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Abstract. We start in this work the study of the relation between the

theory of regularity structures and paracontrolled calculus. We give a para-
controlled representation of the reconstruction operator and provide a natural
parametrization of the space of admissible models.

1. Introduction.

Starting with his groundbreaking work [12], Hairer has developed with his co-authors

[6], [7], [8] a theory of subcritical singular stochastic partial differential equations (PDEs)

that provides now an automated blackbox for the basic understanding of a whole class

of stochastic PDEs. Equations of this class all share the common feature of involving

ill-defined products of distributions with functions or distributions. The methodology of

regularity structures for the study of a given singular stochastic PDE takes its roots in

T. Lyons’ theory of rough paths, such as reshaped by Gubinelli [9], [10]. It requires first

to identify a proper space of enhanced noises. The raw random noise that appears in the

equation needs to be lifted into a random noise taking values in that enhanced space.

This is typically a probabilistic task, mostly independent of the details of the dynamics

under study, once the appropriate space of enhanced noises has been constructed from

the equation. (That space happens to be equation-independent in the rough differential

equation setting, while it is equation-dependent in a PDE setting.) The lifting task

typically involves stochastic or Gaussian calculus in a rough paths setting; it involves

the difficult implementation of a renormalisation procedure in the singular stochastic

PDE setting. This step somehow takes care of the core problem: defining the product

of two random distributions as a random variable rather than taking the product of two

realizations of these random variables. These enhanced noises come under the form of a

model in regularity structures. This is a deterministic object, and the previous step takes

care of constructing a random model. Having a model is somewhat equivalent to having

a definition of the product of a number of otherwise possibly ill-defined quantities. A

restricted class of space-time functions or distributions is then described in regularity

structures theory under the form of a space-time indexed family of jets describing them

locally around each space-time point. Given any choice of model, a consistency relation

ensures that coherent jets describe indeed true space-time functions or distributions.

This is the role of the reconstruction operator; coherent jets are modelled distributions.

It happens then that one can reformulate the formal ill-posed equation into the space
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of jets as a well-posed, model-dependent, fixed point equation in a well-chosen space of

jets. For the random model built from a renormalisation procedure in [8], the space-time

function/distribution associated with the solution of the fixed point equation on the jet

space can be shown to be the limit in probability of solutions of a family of well-posed

space-time stochastic PDEs driven by regularized noises, as the regularization parameter

tends to 0—this is the content of [6]. The fact that some of the terms in these modified

and regularized stochastic PDEs blow up as the regularization parameter goes to 0 is a

feature of the singular nature of the initial equation.

Let us emphasize that the multiplication problem is fundamentally dealt with on

the ground of the following heuristic argument. If one can make sense of the product of a

number of reference quantities, one can make sense of the product of quantities that look

like the reference quantities. This is what motivates the introduction of jets on scene.

The choice of a jet space to describe a possible solution to a singular stochastic PDE

is not the only possible. As a matter of fact, Gubinelli, Imkeller and Perkowski devised

in [11] a Fourier-based approach to the study of singular stochastic PDEs whose scope

has been extended in [2], [3], [4]. The heuristic remains the same, but paraproducts are

used as a mean of making sense of what it means to look like a reference distribution

or function. This choice of representation makes the technical details of paracontrolled

calculus rather different from their regularity structures counterparts, and paracontrolled

calculus remains to be systematized. Despite that fact, it happens to be possible to make

a close comparison between the two settings. We start that comparison in this work by

providing an ‘explicit’ paracontrolled representation of the reconstruction operator. This

is the operator that associates to a coherent jet a space-time distribution. All notions

and notations in the statement are properly defined below.

Theorem 1. Let a concrete regularity structure T = (T+, T ) be given, together

with a model M = (g,Π) on it.

(1) One can construct functions [[·]]M : T 7→ Cβ0(Rd) and [[·]]g : T+ 7→ C0(Rd), such

that

– [[σ]]M ∈ C|σ|(Rd), and [[τ ]]g ∈ C|τ |(Rd), for every homogeneous σ ∈ T and

τ ∈ T+,

– all [[σ]]M, and [[τ ]]g are continuous function of the model (g,Π),

and the following holds true.

(2) One can associate to any modelled distribution

f =
∑

τ∈B;|τ |<γ

fττ ∈ Dγ(T ,g),

a distribution [[f ]]M ∈ Cγ(Rd) such that one defines a reconstruction Rf of f

setting

Rf :=
∑

τ∈B;|τ |<γ

Pfτ [[τ ]]M + [[f ]]M. (1.1)
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Each coefficient fτ , also has a representation

fτ =
∑

τ<µ;|µ|<γ

Pfµ [[µ/τ ]]g + [[fτ ]]g, (1.2)

for some [[fτ ]]g ∈ Cγ−|τ |(Rd). Moreover, the map

f 7→
(
[[f ]]M,

(
[[fτ ]]g

)
τ∈B

)
from Dγ(T ,g) to Cγ(Rd)×

∏
τ∈B Cγ−|τ |(Rd), is continuous.

This is the content of Proposition 12 and Theorem 14. Any regularity exponent a ∈
R is allowed in the above statement. The inductive definition of [[·]]M, Proposition 12, will

make it clear that [[σ]]M can be understood as the ‘part’ of Πσ of regularity C|σ|(Rd). The

quantity [[τ ]]g has a similar meaning for the function g(τ). Theorem 1 provides a much

refined version of the paraproduct-based construction of the reconstruction operator from

Gubinelli, Imkeller and Perkowski’ seminal work [11]. Notice that this statement is not

related to any problem about singular stochastic PDE. The treatment of such equations

involves the additional ingredient of an abstract integration operator and the additional

notion of admissible model. We provide an explicit paracontrolled-based parametrization

of that set of models under some canonical structure assumptions on the regularity

structure.

Theorem 2. Given any family of distributions ([[τ ]] ∈ C|τ |(Rd))τ∈B;|τ |≤0 , there

exists a unique admissible model M = (g,Π) on T such that one has

Πτ :=
∑
σ<τ

Pg(τ/σ)[[σ]] + [[τ ]], (1.3)

for all τ ∈ B with |τ | ≤ 0.

The fact that identity (1.3) holds true with [[·]]M in place of [[·]] for any model

M = (g,Π), is part of the proof of item (1) of Theorem 1.

We work throughout with the usual isotropic Hölder spaces. All the results pre-

sented here have direct analogues involving anisotropic Hölder spaces, such as required

for applications to parabolic singular stochastic PDEs. The proofs of all results are

strictly identical. We refrain from putting ourselves in that setting so as not to overload

the reader with additional technical details and keep focused on the main novelty. The

reader will find relevant technical details in the work [16] of Martin and Perkowski.

No previous knowledge of regularity structures or paracontrolled calculus is needed

in this work, that is mostly self-contained, with the exception of elementary facts on

paraproducts recalled in Appendix A. We have thus given at few places full proofs of

statements that were first proved elsewhere. The material has been organized as follows.

Section 2 sets the scene of regularity structures under a convenient form for us: concrete

regularity structures, models and modelled distributions are introduced, together with a

number of elementary identities and examples. Theorem 1 is proved in Section 3, while

Section 4 takes care of Theorem 2.
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Notation. We use exclusively the letters α, β, γ, θ to denote real numbers, and

use the letters σ, τ, µ to denote elements of T or T+. We agree to use the shorthand

notation s(+) to mean both the statement s and the statement s+.

2. Basics on regularity structures.

Regularity structures are the backbone of expansion devices for the local description

of functions and distributions in Rd. The usual notion of local description of a function,

near a point x ∈ Rd, involves Taylor expansion and amounts to comparing a function to

a polynomial centered at x

f(·) ≃
∑
k

fk(x) (· − x)k, near x. (2.1)

The sum over k is finite and the approximation quantified. One gets a local description

of f near another point x′ writing

f(·) ≃
∑
ℓ≤k

fk(x)

(
k

ℓ

)
(· − x′)ℓ(x′ − x)k−ℓ ≃

∑
ℓ

∑
k;ℓ≤k

fk(x)

(
k

ℓ

)
(x′ − x)k−ℓ

(· − x′)ℓ.

(2.2)

A more general local description device involves an Rd-indexed collection of functions or

distributions (Πxτ)(·), with labels in a finite set B = {τ}. Consider the real vector space
T spanned freely by B. Functions or distributions are locally described as

f(·) ≃
∑
τ

fτ (x)(Πxτ)(·), near each x ∈ Rd.

This implicitely assumes that the coefficients fτ (x) are function of x. One has {τ} = {k}
and (Πxk)(·) = (·−x)k, in the polynomial setting. Like in the former setting, in a general

local description device the reference objects

(Πx′τ)(·) =
(
Πx(Γxx′τ)

)
(·) (2.3)

at a different base point x′ are linear combinations of the Πxσ, for a linear map

Γxx′ : T → T,

and one can switch back and forth between local descriptions at different points. The

linear maps Γxx′ are thus invertible and one has a group action of an Rd × Rd-indexed

group on the local description structure T .

Whereas one uses the same polynomial-type local description for the fk as for f

itself in the usual Cα setting, there is no reason in a more general local description device

to use the same reference objects for f and for its local coefficients, especially if the

(Πxτ)(·) are meant to describe distributions, among others, while it makes sense to use

functions only as reference objects to describe the functions fτ . A simple setting consists

in having all the fτ locally described by a possibly different finite collection B+ = {µ}
of labels, in terms of reference functions gyx(µ), with
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fτ (y) ≃
∑
µ∈B

fτµ(x)gyx(µ), near x.

One thus has both

f(·) ≃
∑
τ∈B

fτ (x)(Πxτ)(·) ≃
∑

τ∈B, µ∈B+

fτµ(y)gxy(µ)(Πxτ)(·) (2.4)

and

f(·) ≃
∑
σ∈B

fσ(y)(Πyσ)(·).

Consistency dictates that the two expressions coincide, giving in particular the fact that

the coefficients fτµ(y) are linear combinations of the fσ(y). Re-indexing identity (2.4)

and using the notation σ/τ for the µ corresponding to τµ ≃ σ, one then has

f(·) ≃
∑

σ∈B,τ∈B
fσ(y)gxy(σ/τ)(Πxτ)(·). (2.5)

The transition map Γxy : T → T , from (2.3) is thus given in terms of the splitting map

∆ : T → T ⊗ T+, ∆σ =
∑
τ

τ ⊗ (σ/τ)

that appears in the above decomposition, with

Πyσ =
∑
τ∈B

gxy(σ/τ)Πxτ

so

Γxyσ =
∑
τ∈B

gxy(σ/τ)τ.

If one further expands fσ(y) in (2.5) around another reference point z, one gets

f(·) ≃
∑

τ,σ,ν∈B
fν(z)gyz(ν/σ)gxy(σ/τ)(Πxτ)(·)

≃
∑
ν∈B

fν(z)(Πzν)(·) ≃
∑

τ,ν∈B

fν(z)gxz(ν/τ)(Πxτ)(·). (2.6)

Here again, consistency requires that the two expressions coincide, giving the identity∑
σ∈B

gyz(ν/σ)gxy(σ/τ) = gxz(ν/τ)

in terms of another splitting map

∆+ : T+ → T+ ⊗ T+
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satisfying by construction the itendity

(Id⊗∆+)∆ = (∆⊗ Id)∆

encoded in identity (2.6). Developing fν(z) in (2.6) in terms of another reference point

leads by consistency to the identity

(Id⊗∆+)∆+ = (∆+ ⊗ Id)∆+.

If we insist that the family of reference functions gyx(µ), µ ∈ B+, be sufficiently rich

to describe locally an algebra of functions, it is convenient to assume that the linear

span T+ of B+ has an algebra structure and the maps gyx on T+ are characters of the

algebra—multiplicative maps. Building on the example of the polynomials, it is also

natural to assume that T+ has a grading structure; an elementary fact from algebra then

leads directly to the Hopf algebra structure that appears below in the definition of a

concrete regularity structure.

We choose to record the essential features of this discussion in the definition of

a concrete regularity structure given below; this is a special form of the more general

notion of regularity structure from Hairer’s seminal work [12]. The reader should keep in

mind that the entire algebraic setting can be understood at a basic level from the above

consistency requirements on a given local description device. We refer the reader to

Sweedler’s book [18] for an accessible reference on Hopf algebras. Given two statements

s and s+, recall the convention that we agree to write s(+) to mean both the statement

s and the statement s+.

2.1. Concrete regularity structures.

Definition. A concrete regularity structure T = (T+, T ) is the pair of graded

vector spaces

T+ =:
⊕

α∈A+

T+
α , T =:

⊕
β∈A

Tβ

such that the following holds.

• The index set A+ ⊂ R+ contains the point 0, and A+ + A+ ⊂ A+; the index set

A ⊂ R is bounded below, and both A+and A have no accumulation points in R.
Set

β0 := minA.

• The vector spaces T+
α and Tβ are finite dimensional.

