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Abstract. For a prime number q ̸= 2 and r > 0, we study whether there

exists an isometry of order qr acting on a free Zpk -module equipped with a

scalar product. We investigate whether there exists such an isometry with no
non-zero fixed points. Both questions are completely answered in this paper

if p ̸= 2, q. As an application, we refine Naik’s criterion for periodicity of links
in S3. The periodicity criterion we obtain is effectively computable and gives
concrete restrictions for periodicity of low-crossing knots.

1. Introduction.

1.1. General overview.

Let L ⊂ S3 be a link. We say that L is m-periodic if there exists an orientation-

preserving diffeomorphism ϕ : S3 → S3 such that ϕm = id, ϕj ̸= id for j < m, ϕ(L) = L

and L is disjoint from the rotation axis of ϕ. One of the oldest questions in knot theory

is to determine which links are periodic. The existing obstructions for periodicity can be

divided in a few classes.

(1) The first such class consists of classical criteria, that is, criteria based on the Seifert

matrix. The classical criteria are usually easy to apply and to implement on a

computer. They are also quite effective. However, these classical criteria do not

obstruct periodicity of any knot which has the same Seifert matrix as a periodic

knot. Examples of such criteria include:

• Murasugi’s criterion [11] based on Alexander polynomial;

• a refinement of Murasugi’s criterion by Davis and Livingston [6];

• Naik’s homological criterion [12], [13] based on first homology of branched

cover.

(2) The second class consists of criteria based on Jones and HOMFLYPT polynomials.

Like the classical criteria, these are also effective and algorithmically computable.

These criteria include:

• Traczyk’s criterion on Jones polynomial [18], [19];

• Przytycki’s criterion on HOMFLYPT polynomial [15].
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(3) The third class consists of criteria based on twisted invariants. The class includes:

• Naik’s criterion on Casson–Gordon invariant;

• a criterion of Hillman, Livingston and Naik [7] based on twisted Alexander

polynomial.

(4) Finally, recently many criteria have been developed from homological invariants of

knots and 3-manifolds. Examples include:

• the Jabuka and Naik criterion [8] based on Heegaard Floer homology of

branched cover;

• criteria based on Khovanov homology given by Politarczyk [14], and the first

author and Politarczyk [1].

There are other tools to obstruct link periodicity which do not fit into any of the four

classes above. We can mention here:

• Sakuma’s work [17] on periodicity of non-prime knots;

• SnapPy, a computer program [4] that enable to verify periodicity of hyperbolic

knots based on results of [22];

• Chen’s criterion for fundamental group of link complement [3].

The criterion we develop in this paper fits into the first class of the criteria in the

above list.

1.2. Overview of the paper.

Our criterion is built on top of Naik’s homological criterion. That is, only if a knot

passes Naik’s criterion, we can apply our criterion and (sometimes) obstruct periodicity.

To be more specific, let K be an m-periodic knot where m = qr is an odd prime

power. Let K/Zm be the quotient knot. Consider the double branched cover Σ(K) and

let Tp be the p-torsion part of H1(Σ(K);Z). For any odd prime number p ̸= q, the Zm
action on K induces a group action on Tp. Furthermore, Naik [13] shows that the fixed

point set of this action is the p-torsion part of H1(Σ(K/Zm);Z).

The rank of H1(Σ(K/Zm);Z) is the absolute value of the Alexander polynomial

∆K/Zm
(−1). By Murasugi’s criterion [11], the Alexander polynomial of K/Zm is a

factor of the Alexander polynomial of K. In some cases, for all the factors ∆′ of ∆K

that can be Alexander polynomials of some knot, the prime number p does not divide

∆′(−1). This translates into the statement that Zm acts on Tp without non-zero fixed

points.

The action of Zm on Tp preserves the linking form on H1(Σ(K);Z). We show that

Tp can be decomposed into the orthogonal sum of spaces Tp,1, . . . , Tp,s, where each of the

Tp,i is of form (Zpai )ni for some ai, ni. Moreover, the decomposition is preserved by the

group action; see Proposition 2.2. From the linking form on Tp,i we construct a bilinear

form Tp,i × Tp,i → Zpai ; see Section 3. The Zm-action preserves this form, too.

Let O(Tp,i) be the group of invertible matrices over Zpai which preserve the bilinear

form on Tp,i. From what was said, there is a subgroup of O(Tp,i) isomorphic to Zm acting
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on Tp,i without non-zero fixed points. From this observation Naik [13] deduces that the

rank ni of Tp,i must be a multiple of a number depending on q and p only.

The refinement that we propose goes into a deeper study of the group O(Tp,i). First,

Wall in [21] proves that on any Tp,i there are precisely two non-isomorphic bilinear forms

with values in Zpai . We distinguish them by an index ϵ = ±1; see Theorem 3.3 below.

The structure of the group O(Tp,i) depends on this index. We invoke a result of Weir

[23] which determines the Sylow q-group of O(Tp,i) depending on the index ϵ. Weir’s

result uses so-called wreath product; see Definition 5.3 below. We unfold the definition

of the wreath product to show in which cases this Sylow q-group contains an element of

order qr.

To complete the picture we need to study whether an element of order qr of O(Tp,i)

can act on Tp,i without non-zero fixed points. For this purpose we consider an orthogonal

decomposition Tp,i = T ′
p,i ⊕ Zpai for some submodule T ′

p,i. This decomposition also

induces an embedding O(T ′
p,i) ↪→ O(Tp,i). We show that if this embedding induces an

isomorphism on Sylow q-groups, then every element of order qr in O(Tp,i) has a fixed

subspace of dimension at least 1. Therefore, the only chance that an element of O(Tp,i) of

order qr acts without non-zero fixed points is that the q-Sylow groups of Tp,i are strictly

larger than those of T ′
p,i. With a little extra effort, we obtain a full characterization of

groups O(Tp,i) that contain an element of order qr acting on Tp,i without non-zero fixed

points; see Theorem 1.3.

Retracing the path from the periodic knot K to subgroups of O(Tp,i) we obtain a

refinement of Naik’s periodicity criterion. It is stated as Theorem 1.4 below.

1.3. Main results.

Before we state Theorem 1.3, we need to introduce some terminology.

Definition 1.1. Let p be a prime number and m an odd number coprime with p.

We denote by [m|p] the minimal positive exponent s such that either m|(ps − 1) or

m|(ps + 1). We define η(m) = 1 if m|(p[m|p] − 1) and η(m) = −1 if m|(p[m|p] + 1).

Remark 1.2. For any n > 0, m divides pn[m|p] − η(m)n. We also note that

η(m) = −1 if and only if p is a root of −1 in Zm, that is, if some power of p is equal to

−1 in Zm.

We recall also that if p ̸= 2 and k > 0, a free Zpk -module of rank n can be equipped

with two non-equivalent symmetric bilinear forms with values in Zpk . These two forms

are distinguished by an index ϵ, which we introduce rigorously in Definition 3.5.

The following result is the main technical result in the present paper.

Theorem 1.3. Let p ̸= q be odd prime numbers. Let B be a free Zpk -module of

rank n > 0, for some k > 0. Let β : B×B → Zpk be a non-degenerate symmetric bilinear

form. Let s be the maximal integer such that qs|(p2[q|p] − 1). Fix an integer r > 0 and

set r̃ = max(r − s, 0).

(a) There exists an isometry of (B, β) of order qr if and only if n ≥ 2[q|p]qr̃ + 1, or

n = 2[q|p]qr̃ and ϵ(B, β) = η(q).
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(b) There exists an isometry of (B, β) of order qr with no non-zero fixed points if and

only if n = 2[q|p]d for d ≥ qr̃ and ϵ(B, β) = η(q)d.

The main application of Theorem 1.3 in our paper is the following refinement of

Naik’s theorem [13, Theorem 5].

Theorem 1.4. Let L be a qr-periodic link with r ≥ 1 and q an odd prime. Let Tp
be the p-torsion subgroup of H1(Σk(L);Z), where Σk(L) is a k-fold branched cyclic cover

for k > 1 and p ̸= q an odd prime.

