Automorphism groups of the holomorphic vertex operator algebras associated with Niemeier lattices and the -1 -isometries

By Hiroki Shimakura

(Received Dec. 5, 2018)
(Revised Apr. 30, 2019)

Abstract

In this article, we determine the automorphism groups of 14 holomorphic vertex operator algebras of central charge 24 obtained by applying the \mathbb{Z}_{2}-orbifold construction to the Niemeier lattice vertex operator algebras and lifts of the -1 -isometries.

1. Introduction.

Recently, (strongly regular) holomorphic vertex operator algebras (VOAs) of central charge 24 with non-zero weight one spaces are classified; there exist exactly 70 such VOAs (up to isomorphism) and they are uniquely determined by the Lie algebra structures on the weight one spaces. The remaining case is the famous conjecture in [FLM88]: a (strongly regular) holomorphic VOA of central charge 24 is isomorphic to the moonshine VOA if the weight one space is zero.

The determination of the automorphism groups of vertex operator algebras is one of fundamental problems in VOA theory; it is natural to ask what the automorphism groups of holomorphic VOAs of central charge 24 are. For example, the automorphism group of the moonshine VOA is the Monster ([FLM88]) and those of Niemeier lattice VOAs were determined in [DN99]. However, the other cases have not been determined yet.

The purpose of this article is to determine the automorphism group of the holomorphic VOA $V_{N}^{\text {orb }(\theta)}$ of central charge 24 obtained in [DGM96] by applying the \mathbb{Z}_{2}-orbifold construction to the lattice VOA V_{N} associated with a Niemeier lattice N and a lift θ of the - 1 -isometry of N. Since $V_{N}^{\operatorname{orb}(\theta)}$ is isomorphic to some Niemeier lattice VOA for 9 cases and $V_{\Lambda}^{\mathrm{orb}(\theta)}$ is the moonshine VOA for the Leech lattice Λ, we focus on the other 14 cases. Our main theorem is as follows:

Theorem 1.1. Let N be a Niemeier lattice whose root sublattice is $A_{2}^{12}, A_{3}^{8}, A_{4}^{6}$, $A_{5}^{4} D_{4}, A_{6}^{4}, A_{7}^{2} D_{5}^{2}, A_{8}^{3}, A_{9}^{2} D_{6}, E_{6}^{4}, A_{11} D_{7} E_{6}, A_{12}^{2}, A_{15} D_{9}, A_{17} E_{7}$ or A_{24}. For the holomorphic VOA $V=V_{N}^{\operatorname{orb}(\theta)}$ of central charge 24, the groups $K(V), \operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$ are given as in Table 1.

[^0]Table 1. $K(V), \operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$ for $V=V_{N}^{\operatorname{orb}(\theta)}$.

No. in $[\mathbf{S c 9 3}]$	Q	V_{1}	$\operatorname{rank} V_{1}$	$K(V)$	Out $_{1}(V)$	Out $_{2}(V)$	Section
2	A_{2}^{12}	$A_{1,4}^{12}$	12	\mathbb{Z}_{2}	1	M_{12}	
5	A_{3}^{8}	$A_{1,2}^{16}$	16	\mathbb{Z}_{2}^{5}	1	$\mathbb{Z}_{2}^{4}: L_{4}(2)$	6.2 .1
12	A_{4}^{6}	$B_{2,2}^{6}$	12	\mathbb{Z}_{2}	1	Sym_{5}	
16	$A_{5}^{4} D_{4}$	$A_{3,2}^{4} A_{1,1}^{4}$	16	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{3}$	\mathbb{Z}_{2}	$\mathbb{Z}_{2}^{4}: \operatorname{Sym}_{3}$	6.2 .2
23	A_{6}^{4}	$B_{3,2}^{4}$	12	\mathbb{Z}_{2}	1	Alt_{4}	
25	$A_{7}^{2} D_{5}^{2}$	$D_{4,2}^{2} B_{2,1}^{4}$	16	\mathbb{Z}_{2}^{3}	1	$\operatorname{Sym}_{2} \times \operatorname{Sym}_{4}$	6.2 .3
29	A_{8}^{3}	$B_{4,2}^{3}$	12	\mathbb{Z}_{2}	1	Sym_{3}	
31	$A_{9}^{2} D_{6}$	$D_{5,2}^{2} A_{3,1}^{2}$	16	\mathbb{Z}_{4}^{2}	\mathbb{Z}_{2}	$\operatorname{Sym}_{2} \times \operatorname{Sym}_{2}$	6.2 .4
38	E_{6}^{4}	$C_{4,1}^{4}$	16	\mathbb{Z}_{2}	1	Sym_{4}	
39	$A_{11} D_{7} E_{6}$	$D_{6,2} B_{3,1}^{2} C_{4,1}$	16	\mathbb{Z}_{2}^{2}	1	Sym_{2}	6.2 .5
41	A_{12}^{2}	$B_{6,2}^{2}$	12	\mathbb{Z}_{2}	1	Sym_{2}	
47	$A_{15} D_{9}$	$D_{8,2} B_{4,1}^{2}$	16	\mathbb{Z}_{2}^{2}	1	Sym_{2}	6.2 .6
50	$A_{17} E_{7}$	$D_{9,2} A_{7,1}$	16	\mathbb{Z}_{8}	\mathbb{Z}_{2}	1	6.2 .7
57	A_{24}	$B_{12,2}$	12	\mathbb{Z}_{2}	1	1	