• The set T+ is an algebra with unit 1, with a Hopf structure with coproduct

∆+ : T+ → T+ ⊗ T+,

such that ∆+1 = 1⊗ 1, and, for τ ∈ T+
α ,
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∆+τ ∈

{
τ ⊗ 1+ 1⊗ τ +

∑
0<β<α

T+
β ⊗ T+

α−β

}
. (2.7)

• One has T+
0 = ⟨1⟩, and for any α, β ∈ A+, one has T+

α T
+
β ⊂ T+

α+β .

• One has a splitting map

∆ : T → T ⊗ T+,

of the form

∆τ ∈

{
τ ⊗ 1+

∑
β<α

Tβ ⊗ T+
α−β

}
(2.8)

for each τ ∈ Tα, with the right comodule property

(∆⊗ Id)∆ = (Id⊗∆+)∆. (2.9)

Let B+
α and Bβ be bases of T+

α and Tβ , respectively. We assume B+
0 = {1}. Set

B+ :=
∪

α∈A+

B+
α , B :=

∪
β∈A

Bβ .

An element τ of T
(+)
α is said to be homogeneous and is assigned homogeneity |τ | := α.

The homogeneity of a generic element τ ∈ T (+) is defined as |τ | := max{α}, such that τ

has a non-null component in T
(+)
α . We sometimes denote by

T :=
(
(T+,∆+), (T,∆)

)
a concrete regularity structure.

Note that we do not assume any relation between the linear spaces T+
α and Tβ at

that stage. Note also that the parameter β in (2.8) can be non-positive, unlike in (2.7).

For an arbitrary element h in T , set

h =
∑
β≤|h|

hβ ∈
⊕
β≤|h|

Tβ .

We use a similar notation for elements of T+. For γ ∈ R, set

T<γ :=
⊕
β<γ

Tβ , T+
<γ :=

⊕
α<γ

T+
α .

The homogeneous spaces Tβ and T+
α being finite dimensional, all norms on them are

equivalent; we use a generic notation ∥ · ∥β or ∥ · ∥α for norms on these spaces. For

simplicity, we write

∥h∥α := ∥hα∥α. (2.10)
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To have a picture in mind, think of T and T+ as sets of possibly labelled rooted trees,

with T+ consisting only of trees with positive tree homogeneities—a homogeneity is

assigned to each labelled tree. This notion of homogeneity induces the decomposition

(2.10) of T into linear spaces spanned by trees with the same homogeneity; a similar

decomposition holds for T+. The coproduct ∆+τ is typically a sum over subtrees σ of τ

with the same root as τ , and τ/σ is the quotient tree obtained from τ by identifying σ

with the root. One understands the splitting ∆τ of an element τ ∈ T in similar terms.

See e.g., Section 2 and Section 3 of [7].

Notation. Given σ, τ ∈ B(+), we use the notation σ ≤(+) τ to mean that σ

appears as a left hand side of one of the tensor products in the sum defining ∆(+)τ ; we

write τ/(+)σ for the corresponding right hand side, so we have, for τ ∈ B(+)

∆(+)τ =
∑

σ∈B(+)

σ ⊗ (τ/(+)σ).

Write σ <(+) τ to mean further that σ is different from τ . The notations τ/(+)σ and

σ <(+) τ are only used for τ and σ in B(+).

Decomposing ∆τ in the basis B ⊗ B+ of T ⊗ T+ as

∆τ =:
∑

σ∈B,θ∈B+

(∆τ)σθ σ ⊗ θ,

one has

τ/σ =
∑
θ∈B+

(∆τ)σθ θ.

We have a similar expression for τ/+σ; for σ, τ ∈ B+,

τ/+σ =
∑
θ∈B+

(∆+τ)σθ θ. (2.11)

With these notations, the right comodule property (2.9) writes for all τ ∈ B∑
σ∈B

(∆τ)σc (∆σ)ab =
∑
θ∈B+

(∆τ)aθ (∆+θ)bc (2.12)

for all a ∈ B and b, c ∈ B+. The identity from Lemma 3 is a direct consequence of the

co-associativity property

(∆+ ⊗ Id)∆+ = (Id⊗∆+)∆+,

of the coproduct ∆+, and the right comodule identity (2.9).

Lemma 3. For σ <+ τ in B+, we have
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∆+(τ/+σ) =
∑

σ≤+η≤+τ

(η/+σ)⊗ (τ/+η)

= (τ/+σ)⊗ 1+ 1⊗ (τ/+σ) +
∑

σ<+η<+τ

(η/+σ)⊗ (τ/+η). (2.13)

For σ < τ in B, we have

∆+(τ/σ) =
∑

σ≤η≤τ

(η/σ)⊗ (τ/η). (2.14)

A character g on the algebra T+ is a linear map g : T+ → R such that g(τ1τ2) =

g(τ1)g(τ2) for any τ1, τ2 ∈ T+. The antipode A of the Hopf algebra structure turns the

set of characters of the algebra T+ into a group G+ for the convolution law ∗ defined by

(g1 ∗ g2)τ := (g1 ⊗ g2)∆
+τ, τ ∈ T+.

The identity of the group is the counit 1′, the dual basis vector of the unit 1, and the

inverse g−1 = g ◦ A. One associates to a character g of T+ the map

ĝ := (Id⊗ g)∆ : T → T,

from T to itself. We have

ĝ1 ∗ g2 = ĝ1 ◦ ĝ2

for any g1, g2 ∈ G+, as a consequence of the comodule property (2.9). Also, for any

τ ∈ T , (
ĝ(τ)− τ

)
∈ T<|τ |,

as a consequence of the structural identity (2.8). Remark that for any concrete regularity

structure T = ((T+,∆+), (T,∆)), then

T + :=
(
(T+,∆+), (T+,∆+)

)
is also a concrete regularity structure. For g ∈ G+, set

ĝ+τ := (Id⊗ g)∆+; (2.15)

this map sends T+ into itself.

Remark. For g ∈ G+, the map ĝ is denoted by Γg in Hairer’s work [12]; we prefer

the former Fourier-like notation.

We now come to the definition of the reference objects Πg
xτ and gyx(σ) used to give

local descriptions of distributions and functions in a regularity structure setting, as in

the introduction to this section. They come under the form of a model.
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2.2. Models.

Recall β0 = minA ∈ R. Given a function φ on Rd, and x ∈ Rd, 0 < λ ≤ 1, set

φλ
x(·) := λ−dφ

(
λ−1(· − x)

)
.

Definition. A model over a regularity structure T is a pair (g,Π) of maps

g : Rd → G+, Π : T → Cβ0(Rd)

with the following properties.

• Set

gyx := gy ∗ g−1
x

for each x, y ∈ Rd. One has

∥g∥ := sup
τ∈B+

sup
x∈Rd

|gx(τ)|+ sup
τ∈B+

sup
x,y∈Rd

|gyx(τ)|
|y − x||τ |

<∞. (2.16)

• The map Π is linear. Set

Πg
x := (Π⊗ g−1

x )∆

for each x ∈ Rd. Fix r > |β0 ∧ 0|. One has

∥Π∥g := sup
σ∈B

∥Πσ∥Cβ0 + sup
σ∈B

sup
φ,0<λ≤1,x∈Rd

∣∣⟨Πg
xσ, φ

λ
x

⟩∣∣
λ|σ|

<∞, (2.17)

where φ runs over all functions φ ∈ Cr(Rd), with associated norm no greater than 1

and support in the unit ball.

In Hairer’s original work [12], the notations Πx and Γyx are used instead of Πg
x and

ĝyx, respectively. In (2.16) and (2.17), we assume global bounds over Rd, while Hairer

only assumes in [12] the previous bounds in any compact subset of Rd. In this paper, we

work on the globally bounded case for simplicity. Our result may be extended into the

locally bounded case using the weighted norms ∥f∥L∞
w

= supx∈Rd w−1(x)|f(x)| instead
of ∥f∥L∞ .

For comparison, and given a < 0, note that a distribution Θ on Rd is an element of

Ca(Rd) if and only if one has a bound∣∣⟨Θ, φλ
x

⟩∣∣ ≲ λa,

for any 0 < λ ≤ 1, uniformly in x ∈ Rd and φ ∈ Cr(Rd), of unit norm in that space and

support in the unit ball, for r = |⌊a⌋|. We stress that Πτ is only an element of Cβ0(Rd);

identity (2.17) conveys the idea that Πg
xτ behaves at point x like an element of C|τ |(Rd).

Emphasize that g acts on T+, while Π acts on T , and note that g plays on T+ the same

role as Π on T ; For τ ∈ T+ and σ ∈ T , one has
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gyx(τ) =
(
g(·)(y)⊗ g−1

x

)
∆+τ, (Πg

xσ)(y) =
(
Π(·)(y)⊗ g−1

x

)
∆σ, (2.18)

in a distributional sense for the latter. Note also the fundamental relation

Πg
y = Πg

x ◦ ĝxy, (2.19)

for all x, y ∈ Rd; it comes from the comodule property (2.9). The mapΠ can be recovered

from each map Πg
x, as we have

Π = (Πg
x ⊗ gx)∆, (2.20)

as a consequence of the comodule property (2.9)

(Πg
x ⊗ gx)∆ =

(
Π⊗ g−1

x ⊗ gx

)
(∆⊗ Id)∆

=
(
Π⊗ g−1

x ⊗ gx

)
(Id⊗∆+)∆

= (Π⊗ 1′)∆ = Π.

Example 1: Bounded polynomials structure.

For any smooth function f on Rd, and r > 0, the Taylor expansion property

f(y)−
∑
|k|<r

∂kf(x)

k!
(y − x)k = O(|y − x|r).

is usually lifted to a modelled distribution

f(x) :=
∑
|k|<r

∂kf(x)

k!
Xk,

over the canonical polynomial regularity structure, under the model (ΠXk)(x) = xk and

gx(X
k) = xk. Since they are not bounded functions, we modify this expansion by using

smooth and bounded functions behaving like polynomials in local sets. The following

elementary claim is proved in Appendix B.

Proposition 4. There exists a finite set E, an open covering {Ue}e∈E of Rd, and

a family {ϕe, {x 7→ xie}di=1}e∈E of functions enjoying the following properties.

(a) The functions ϕe : Rd → [0,∞), belong to C∞
b (Rd), ϕe(x) = 0 for any x ∈ U c

e , and∑
e∈E ϕe(x) = 1 for any x ∈ Rd.

(b) The functions x 7→ xie, belong to C∞
b (Rd), and yie−xie = yi−xi for any x, y on the

connected component of Ue.

(c) For any f ∈ C∞
b (Rd) and r > 0, we have∣∣∣∣∣f(y)−∑

e∈E

∑
|k|<r

∂k(ϕef)(x)

k!
(ye − xe)

k

∣∣∣∣∣ ≲ Br(f) |y − x|r, (2.21)

where Br(f) := ∥f∥Cr
b
, if r ∈ N, or Br(f) := ∥f∥Cr , if r ∈ (0,∞) \ N.
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We lift expansion (2.21) to an appropriate regularity structure as follows. Let

X := {Xi
e}e∈E,1≤i≤d

be a family of symbols, and let T+(X) be the commutative free algebra with unit 1,

generated by these symbols. We define a coproduct ∆+ : T+(X) → T+(X)⊗ T+(X) by

∆+1 = 1⊗ 1, ∆+Xi
e = Xi

e ⊗ 1+ 1⊗Xi
e,

which turns T+(X) into a Hopf algebra. By defining the homogeneity | · | by |Xi
e| = 1,

we have the graded Hopf algebra T+(X). Let T (X) be the subspace spanned by the

bounded polynomials {Xk
e}e∈E,k∈Nd , where

Xk
e :=

d∏
i=1

(
Xi

e

)ki
, k = (ki)

d
i=1 ∈ Nd.

Denote by

∆ : T (X) → T (X)⊗ T+(X)

the restriction of ∆+ to T (X), which turns T (X) into a right comodule over T+(X).

By definition, we have the concrete regularity structure T (X) := (T+(X), T (X)). The

canonical model (g,Π) on T (X) is defined by

gx

(
Xk

e

)
=
(
ΠXk

e

)
(x) = xke . (2.22)

The following elementary result, proved in Appendix B provides the canonical lift of a

smooth function to this bounded polynomials regularity structure. See the paragraph on

modelled distributions for the definition of Dr(T (X),g) and the associated norm ||| · |||Dr .

Proposition 5. For any given f ∈ C∞
b (Rd) and r > 0, define the T (X)-valued

function

f(x) :=
∑
e∈E

∑
|k|<r

∂k(ϕef)(x)

k!
Xk

e , x ∈ Rd.

Then f ∈ Dr(T (X),g), and |||f |||Dr ≲ Br(f).

Example 2: Canonical model on T +.

As another example of model over some regularity structure, consider the regularity

structure T + associated with any regularity structure T , and assume we are given a

function g : Rd 7→ G+ that satisfies estimate (2.16). For τ ∈ T+, set

Πgτ(x) := gx(τ). (2.23)

Estimate (2.17) holds as a consequence of (2.16), so (g,Πg) is a model on T + =

(T+, T+). This justifies to say simply that g is a model on T +.