(a) If Tp is non-trivial, then Tp splits as a sum Tp,1 ⊕ Tp,2 ⊕ · · · of pairwise orthogonal

summands. The summand Tp,i is a free Zpi-module with linking form λp,i. The Zqr -
symmetry of L induces an action of Zqr on Tp preserving the orthogonal splitting.

(b) Suppose the first homology of the k-fold cover of the quotient link Σk(L/Zqr ) has

no p-torsion. If Tp,i is non-trivial, then there exists an integer di ≥ qr−s such that

rankTp,i = 2[q|p]di and ϵ(Tp,i) = η(q)di .

Remark 1.5. In Section 3 we explain how to extend the definition of the ϵ index

from symmetric bilinear forms to linking forms, so that the index ϵ(Tp,i) in item (b)

above makes sense.

Our result extends [13, Theorem 5] in the following two ways.

• While Naik’s result deals with links admitting a Zq-action with q prime, we extend

it to links that admit an action of Zqr for r > 1.

• Our new condition ϵ(Tp,i) = η(q)di rules out approximately half of linking forms

that can appear as linking forms of a periodic link such that the quotient has

no p-torsion. This is a substantial strengthening of Naik’s criterion, as shown in

Section 11.

Example 1.6. As explained in detail in Section 11, the knots 13n3659, 14n908,

14n913, 14n2451, 14n2458, 14n6565, 14n9035, 14n11989, 14n14577, 14n23051 and

14n24618 pass Naik’s periodicity criterion for period 3, but can be shown not to be

3-periodic by Theorem 1.4.

1.4. Structure of the paper.

The structure of the paper is as follows. In Section 2 we recall Naik’s result in details.

Section 3 recalls basics on linking forms and pairings. This section gives a translation

between Theorem 1.3 and Theorem 1.4. We explain this translation in Subsection 1.6

below. Sections 3–6 contain the proof of Theorem 1.3. We review the content of these

sections in Subsection 1.5 below.

Section 9 shows an explicit way of applying Theorem 1.4 to obstruct periodicity. An

elaborated example of a knot that actually passes the criterion is given in Section 10. A

comparison of our criterion with other periodicity criteria is given in Section 11.
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1.5. Plan of the proof of Theorem 1.3.

The proof of Theorem 1.3 stretches for Sections 3–8. Sections 3–6 deal with part (a),

while Sections 7 and 8 address part (b).

In more detail, in Section 3 we recall Wall’s result on the classification of symmetric

bilinear forms on free Zpk -modules. We recall the definition of the index ϵ(B, β), which

is crucial in our applications. In Section 4 we recall a classical result on the rank of

the group of isometries of a symmetric bilinear form on a Zp-module. We introduce the

concept of a (mod p)-reduction, which allows us to translate various results on forms on

Zp-modules to forms on Zpk -modules for k > 1. One of such results is the calculation

of the Sylow q-group of isometries due to Weir [23], stated in Section 5, which we show

holds for isometries of forms on Zpk -modules by Theorem 5.2.

The description of the Sylow q-groups given in Section 5 is phrased in terms of

the wreath product, see Definition 5.3. In Section 6 we use elementary properties of

the wreath product to find the maximal r such that the Sylow q-group of the group of

isometries contains an element of order qr. Section 6 concludes with Theorem 6.2, which

states precise conditions under which the group of isometries of a pk form B contains an

element of order qr. The proof of Theorem 1.3(a) follows.

Part (b) of Theorem 1.3 is proved in Sections 7 and 8. It is essentially done on a

case-by-case analysis. We begin by showing that if the conditions n = 2[q|p]d, d ≥ qr̃

and ϵ(B, β) = η(q)d are not satisfied, than any isometry of order qr̃ must have a non-zero

fixed point. This is the statement of Theorem 7.1 in Section 7. Section 8 is devoted

to a construction of an isometry with no non-zero fixed points when the conditions do

hold. We perform the construction separately in the case r̃ = r− s and in the case r̃ = 0

(i.e. r ≤ s). The key results are Lemmas 8.3 and 8.7, which show that if n = 2[q|p]qr−s

and ϵ(B, β) = η(q)q
r−s

, then every isometry of order qr−s has only zero as its fixed

point. Lemma 8.3 deals with the case of Zp-forms and Lemma 8.7 takes care of general

Zpk -forms via the (mod p)-reduction. Lemma 8.8 deals with the case r̃ = 0, but the key

argument is essentially the same as in Lemma 8.3. The three lemmas are used to give a

proof of Theorem 8.1. This theorem concludes the proof of Theorem 1.3.

1.6. Plan of proof of Theorem 1.4.

Part (a) is proved as Proposition 2.3. To prove part (b) we use Proposition 2.2 to

conclude that Zqr acts on Tp with no non-zero fixed points. Then by part (a), we know

that Zqr acts on each of the Tp,i preserving the linking form and with no non-zero fixed

points.

Now Tp,i is a free Zpi -module. By the discussion of Section 3, a linking form Tp,i ×
Tp,i → Q/Z induces a symmetric bilinear form on Tp,i with values in Zpi . Isometries of the

linking form are isometries of the symmetric bilinear forms, as discussed in Lemma 3.1.

Thus, we obtain an action of Zqr on Tp,i equipped with a symmetric bilinear form such

that the action is by isometries and with no non-zero fixed points. We conclude by

Theorem 1.3.

Acknowledgments. The authors would like to thank Jan Okniński for helpful

discussions and for pointing to us Weir’s work. They are also grateful to Wojciech

Politarczyk for fruitful conversations and to Chuck Livingston for his comments on the
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early draft of the paper. The authors would like to express their gratitude to the referees

for their patient and detailed comments on the previous version of the paper.

2. Review of Naik’s criterion.

Let L be an m-periodic link and let L/Zm be the quotient link. For k > 1 consider

the branched covers Σk(L) and Σk(L/Zm). We write Σ(L),Σ(L/Zm) instead of Σ2(L)

and Σ2(L/Zm).

For simplicity, we will always assume that k is such that Σk(L) is a rational ho-

mology sphere. In particular, there is a non-degenerate linking form H1(Σk(L);Z) ×
H1(Σk(L);Z) → Q/Z.

We have the following observation, see [12, Section 2].

Lemma 2.1. An action of Zm on S3 that preserves L and whose fixed points are

disjoint from L lifts to an action of Zm on Σk(L). The quotient Σk(L)/Zm is diffeomor-

phic to the branched cover Σk(L/Zm) of the quotient link.

The following result relates Lemma 2.1 to the group action on homology.

Proposition 2.2 (see [12, Proposition 2.5]). If p is a prime number such that

p ∤ m and ϕ : Σk(L) → Σk(L) is a generator of the action of Zm on Σk(L), then ϕ∗ is an

isometry of H1(Σk(L)) (with respect to the linking form) and the fixed point set

Fixϕ∗ : H1(Σk(L))p → H1(Σk(L))p

is equal to H1(Σk(L/Zm))p. Here the subscript p denotes the p-primary part.

Proposition 2.2 is non-trivial and the condition p ∤ m cannot in general be relaxed.

For example, if K = T (2, 5), then K is clearly 5-periodic. We have H1(Σ2(K)) = Z5.

The only action of Z5 on Z5 by isometries is trivial (because any isometry of Z5 has order

1 or 2), hence Z5 is a fixed subspace of this action. However, the quotient knot K/Z5 is

trivial, H1(Σ2(K/Z5);Z) = 0.

In order to apply Proposition 2.2 we use the following result.

Proposition 2.3. For an odd prime number p coprime with m the group Tp =

H1(Σk(L))p decomposes as a sum Tp,1 ⊕ Tp,2 ⊕ · · · , where each of the Tp,i is a free Zpi-
module. This decomposition is orthogonal with respect to the linking form. Moreover, if

Zm acts on Tp by isometries, then the decomposition can be made invariant with respect

to this action.

