G ≤ Γd;

furthermore, G/Z(G)Ed ≤ Sp(W ) satisfies conclusion (A)(i) of Theorem 5 for W =

Ed/Z(Ed) ∼= F2
d. The latter condition is equivalent to require G/Z(G)Ed to contain

the unique subgroup C3 of Sp2(2)
∼= S3 when d = 2 and the unique subgroup Q8 of

Sp2(3)
∼= SL2(3) when d = 3. Note that G4

∼= SL2(3), respectively G12
∼= GL2(3),

induces the subgroup C3, respectively S3, of outer automorphisms of E2
∼= Q8. Similarly,

G′
25

∼= 31+2
+ ⋊Q8, respectively G25

∼= 31+2
+ ⋊SL2(3), induces the subgroup Q8, respectively

SL2(3), of outer automorphisms of E3
∼= 31+2

+ that act trivially on Z(E3). Now arguing

as in the proof of Theorem 8, we see that (A2), (A3), or (B3) holds. In the case of (A3),

M8(G,V ) > M8(G, V ) by Lemma 9, and we already mentioned above that M6(G,V ) =

M6(G, V ). In the case of (A2), G cannot act irreducibly on Sym3(V ) of dimension 4, so

M2t(G,V ) =M2t(G, V ) if and only if t = 2. In the case of (B3), G cannot act irreducibly

on Sym3(V ) of dimension 10, so M2t(G,V ) =M2t(G, V ) if and only if t = 2. □
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[Lu] F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic,

LMS J. Comput. Math., 4 (2001), 135–169.

[Mag] K. Magaard, On the irreducibility of alternating powers and symmetric squares, Arch. Math.,

63 (1994), 211–215.

[MM] K. Magaard and G. Malle, Irreducibility of alternating and symmetric squares, Manuscripta

Math., 95 (1998), 169–180.

https://doi.org/10.1007/BF01388470
https://doi.org/10.1007/BF01388470
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007/BF01190329
https://doi.org/10.1007/BF01190329
https://doi.org/10.2140/pjm.1973.48.403
https://doi.org/10.1063/1.2716992
https://doi.org/10.1016/S0021-8693(02)00527-6
https://doi.org/10.21915/bimas.2018405
https://doi.org/10.21915/bimas.2018405
https://doi.org/10.1090/S1088-4165-05-00192-5
https://doi.org/10.1016/0021-8693(85)90179-6
https://doi.org/10.1007/978-3-642-64981-3
https://doi.org/10.1112/plms/s3-54.3.477
https://doi.org/10.1112/plms/s3-54.3.477
https://doi.org/10.1112/S1461157000000838
https://doi.org/10.1007/BF01189822
https://doi.org/10.1007/BF01189822
https://doi.org/10.1007/s002290050021
https://doi.org/10.1007/s002290050021


921(249)

Unitary t-groups 921

[MMT] K. Magaard, G. Malle and P. H. Tiep, Irreducibility of tensor squares, symmetric squares

and alternating squares, Pacific J. Math., 202 (2002), 379–427.

[M] G. Malle, Almost irreducible tensor squares, Comm. Algebra, 27 (1999), 1033–1051.

[Mi] J. Michel, The development version of the CHEVIE package of GAP3, J. Algebra, 435 (2015),

308–336.

[RS] A. Roy and A. J. Scott, Unitary designs and codes, Des. Codes Cryptogr., 53 (2009), 13–31.

[S+] M. Schönert et al., GAP – Groups, Algorithms, and Programming, sixth edition, Lehrstuhl

D für Mathematik, RWTH Aachen, Germany, 1997.

[Sc] A. J. Scott, Optimizing quantum process tomography with unitary 2-designs, J. Phys. A, 41

(2008), 055308.

[ST] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954),

274–304.

[TZ1] P. H. Tiep and A. E. Zalesskii, Minimal characters of the finite classical groups, Comm.

Algebra, 24 (1996), 2093–2167.

[TZ2] P. H. Tiep and A. E. Zalesskii, Some characterizations of the Weil representations of the

symplectic and unitary groups, J. Algebra, 192 (1997), 130–165.

[ZKGG] H. Zhu, R. Kueng, M. Grassl and D. Gross, The Clifford group fails gracefully to be a unitary

4-design, arXiv:1609.08172v1.

[Zs] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., 3 (1892), 265–284.

Eiichi Bannai

Professor Emeritus

Kyushu University

Fukuoka 819-0395, Japan

E-mail: bannai@math.kyushu-u.ac.jp

Gabriel Navarro

Department of Mathematics

Universitat de València
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