Equation (2.20) giving Π in terms of Πg
x and gx writes explicitly
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Πτ =
∑
σ≤τ

Πg
x(σ)gx(τ/σ),

for τ ∈ B, that is

Πg
xτ = Πτ −

∑
σ<τ

gx(τ/σ)Π
g
xσ. (2.24)

Furthermore expanding Πg
xσ, one has

Πg
xτ = Πτ −

∑
σ1<τ

gx(τ/σ1)Πσ1 +
∑

σ2<σ1<τ

gx(τ/σ1)gx(σ1/σ2)Π
g
xσ2.

Iterating this expansion gives a representation of Πg
x in terms of gx and Π

Πg
xτ = Πτ −

∑
n≥1

(−1)n−1
∑

σn<···<σ1<τ

gx(τ/σ1) · · ·gx(σn−1/σn)Πσn; (2.25)

the sum is finite. Similarly, since gy = gyx ∗ gx, by definition, Lemma 3 provides for any

σ ≤(+) τ ∈ B(+) the relation

gyx

(
τ/(+)σ

)
= gy

(
τ/(+)σ

)
− gx

(
τ/(+)σ

)
−

∑
σ<(+)σ1<(+)τ

gx

(
τ/(+)σ1

)
gyx

(
σ1/

(+)σ
)
.

A repeated expansion then gives a representation of gyx(τ/
(+)σ) in terms of gy and gx

gyx

(
τ/(+)σ

)
= gy

(
τ/(+)σ

)
− gx

(
τ/(+)σ

)
−
∑
n≥1

(−1)n−1
∑

σ<(+)σn<(+)···<(+)τ

gx

(
τ/(+)σ1

)
· · ·gx

(
σn−1/

(+)σn
) (

gy

(
σn/

(+)σ
)
− gx

(
σn/

(+)σ
))
. (2.26)

2.3. Modelled distributions.

Recall notation (2.10) for the notation ∥h∥α for α ∈ A and h ∈ T .

Definition. Let g : Rd → G+ satisfy (2.16). Fix a regularity exponent γ ∈ R.
One defines the space Dγ(T ,g) of distributions modelled on the regularity structure T ,

with transition g, as the space of functions f : Rd → T<γ such that

[]f []Dγ := max
β<γ

sup
x∈Rd

∥∥f(x)∥∥
β
<∞,

∥f∥Dγ := max
β<γ

sup
x,y∈Rd

∥∥f(y)− ĝyxf(x)
∥∥
β

|y − x|γ−β
<∞.

Set |||f |||Dγ := []f []Dγ + ∥f∥Dγ .

For a basis element σ ∈ B, and an arbitrary element h in T , denote by hσ its

component along the σ direction. For a modelled distribution f(·) =
∑

σ∈B f
σ(·)σ in

Dγ(T ,g), and σ0 ∈ B, we have
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f(y)− ĝyxf(x)

)σ0

= fσ0(y)− fσ0(x)−
∑
τ>σ0

gyx(τ/σ0) f
τ (x). (2.27)

As an example, given a basis element τ ∈ B, set

hτ (x) :=
∑
σ<τ

gx(τ/σ)σ. (2.28)

Then, it follows from identity (2.14) giving ∆+(τ/σ), in Lemma 3, that

ĝyxhτ (x) =
∑

η≤σ<τ

gyx(σ/η)gx(τ/σ)η =
∑
η<τ

(
gy(τ/η)− gyx(τ/η)

)
η

= hτ (y)−
∑
η<τ

gyx(τ/η)η.

The size estimate |gyx(τ/η)| ≲ |y−x||τ |−|η|, then shows that hτ is a modelled distribution

in D|τ |(T ,g). Here is another example.

Lemma 6. Let f =
∑

σ∈B f
σ(·)σ, be an element of Dγ(T ,g). Then, for each

τ ∈ B, the T+-valued function

f/τ :=
∑
σ≥τ

fσ(·)σ/τ.

is an element of Dγ−|τ |(T +,g).

Proof. This comes from the identity

(f/τ)(y)− ĝyx
+
(f/τ)(x) =

∑
σ≥τ

(
fσ(y)−

∑
µ≥σ

fµ(x)gyx(µ/σ)

)
σ/τ,

and the fact that f is a modelled distribution. □

Recall β0 = minA, and fix r > |β0 ∧ 0|.

Theorem 7 (Hairer’s reconstruction theorem). Let (g,Π) be a model over T . Fix

a regularity exponent γ ∈ R\{0}. There exists a linear continuous operator

R : Dγ(T ,g) → Cβ0(Rd)

satisfying the property ∣∣∣⟨Rf −Πg
xf(x), φ

λ
x

⟩∣∣∣ ≲ ∥Π∥g
∥∥f∥∥Dγ λ

γ , (2.29)

uniformly in f ∈ Dγ(T ,g), φ ∈ Cr(Rd) with unit norm and support in the unit ball,

x ∈ Rd and 0 < λ ≤ 1. Such an operator is unique if the exponent γ is positive.

A distribution satisfying identity (2.29) is called a reconstruction of the modelled dis-

tribution f . See Theorem 3.10 in Hairer’s seminal work [12]. We provide in Theorem 14
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below an explicit representation for the reconstruction operator R building on paracon-

trolled calculus. Notice from the definition of Πg
x that the constraint |⟨Πg

xτ, φ
λ
x⟩| ≲ λ|τ |,

that needs to be satisfied by a model, is equivalent to the estimate∣∣∣∣∣
⟨
Πτ −

∑
σ<τ

gx(τ/σ)Π
g
xσ, φ

λ
x

⟩∣∣∣∣∣≲ λ|τ |.

This means that Πτ , with τ ∈ B, is a reconstruction of the modelled distribution hτ ∈
D|τ |(T ,g) defined above in (2.28). Recall that uniqueness in the reconstruction theorem

implies that if f takes values in a function-like sector of T , then Rf = 1′(f)—see e.g.,

Proposition 3.28 in Section 3.4 of [12].

3. Explicit formula for the reconstruction operator.

We prove Theorem 1 giving an explicit description of the reconstruction operator in

this section.

3.1. From Taylor local description to global paracontrolled representa-

tion.

We describe here some simple properties of a natural two-parameter extension of

the elementary paraproduct built from Littlewood–Paley blocks, and refer the reader to

Appendix A for background on Littlewood–Paley decomposition. The notations ∆i and

Qi for the ith Littlewood–Paley block and its kernel are recalled in Appendix A. For

j ≥ 1, define the operator Sj :=
∑

i≤j−2 ∆i, and its smooth kernel Pj :=
∑

i≤j−2Qi.

The Hölder spaces Cα(Rd) are defined as Besov spaces Bα
∞∞(Rd)—see Appendix A.

For a two-variable real-valued distribution Λ on Rd × Rd, and j ≥ 1, set

(QjΛ)(x) :=

∫∫
Pj(x− y)Qj(x− z) Λ(y, z) dydz;

we abuse notation using the integral notation. Set

PΛ :=
∑
j≥1

QjΛ.

We often write

PΛ = Py,z

(
Λ(y, z)

)
in order to display the integrated variables. With that notation, we have the consistency

relation

Pfg = Py,z

(
f(y)g(z)

)
, f, g ∈ L∞,

between the paraproduct operator P and its two-parameter extension. For α > 0, and a

measurable real-valued function F on Rd × Rd, set
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|||F |||Cα
2
:= sup

y,z∈Rd

|F (y, z)|
|y − z|α

.

Proposition 8. (a) Let Λ be a real-valued distribution on Rd × Rd. If

∥QjΛ∥L∞ ≲ 2−jα, for all j ≥ 1, for some α ∈ R, then PΛ ∈ Cα(Rd), and

∥PΛ∥Cα ≲ sup
j≥1

2jα∥QjΛ∥L∞ .

(b) Let α > 0, and a real-valued measurable function F on Rd × Rd be given, with

|||F |||Cα
2
<∞. Then PF ∈ Cα(Rd), and ∥PF∥Cα ≲ |||F |||Cα

2
.

Proof. (a) Since FPj is supported in {λ ∈ Rd; |λ| < 2j × 2/3} and FQj is

supported in {λ ∈ Rd; 2j × 3/4 < |λ| < 2j × 8/3}, the integral∫
Qi(x− w)Pj(w − y)Qj(w − z)dw

vanishes if |i− j| ≥ 5. Hence ∆i(PΛ) =
∑

|i−j|≤4 ∆i(QjΛ) and we have

∥∆i(PΛ)∥L∞ ≤
∑

|i−j|≤4

∥∆i(QjΛ)∥L∞ ≲
∑

|i−j|≤4

∥QjΛ∥L∞ ≲
∑

|i−j|≤4

2−αj ≲ 2−αi.

(b) It is sufficient to show that ∥QjF∥L∞ ≲ 2−αj for all j ≥ 2. By the scaling

properties Pj(·) = 2(j−2)dP2(2
j−2 ·) and Qj(·) = 2(j−2)dQ2(2

j−2 ·), we have

|QjF (x)| ≲
∫∫

|Pj(x− y)Qj(x− z)||y − z|αdydz

= 2−α(j−2)

∫∫
|P2(2

j−2x− y)Q2(2
j−2x− z)||y − z|αdydz

= 2−α(j−2)

∫∫
|P2(y)Q2(z)||y − z|αdydz ≲ 2−αj . □

The next proposition is the key step to the representation of the reconstruction

operator given in Theorem 6.10 of [11]. We state it and prove it here under a slightly

more general form. See the proofs of Lemma 6.8, Lemma 6.9 and Theorem 6.10 therein.

Proposition 9. Let γ ∈ R\{0} and β0 ∈ R be given together with a family Λx of

distributions on Rd, indexed by x ∈ Rd. Assume that one has

sup
x∈Rd

∥Λx∥Cβ0 <∞

and one can decompose (Λy − Λx) under the form

Λy − Λx =

N∑
ℓ=1

cℓyx Θ
ℓ
x (3.1)

for N finite, Rd-indexed distributions Θℓ
x, and real-valued coefficients cℓyx depending mea-
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surably on x and y, such that

sup
x∈Rd

sup
j≥−1

2jβℓ
∣∣⟨Θℓ

x, Pj(x− ·)
⟩∣∣ <∞, |||cℓ|||Cγ−βℓ

2

<∞, (3.2)

for regularity exponents βℓ < γ, for all 1 ≤ ℓ ≤ N . Moreover, assume that one can

decompose (Θℓ
x −Θℓ

z) again under the form

Θℓ
x −Θℓ

z =
Mℓ∑
m=1

dℓmxz Ωℓm
z

for M ℓ finite, Rd-indexed distributions Ωℓm
z , and a real-valued coefficients dℓmxz depending

measurably on x and z, such that

sup
x∈Rd

sup
j≥−1

2jβℓm
∣∣⟨Ωℓm

z , Qj(z − ·)
⟩∣∣ <∞, |||dℓm|||Cβℓ−βℓm

2

<∞, (3.3)

for regularity exponents βℓm < βℓ, for all 1 ≤ m ≤ M ℓ. Write P(Λ) for Py,z(Λy(z))

below.

• If γ > 0, then there exists a unique function fΛ ∈ Cγ(Rd) such that∣∣∣⟨{P(Λ)− fΛ
}
− Λx, Pi(x− ·)

⟩∣∣∣ ≲ 2−iγ , (3.4)

uniformly in x ∈ Rd.

• If γ < 0, then we have ∣∣⟨P(Λ)− Λx, Pi(x− ·)
⟩∣∣ ≲ 2−iγ , (3.5)

uniformly in x ∈ Rd.

If furthermore ∣∣⟨Λx, Pj(x− ·)
⟩∣∣ ≲ 2−jγ (3.6)

uniformly in x ∈ Rd, then one has P(Λ) ∈ Cγ(Rd).

Proof. (i) We prove that one has∣∣∣∆j

(
P(Λ)− Λx

)
(x)
∣∣∣ ≲ 2−jγ , (3.7)

uniformly in x ∈ Rd. We write for that purpose

P(Λ)(y)− Λx(y) =
∑
j≥−1

∫∫
Pj(y − u)Qj(y − v)

(
Λu(v)− Λx(v)

)
dudv − S (Λx)

=
∑

1≤ℓ≤N

∑
j≥−1

∫∫
Pj(y − u)Qj(y − v)cℓuxΘ

ℓ
x(v) dudv − S (Λx).
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Here the operator S is defined by

S f := f − P1f = f −Py,z

(
1(y)f(z)

)
(3.8)

for any f ∈ S ′(Rd). This is a smooth function that depends continuously on f ; if

f ∈ Cα(Rd) with α ∈ R, then for any r > 0,

∥S f∥Cr ≲ ∥f∥Cα .