Proof. This result is rather standard; we present a quick proof for the reader’s

convenience. Write Tp = H1(Σk(L))p and consider the linking form λ : Tp × Tp → Q/Z.

For an element x ∈ Tp let r(x) be the minimal positive integer such that pr(x)x =

0 ∈ Tp. Take x ∈ T for which r(x) is maximal among all elements in T . As λ is non-

degenerate, there exists y ∈ Tp such that pr(x)−1λ(x, y) ̸= 0 ∈ Q/Z. Indeed, if for all

y ∈ Tp we have pr(x)−1λ(x, y) = 0, then pr(x)−1x = 0 pairs trivially with all y ∈ Tp,

contradicting non-degeneracy of λ. Note also that we have r(y) = r(x).
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Consider now pr(x)−1λ(x, x), pr(x)−1λ(y, y) and pr(x)−1λ(x + y, x + y). If all three

expressions are zero in Q/Z, we conclude that pr(x)−1λ(x, y) = 0, contradicting the

assumptions (here we use the assumption that 2 is invertible modulo p). Thus, there is

an element z ∈ Tp such that r(z) is maximal and pr(z)−1λ(z, z) ̸= 0.

Let Tz be the Z-submodule of Tp generated by z, ϕ∗(z), . . . , ϕm−1
∗ (z). The number

of generators of Tz is equal to nz, where nz is the minimal n such that ϕn∗ (z) belongs to

the subgroup generated by z, ϕ∗(z), . . . , ϕn−1
∗ (z). We have an isomorphism of Z-modules

Tz ∼= Znz

pr(z)
. In particular, Tz is a free Zpr(z) -module.

Let T ′ be the orthogonal complement of Tz in Tp. As the linking form is invariant

under ϕ∗, and Tz is invariant, T ′ is also invariant.

Now T ′ has smaller number of generators than Tp. As a result of a recursive appli-

cation of the procedure, we present Tp as an orthogonal sum of modules Tz1 ⊕ · · · ⊕ Tzm .

We set

Tp,i =
⊕

j : r(zj)=i

Tzj . □

The next result gives a number theoretical criterion for applying Proposition 2.2. It

is due to Davis [5] (see also [13]).

Theorem 2.4. If q ̸= p is an odd prime number and Zq acts on Tp,i by isometries

with no non-zero fixed points, then the rank of Tp,i as a Zpi-module is a multiple of 2[q|p].

Theorem 1.3 of the present paper is a generalization of Theorem 2.4.

The condition described in Theorem 2.4 requires some knowledge of fixed point set

of the action of Zq. By Proposition 2.2 this fixed point set is the homology of the cover

of the quotient link. As explained in [12], [13], it is often possible to check whether

H1(Σk(L/Zq);Z)p = 0 using Murasugi’s criterion, which we now recall.

Theorem 2.5 (Murasugi’s criterion for knots, see [11]). Suppose K ⊂ S3 is a qr-

periodic knot with q prime and r > 0. Let ∆ be the Alexander polynomial of K and ∆′

be the Alexander polynomial of the quotient knot K ′ = K/Zq. Let ℓ be the absolute value

of the linking number of K with the symmetry axis. Then ∆′|∆ and up to multiplication

by a power of t we have

∆ ≡ ∆′qr (1 + t+ · · · + tℓ−1)q
r−1 mod q. (2.6)

There are various versions of Murasugi’s criterion for links, see [16], [20, Theo-

rem 1.10.1]. Precise statements depend on the action of the symmetry group on the set

of components of the symmetric link.

Naik’s homological criterion relies on combining Proposition 2.2, Theorem 2.4 and

Murasugi’s criterion (Theorem 2.5). We will show two variations of such criterion, both

due to Naik [13]. As Propositions 2.7 and 2.8 are instructive and indicate how Theo-

rem 1.3 can be applied, we include short proofs, not claiming any originality.

Proposition 2.7. Let L be a q-periodic link with q an odd prime. Let ∆ be the

Alexander polynomial of L. Suppose ∆′ is the Alexander polynomial of the quotient. For
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any odd prime number p ̸= q, if s = s(p) is the maximal positive integer such that ps

divides ∆(−1)/∆′(−1), then s is a multiple of 2[q|p].

Proof. Let T be the p-torsion part of H1(Σ(L);Z). The rank of T is equal to ps0 ,

where s0 is the maximal positive integer such that ps0 divides

|H1(Σ(L);Z)| = | det(L)| = |∆(−1)|.

By Proposition 2.2 the fixed point set of the Zq action has rank equal to

|H1(Σ(L/Zq);Z)| = |∆′(−1)|. Therefore, the action of Zq on H1(Σ(L);Z)p induces

an action on the quotient H1(Σ(L);Z)p/H1(Σ(L/Zq);Z)p with only trivial fixed points,

which has rank ps. Applying Theorem 2.4 shows that s is a multiple of 2[q|p]. □

Proposition 2.8. Let L be a q-periodic link and suppose ∆′ is the Alexander

polynomial of the quotient. If p ̸= 2, q is a prime number such that p does not divide

∆′(−1), then the p-torsion part H1(Σ(L);Z)p decomposes as an orthogonal sum of mod-

ules Tp,1, . . . , where each of the Tp,i is a free Zpi-module whose rank is divisible by 2[q|p].

Proof. The assumptions of the proposition imply via Proposition 2.2 that Zq
acts on H1(Σ(L);Z)p with no non-zero fixed points. Again, Theorem 2.4 implies that s

is a multiple of 2[q|p]. □

While Propositions 2.7 and 2.8 do not exhaust potential applications of Naik’s crite-

rion, they give a very good balance between applicability and generality. We demonstrate

the result of implementing Proposition 2.7 and Proposition 2.8 in Section 11.

3. Linking forms and symmetric forms.

Let L be an m-periodic link and suppose k > 1 is such that Σk(L) is a rational

homology sphere. We let T denote the group H1(Σk(L);Z). Finally, let λ : T ×T → Q/Z
be the linking form.

For a prime number p we write Tp for the p-torsion part of T , so that T =
⊕
Tp,

where the sum is over all prime numbers p. The summands are pairwise orthogonal with

respect to the linking form. In order to study the linking form on Tp in more detail, we

split Tp into summands Tp,k as in Proposition 2.3. Each of the Tp,k is a free Zpk -module

and the linking form restricts over Tp,k to a form

λ : Znpk × Znpk → Q/Z,

where n is the rank of Tp,k.

Let λ : Znpk × Znpk → Q/Z be a non-degenerate linking form. As for any x, y ∈ Znpk
we have pkx = 0, we infer that pkλ(x, y) = 0 ∈ Q/Z. It follows that

λ(x, y) =
β(x, y)

pk

for some β(x, y) ∈ Z well-defined modulo pk. The following observation is straightfor-

ward.
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Lemma 3.1. The form β(x, y) : Znpk × Znpk → Zpk is a symmetric, non-degenerate

bilinear form. Moreover, any automorphism ψ preserving the linking form is an isom-

etry of the bilinear form λ. Conversely, any isometry of the bilinear form β gives an

automorphism of the linking form.

Lemma 3.1 gives a translation from linking forms to symmetric bilinear forms. The

reverse passage is also possible: a form β(x, y) induces a linking form λ(x, y) = β(x, y)/pk.

In particular, the classification and the symmetries of linking forms correspond to the

classification and the symmetries of bilinear forms.

Definition 3.2. A pk-form or, if the context is clear, simply a form, is a pair

(B, β), where B is a free Zpk -module of finite rank and β : B ×B → Zpk is a symmetric,

non-degenerate bilinear form. The rank of the form is the rank of B as a Zpk -module.

The classification of pk-forms is well-known. We recall a classical result of Wall [21];

see also [9].