The groups $K(V), \mathrm{Out}_{1}(V)$ and $\mathrm{Out}_{2}(V)$ in the theorem above are defined as follows (see also Section 2.3). Let V be a holomorphic VOA of central charge 24 such that V_{1} is semisimple. Since the Lie algebra structure of V_{1} determines the VOA structure of V, we focus on the action of the automorphism group $\operatorname{Aut}(V)$ on V_{1}; let $K(V)$ be the subgroup of $\operatorname{Aut}(V)$ which acts trivially on V_{1}. Then $\operatorname{Aut}(V) / K(V)$ is a subgroup of $\operatorname{Aut}\left(V_{1}\right)$. Let $\operatorname{Inn}(V)$ be the inner automorphism group of V. Then $\operatorname{Inn}(V) /(K(V) \cap$ $\operatorname{Inn}(V))$ is isomorphic to the inner automorphism group $\operatorname{Inn}\left(V_{1}\right)$ of the Lie algebra V_{1}. Let Out (V) be the quotient group $\operatorname{Aut}(V) /(K(V) \operatorname{Inn}(V))$, which is a subgroup of the outer automorphism group $\operatorname{Out}\left(V_{1}\right)=\operatorname{Aut}\left(V_{1}\right) / \operatorname{Inn}\left(V_{1}\right)$ of V_{1}. Let $\mathrm{Out}_{1}(V)$ be the subgroup of $\operatorname{Out}(V)$ which preserves every simple ideal of V_{1} and set $\operatorname{Out}_{2}(V)=\operatorname{Out}(V) / \operatorname{Out}_{1}(V)$. Then $\operatorname{Aut}(V)$ is described by $K(V), \operatorname{Out}_{1}(V), \operatorname{Out}_{2}(V)$ and $\operatorname{Inn}\left(V_{1}\right)$.

Let us explain how to determine the automorphism group of the holomorphic VOA $V=V_{N}^{\operatorname{orb}(\theta)}=V_{N}^{+} \oplus V_{N}(\theta)_{\mathbb{Z}}$. Since the conformal weight of $V_{N}(\theta)_{\mathbb{Z}}$ is two, we have $V_{1}=\left(V_{N}^{+}\right)_{1}$. Let $Q=\bigoplus_{i=1}^{t} Q_{i}$ be the decomposition of the root sublattice Q of N into the orthogonal sum of indecomposable root lattices Q_{i}. Then $V_{1} \cong \bigoplus_{i=1}^{t}\left(V_{Q_{i}}^{+}\right)_{1}$.