Note that ∣∣∣∣∫ Qj(y − v)Θℓ
x(v) dv

∣∣∣∣ = Mℓ∑
m=1

∣∣∣∣dℓmxy ∫ Qj(y − v)Ωℓm
y (v) dv

∣∣∣∣
≲

Mℓ∑
m=1

|x− y|βℓ−βℓm2−jβℓm .

Hence we have for any i ≥ 1,∣∣∆i

(
P(Λ)− Λx

)
(x)
∣∣

≲
∑

|j−i|≤4

∑
ℓ,m

∫∫ ∣∣Qi(x− y)Pj(y − u)
∣∣ |u− x|γ−βℓ |x− y|βℓ−βℓm2−jβℓm dudy + o(2−iγ).

Then (3.7) follows from elementary estimates and the bounds∫
Rd

|Pj |(x) |x|r dx ≲ 2−jr,

∫
Rd

|Qj |(x) |x|r dx ≲ 2−jr, (3.9)

that holds for any positive exponent r.

(ii) If γ > 0, estimate (3.7) implies that the sum

fΛ(x) :=
∑
j≥−1

∆j

(
P(Λ)− Λx

)
(x),

defines an element fΛ of Cγ(Rd); this is proved in point (iii) below. Then we have, for

any x ∈ Rd,

∣∣⟨P(Λ)− fΛ − Λx, Pi(x− ·)
⟩∣∣ =

∣∣∣∣∣∣
∑

j≤i−2

∆j

(
P(Λ)− Λx

)
− Si(fΛ)(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣fΛ(x)−
∑

j>i−2

∆j

(
P(Λ)− Λx

)
− Si(fΛ)(x)

∣∣∣∣∣∣
≲
∑

j>i−2

∣∣∆j(fΛ)(x)
∣∣+∑

j>i−2

∣∣∆j

(
P(Λ)− Λx

)
(x)
∣∣ ≲ 2−iγ .

Uniqueness of fΛ follows from the fact that Pi converges to a Dirac mass at 0, so if f ′Λ
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were another Cγ function satisfying estimate (3.4), one would have∣∣⟨fΛ − f ′Λ, Pi(x− ·)
⟩∣∣ ≲ 2−iγ ,

uniformly in x, for all i ≥ −1, giving indeed f ′Λ = fΛ.

If γ < 0, we directly have from (3.7) that∣∣⟨P(Λ)− Λx, Pi(x− ·)
⟩∣∣ ≲ ∑

j≤i−2

∣∣⟨P(Λ)− Λx, Qj(x− ·)
⟩∣∣ ≲ ∑

j≤i−2

2−jγ ≲ 2−iγ .

(iii) We follow the argument in Section 6 of [11]. We decompose fΛ = f≤j+1
Λ +f>j+1

Λ ,

where

f≤j+1
Λ (x) :=

∑
i≤j+1

∆i

(
P(Λ)− Λx

)
(x).

We consider ∆jfΛ = ∆jf
≤j+1
Λ + ∆jf

>j+1
Λ . For the second term, by the estimate (3.7)

one has ∥∥∆jf
>j+1
Λ

∥∥
L∞ ≲

∑
i>j+1

2−iγ ≲ 2−jγ .

For the first term, since Qj ∗Q≤j+1 = Qj , where Q≤j+1 =
∑

i≤j+1Qi, one has

∆jf
≤j+1
Λ (y) =

∫
Qj(y − x)Q≤j+1

(
P(Λ)− Λx

)
(x) dx

=

∫
Qj(y − x)Q≤j+1

(
P(Λ)− Λy +

∑
ℓ

cℓyxΘ
ℓ
x

)
(x) dx

= Qj

(
P(Λ)− Λy

)
(y) +

∑
ℓ

∫
Qj(y − x) cℓyx

(
Q≤j+1Θ

ℓ
x

)
(x) dx.

The first term is estimated by (3.7). The second term is bounded by 2−jγ by assumption.

In the end, we have ∥∥∆jf
≤j+1
Λ

∥∥
L∞ ≲ 2−jγ .

(iv) Under the additional setting (3.6), it is straightforward to show∣∣⟨P(Λ)− fΛ1γ>0, Pi(x− ·)
⟩∣∣ ≲ 2−iγ ,

so one has P(Λ) ∈ Cγ(Rd). □

If Λx stands for Πg
xf(x), for a modelled distribution f ∈ Dγ(T ,g) and a model

(g,Π), one has

Λy − Λx =
∑
σ∈B

(
ĝxyf(y)− f(x)

)σ
Πg

xσ,
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and

Πg
xσ −Πg

zσ =
∑
η<σ

gzx(σ/η)Π
g
zη,

hence Λ satisfies the assumptions of Proposition 9, from condition (2.17) on models and

the definition of a modelled distribution. As in Lemma 6.3 of [11], we can extend the

condition (2.17) for any rapidly decreasing smooth functions φ. Identities (3.4) and (3.5)

are equivalent to saying that P(Λ)− fΛ1γ>0 is a reconstruction of f—see Lemma 6.6 of

[11]. This is the content of Theorem 6.10 in [11].

We prove in Theorem 14 below that Py,z((Π
g
yf(y))(z)) has an explicit form, up

to some remainder in Cγ(Rd). The mechanism at work in the proof of this fact lies in

Proposition 10. Following [4], set

R◦(a, b, c) := Pa(Pbc)− Pabc.

It was proved in Appendix C.1 of [4] that the map R◦ is continuous from L∞(Rd) ×
Cr1(Rd) × Cr2(Rd) into Cr1+r2(Rd), for r1 ∈ (0, 1) and r2 any regularity exponent in R.
The next proposition provides a refined continuity result for the operator R◦.

Proposition 10. Pick a positive regularity exponent α. Assume we are given a

function f ∈ L∞(Rd) and a finite family (an, bn)1≤n≤N of elements of L∞(Rd)×L∞(Rd)

such that one has

f(y)− f(x) =

N∑
n=1

an(x)
(
bn(y)− bn(x)

)
+ f ♯yx, (3.10)

for any x, y ∈ Rd, for a two-parameter remainder f ♯ with finite α-Hölder norm |||f ♯|||Cα
2
<

∞. Then, for any regularity exponent β ∈ R and g ∈ Cβ(Rd), we have

N∑
n=1

R◦(an, bn, g) ∈ Cα+β(Rd).

Proof. Recall from equation (3.8) the definition of the smooth function S g, for

any g ∈ Cβ(Rd), with β ∈ R, and note the identity

R◦(a, b, c) = P
(
a(x)

(
Pb−b(x)c

)
(y)
)
− Pab(S c).

Applying the two-parameter P-operator to identity (3.10), we see that

N∑
n=1

R◦(an, bn, g) = R◦(1, f, g) + Pf (S g)−
N∑

n=1

Panbn(S g)−Px,y

(
(Pf♯

·x
g)(y)

)
= −S (Pfg) + Pf (S g)−

N∑
n=1

Panbn(S g)−Px,y

(
(Pf♯

·x
g)(y)

)
.

The first three terms on the right hand side are smooth. To prove that the last term
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on the right hand side is an element of Cα+β(Rd), it is sufficient, from Proposition 8, to

see that ∣∣∣Qj

((
Pf♯

·x
g
)
(y)
)∣∣∣ ≲ 2−j(α+β),

for all j ≥ 1. Recall for that purpose the bound (3.9). Then we have for |Qj((Pf♯
·x
g)(y))|

the upper bound∑
i;|i−j|≤4

∣∣∣∣∫ Pj(z − x)Qj(z − y)

(∫
Pi(y − u)Qi(y − v)f ♯uxg(v) dudv

)
dxdy

∣∣∣∣
≲

∑
i;|i−j|≤4

∫ ∣∣Pj(z − x)Qj(z − y)
∣∣ (∫ ∣∣Pi(y − u)

∣∣ |u− x|α du
)
|∆ig(y)| dxdy

≲
∑

i;|i−j|≤4

2−iβ

∫ ∣∣Pj(z − x)Qj(z − y)
∣∣ (|y − x|α + 2−iα

)
dxdy

≲
∑

i;|i−j|≤4

2−iβ
(
2−jα + 2−iα

)
≲ 2−j(α+β). □

Condition (3.10) is reminiscent of Gubinelli’s notion of controlled path [9]. Recall

from Proposition 35 in [4] that for f ∈ Cα1 and g ∈ Cα2 , with α1, α2 positive and

α1 + α2 ∈ (0, 1), one has∣∣∣(Pfg)(y)− (Pfg)(x)− f(x)
(
g(y)− g(x)

)∣∣∣ ≲ |y − x|α1+α2 .

It follows from Proposition 10 above that R◦(f, g, h) ∈ Cα1+α2+β , for any h ∈ Cβ , with

β ∈ R.
Identity (2.26) provides another example of a setting where Proposition 10 applies,

as it states that one has for any τ, σ ∈ B+

gy

(
τ/+σ

)
− gx

(
τ/+σ

)
=
∑
n≥1

(−1)n
∑

σ<+σn<+···<+τ

gx

(
τ/+σ1

)
· · ·gx

(
σn−1/

+σn
)(

gy

(
σn/

+σ
)
− gx

(
σn/

+σ
))

+ gyx

(
τ/+σ

)
,

with |gyx(τ/
+σ)| ≲ |y − x||τ |−|σ|.

Corollary 11. For any family (hσ)σ∈B+\{1}, with hσ ∈ C|σ|, the sum∑
n≥1

(−1)n
∑

1<+σ<+σn<+···<+τ

R◦
(
g
(
τ/+σ1

)
· · ·g

(
σn−1/

+σn
)
,g(σn/σ), hσ

)
defines an element of C|τ |(Rd).
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3.2. Paracontrolled representations.

Proposition 12. Fix a regularity structure T and a model M = (g,Π) on T .

Define recursively on |τ | and |σ| the families of real-valued functions {[[τ ]]g}τ∈B+ and

{[[σ]]M}σ∈B on Rd, by the formulas

g(τ) =
∑

1<+ν<+τ

Pg(τ/+ν)[[ν]]
g + [[τ ]]g, τ ∈ B+,

Πσ =
∑
µ<σ

Pg(σ/µ)[[µ]]
M + [[σ]]M, σ ∈ B.

(3.11)

Then [[τ ]]g ∈ C|τ |(Rd), for all τ ∈ B+, and [[σ]]M ∈ C|σ|(Rd), for all σ ∈ B. Furthermore,

the maps

M 7→ [[τ ]]g ∈ C|τ |(Rd), M 7→ [[σ]]M ∈ C|σ|(Rd),

are continuous, for any τ ∈ B+ and σ ∈ B.

Proof. First we construct the family {[[τ ]]g; τ ∈ B+}.
• The proof proceeds by induction on the homogeneity |τ | of τ , starting with the

case τ = 1, for which we set [[1]]g := g(1) = 1, the constant function on Rd, equal to 1.

Let |τ | > 0 and assume that the functions [[σ]]g ∈ C|σ|(Rd) satisfying (3.11) have been

constructed for any σ ∈ B+ with |σ| < |τ |. Applying the two-parameter extension of the

paraproduct operator P to identity (2.26) with σ = 1 and <+ order, we have

P1g(τ) =

∞∑
n=1

(−1)n−1
∑

1<+σn<···<σ1<+τ

Pg(τ/+σ1)···g(σn−1/+σn) g(σn) +Px,y

(
gyx(τ)

)
.

We used the fact that Pf1 = 0, for any f ∈ S ′(Rd), to remove the zero-contribution from

the σn = 1 term in the sum. Note that

P1g(τ) = g(τ)− S g(τ),

is the sum of g(τ) and a smooth term depending continuously in any Hölder topology

on g(τ) ∈ L∞(Rd). Expanding g(σn) by induction, we have

∞∑
n=1

(−1)n−1
∑

1<+σn<+···<σ1<+τ

Pg(τ/+σ1)···g(σn−1/+σn)g(σn)

=
∞∑

n=1

(−1)n−1
∑

1<+σn<+···<+σ1<+τ

Pg(τ/+σ1)···g(σn−1/+σn)[[σn]]
g

+

∞∑
n=1

(−1)n−1
∑

1<+σn+1<+···<+σ1<+τ

Pg(τ/+σ1)···g(σn−1/+σn)

(
Pg(σn/+σn+1)[[σn+1]]

g
)

=
∑

1<σ<τ

Pg(τ/σ)[[σ]]
g +

∞∑
n=1

(−1)n−1



575(247)

Paracontrolled calculus and regularity structures I 575∑
1<+σn+1<+···<+σ1<+τ

R◦
(
g(τ/+σ1) · · ·g(σn−1/

+σn),g(σn/
+σn+1), [[σn+1]]

g
)

from a (wonderful) telescopic sum simplification. This is where something is happening.

Define then [[τ ]]g by the formula

S g(τ) +Px,y

(
gyx(τ)

)
+

∞∑
n=1

(−1)n−1

∑
1<+σn+1<+···<+σ1<+τ

R◦
(
g(τ/+σ1) · · ·g(σn−1/

+σn),g(σn/
+σn+1), [[σn+1]]

g
)
.