Theorem 3.3. Let p > 2 be a prime, k, n > 0. Any pk-form of rank n is isometric

to one of the two following diagonal forms :

• the standard form, having +1 on the diagonal, i.e. β(x, y) =
∑
xiyi, where x =

(x1, . . . , xn), y = (y1, . . . , yn);

• the non-standard form, β(x, y) = τx1y1+
∑
i>1 xiyi, where τ is not a square modulo

pk.

Remark 3.4. It is an immediate consequence of Theorem 3.3 that for every pk-

form (B, β) of rank n there exists a basis x1, . . . , xn of B such that β(xi, xj) = ciδij .

Here, ci = 1 for i = 2, . . . , n. For the standard form c1 = 1; if the form is not standard,

c1 is not a square modulo pk.

We will now introduce a notion of an index of a pk-form. It distinguishes the standard

form from the non-standard one. For reasons that will become clear later, the index of

a standard form is not always equal to +1. Instead, a correction term (denoted by ϵ2
below) depending on the rank and the prime number p is needed.

Definition 3.5. If (B, β) is a pk-form of rank n, the index ϵ(B, β) (written also

ϵ(B) if no risk of confusion arises) is defined as ϵ1ϵ2, where ϵ1 = 1 if the form is standard

(using the terminology of Theorem 3.3) and ϵ1 = −1 otherwise. We set ϵ2 = −1 if

p ≡ 3 mod 4 and n ≡ 2 mod 4, otherwise ϵ2 = 1.

If M is a free Zpk -module and λ : M ×M → Q/Z is a linking form, then the index

ϵ(M) is the index of the pk-form associated with (M,λ) via Lemma 3.1.

Remark 3.6. In the present paper, we use the index of a form to distinguish

isomorphism classes of its group of isometries. By Theorem 4.2 below, the groups of

isometries of forms of odd rank do not depend on the index. Our interest will be mainly

the index of a form of even rank. The index of a form of an odd rank is defined for

completeness.

1033(9)



1034 M. Borodzik, P. Grabowski, A. Król and M. Marchwicka

Lemma 3.7. Suppose that (B, β) = (B′, β′)⊕ (B′′, β′′) and B′, B′′ have even rank.

Then ϵ(B, β) = ϵ(B′, β′)ϵ(B′′, β′′).

Proof. Clearly ϵ1(B, β) = ϵ1(B′, β′)ϵ1(B′′, β′′). Thus, we have to check that the

same holds for ϵ2. This is obvious if p ≡ 1 mod 4, because then ϵ2 = 1. If p ≡ 3 mod 4,

then we check ϵ2(B, β) = ϵ2(B′, β′)ϵ2(B′′, β′′) on a (trivial) case by case basis. □

4. Ranks of groups of isometries.

Definition 4.1. For a form (B, β) we let O(B) be the group of isometries of B.

More specifically, the group O(pk, n, ϵ) is the group of isometries of the pk-form of rank

n with index ϵ.

We have the following result, for which we refer to the book of Wilson [24, Sec-

tion 3.7.2].

Theorem 4.2. The rank of O(p, n, ϵ) is equal to

• 2pm(p2 − 1)(p4 − 1) · · · (p2m − 1) if n = 2m+ 1;

• 2pm(m−1)(p2 − 1)(p4 − 1) · · · (p2m−2 − 1)(pm − ϵ) if n = 2m.

Moreover, if n is odd, the groups O(p, n,+1) and O(p, n,−1) are isomorphic.

We will extend Theorem 4.2 to compute the order of O(pk, n, ϵ) for k > 1. First, we

need the following construction.

Definition 4.3. Let (B, β) be a pk-form. A (mod p)-reduction (or just: a reduc-

tion) of (B, β) is a symmetric bilinear form (Bred, βred), where Bred = B/pk−1B is a free

Zp-module and for x, y ∈ Bred we set

βred(x, y) = [β(x̃, ỹ)] ∈ B/pk−1B,

where x̃, ỹ ∈ B are lifts of x, y to B and [·] denotes the class in the quotient.

Informally, one may think of Bred as ‘B mod p’ and of βred as ‘β mod p’. We have

an obvious observation.

Lemma 4.4. The form (Bred, βred) is non-degenerate. In particular, a reduction

of a pk-form is a p-form.

Let (B, β) be a pk-form and (Bred, βred) be a (mod p)-reduction. Suppose ϕ ∈ O(B).

We define the isometry π(ϕ) ∈ O(Bred) by the formula

π(ϕ)(x) = [ϕ(x̃)] , (4.5)

where x ∈ Bred and x̃ is any lift of x to B. Formula (4.5) defines a group homomorphism

π : O(B) → O(Bred),

which is also referred to as the (mod p)-reduction of an isometry.
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Lemma 4.6. The kernel of π has cardinality p(k−1)(n
2). The map π is a surjection.

Proof. We focus on the case where B is standard. The other case is analogous.

Choose a basis {ei}ni=1 such that β is the identity matrix in this base. By ei we will

denote the basis of Bred obtained by reducing the basis e1, . . . , en. Take ϕ1 ∈ O(Bred).

Using the basis e1, . . . , en we represent ϕ1 as a matrix Φp with coefficients in Zp. Choose

a lift of the matrix Φp to a matrix Φ over Z, that is, lift all the coefficients to Z. The

matrix Φ defines also a linear map ϕ : B → B. Obviously, ϕ depends on the choice of a

lift of Φp to Φ.

We want to find vectors v1, . . . , vn in Znpk such that ϕ̃ defined by ϕ̃(ei) = ϕ(ei) + pvi

is an isometry. Note that regardless of the choice of vi we have π(ϕ̃) = π(ϕ). Moreover,

if the vectors v1, . . . , vn are replaced by v′1, . . . , v
′
n such that vi− v′i is a multiple of pk−1,

then ϕ̃ does not change.

The map ϕ̃ is an isometry if and only if the vectors vi satisfy the following condition

for all 1 ≤ i ≤ j ≤ n

(ϕ(ei) + pvi)
T (ϕ(ej) + pvj) = δij , (4.7)

where δij is the Kronecker’s delta. Here and afterward in the proof, we write xT y for the

scalar product of x and y, that is, for β(x, y).

As ϕ1 is an isometry, we infer that ϕ(ei)
Tϕ(ej) = δij + pcij for some cij , hence (4.7)

becomes

p(cij + vTi ϕ(ej) + ϕ(ei)
T vj) = 0. (4.8)

The equation (4.8) taken for all i ≤ j gives a system of n(n + 1)/2 linear independent

equations with n2 variables: the variables are coefficients of the vectors vi, which should

be considered as elements of the space over Zpk−1 . Indeed, changing coordinates of vi by

a multiple of pk−1 does not change ϕ̃.

The independence of the system (4.8) follows easily from the independence of vectors

ϕ(ej). The space of solutions has dimension n2−n(n+1)/2 =
(
n
2

)
. Therefore, the number

of solutions is equal to p(k−1)(n
2) as desired. □

As a corollary, we obtain the following fact.

Corollary 4.9. Let B be a pk-form of rank n and Bred its (mod p)-reduction.

Then

|O(B)| = p(k−1)(n
2)|O(Bred)|.

5. Sylow groups of the orthogonal group O(B).

In this section we let q be a fixed odd prime number different from p.

Definition 5.1. For a group G, we denote by Sylq G a Sylow q-subgroup of G.
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We have the following relation between Sylow groups of the orthogonal group of a

form and Sylow groups of the orthogonal group of the (mod p)-reduction.

Theorem 5.2. The (mod p)-reduction π : O(B) → O(Bred) takes a Sylow group

Sylq O(B) isomorphically to a Sylow group of O(Bred).

Proof. By definition, Sylq O(B) has rank equal to qs, where s is the maximum

integer such that qs divides |O(B)|. Likewise, the rank of Sylq O(Bred) is equal to qs1

for s1 the maximal positive integer such that qs1 divides |O(Bred)|. By Corollary 4.9, we

obtain | Sylq O(B)| = |Sylq O(Bred)|.
Now let G = π(Sylq O(B)), where π : O(B) → O(Bred). Clearly, G is a q-subgroup

of O(Bred). The map π|Sylq O(B) : Sylq O(B) → G is a homomorphism of groups. The

kernel of π|Sylq O(B) is a subgroup of Sylq O(B) and also a subgroup of kerπ. However,

kerπ is a p-group by Lemma 4.6 and so its intersection with Sylq O(B) is trivial. In

particular, π|Sylq O(B) is an isomorphism onto its image.

By Sylow’s theorem, there exists a Sylow q-group H of O(Bred), such that G ⊂ H.

However, |G| = | Sylq O(B)| and |H| = | Sylq O(Bred)| = |Sylq O(B)|. Hence, |G| = |H|
and thus G = H. □

To understand the structure of Sylq O(B) we will use Weir’s theorem [23]. We need

to recall the definition of a regular wreath product.

Definition 5.3. Let H and G be finite groups. Let K = Πg∈GH. Let ψ be the

action of G on K by left multiplication of indices. We call a semidirect product of K

and G a regular wreath product of H and G. We denote it by HιrG = K ⋊ψ G.

Remark 5.4. The subscript r in the symbol ιr is not a parameter. It is a shorthand

for ‘regular’.

The following result is due to Weir [23]. Note that the original statement is for

p-forms. By Theorem 5.2, the result carries through to pk-forms for general k ≥ 1.

Theorem 5.5 (see [23]). Let d be a natural number with q-adic expansion given by

d = a0 + a1q+ a2q
2 + · · · . Let (B, β) be a p-form of rank 2[q|p]d such that ϵ(B) = η(q)d.

Any Sylow q-subgroup of O(B) is isomorphic to :

Za0qs × (ZqsιrZq)a1 × ((ZqsιrZq)ιrZq)a2 × (((ZqsιrZq)ιrZq)ιrZq)a3 × · · · , (5.6)

where s is such that qs|p2[q|p] − 1 and qs+1 ∤ p2[q|p] − 1.

The general case of (B, β) not satisfying the assumptions rkB = 2[q|p]d, ϵ(B) =

η(q)d reduces to Theorem 5.5. The approach is implicit in [23], but it will be used in

several places in the present paper, so we sketch it briefly below.

Let B be a form of rank 2[q|p]d + R with 0 ≤ R < 2[q|p]. We want to find a

decomposition of B into an orthogonal sum of forms B′ and B′′ in such a way that the

map induced by inclusion O(B′) → O(B) (extending an isometry of B′ by the identity

on B′′) induces an isomorphism of Sylow q-groups and B′ satisfies the hypotheses of
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Theorem 5.5. To this end, we let 1+ denote the one-dimensional p-form with ϵ = 1 and

1− denote the one-dimensional form with ϵ = −1. We have the following possibilities:

• Case 1: R = 0 and ϵ(B) = η(q)d. Then B already satisfies the assumptions of

Theorem 5.5. We set B′ = B and let B′′ be trivial (zero-dimensional).

• Case 2: R > 0. We define B′ to be the unique form of rank 2[q|p]d for which

ϵ(B′) = η(q)d. We let B′′ be a form of rank R that is a direct sum of 1+ and 1−
arranged in such a way that ϵ(B′ ⊕ B′′) = ϵ(B). Then B and B′ ⊕ B′′ have the

same rank and the same index ϵ, so they are isomorphic.

• Case 3: R = 0 but ϵ(B) ̸= η(q)d. We define B′ to be the unique form of rank

2[q|p](d − 1) such that ϵ(B′) = η(q)d−1. As in the previous case, we choose B′ to

be a direct sum of 2[q|p] forms 1+ and 1− in such a way that ϵ(B′ ⊕B′′) = ϵ(B).

Remark 5.7. In the above construction, we do not use the fact that ϵ(B′⊕B′′) =

ϵ(B′)ϵ(B′′). Multiplicativity of ϵ was proved only if both summands have even rank.

This is not necessarily true in Case 2 above.

Lemma 5.8. The inclusion O(B′) → O(B) induces an isomorphism Sylq O(B′) ∼=
Sylq O(B).

Proof. Let G be a Sylow q-group of O(B′). Write i : O(B′) → O(B) for the map

induced by inclusion. Then i(G) is a q subgroup of O(B) and as such, it is contained in

some Sylow group H of O(B). Now |H|/|G| is equal to the maximal exponent s such

that qs divides |O(B)|/|O(B′)|. However, by Theorem 4.2 and Corollary 4.9, q does not

divide |O(B)|/|O(B′)|. Therefore, |H|/|G| = 1 and i(G) ⊂ H, so i(G) = H. □

Definition 5.9. The form B′ is called the maximal q-regular subform of B. The

form B′′ is called the complementary form.

6. Elements of maximal order in Sylow groups.

Let G be a finite group. For a prime q we define µq(G) to be the maximal order of

those elements of G whose order is a power of q. We have the following result, which is

well-known to the experts in group theory. For the reader’s convenience, we present a

proof.

Lemma 6.1. Let H be a finite q-group and µq(H) = qt for some t > 0. Then

µq(HιrZq) = qt+1.

Proof. Let h be an element of H such that ord(h) = µq(H) and let e be the

identity of H. Then h∗ = ((h, e, e, . . . , e), 1) ∈ HιrZq has order equal to qt+1. Therefore,

µq(HιrZq) ≥ qt+1.

To obtain the opposite inequality, we first observe that if G = K⋊ψH, then µq(G) ≤
µq(K)µq(H). Indeed, consider x = (k, h) ∈ K ⋊ψ H, then

xu = (kψh(k) · · ·ψhu−1(k), hu).
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Suppose u is the minimal power such that hu = e ∈ H. Set y = kψh(k) · · ·ψhu−1(k).

Then we have xu = (y, e) for some y. Thus, xru = (yr, e). From this it easily follows

that µq(G) ≤ µq(K)µq(H).

Given the last inequality, by Definition 5.3, we write HιrZq as K ⋊ψ Zq, where

K = Πg∈ZqH. We have µq(K) = µq(H), hence µ(HιrZq) ≤ µq(H)µq(Zq) as desired. □

Lemma 6.1 combined with Weir’s theorem (Theorem 5.5) allows us to describe all

forms whose orthogonal groups have elements of order qr.

Theorem 6.2. Let s be a natural number such that qs|p2[q|p]−1 and qs+1 ∤ p2[q|p]−1.

Let B be a pk-form.

• For r ≥ s, the group O(B) contains an element of order qr if and only if B has

rank 2[q|p]qr−s and ϵ(B) = η(q)q
r−s

, or B has rank strictly greater than 2[q|p]qr−s.

• For r < s, the group O(B) contains an element of order qr if and only if either B

has rank 2[q|p] with ϵ(B) = η(q), or rank B is greater than 2[q|p].

Proof. Let B′ be a maximal q-regular subform of B as in Definition 5.9. By

Lemma 5.8, we have an isomorphism of Sylow q-groups of B and B′. Therefore, it

suffices to restrict to the case where B has rank 2[q|p]d and ϵ(B) = η(q)d. We clearly

have µq(G×H) = max(µq(G), µq(H)). Hence, by (5.6):

µq(O(B)) = max
i : ai ̸=0

µq((((ZqsιrZq)ιrZq) · · · )ιrZq︸ ︷︷ ︸
i times

),

where ai form the q-adic presentation of d, that is, d = a0 + a1q + a2q
2 + · · · .

By Lemma 6.1 we obtain that µq((ZqsιrZq) · · · ιrZq) = qs+i if the wreath product

is taken i times. In particular

µq(O(B)) = max
i : ai ̸=0

qs+i. (6.3)

Suppose r ≥ s. We conclude that µq(O(B)) ≥ qr if and only if some of the at > 0 for

t ≥ r − s. This amounts to saying that d ≥ qr−s, if r ≥ s, or d ≥ 1 if r < s. □

Proof of Theorem 1.3(a). Theorem 1.3(a) follows immediately from Theo-

rem 6.2. □

7. Fixed points of isometries of order qr.

Let B be a pk-form and let ϕ : B → B be an isometry. We study the fixed point set

Fixϕ = {x ∈ B : ϕ(x) = x}.