It follows from the estimate |gyx(τ)| ≲ |y − x||τ |, and Proposition 8 that Px,y(gyx(τ)) ∈
C|τ |(Rd). Corollary 11 takes care of the sum and shows that it defines an element of

C|τ |(Rd).

• The proof of the regularity statement for [[τ ]]M, for τ ∈ B, proceeds by induction,

similarly as above, using identity (2.25) giving Πg
xτ in terms of Π only, as an input.

Applying the two-parameter operator P to (2.25), gives (3.11) for a choice of [[τ ]]M equal

to

SΠ(τ) +Px,y

(
Πg

x(τ)(y)
)

+
∞∑

n=1

(−1)n−1
∑

1<σn+1<···<σ1<τ

R◦
(
g(τ/σ1) · · ·g(σn−1/σn),g(σn/σn+1), [[σn+1]]

M
)
.

Since Πg
xτ = Πg

x′ ĝx′xτ = Πg
x′τ +

∑
σ<τ gx′x(τ/σ)Π

g
x′σ, and

sup
z∈Rd

∣∣∣(Πg
z τ
)(
Qj(z − ·)

)∣∣∣ ≲ 2−j|τ |

from the definition of a model, since Qj(·) = Q2j−2

2 (·), one can use Proposition 9 to

conclude that Px,y(Π
g
x(τ)(y)) belongs to C|τ |(Rd). □

Recall from Example 2 in Section 2 that given a model (g,Π) on T , the concrete

regularity structure T + is endowed with an associated canonical model

Mg := (g,Πg) = (g,g).

Remark that

[[·]]M
g

= [[·]]g,

on T+, so the above statement is really about [[·]]Mg

and [[·]]M. The proof makes it

clear that the g-brackets [[τ ]]g depend only on g. We extend by linearity the operators

[[·]]g, [[·]]M to T+ and T , respectively.

Remark. One can make the link with the setting introduced in [4], and give

a different representation of the brackets under the assumption that we are given an
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operator I that acts on smooth functions and an abstract integration operator I : T → T ,

on the regularity structure T , together with a naive interpretation operator Π, such

that Π is multiplicative and Π(Iτ) = I(Πτ), for all τ ∈ T—see Section 4.2. Let then

ζ : Rd → R, stand for a smooth ‘noise’ and ◦ stand for an element of T such thatΠ(◦) = ζ.

We assign homogeneity α−θ to ◦, and |τ |+θ to any Iτ , and |τ1 · · · τk| = |τ1|+· · ·+|τk|, for
all τi ∈ T . Set g(I◦) := Π(I◦) := I(ζ) =: Z. Denote by the unconventional sign ⊖ the

resonant operator from the paraproduct decomposition of a product—see Appendix A.

Then

Π(◦I(◦)) = ζZ = PZζ + PζZ +⊖(Z, ζ),

and we read on this expression that

[[◦I(◦)]]M = PζZ +⊖(Z, ζ).

Compute [[◦I(◦)2]]M as another example. We have

Π
(
◦I(◦)2

)
= Z2ζ = PZ2ζ + 2PζPZZ + Pζ

(
⊖(Z,Z)

)
+⊖

(
2PZZ +⊖(Z,Z), ζ

)
.

To make the link with the defining relation (3.11) for [[◦I(◦)2]]M, we use the corrector

operator C and the operator S from [4]. This gives for Π(◦I(◦)2) the expression

PZ2ζ + 2PZ

(
PζZ

)
+ 2S(ζ, Z, Z)

+ Pζ

(
⊖ (Z,Z)

)
+ 2Z ⊖ (Z, ζ) + 2C(Z,Z, ζ) +⊖

(
⊖(Z,Z), ζ

)
= PZ2ζ + PZ

(
2PζZ +⊖(Z, ζ)

)
+
{
2S(ζ, Z, Z) + Pζ

(
⊖(Z,Z)

)
+ 2P⊖(Z,ζ)Z + 2⊖

(
Z,⊖(Z, ζ)

)
+ 2C(Z,Z, ζ) +⊖

(
⊖(Z,Z), ζ

)}
,

so the term inside the brackets {· · · } defines [[◦I(◦)2]]M. As can be seen from these

examples, these expressions of the brackets using the operators from [4] quickly get

seemingly complicated.

Proposition 13. We have

g(τ/σ) =
∑

η∈B, σ<η<τ

Pg(τ/η)[[η/σ]]
g + [[τ/σ]]g,

for all σ, τ ∈ B with σ < τ .

Proof. With τ/σ =
∑

θ∈B+(∆τ)σθ θ, and θ/+ρ =
∑

κ∈B+(∆+θ)ρκκ, we have on

the one hand, from Proposition 12,

g(τ/σ) =
∑
θ∈B+

(∆τ)σθg(θ) =
∑

θ,ρ∈B+,1<+ρ<+θ

(∆τ)σθ Pg(θ/+ρ)[[ρ]]
g +

∑
θ∈B+

(∆τ)σθ [[θ]]g

=
∑

θ,ρ,κ∈B+,1<+ρ<+θ

(∆τ)σθ(∆+θ)ρκ Pg(κ)[[ρ]]
g + [[τ/σ]]g,
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and on the other hand, and since Pf1 = 0, for any f ∈ S ′(Rd),∑
σ<η<τ

Pg(τ/η)[[η/σ]]
g =

∑
σ<η<τ,κ,ρ∈B+,1<+ρ

(∆τ)ηκ(∆η)σρ Pg(κ)[[ρ]]
g.

The statement then follows from the right comodule identity (2.9), such as expressed in

coordinates in identity (2.12), and the structural assumption (2.8) on the splitting map ∆.

□

Theorem 14. Fix a regularity exponent γ ∈ R, and a model M = (g,Π) on the

regularity structure T . One can associate to any modelled distribution

f =
∑

τ∈B;|τ |<γ

fττ ∈ Dγ(T ,g),

a distribution [[f ]]M ∈ Cγ(Rd) such that one defines a reconstruction Rf of f setting

Rf :=
∑

τ∈B;|τ |<γ

Pfτ [[τ ]]M + [[f ]]M. (3.12)

Each coefficient fτ also has a representation

fτ =
∑

τ<µ;|µ|<γ

Pfµ [[µ/τ ]]g + [[fτ ]]g, (3.13)

for some [[fτ ]]g ∈ Cγ−|τ |(Rd). Moreover, the map

f 7→
(
[[f ]]M,

(
[[fτ ]]g

)
τ∈B

)
from Dγ(T ,g) to Cγ(Rd)×

∏
τ∈B Cγ−|τ |(Rd), is continuous.

Proof. Recall from Proposition 9 that, there exists a function g ∈ Cγ(Rd) such

that

Px,y

((
Πg

xf(x)
)
(y)
)
− g1γ>0 (3.14)

is the reconstruction Rf . We have from identity (2.25) giving Πg
x in terms of g and Π,

the finite expansion

(
Πg

xf(x)
)
(·) =

∞∑
n=0

(−1)n
∑

σn<···<σ1<σ0

(
fσ0g

(
σ0/σ1

)
· · ·g

(
σn−1/σn

))
(x) (Πσn)(·).

So applying the two-parameter paraproduct operator P on both sides, and using the

same (fantastic) telescopic sum as in the proof of Proposition 12, we get, with an obvious

notation,

Px,y

((
Πg

xf(x)
)
(y)
)
= (C∞) +

∑
σ0∈B

Pfσ0 [[σ0]]
M
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+
∞∑

n=1

(−1)n
∑

σn+1<σn<···<σ1<σ0

R◦
(
fσ0g

(
σ0/σ1

)
· · ·g

(
σn−1/σn

)
,g(σn/σn+1), [[σn+1]]

M
)
.

From (2.27), for each σ ∈ B we have

fσ(y)− fσ(x)

=
(
f(y)− ĝyxf(x)

)σ
+
∑
σ<σ0

fσ0(x)gyx(σ0/σ)

=
(
f(y)− ĝyxf(x)

)σ
+
∑
n≥0

(−1)n
∑

σ<σn<···<σ1<σ0

(
fσ0g(σ0/σ1) · · ·g(σn−1/σn)

)
(x)
(
gy(σn/σ)− gx(σn/σ)

)
.

Proposition 10 applies and tells us that the sum of the R◦-terms defines an element of

Hölder regularity (γ − |σn+1|) + |σn+1| = γ. The claim of the theorem on Rf comes

from this fact and identity (3.14). To get the paracontrolled representation of fτ , note

from Lemma 6 that f/τ =
∑

µ≥τ ;|µ|<γ f
µ(µ/τ) ∈ Dγ−|τ |(T +,g), and apply the result

just proved to the reconstructions of the modelled distribution. □

Theorem 14 refines over the paraproduct-based construction of the reconstruction

operator given by Gubinelli, Imkeller and Perkowski in [11], where Rf is proved to be

of the form Px,y((Π
g
xf(x))(y)), up to a Cγ(Rd) term. See our extension in Proposition 9

above. The point of our refined representation of the family (Rf , fτ ) as a paracontrolled

system lies in Theorem 2, proved in the next section. It parametrizes the class of “ad-

missible” models used for the study of singular stochastic PDEs, in terms of the brackets

[[τ ]]M, with |τ | ≤ 0. The forthcoming work [5] will give a similar description of more gen-

eral models (g,Π) and modelled distributions in Dγ(T ,g), in terms only of the bracket

data, extending the main result of [16] on Besov-type characterizations Dγ(T ,g).

One advantage of the explicit construction of the reconstruction operator given by

Theorem 14 is that this representation is flexible enough to work in other functional

settings than the present Bγ
∞∞-type space Dγ(T ,g). The continuity properties of the

paraproduct operator on Besov, Triebel–Lizorkin or Sobolev–Slobodeckij spaces are well-

known, and allow for a direct approach to reconstruction in these spaces, in the line of

the recent works [13], [14], [15], [17].

Before giving the next statement, note that the restriction to T≤0 of the splitting ∆

turns

T≤0 :=
(
(T+,∆+), (T≤0,∆)

)
into a regularity structure. The next statement is essentially contained in Proposi-

tion 3.31 from [12]; we give the details here to provide a self-contained document.

Corollary 15. Assume we are given a map g : Rd → G+ such that the bound

(2.16) is satisfied. Let a family ([[τ ]] ∈ C|τ |(Rd))τ∈B,|τ |≤0 be given. For any τ ∈ B with

|τ | ≤ 0, set
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Πτ :=
∑
σ<τ

Pg(τ/σ)[[σ]] + [[τ ]].

Then (g,Π) is a model on the regularity structure T≤0, and it has a unique extension

into a model on T .

Proof. • Pick a basis vector τ ∈ B with |τ | ≤ 0, and assume that (g,Π) is a

model on the sector T<|τ |. Set for all x ∈ Rd

hτ (x) :=
∑
σ<τ

gx(τ/σ)σ;

this defines a modelled distribution in D|τ |(T ,g). Then the bound |⟨Πg
xτ, φ

λ
x⟩| ≲ λ|τ |

is equivalent to that Πτ is (one of) the reconstructions of hτ . From Theorem 14, the

distribution ∑
σ<τ

Pg(τ/σ)[[σ]] + [[hτ ]]

is a reconstruction of hτ . Since

Πτ − hτ = [[τ ]]− [[hτ ]] ∈ C|τ |(Rd),

the distribution Πτ appears then as another reconstruction of hτ .

• If one picks now a basis vector µ ∈ B, with |µ| > 0, then hµ ∈ D|µ|(T ,g) has a

unique reconstruction, equal to Πµ, that is characterized by the data (Πg
xσ,gx(µ/σ);x ∈

Rd, σ < µ), from the defining property (2.29) of a reconstruction. An elementary induc-

tion then shows the existence of a unique extension of Π to T that satisfies the property

Πτ = Rhτ , for every τ ∈ B with positive homogeneity. □

4. Parametrization of the set of admissible models.

4.1. Usual models.

We introduce in this section a notion of usual model on a concrete regularity struc-

ture, motivated by some identity satisfied by g(τ/Xk) in the usual setting; see Equation

(4.4) below. Its introduction is motivated by the fact that usual models (g,Π) are en-

tirely determined by the Π map, under a mild structure assumption on T+ and ∆. The

definition of a usual model requires that we work with concrete regularity structures

where T and T+ are related with one another, unlike the results of the previous section.

Let T = ((T+,∆+), (T,∆)) be a concrete regularity structure. If T contains the

usual polynomial structure T (X), one can expand the coproduct ∆τ of any τ ∈ B\{Xk}k,
as

∆τ = ∆̊τ +
∑
k∈Nd

Xk

k!
⊗Dkτ, ∆̊τ :=

∑
σ ̸=Xk

σ ⊗ (τ/σ),

where
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Dkτ := k!(τ/Xk).

Applying Π⊗ g−1
x , we have

Πg
xτ = Π̊g

xτ +
∑
k∈Nd

(·)k

k!
g−1
x (Dkτ), Π̊g

x := (Π⊗ g−1
x )∆̊.