The following result implies the ‘only if’ direction of Theorem 1.3(b).

Theorem 7.1. Let B be a pk-form of rank n = 2[q|p]d + R with 0 ≤ R < 2[q|p].
Let ϕ ∈ Sylq O(B) have order qr. Let s be the maximal integer such that qs|p2[q|p] − 1.
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(a) If R > 0, then ϕ has a fixed subspace of rank at least R. More precisely there is an

orthogonal decomposition of B into submodules B1 and B2 such that B1 has rank

divisible by 2[q|p] and ϕ|B2
is the identity.

(b) If R = 0 and η(q)n ̸= ϵ(B), then ϕ has a fixed subspace of rank at least 2[q|p].

Proof. Write B = B′ ⊕B′′, where B′ and B′′ are as in Definition 5.9. Note that

in cases (a) and (b) the subspace B′′ is non-trivial. In fact, case (a) of Theorem 7.1 corre-

sponds to Case 2 of the list preceding Remark 5.7. Case (b) of Theorem 7.1 corresponds

to Case 3 of the list.

Let i : O(B′) → O(B) be the map induced by inclusion. Recall that i takes an

element ψ ∈ O(B′) and extends it by the identity on B′′. This implies, in particular,

that B′′ is contained in the fixed point set of any element of O(B) that is in the image of

i. Let G be a Sylow group of O(B′). By Lemma 5.8 we have that i(G) is a Sylow group

of O(B). Take ϕ ∈ O(B) of rank qr and let H ⊂ O(B) be a Sylow group containing ϕ.

As all Sylow groups are conjugate, we have that i(G) = gHg−1 for some g ∈ O(B). In

particular, ϕ = gϕ′g−1 for some ϕ′ ∈ i(G). Define B1 = gB′ and B2 = gB′′. Then B1

has rank divisible by 2[q|p] and B2 contained in the fixed point set of ϕ. □

8. Isometries with no non-zero fixed points.

The goal of this section is to provide the ‘if’ implication of Theorem 1.3.

Theorem 8.1. Suppose we have a pk-form (B, β) of rank n = 2[q|p]d and η(q)d =

ϵ(B). Suppose also that Sylq O(B) contains an element of order qr. There exists ψ ∈
O(B) of order qr such that ψ has no non-zero fixed points.

The remaining part of Section 8 is devoted to the proof of Theorem 8.1. We first

prove some auxiliary results, then give the proof of Theorem 8.1.

The first step in the proof of Theorem 8.1 is the following result, which may be of

independent interest.

Proposition 8.2. Let (B, β) be a p-form and let ϕ ∈ O(B) be of order qr for some

r > 0. Then there exists an orthogonal decomposition of B into free Zp-modules Bfix
and Both, such that ϕ is the identity of Bfix and ϕ acts with no non-zero fixed points on

Both.

Proof. Let ζ be a primitive root of unity of order qr and consider the ring

Λ = Zp[ζ]. By Maschke’s theorem, Λ is semisimple. On the other hand, B has the

structure of a Λ-module, where the multiplication by ζ corresponds to the action of ϕ.

Hence, B can be written as a direct sum of cyclic Λ-modules. Let Bfix be the sum of

those cyclic modules on which ζ acts trivially and Both be the sum of all the others.

The decomposition is orthogonal. Indeed, consider the map Bfix → Both given by the

inclusion of Bfix to B followed by the orthogonal projection to Both. This map is trivial

by Schur’s lemma, and therefore Bfix is orthogonal to Both. By the construction, Bfix
is the fixed point set of ϕ and ϕ acts on Both with no non-zero fixed points. □
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Proposition 8.2 allows us to prove the following lemma, which is the key argument

in the proof of Theorem 8.1.

Lemma 8.3. Suppose (B, β) is a p-form. Let s be the maximal integer such that

qs|(p2[q|p] − 1). Assume r ≥ s and the rank of B equals 2[q|p]qr−s. If ϵ(B) = η(q)q
r−s

then an isometry ψ ∈ O(B) of order qr has no non-zero fixed points on B.

Proof. Suppose towards contradiction that there exists ψ ∈ O(B) of order qr

with a non-trivial fixed subspace. By Proposition 8.2, we infer that B splits as a direct

sum of Bfix and Both. The map ψ preserves the splitting. Write ψ′ for the restriction

of ψ to Both. Then ψ′ ∈ O(Both) has order qr. However, the rank of Both is smaller

than 2[q|p]qr−s, so by Theorem 6.2, O(Both) cannot contain an element of order qr. This

contradiction shows that ψ itself cannot have a non-zero fixed point. □

Proposition 8.2 is true for p-forms, not pk-forms in general. As an example, one

can take the module Z2
p3 with the standard linking form and a morphism ϕ given by the

matrix

A =

(
1 − 2p2 −2p

2p 1 − 2p2

)
. (8.4)

Over Zp3 we have ATA =
(
1 0
0 1

)
, hence ϕ is an isometry. The point (p2, p2) is a non-zero

fixed point of A. However, there is no free Zp3 -submodule on which ϕ acts trivially.

To deal with pk-forms we apply again the (mod p)-reduction.

Lemma 8.5. Suppose (B, β) is a pk-form, ψ is an isometry and z ∈ B is a non-zero

fixed point of ψ. Let (Bred, βred) be the (mod p)-reduction and let ψred be the reduction

of ψ. Then ψred has a non-trivial fixed point.

Proof. If the reduction π(z) is non-trivial, then clearly π(z) is a fixed point of

ψred. Otherwise, if π(z) is trivial, then z can be written as z = pℓy for some ℓ > 0 and

y such that π(y) ̸= 0. As ψ(z) − z = 0 and ψ is linear, we infer that ψ(y) − y = pk−ℓu

for some u ∈ B. However, this means that ψred(π(y)) − π(y) = 0. Hence, π(y) is a

non-trivial fixed point of ψred. □

Example 8.6. If A is the matrix as in (8.4) defining a morphism ϕ of Z2
p3 , then

the (mod p)-reduction π(ϕ) is the identity matrix.

Given Lemma 8.5 we quickly generalize Lemma 8.3 to pk-forms.

Lemma 8.7. Let s be as in Lemma 8.3 and r ≥ s. Let (B, β) be a pk-form of rank

2[q|p]qr−s and ϵ(B) = η(q)q
r−s

. Any element ψ ∈ O(B) of order qr has no non-zero fixed

points.

Proof. If such an isometry ψ has a non-trivial fixed point, then π(ψ) has a non-

trivial fixed point (and hence a fixed subspace) by Lemma 8.5. The isometry π(ψ) has

the same order qr because by Theorem 5.2 the reduction operation yields an isomorphism

on Sylow q-groups. However, this contradicts Lemma 8.3. □
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The method of the proof of Lemma 8.7 gives the following simple result, which is

needed to complete the proof of Theorem 8.1.

Lemma 8.8. Suppose B has rank 2[q|p] and ϵ(B) = η(q). For any ℓ such that

1 ≤ ℓ ≤ s, there exists an isometry of B of order qℓ with no non-zero fixed points.

Proof. We act as in the proof of Lemma 8.3. Suppose B is a p-form of rank

2[q|p]. From Theorem 6.2 we deduce that there exists an isometry ψ of order qℓ. If it

has a fixed subspace, the form splits as an orthogonal sum of Bfix and Both, but Both
has rank less than 2[q|p] and hence it does not admit any isometry of order qℓ for ℓ > 0.

For pk-forms we use the same argument as in Lemma 8.7. □

Now we can give a proof of Theorem 8.1.

Proof of Theorem 8.1. First, assume that r ≥ s. We must have d ≥ qr−s,

for otherwise there is no element in O(B) of order qr by Theorem 6.2. Let B0 be the

unique form of rank 2[q|p]qr−s such that ϵ(B0) = η(q)q
r−s

. Consider also the forms

B1, . . . , Bd−qr−s that have rank 2[q|p] and index η(q). The form B̃ = B0 ⊕ B1 ⊕ · · · ⊕
Bd−qr−s has the same rank as B and, by Lemma 3.7 we have that ϵ(B) = ϵ(B̃) = η(q)d.

Hence, B and B̃ are isometric.

We construct now an isometry on B̃ of order qr which does not have non-zero fixed

points. It is a block sum of isometries on B0 and B1, . . . , Bd−qr−s . On B0 we use an

isometry ψ0 : B0 → B0 with no non-zero fixed points, which is provided by Lemma 8.7.

For j = 1, . . . , d− qr−s we take an isometry ψj : Bj → Bj which is of order q and which

is provided by Lemma 8.8. The block sum of such isometries gives an isometry of B with

no non-zero fixed points and of order qr.

If r < s, the proof is analogous. Namely, as (B, β) has rank 2[q|p]d, we can present

it as a direct sum of d copies of a form (B0, β0) such that ϵ(B0, β0) = η(q). The form

(B0, β0) admits an isometry ϕ0 of order qr with no non-zero fixed points by Lemma 8.8.

The isometry on B is a direct sum of d copies of ϕ0. □

9. Computing ϵ(B) for forms on the double branched cover.

In order to effectively apply Theorem 1.4, we need a way to compute the indices

ϵ(B) of forms associated with linking forms on branched covers of links. We present such

an algorithm now. A detailed example is given in Section 10.

Suppose L is a link and S a Seifert matrix. Write A = S + ST . If det(A) ̸= 0,

then the double branched cover Σ(L) is a rational homology sphere. For the rest of this

section, we shall assume that this is the case. Let n denote the size of matrix A. Then

H1(Σ(L);Z) ∼= Zn/AZn.

Under this identification, the linking form is given by

λA : Zn/AZn × Zn/AZn → Q/Z

(x, y) 7→ xTA−1y.
(9.1)
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Put A into Smith normal form, that is, write

A = CDE,

where C and E are invertible over Z and D is diagonal with integer entries (d1, . . . , dn)

on the diagonal such that di|di+1 for i = 1, . . . , n− 1.

The following simple result gives an effective way of computing the linking form on

Σ(L).

Lemma 9.2. The pairing (9.1) is isometric to the pairing

λD : Zn/DZn × Zn/DZn → Q/Z

(x, y) 7→ xTCTE−1D−1y.
(9.3)

Proof. The map Zn x 7→Cx−−−−→ Zn descends to an isomorphism of abelian groups

from Zn/DZn to Zn/AZn. Now if x, y ∈ Zn/DZn, then Cx,Cy ∈ Zn/AZn. Then,

λA(Cx,Cy) = (Cx)T (CDE)−1Cy = λD(x, y). □

Let p be an odd prime. Let 0 = α0 ≤ α1 ≤ · · · be the integers such that if

αk ≤ i < αk+1, then pk|di but pk+1 ∤ di. Let hi be the vectors having 0 at all places

except for the i-th coordinate, which is equal to di/p
k. Let Tp,k be the submodule

of Zn/DZn generated by hαk
, . . . , hαk+1−1. Then Tp,k is a free Zpk -module. The sum

Tp,1 ⊕ Tp,2 ⊕ · · · is the p-torsion part of the module Zn/DZn. Despite the similarity of

this notation to the decomposition in Proposition 2.3, in this case, the summands need

not be pairwise orthogonal.

The linking form λD restricts to a linking form on each of the Tp,k. Write βp,k
for the associated bilinear form. In the basis hαk

, . . . , hαk+1−1, the form can be writ-

ten by a matrix, which we denote Bk. Note that the ij-entry of Bk is given by

pkλD(hi+αk−1, hj+αk−1).

Write T̃p,k for the (mod p)-reduction of Tp,k and let B̃k be the matrix of the reduced

form. Clearly we have

det B̃k ≡ detBk (mod p).

Proposition 9.4. The linking form on the pk-torsion part of H1(Σ(K);Z) has

ϵ1 = +1 (see Definition 3.5) if and only if det B̃k is a square modulo p.

Proof. We first give the proof under an extra assumption that Tp,k is orthogonal

to Tp,k′ with respect to the form λD for all k, k′ such that k ̸= k′. By Theorem 3.3

there exists a matrix U with coefficients in Zpk such that UBkU
T is a diagonal matrix

whose all the diagonal entries but the top-left one are equal to 1, and the top-left entry is

either 1 (if ϵ1 = 1) or a non-square modulo pk (if ϵ1 = −1). Thus, the index ϵ1 depends

on whether detUBkU
T is a square modulo pk or not. However, detBk and detUBkU

T

differ by a square. Therefore, ϵ1 = 1 if and only if detBk is a square modulo pk. By

Hensel’s lemma, this is the same as saying that det B̃k is a square modulo p.
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Now consider the general case, where the summands Tp,k are not necessarily orthog-

onal. Write Tp = Tp,1⊕Tp,2⊕· · · . By Proposition 2.3, Tp splits as a sum T ′
p,1⊕T ′

p,2⊕· · ·
of pairwise orthogonal summands (with respect to the linking form λD) such that T ′

p,j is

a free Zpj -module. We have thus an isometry

ψ : Tp,1 ⊕ Tp,2 ⊕ · · · → T ′
p,1 ⊕ T ′

p,2 ⊕ · · · .

Write ψij for the part of ψ mapping from Tp,i to T ′
p,j . Choose a basis ei1, . . . , eiki for

Tp,i and also a basis fjkj , . . . , fjkj for T ′
p,j . For eij we can take vectors hd defined before,

but here we need a more concise notation. With respect to these bases, we denote by

κi the determinant of the intersection form on Tp,i and by κ′j the determinant of the

intersection form on T ′
p,j .

Lemma 9.5. There is a congruence κ′i ≡ q2i κi (mod p) for some qi invertible mod-

ulo p.

Given Lemma 9.5 we quickly finish the proof of Proposition 9.4. Namely,

• The first part of the proof of Proposition 9.4 applied to T ′
p,i tells that ϵ1 = 1 if and

only if κ′i is a square modulo p;

• Lemma 9.5 implies that ϵ1 = 1 if and only if κi is a square modulo p;

• The bases ei1, . . . , eiki and hαi , . . . , hαi+1−1 differ by an invertible matrix Ui. Hence,

κi = detUi detBi detUTi , so κi = detBi(detUi)
2. That is, κi is a square modulo p

if and only if detBi is a square modulo p. □

It remains to prove Lemma 9.5.

Proof of Lemma 9.5. Take x, y ∈ Tp,i. We have

piλD(x, y) = piλD(ψx, ψy) = piλD

(∑
j

ψjix,
∑
k

ψkiy

)
.

The spaces T ′
p,j are pairwise orthogonal, so we rewrite the last sum as

piλD(x, y) = pi
∑
j

λD(ψjix, ψjiy). (9.6)

Claim. If j ̸= i, we have

piλD(ψjix, ψjiy) ≡ 0 (mod p). (9.7)

To prove the claim, we consider two cases. Either j < i or j > i. Suppose j < i. We

have ψjix, ψjiy ∈ T ′
p,j , which is a pj-torsion part. In particular λD(ψjix, ψjiy) = c/pj

for some integer c. As i > j we obtain (9.7) immediately.

Suppose j > i. Both x and y are annihilated by pi. Consequently, ψjix, ψjiy are

annihilated by pi. As T ′
p,j is a free Zpj -module we infer that ψjix = pj−ixj , ψjiy = pj−iyj

for some elements xj , yj ∈ T ′
p,j . We also have λD(xj , yj) = c′/pj for c′ ∈ Z. Hence
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λD(ψjix, ψjiy) = p2j−2iλD(xj , yj) = c′pj−2i.