Setting

fx(D
kτ) := −

∑
ℓ∈Nd

xℓ

ℓ!
g−1
x (Dk+ℓτ),

or equivalently,

g−1
x (Dkτ) := −

∑
ℓ∈Nd

(−x)ℓ

ℓ!
fx(D

k+ℓτ),

gives a Taylor-like expansion formula for Πg
xτ , under the form of the identity

Πg
xτ = Π̊g

xτ −
∑
k∈Nd

(· − x)k

k!
fx(D

kτ).

Since the derivatives ∂ky (Π
g
xτ)(y) vanishes at y = x for any |k| < |τ |, one has

fx(D
kτ) = 1|k|<|τ |∂

k
y (Π̊

g
xτ)(y)

∣∣
y=x

. (4.1)

Given α ∈ R, define a linear projection map P>α : T 7→ T setting

P>α(τ) := τ 1|τ |>α,

for every τ ∈ B.

Lemma 16. For any τ ∈ B \ {Xk}k, one has

gx(D
kτ) =

(
∂ky
{
(Π̊g

xP>|k| ⊗ gx)∆τ
}
(y)
)∣∣∣

y=x
. (4.2)

Proof. It suffices to show that

gx(D
kτ) =

∑
σ ̸=Xℓ

fx(D
kσ)gx(τ/σ); (4.3)

we get (4.2) by inserting (4.1) into (4.3). We start from the formula

∆+(τ/Xk+ℓ) =
∑

σ ̸=Xm

(σ/Xk+ℓ)⊗ (τ/σ) +
∑
m

(
k + ℓ+m

m

)
Xm ⊗ (τ/Xk+ℓ+m).

Since τ/Xk+ℓ ∈ T+\⟨1⟩, applying g−1
x ⊗ gx to the preceding identity gives
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0 =
∑

σ ̸=Xm

g−1
x (Dk+ℓσ)gx(τ/σ) +

∑
m

(−x)m

m!
gx(D

k+ℓ+mτ),

that is

0 = −
∑
m

(−x)m

m!

 ∑
σ ̸=Xm

fx(D
k+ℓ+mσ)gx(τ/σ)− gx(D

k+ℓ+mτ)

 .

Identity (4.3) is obtained as a consequence, since

0 =
∑
ℓ,m

xℓ

ℓ!

(−x)m

m!

 ∑
σ ̸=Xm

fx(D
k+ℓ+mσ)gx(τ/σ)− gx(D

k+ℓ+mτ)


=

∑
σ ̸=Xm

fx(D
kσ)gx(τ/σ)− gx(D

kτ). □

We use in the present work the bounded polynomial structure rather than the usual

polynomial structure. We work with concrete regularity structures for which the following

assumptions hold true.

Assumption A. The bounded polynomial structure T (X) = ⟨Xk
e⟩e,k is contained

in T , and the polynomial ring T+(X) = ⟨Xk1
e1 · · ·X

kn
en ⟩e1,...,en,k1,...,kn is included in T+.

We do not make a difference in the notations between the two copies in T and T+

of the bounded polynomial structure.

Definition 17. Let T be a concrete regularity structure satisfying Assumption A.

We say that the model (g,Π) is usual if one has gx(X
k
e) = (ΠXk

e)(x) = xke , and

gx(D
k
eτ) =

(
∂ky

{
ϕe
(
Π̊g

xP>|k| ⊗ gx

)
∆τ
}
(y)
)∣∣∣

y=x
. (4.4)

for any τ ∈ B \ {Xk
e}e,k, where Dk

eτ := k!(τ/Xk
e).

4.2. Abstract integration operator and admissible models.

Fix a positive regularity exponent θ, and let T be a concrete regularity structure.

Assume for simplicity that

β0 > −θ,

so all the elements of T have homogeneity strictly greater than −θ. We consider in this

section concrete regularity structures T equipped with an abstract integration operator

I, that is a regularity structure counterpart of an operator I that is typically an integral

operator given by a kernel that is singular on the diagonal, such as the Green function

of a differential operator. The exponent θ quantifies the regularizing properties of the

operator I in the Hölder or Besov scale.

Remark. The dynamical Φ4
3 equation
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∂tΦ = ∆Φ− Φ3 + ξ

seems not to satisfy the above assumption. Indeed, one should choose β0 = −5/2 − ε,

and θ = 2 for the heat kernel in any dimension. However, if we decompose Φ = Ψ + v,

where ∂tΨ = ∆Ψ+ ξ and

∂tv = ∆v − (v +Ψ)3,

then one can choose β0 = 3(−1/2− ε) instead, so the equation for v satisfies β0 > −θ. A
general da Prato–Debussche trick is described in Section 6 of [6], that allows to set the

study of a generic subcritical singular partial differential equation, within the setting of

regularity structures, under the assumption β0 > −θ.

4.3. Integration operator.

Let Kn : Rd × Rd 7→ R, be a sequence of kernels on Rd, with support in{
(x, y) ∈ Rd × Rd; |y − x| ≤ 2−n

}
,

and such that one has, for all n ∈ N and x, y ∈ Rd,∣∣∂kx∂ℓyKn(x, y)
∣∣ ≤ Ck,ℓ 2

−n(θ+ε−d−|k|−|ℓ|), (4.5)

for some (small) positive ε. (This ε is only needed in the proof of Lemma 22; see the

remark following that lemma.) The converging sum

K(x, y) =
∑
n≥0

Kn(x, y)

defines a kernel

K : Rd × Rd\{(x, x);x ∈ Rd} → R,

and, for each x ∈ Rd, an integration map

(Iφ)(x) :=

∫
Rd

K(x, y)φ(y) dy,

for φ ∈ D(Rd\{x}). The archetypal example is the smoothly localized Green kernel

K(x, y) = χ(|y − x|) |y − x|2−d,

for χ a smooth real-valued function with compact support identically equal to 1 in a

neighbourhood of 0, in dimension at least d ≥ 3, for which one can take any θ < 2.

The associated integration map sends any Cβ(Rd), into Cβ+2(Rd), for β /∈ Z—these are

Schauder estimates. Note however that (Iζ)(x) is not defined for a generic distribution ζ.

Lemma 18. Let {ζx}x∈Rd ⊂ S ′(Rd) be a family of distributions. If there exist

α ∈ R and a positive constant C such that one has
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x⟩
∣∣ ≤ Cδλ,

uniformly over φ ∈ Cr(Rd), with unit norm and support in the unit ball, λ ∈ (0, 1] and

x ∈ Rd, then the sum

(Iek(ζx))(x) :=
⟨
ζx, ∂

k
x

(
ϕe(x)K(x, ·)

)⟩
:=
∑
n≥0

⟨
ζx, ∂

k
x

(
ϕe(x)Kn(x, ·)

)⟩
(4.6)

converges for any |k| < α+ θ, e ∈ E and x ∈ Rd.

Proof. Pick x ∈ Rd. Let φ be any smooth function with support in {y ∈ Rd;

|y − x| < λ}, such that one has

sup
|ℓ|≤r

λd+|ℓ|∥∂ℓφ∥L∞ ≤ 1,

for some λ ∈ (0, 1]. Since φx,λ(y) := λdφ(x + λy) has unit norm in Cr(Rd) and φ =

(φx,λ)
λ
x, we have |⟨ζx, φ⟩| ≤ Cλα, from the assumption of the lemma. Pick k ∈ Nd.

Since φ(y) := ∂kx(ϕe(x)Kn(x, y)) is supported in {y ∈ Rd; |y−x| < 2−n} and ∥∂ℓφ∥L∞ ≲
2(d+|k|+|ℓ|−θ)n, we thus have∣∣∣⟨ζx, ∂kx(ϕe(x)Kn(x, ·)

)⟩∣∣∣ ≲ 2(|k|−α−θ)n, (4.7)

and a converging sum in (4.6) if |k| < α+ θ. □

Note that we cannot even make sense of
∫
Rd K(z, y)ζx(y) dy, for z ̸= x. Were we able

to define that function as a regular function of z, it would have a regularity structure lift

in the canonical polynomial structure. Lemma 18 allows to define an avatar for the lift

at a point x only of the non-existing function ((ϕeI)ζx)(·), under the form of the quantity

∑
e∈E,|k|<α+θ

Xk
e

k!

(
(ϕeI)ζx

)
(x).

It follows from Lemma 18 and the assumption β0 > −θ, that one can make sense of

I(Πτ)(x) for any x ∈ Rd, under the form of the converging sum

I(Πτ)(x) :=
∑
n≥0

⟨
Πτ,Kn(x, ·)

⟩
.

4.4. Regularity structures with an abstract integration operator.

In addition to Assumption A, we make the following set of assumptions on the

concrete regularity structure T .

Assumption B. The sets T+ and T are related via the integral operators in the

following sense.

• There exist operators Ie+
k : T → T+, indexed by e ∈ E and k ∈ Nd, with positive

homogeneities
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|Xi
e| = 1,

∣∣Ie+
k τ

∣∣ = |τ |+ θ − |k|.

• One has

∆+1 = 1⊗ 1, ∆+Xi
e = Xi

e ⊗ 1+ 1⊗Xi
e,

and the operators ∆ and ∆+ are related by the intertwining relations

∆+(Ie+
k τ) = (Ie+

k ⊗ Id)∆τ +
∑
ℓ∈Nd

Xℓ
e

ℓ!
⊗ Ie+

k+ℓτ. (4.8)

In addition, T satisfies the following assumptions.

• There exists an operator I : T → T , with∣∣Iτ ∣∣ = |τ |+ θ.

• For any τ ∈ B, one has

∆(Iτ) = (I ⊗ Id)∆τ +
∑

e∈E,ℓ∈Nd

Xℓ
e

ℓ!
⊗ Ie+

ℓ τ. (4.9)

Note that identity (4.9) identifies Ie+
k τ as Iτ/Xk

e , for any k ∈ Nd, e ∈ E. The

operators Ie+
k are the regularity structure counterparts of the operators ∂k(ϕeI). Note

that the restrictions on the index sets in identities (4.8) and (4.9) to indices ℓ with

|k|+|ℓ| < |τ |+θ, are redundant with the fact that Ie+
k+ℓ is null on Tβ , for β ≤ −|k|−|ℓ|. In

applications to the study of stochastic PDEs with derivatives of unknown functions, such

as the KPZ equation, we can also assume the existence of other operators Ik : T → T ,

associated with the integration operator ∂kI.

Proposition 19. Let (g,Π) be a usual model on T . We assume the commutation

rule

Π(Iτ) = I(Πτ). (4.10)

Then, the usual property (4.4) holds for any τ ∈ IB if and only if, for every τ ∈ B, and
x ∈ Rd, one has

gx(Ie+
k τ) =

∑
σ≤τ ;|k|<|σ|+θ

gx(τ/σ) I
e
k

(
Πg

xσ
)
(x). (4.11)

Proof. Since Ie+
k τ = Dk

eIτ ,

gx(Ie+
k τ) =

(
∂ky

{
ϕe
(
Π̊g

xP>|k| ⊗ gx

)
∆Iτ

}
(y)
)∣∣∣

y=x
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= ∂ky

ϕe
 ∑

σ;|σ|+θ>|k|

(Π̊g
xIσ)gx(τ/σ)

 (y)

∣∣∣∣∣∣
y=x

= ∂ky

ϕe
 ∑

σ,η;|σ|+θ>|k|

(ΠIη)g−1
x (σ/η)gx(τ/σ)

 (y)

∣∣∣∣∣∣
y=x

= Iek

 ∑
σ,η;|σ|>|k|−θ

(Πη)g−1
x (σ/η)gx(τ/σ)

 (x)

= Iek

 ∑
σ;|σ|+θ>|k|

(Πg
xσ)gx(τ/σ)

 (x). □

Definition 20. A model (g,Π) on T is said to be admissible if the identities

gx(X
k
e) = ΠXk

e(x) = xke , the commutation rule (4.10), and (4.11) are satisfied.

Remark. Note that our notion of admissible model is more general than the

corresponding notion introduced by Bruned, Hairer and Zambotti in [7]; Definition 6.9

in that work. Their admissible Π-maps, together with the positive twisted antipode from

Proposition 6.2 in [7], are used in Definition 6.8 therein to build a g-map and models

(g,Π) that are admissible model on T in our sense, with all ϕe ≡ 1. This is a direct

consequence of Lemma 6.10 in [7] and the following equalities.

Πg
xIτ = I(Πg

xτ)−
∑

e∈E,|k|<|τ |+θ

((·)e − xe)
k

k!
Iek(Π

g
xτ)(x), (4.12)

g−1
x (Ie+

k τ) = −
∑

ℓ;|k+ℓ|<|τ |+θ

(−xe)ℓ

ℓ!
Iek+ℓ(Π

g
xτ)(x), (4.13)

gyx(Ie+
k τ) =

∑
σ≤τ,|k|<|σ|+θ

gyx(τ/σ) I
e
k(Π

g
yσ)(y)−

∑
|k+ℓ|<|τ |+θ

(ye − xe)
ℓ

ℓ!
Iek+ℓ(Π

g
xτ)(x).