Therefore, piλD(ψjix, ψjiy) = c′pj−i ≡ 0 (mod p), so (9.7) holds also for j > i.

Having established (9.7), we obtain

piλD(x, y) ≡ piλD(ψiix, ψiiy) (mod p). (9.8)

Write T̃p,i, T̃
′
p,i for the reductions of the forms on Tp,i and T ′

p,i. Equation (9.8) implies

that ψii induces an isometry between T̃p,i and T̃ ′
p,i. As the forms T̃p,i and T̃ ′

p,i are

isometric, their determinants differ by a square modulo p. □

We conclude this section with the following remark. In the proof of Proposition 9.4,

we did not assume that the splitting of Tp = Tp,1 ⊕ · · · is invariant with respect to the

group action. Indeed, our argument implies that the sign of the linking form does not

depend on the particular choice of splitting.

10. Example: the knot 10123.

Our aim is now to illustrate the algorithm described in Section 9 on a concrete knot.

Many knots pass Naik’s obstructions but fail to the obstruction provided by Theorem 1.4;

see Section 11. However all such knots that are known to us have Seifert matrices of size

at least 14 × 14. In order to make the discussion in this section more transparent, we

provide an example of a knot that actually is 5-periodic. Its Seifert matrix has size only

8 × 8. We will show, how we did verify that it passes our criterion.

Consider the knot K = 10123. It is well known to be 5-periodic. A 5-periodic

diagram can be found in [8, Figure 2] or on the KnotInfo webpage [2]. The Alexander

polynomial of K is equal to

∆ = t8 − 6t7 + 15t6 − 24t5 + 29t4 − 24t3 + 15t2 − 6t+ 1 = (t4 − 3t3 + 3t2 − 3t+ 1)2.

There are two factors of the Alexander polynomial over Z[t, t−1]. One is 1, the other one

is t4 − 3t3 + 3t2 − 3t + 1. We check that the latter does not satisfy (2.6) for any ℓ. On

the other hand, we have a congruence

∆ ≡ (1 + t+ t2)4 mod 5,

so ∆ (rather unsurprisingly) passes Murasugi’s criterion. The polynomial 1 is the only

candidate for the Alexander polynomial of the quotient. In particular, by Proposition 2.2,

the Z5 symmetry should act on H1(Σ(K);Z)p with only 0 as a fixed point for all p ̸= 5.

We study the homology of the double branched cover. The Seifert matrix of K is
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S =



−1 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

−1 1 0 0 1 −1 0 0

0 −1 1 0 0 1 −1 0

0 0 −1 1 0 0 1 −1

0 0 0 −1 0 0 0 1


.

We have

A = S + ST = CDE,

where D is the diagonal matrix with the diagonal vector (1, 1, 1, 1, 1, 1, 11, 11) and C and

E are invertible over Z. We see that the homology of the double branched cover is equal

to Z2
11. Now for p = 11 and q = 5, we have [q|p] = 1, because 5|(11 − 1). In particular,

10123 passes Naik’s criterion. Note also, for future use, that η(q) = 1.

We calculate the index of the linking form on Z2
11. The generators for the module

Z8/DZ8 are h1 = (0, 0, 0, 0, 0, 0, 1, 0) and h2 = (0, 0, 0, 0, 0, 0, 0, 1). The matrix of the

linking form in this basis is given by the 2 × 2 square submatrix of CTE−1D−1 in the

bottom right corner:

−46 −20 −60 −52 −62 −51 −4 −5

−20 −12 −35 −34 −39 −31 −3 −2

−60 −35 −98 −93 −107 −85 −8 −6

−52 −34 −93 −90 −103 −81 −8 −5

−62 −39 −107 −103 −118 −93 −9 −6

−51 −31 −85 −81 −93 −74 −7 −5

−4 −3 −8 −8 −9 −7 −8/11 −4/11

−5 −2 −6 −5 −6 −5 −4/11 −6/11


.

The associated bilinear form (B, β) on Z2
11 has the matrix(

−8 −4

−4 −6

)
.

The determinant of this matrix is equal to 32 ≡ 10 mod 11, so it is not a square modulo

11. Thus, the form has ϵ1 = −1. However, the rank n = 2 is congruent to 2 mod 4

and 11 ≡ 3 mod 4, so according to the definition of the index (Definition 3.5) we have

ϵ2 = −1. Hence, ϵ(B) = 1. Then ϵ(B) = η(q). The knot passes our criterion.

11. Theorem 1.4 for low crossing knots.

We applied the following criteria for knots up to 15 crossings and for periods q =

3, 5, 7, 11, 13. The Sage script that we used is available in [10].
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• Przytycki’s criterion for HOMFLYPT polynomials [15];

• Murasugi’s criterion as stated in Theorem 2.5;

• Naik’s homological criterion as stated in Propositions 2.7 and 2.8;

• Theorem 1.4.

We applied these criteria as follows. For a given knot K and period q we checked

Przytycki’s criterion. Independently, we considered all candidates ∆′ for the Alexander

polynomial of the quotient, that is, those that satisfy the statement of Theorem 2.5. For

each such ∆′ we checked if the criterion of Proposition 2.7 was satisfied for all odd prime

numbers p ̸= q that divided ∆(−1). If ∆′ passed the criterion of Proposition 2.7 we

checked whether K passed Proposition 2.8 with this ∆′ for all prime numbers p ̸= 2, q

that divided ∆(−1) but did not divide ∆′(−1).

If ∆′ passed the criterion of Proposition 2.8 we looked at Theorem 1.4 for all prime

numbers p ̸= 2, q such that p|∆(−1) but p does not divide ∆′(−1).

If at some point in this algorithm ∆′ did not pass the criterion, it was discarded

from a list of potential Alexander polynomials of the quotient. If the list was empty, we

concluded that the knot K was not q-periodic. We recorded whether this conclusion is

achieved using Proposition 2.7 only, or one needs Proposition 2.8 or even Theorem 1.4

to obstruct q-periodicity.

It turns out that for periods greater than 5, Theorem 1.4 did not obstruct any case

that was not obstructed by the combination of Murasugi’s and Naik’s criteria.

For period 5, our criterion obstructed the knots 14n26993, 15a80526, 15n83514 and

15n95792, but all of these knots are not 5-periodic by Przytycki’s criterion.

The most interesting situation was for period 3. Here we were able to obstruct

the knots 12a100 and 12a348, which can also be obstructed using Jabuka and Naik’s

d-invariants criterion. See [8, Section 2.4] for a detailed discussion of the 12a100 knot.

There are also 19 alternating knots with crossing numbers from 13 to 15 whose 3-

periodicity is obstructed by Theorem 1.4, but not by Naik’s criterion nor by Przytycki’s

criterion. These are:

13a4648 14a7583 14a7948 14a8670 14a9356

14a14971 14a16311 14a17173 14a17260 14a18647

15a6030 15a6066 15a10622 15a15077 15a33910

15a36983 15a46768 15a72333 15a82771.

Among non-alternating knots with 12–15 crossings, there are 57 knots whose 3-

periodicity can be obstructed by Theorem 1.4, but for which Naik’s criterion and

Przytycki’s criterion do not obstruct 3-periodicity. These are 13n3659, 14n908, 14n913,

14n2451, 14n2458, 14n6565, 14n9035, 14n11989, 14n14577, 14n23051 and 14n24618, as

well as further 46 knots with 15 crossings.

We note that for these non-alternating examples the Jabuka–Naik criterion [8] can-

not be easily applied, because it requires calculating d-invariants of double branched

covers of non-alternating knots, for which no algorithm presently exists. Another cri-

terion involving knot homology, namely Khovanov homology, see [1], does not work for

period 3, so it cannot obstruct periodicity of these 57 knots.
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We have also applied Theorem 1.4 to obstruct 32-periodicity of knots, but we could

not find any example where Theorem 1.4 could obstruct periodicity of any knot that

passed Murasugi’s criterion for period 9. To find interesting examples, one probably

needs to consider knots with many more crossings.
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