(4.14)

Let us show the above equalities. First we assume that (4.12) holds for any σ ∈ B with

σ < τ . Then by (4.10) and (4.11),

Πg
xIτ = ΠIτ −

∑
σ<τ

gx(τ/σ)Π
g
xIσ −

∑
e,k

((·)e − xe)
k

k!
gx(Ie+

k τ)

= I(Πτ)−
∑
σ<τ

gx(τ/σ)

I(Πg
xσ)−

∑
e∈E,|k|<|σ|+θ

((·)e − xe)
k

k!
Iek(Π

g
xσ)(x)


−

∑
e,|k|<|τ |+θ

((·)e − xe)
k

k!

Iek
(
Πg

xτ
)
(x) +

∑
σ<τ,|k|<|σ|+θ

gx(τ/σ) I
e
k

(
Πg

xσ
)
(x)


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= I

(
Πτ −

∑
σ<τ

gx(τ/σ)Π
g
xσ

)
−

∑
e,|k|<τ+θ

((·)e − xe)
k

k!
Iek
(
Πg

xτ
)
(x),

where by using Πτ −
∑

σ<τ gx(τ/σ)Π
g
x = Πg

xτ we have (4.12). On the other hand, by

(4.8),

0 = gxx(Ie+
k+ℓτ) =

∑
σ≤τ

gx(Ie+
k+ℓσ)g

−1
x (τ/σ) +

∑
m;|k+ℓ+m|<|τ |+θ

xme
m!

g−1
x (Ie+

k+ℓ+mτ).

From this identity and (4.11),

g−1
x (Ie+

k τ) =
∑
ℓ,m

(−xe)ℓ

ℓ!

xme
m!

g−1
x (Ie+

k+ℓ+mτ) = −
∑
σ≤τ,ℓ

(−xe)ℓ

ℓ!
gx(Ie+

k+ℓσ)g
−1
x (τ/σ)

= −
∑
σ≤τ,ℓ

(−xe)ℓ

ℓ!
g−1
x (τ/σ)

∑
η≤σ,|k+ℓ|<|η|+θ

gx(σ/η) I
e
k+ℓ

(
Πg

xη
)
(x)

= −
∑

η≤τ,|k+ℓ|<|η|+θ

(−xe)ℓ

ℓ!
gxx(τ/η) I

e
k+ℓ(Π

g
xη)(x),

where gxx(τ/η) = 1η=τ , which yields (4.13). Moreover, we have (4.14) as follows.

gyx(Ie+
k τ) =

∑
σ≤τ

gy(Ie+
k σ)g−1

x (τ/σ) +
∑
ℓ

yℓe
ℓ!

g−1
x (Ie+

k+ℓτ)

=
∑

η≤σ≤τ,|k|<|η|+θ

gy(σ/η)g
−1
x (τ/σ) Iek(Π

g
yη)(y)

−
∑

ℓ,m;|k+ℓ+m|<|τ |+θ

yℓe
ℓ!

(−xe)m

m!
Iek+ℓ+m(Πg

xτ)(x)

=
∑

η≤τ,|k|<|η|+θ

gyx(τ/η) I
e
k(Π

g
yη)(y)−

∑
|k+ℓ|<|τ |+θ

(ye − xe)
ℓ

ℓ!
Iek+ℓ(Π

g
xτ)(x).

4.5. Parametrization of the set of admissible models.

We prove Theorem 2 in this section, giving a parametrization of the set of admissible

models by a product of Hölder spaces of non-positive regularity exponent. A similar

parametrization of the space of branched rough paths was achieved in the recent work

[19] of Tapia and Zambotti, with very different tools. The next result applies in particular

in the former setting, when formulated in terms of regularity structures. We need the

following structural assumptions on T+ and T .

Assumption C.

• The basis B+ of T+ is a commutative monoid with unit 1, freely generated by the

set

{Xi
e}e∈E,i=1,...,d ∪

{
Ie+
k τ

}
τ∈B,e∈E,k∈Nd,|τ |+θ−|k|>0

.
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• For any τ, σ ∈ B, the element τ/σ ∈ T+ is contained in the subalgebra generated

by the set

{Xi
e}e∈E,i=1,...,d ∪

{
Ie+
k η

}
η∈B,e∈E,k∈Nd;|η|<|τ |,|η|+θ−|k|>0

.

Theorem 21. Let a regularity structure T equipped with an abstract integra-

tion map satisfy Assumptions A, B and C. Given any family of distributions ([[τ ]] ∈
C|τ |(Rd))τ∈B;|τ |≤0, there exists a unique admissible model (g,Π) on T such that one has

Πτ :=
∑
σ<τ

Pg(τ/σ)[[σ]] + [[τ ]], (4.15)

for all τ ∈ B with |τ | ≤ 0.

Proof. For α ∈ A, define T+
(α) as the subalgebra of T+ generated by

{Xi
e}e∈E,i=1,...,d ∪

{
Ie+
k τ

}
τ∈B,e∈E,k∈Nd,|τ |<α

.

By Assumption C, T+
(α) is closed under ∆+. Start by noting that T<α := (T+

(α), T<α) is

a regularity structure for any α ∈ A. Define inductively on α ∈ A the maps

Π<α : T<α 7→ Cβ0(Rd),

and

g(α) : T+
(α) 7→ Cb(Rd),

with g
(α)
x (Xk

e) = xke , initializing the induction. Write M<α for the model (g(α),Π<α)

on T<α. Set α+ := min{β > α;β ∈ A}. Given a basis vector τ ∈ Bα, the function

hτ :=
∑

σ<τ g
(α)(τ/σ)σ is an element of Dα(T<α,g

(α)). Define Π<α+τ as equal to

either ∑
σ<τ

Pg(α)(τ/σ)[[σ]] + [[τ ]],

if |τ | ≤ 0, or

RM
<α(hτ ),

if |τ | > 0, where RM
<α stands for the reconstruction operator on Dα(T<α,g

(α)) as-

sociated with the model M<α. We have in both cases |⟨(Π<α+)g
(α)

x τ, φλ
x⟩| ≲ λα,

from Corollary 15. It is easy to check that Π<α+ satisfies (4.10), by nothing that

RM
<α(hIτ ) =

∑
e g

(α)(Ie+
0 τ). Define then an extension g(α+) of g(α) onto T+

(α+) by

requiring that it is multiplicative and by defining g(α+)(Ie+
k τ) from identity (4.11), with

Π<α+ in the role of Π. Boundedness of g(α+) is checked by induction. Given Assump-

tion C on the regularity structure T , closing the induction step amounts to proving

that



588(260)

588 I. Bailleul and M. Hoshino∣∣g(α+)
yx (Ie+

k τ)
∣∣ ≲ |y − x||τ |+θ−|k|,

for every k ∈ Nd and e ∈ E. Set

(
Υe

αhτ

)
(x) := Ie+

0 hτ (x) +
∑
k∈Nd

g(α)
x (Ie+

k τ)
Xk

e

k!
.

Proposition 19 is used to prove the following fact, proved below.

Lemma 22. One has Υe
αhτ ∈ Dα+θ(T +

<α,g
(α)).

However, (
Υe

αhτ

)
(y)− ĝ

(α)
yx

(
Υe

αhτ

)
(x)

has Xk
e component equal to∣∣∣∣∣g(α)

y (Ie+
ℓ τ)−

∑
η<τ

g(α)
x (τ/η)g(α)

yx (Ie+
ℓ η)−

∑
m

g(α)
x (Ie+

ℓ+mτ)
(ye − xe)

m

m!

∣∣∣∣∣ ≲ |y − x||τ |+θ−|ℓ|,

from Lemma 22; we recognize |g(α+)
yx (Ie+

k τ)| in the left hand side, which closes the in-

duction. □

Proof of Lemma 22. We follow closely the proof of Schauder estimates for mod-

elled distributions—Theorem 5.12 of [12]. We skip the exponent “(α)” to lighten nota-

tions. Note first that by (4.11) one can decompose Υe
αhτ under the form(

Υe
αhτ

)
(x) = Ie+

0 hτ (x) + J e(x)(hτ (x)) + (N ehτ )(x),

with

J e(x)hτ (x) :=
∑
σ<τ

gx(τ/σ)
∑

|k|<|σ|+θ

Xk
e

k!
Iek(Π

g
xσ)(x)

and

(
N ehτ

)
(x) :=

∑
|k|<|τ |+θ

Xk
e

k!
Iek
(
R(hτ )−Πg

xhτ (x)
)
(x) =

∑
|k|<|τ |+θ

Xk
e

k!
Iek
(
Πg

xτ
)
(x),

with |τ | = α, where J e(x) is an operator on T rather than on Dγ(T ,g), defined by

J e(x)σ =
∑

|k|<|σ|+θ

Xk
e

k!
Iek(Π

g
xσ)(x).

Remark then, as in Lemma 5.16 of [12], that we have for any x, y ∈ Rd

ĝyx
+(Ie+

0 + J e(x)
)
=
(
Ie+
0 + J e(y)

)
ĝyx. (4.16)
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We give a direct proof. By definition, we have

ĝyx
+(Ie+

0 + J e(x)
)
τ =

∑
σ

gyx(τ/σ)Ie+
0 σ +

∑
k

Xk
e

k!
gyx(Ie+

k τ)

+
∑

k,ℓ;|k+ℓ|<|τ |+θ

Xk
e

k!

(ye − xe)
ℓ

ℓ!
Iek+ℓ(Π

g
xτ)(x)

and

(Ie+
0 + J e(y)) ĝyxτ =

∑
σ

gyx(τ/σ)Ie+
0 σ +

∑
k,σ;|k|<|σ|+θ

Xk
e

k!
gyx(τ/σ) I

e
k(Π

g
yσ)(y).

They are equal because of (4.14). We use the interwining relation (4.16) to write(
Υe

αhτ

)
(y)− ĝyx

+(
Υe

αhτ

)
(x)

=
(
Υe

αhτ

)
(y)− ĝyx

+(Ie+
0 + J e(x)

)
hτ (x)− ĝyx

+
(N ehτ )(x)

=
(
Υe

αhτ

)
(y)−

(
Ie+
0 + J e(y)

)
ĝyx hτ (x)− ĝyx

+
(N ehτ )(x)

= Ie+
0

(
hτ (y)− ĝyxhτ (x)

)
+ J e(y)

(
hτ (y)− ĝyxhτ (x)

)
+
(
(N ehτ )(y)− ĝyx

+
(N ehτ )(x)

)
.

For the Ie+
0 term, one has the elementary estimate∥∥Ie+

0

(
hτ (y)− ĝyxhτ (x)

)∥∥
β
≲
∥∥hτ (y)− ĝyxhτ (x)

∥∥
β−θ

≤ ∥hτ∥Dα |y − x|α+θ−β .

The J e and N e terms take values in the polynomial part of T+. Write τX
k
e for the

Xk
e -component of τ ∈ T+. Decompose K(y, z) =

∑∞
n=0Kn(y, z), and let J e =:

∑
n J e

n

and N e =:
∑

n N e
n, be the corresponding operators. We have(

J e
n (y)

(
hτ (y)− ĝyxhτ (x)

)
+ (N e

nhτ )(y)− ĝyx
+
(N e

nhτ )(x)
)Xk

e

=
(
J e
n (y)

(
hτ (y)− ĝyxhτ (x)

))Xk
e

+
(
(N e

nhτ )(y)− ĝyx
+
(N e

nhτ )(x)
)Xk

e

=: (∗)1n + (∗)2n

and (
J e
n (y)

(
hτ (y)− ĝyxhτ (x)

)
+ (N e

nhτ )(y)− ĝyx
+
(N e

nhτ )(x)
)Xk

e

=
∑

β∈A,|k|<β+θ

∫
Rd

1

k!
∂ky
(
ϕe(y)Kn(y, z)

)
Πg

y

(
hτ (y)− ĝyxhτ (x)

)
β
(z) dz

+

∫
Rd

1

k!
∂k(ϕeKn)

α+θ−|k|
y,x (z) (Πg

xτ)(z) dz

+

∫
Rd

1

k!
∂ky (ϕe(y)Kn(y, z))Π

g
y

(
ĝyxhτ (x)− hτ (y)

)
(z) dz
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=

∫
Rd

1

k!
∂k(ϕeKn)

α+θ−|k|
y,x (z) (Πg

xτ)(z) dz

+
∑

β∈A,|k|≥β+θ

∫
Rd

1

k!
∂ky
(
ϕe(y)Kn(y, z)

)
Πg

y

(
ĝyxhτ (x)− hτ (y)

)
β
(z) dz

=: (⋆)1n + (⋆)2n,

where

∂k(ϕeKn)
α+θ−|k|
y,x (z) := ∂ky

(
ϕe(y)Kn(y, z)

)
−

∑
|ℓ|<α+θ−|k|

(ye − xe)
ℓ

ℓ!
∂k+ℓ
x

(
ϕe(x)Kn(x, z)

)
.

Write |y − x| ≃ 2−N . We use the (∗)-decomposition, with J n and Nn separated, to

estimate the sum over n > N , and the (⋆)-decomposition to estimate the sum over

n ≤ N . Each decomposition is well-adapted to get N -independent upper bounds.

• For n > N , we have from the bound (4.7) and its derivatives the estimate∑
n>N

∣∣(∗)1n∣∣ ≲ ∑
n>N

∑
β∈A,|k|<β+θ

|y − x|α−β 2(|k|−β−θ)n ≲ |y − x|α+θ−|k|.

By the definition of N , we get∑
n>N

∣∣(∗)2n∣∣ ≤ ∑
n>N

∣∣∣∣∫
Rd

1

k!
∂ky
(
ϕe(y)Kn(y, z)

)
(Πg

yτ)(z) dz

∣∣∣∣
+
∑
n>N

∣∣∣∣∣∣
∑

|ℓ|+|k|<α+θ

(ye − xe)
ℓ

ℓ!

∫
Rd

1

k!
∂k+ℓ
x

(
ϕe(x)Kn(x, z)

)
(Πg

xτ)(z) dz

∣∣∣∣∣∣
≲
∑
n>N

2(|k|−α−θ)n +
∑

|ℓ|<α+θ−|k|

|y − x|ℓ2(|ℓ|−α−θ)n

 ≲ |y − x|α+θ−|k|

• To deal with the sum over n ≤ N , we use the (⋆)-decomposition. For (⋆)n1 ,

note that since |y − x| ≃ 2−N ≤ 2−n, the function ∂k(ϕeKn)
α+θ−|k|
y,x is supported on

a ball B(x,C2−n), for some positive constant C. From Taylor formula with bounded

polynomials proved in Appendix B, we have∣∣∣∂mz ∂k(ϕeKn)
α+θ−|k|
y,x (z)

∣∣∣ ≲ Bα+θ

(
∂mz Kn(·, z)

)
|y − x|α+θ−|k|, (4.17)

with Br(∂
m
z Kn(·, z)) ≲ 2(d+|m|+r−θ−ε)n, from either (4.5) or the interpolation Theo-

rem 2.80 in [1]. Hence∣∣∣∂mz ∂k(ϕeKn)
α+θ−|k|
y,x (z)

∣∣∣ ≲ 2(d+|m|+α−ε)n|y − x|α+θ−|k|.

It follows then from the proof of Lemma 18 that we have

|(⋆)1n| =
∣∣∣(Πg

xτ)
(
∂k(ϕeKn)

α+θ−|k|
y,x

)∣∣∣ ≲ 2−εn|y − x|α+θ−|k|,
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so the sum over n ≤ N is independent of N , of order |y − x|α+θ−|k|. As for the (⋆)n2 -

terms, they involve some indices ζ with |k| ≥ ζ + θ, so the same elementary bounds as

above give

|(⋆)2n| ≲
∑

ζ∈A,|k|≥ζ+θ

|y − x|α−ζ 2(|k|−ζ−θ−ε)n ≲ 2−εn |y − x|α+θ−|k|,

since 2n ≤ |y − x|−1. The sum over n ≤ N of the (⋆)n2 is thus independent of N , of

order |y − x|α+θ−|k|. □

Remark. If (T+, T ) satisfies |τ |+ θ /∈ N for any τ ∈ B, then we can choose ε = 0

for the estimate (4.5) on the kernel Kn. We need to modify the argument for the sum

over n ≤ N . For (⋆)1n, since ∂
k(ϕeKn)

α+θ−|k|
y,x = ∂k(ϕeKn)

α+θ+δ−|k|
y,x in (4.17) for small

δ > 0 such that (α+ θ, α+ θ + δ) ∩ N = ∅, we have

|(⋆)1n| ≲ 2δn|y − x|α+θ+δ−|k|,

so the sum over n ≤ N is of order |y − x|α+θ−|k|. For (⋆)2n, since they involve indices ζ

with |k| > ζ + θ, we have∑
n≤N

|(⋆)2n| ≲
∑

ζ∈A,|k|>ζ+θ

|y − x|α−ζ2(|k|−ζ−θ)N ≲ |y − x|α+θ−|k|.

A. Paraproducts.

We summarize in this section some basic concepts and results of the Littlewood–

Paley theory. Let {ρi}∞i=−1 be a dyadic partition of unity of Rd, i.e., ρi : Rd → [0, 1] is a

compactly supported smooth radial function with the following properties.

• supp(ρ−1) ⊂ {x ∈ Rd; |x| < 4/3} and supp(ρ0) ⊂ {x ∈ Rd; 3/4 < |x| < 8/3}.

• ρi(x) = ρ0(2
−ix) for any x ∈ Rd and i ≥ 0.

•
∑∞

i=−1 ρi(x) = 1 for any x ∈ Rd.

We define the Littlewood–Paley blocks {∆i}∞i=−1 by

∆if := F−1(ρiFf), f ∈ S ′(Rd),

where F is a Fourier transform on Rd defined by

Fφ(ξ) :=

∫
Rd

φ(x)e−2π
√
−1⟨x,ξ⟩ dx, φ ∈ S(Rd).

Now we define the Hölder–Besov spaces. For any α ∈ R and f ∈ S ′(Rd), we define

∥f∥Cα := sup
i≥−1

2αi∥∆if∥L∞(Rd).

We denote by Cα(Rd) the space of all f ∈ S ′(Rd) with ∥f∥Cα <∞. This definition does

not ensure the separability of Cα(Rd), so it may be better to consider the space Cβ
0 (Rd),
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the completion of S(Rd) under the norm ∥ · ∥Cα . However, it does not matter because

Cα(Rd) is embedded into the space Cβ
0 (Rd) for any β < α—see e.g., [1, Proposition 2.74].

For α ∈ (0,∞) \ N, the norm ∥f∥Cα is equivalent to the Hölder norm

∥f∥Cα :=
∑

k∈Nd,|k|<α

∥∂kf∥L∞ +
∑

k∈Nd,|k|=⌈α⌉

∥∂kf∥(α − ⌈α⌉)-Hölder,

where ∥∂kf∥(α − ⌈α⌉)-Hölder is the infimum of constants C such that the property

|∂kf(y)− ∂kf(x)| ≤ C|y − x|α−⌈α⌉,

holds for any x, y ∈ Rd. For α ∈ N, the space Cα(Rd) is strictly larger than the space

Cα
b (Rd) with the norm

∥f∥Cα
b
:=

∑
k∈Nd,|k|≤α

∥∂kf∥L∞ ;

see e.g., [1, p. 99]. Bony’s paraproduct P and resonant operator ⊖ are defined by

Pfg :=
∑

i,j≥−1
i≤j−2

∆if∆jg, ⊖(f, g) :=
∑

i,j≥−1
|i−j|≤1

∆if∆jg,

for any f, g ∈ S ′(Rd), as long as they converge. We then have formally

fg = Pfg + Pgf +⊖(f, g).

The basic continuity results for these operators are summarized as follows.

Proposition 23. Let α, β ∈ R.

(a) ∥Pfg∥Cβ ≲ ∥f∥L∞∥g∥Cβ .

(b) If α < 0, then ∥Pfg∥Cα+β ≲ ∥f∥Cα∥g∥Cβ .

(c) If α+ β > 0, then ∥⊖ (f, g)∥Cα+β ≲ ∥f∥Cα∥g∥Cβ .

B. Bounded polynomials.

This appendix is a follow-up of Example 1 in Section 2 describing bounded polyno-

mials and their associated regularity structure. We give the proofs of Proposition 4

and Proposition 5. Set Λ := (Z/4)d, and, for any λ = (λi)i=1,...,d ∈ Λ, define

Uλ :=
∏d

i=1(λi − 3/16, λi + 3/16). This family of bounded open subsets of Rd cover

Rd, and are uniformly locally finite covering, i.e.,

sup
x∈Rd

#
{
λ ∈ Λ;x ∈ Uλ

}
<∞.

For x ∈ Rd and A ⊂ Rd, set d(x,A) := inf{|x− y|; y ∈ A}.
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Lemma. One can construct tuples (φλ, (ψ
i
λ)i=1,...,d)λ∈Λ of smooth real-valued func-

tions on Rd, with compact support, with the following properties.

(a1) One has φλ(x) ≥ 0, for any x ∈ Rd, and φλ(x) = 0 for any x ∈ U c
λ, for any λ ∈ Λ.

(a2) One has
∑

λ∈Λ φλ(x) = 1, for any x ∈ Rd.

(a3) For any N > 0, there is a constant CN independent of α such that∣∣(∂ℓφλ)(x)
∣∣ ≤ CN d(x,U c

λ)
N ,

for any λ ∈ Λ, x ∈ Rd, and |ℓ| ≤ N .

(b) The functions ψi
λ are uniformly bounded and ψi

λ(y) − ψi
λ(x) = yi − xi, for any

x, y ∈ Uλ.

Proof. We let the reader construct a partition of unity {φλ} satisfying assump-

tions (a1) to (a3). The third property is ensured if we impose

φλ(x) ≃ exp

(
− 1∣∣xi − (λi ± 3/16)

∣∣
)

when x ∈ Uλ is near ∂Uλ ∩ {xi = λi ± 3/16}. For each λ ∈ Λ, we choose a smooth

function ψi
λ such that

ψi
λ(x) =


xi − λi x ∈ Uλ,

0 x /∈ Vλ :=
d∏

i=1

(
λi −

1

4
, λi +

1

4

)
,

and |ψi
λ(x)| ≤ 1, for any x ∈ Rd. □

Recall we define Br(f) := ∥f∥Cr
b
if r ∈ N, and Br(f) := ∥f∥Cr if r ∈ (0,∞) \ N.

Lemma. For any f ∈ C∞
b (Rd) and r > 0, we have the estimate∣∣∣∣∣∣(φλf)(y)−

∑
|k|<r

∂k(φλf)(x)

k!

(
ψλ(y)− ψλ(x)

)k∣∣∣∣∣∣ ≲ Br(f)|y − x|r. (B.1)

Proof. For x, y ∈ Uλ, since (ψλ(y)−ψλ(x))
k = (y− x)k, equation (B.1) is just a

usual Taylor expansion. For x, y /∈ Uλ, the left hand side of (B.1) is equal to 0. Let y ∈ Uλ

and x /∈ Uλ. Then the left hand side of (B.1) is equal to |(φλf)(y)|. By assumptions, we

have ∣∣(φλf)(y)
∣∣ ≲ ∥f∥L∞ d

(
y, U c

λ

)r ≤ ∥f∥L∞ |y − x|r,

with an implicit constant in the first inequality depending only on r. We have the same

estimate when x ∈ Uλ and y /∈ Uλ. □
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Define now E := {0, 1/4, 1/2, 3/4}d and set

ϕe :=
∑

λ≡emod Zd

φλ, xie :=
∑

λ≡emod Zd

ψi
λ.

Since they are sums of functions with disjoint supports, we have ϕe, x
i
e ∈ C∞

b (Rd).

Proof of Proposition 4. For x = (xi)
d
i=1, we define |x|∞ := supi=1,...,d |xi|. If

|y−x|∞ ≥ 1/2, then the left hand side of (2.21) is bounded by CBr(f) ≲ CBr(f)|y−x|∞,

with some constant C depending on Φλ̄ and ψi
λ̄
. If |y− x|∞ < 1/2, then there is no pair

(λ, λ′) such that λ ̸= λ′ and (x, y) ∈ Vλ × Vλ′ . Hence there exists λ ∈ Λ such that the

left hand side of (2.21) is equal to that of (B.1), so the required estimate follows. □

Proof of Proposition 5. We need to show that the component of f(y) −
ĝyxf(x) on Xk

e is no greater than a constant multiple of Br(f) |y − x|r−|k|. Note that

ĝyxf(x) is given by

ĝyxf(x) =
∑
e∈E

∑
|ℓ+m|<r

∂ℓ+m(ϕef)(x)

ℓ!m!

(
xe(y)− xe(x)

)ℓ
Xm

e .

The 1-coefficient of f(y)− ĝyxf(x) is∣∣∣∣∣∣
∑
e∈E

(ϕef)(y)−
∑
e∈E

∑
|k|<r

∂k
(
ϕef)(x)

k!
(xe(y)− xe(x)

)k∣∣∣∣∣∣ ≲ Br(f) |y − x|r.

This is estimate (2.21). For the Xk
e -coefficient of f(y)− ĝyxf(x), with k ̸= 0, one has

1

k!

∣∣∣∣∣∣∂k(ϕef)(x)−
∑

|ℓ|<r−|k|

∂ℓ∂k(ϕef)(x)

ℓ!

(
xe(y)− xe(x)

)ℓ∣∣∣∣∣∣ ≲ Br(f) |y − x|r−|k|. (B.2)

This is shown by the similar argument to the proof of the estimate (B.1). □
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