First, we recall (known) automorphisms of V. Clearly the map z which acts on V_{N}^{+} and $V_{N}(\theta)_{\mathbb{Z}}$ by 1 and -1 , respectively, is an order 2 automorphism of V. Since V is a $\mathbb{Z}_{2^{-}}$ graded simple current extension of V_{N}^{+}and N is unimodular, the centralizer $C_{\operatorname{Aut}(V)}(z)$ in $\operatorname{Aut}(V)$ of z is a central extension of $\operatorname{Aut}\left(V_{N}^{+}\right)$by $\langle z\rangle([\mathbf{S h 0 4}],[\mathbf{S h 0 6}])$. Note that the group $\operatorname{Aut}\left(V_{N}^{+}\right)$is well-studied in $[\mathbf{S h 0 4}]$, $[\mathbf{S h 0 6}]$. In addition, if N is constructed from a binary code by the same manner as the Leech lattice, then V has an extra automorphism not in $C_{\operatorname{Aut}(V)}(z)([\mathbf{F L M} 88])$. In fact, they generate $\operatorname{Aut}(V)$ (Corollary 6.15).

Next, we determine the group $K(V)$. Since $K(V)$ preserves V_{N}^{+}, we have $K(V) \subset$ $C_{\operatorname{Aut}(V)}(z)$, and hence $K(V) /\langle z\rangle \subset C_{\operatorname{Aut}(V)}(z) /\langle z\rangle \cong \operatorname{Aut}\left(V_{N}^{+}\right)$. By the definition of $K(V), K(V) /\langle z\rangle$ acts trivially on $V_{1}=\left(V_{N}^{+}\right)_{1}$. Hence, the lift of $K(V) /\langle z\rangle$ in $\operatorname{Aut}\left(V_{N}\right)$
preserves the Cartan subalgebra $\mathbb{C} \otimes_{\mathbb{Z}} N$ of $\left(V_{N}\right)_{1}$, and $K(V) /\langle z\rangle \subset O(\hat{N}) /\langle\theta\rangle$, where $O(\hat{N})$ is the lift of the isometry group of N in $\operatorname{Aut}\left(V_{N}\right)$. Then we can describe $K(V) /\langle z\rangle$ by using the explicit action of $O(\hat{N}) /\langle z\rangle$ on $\left(V_{N}^{+}\right)_{1}$. On the other hand, $K(V)$ contains inner automorphisms $\sigma_{x}=\exp \left(-2 \pi \sqrt{-1} x_{(0)}\right)$ associated with vectors x in the coweight lattice P^{\vee} of the Lie algebra V_{1}. By using the isomorphism between the VOA $V_{Q_{i}}^{+}$and the simple affine VOA associated with the Lie algebra $\left(V_{Q_{i}}^{+}\right)_{1}$ at some positive integral level (Proposition 4.3), we prove that $K(V)$ coincides with $\left\{\sigma_{x} \mid x \in P^{\vee}\right\}$ and determine the group structure of $K(V)$. In particular, $K(V)$ is a subgroup of $\operatorname{Inn}(V)$.

Finally, we determine the groups $\operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$. If the semisimple Lie algebra V_{1} has no diagram automorphisms, then $\operatorname{Out}_{1}(V)=1$. If all ideals $\left(V_{Q_{i}}^{+}\right)_{1}$ of V_{1} are simple, then $\operatorname{Out}_{2}(V)$ is obtained from the automorphism group of the glue code N / Q, which is described in [CS99]. Then 7 cases are done. For the remaining 7 cases, we consider the set C_{N} consisting of (isomorphism classes of) simple current $\left\langle V_{1}\right\rangle$ submodules of $V_{N_{0}}^{+}$, where $N_{0}=N \cap(Q / 2)$; this set C_{N}, called "Glue" in [Sc93], has a group structure under the fusion product. We prove that $\operatorname{Aut}(V)$ preserves $V_{N_{0}}^{+}$, which shows that $\operatorname{Out}(V) \subset \operatorname{Aut}\left(C_{N}\right)$. By the description of the glue code N / Q in [CS99], we obtain a generator of C_{N} and determine $\operatorname{Aut}\left(C_{N}\right)$. Considering the explicit actions of (known) automorphisms of V on C_{N}, we prove that $\operatorname{Out}(V)=\operatorname{Aut}\left(C_{N}\right)$ and determine the group structure of $\operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$.

The organization of this article is as follows: In Section 2, we review basic facts about integral lattices and VOAs. In Section 3, we briefly review lattice VOAs V_{L}, subVOAs V_{L}^{+}and simple affine VOAs. In Section 4, we prove that the VOA V_{R}^{+}associated with indecomposable root lattice R is a simple affine VOA at some positive integral level if $R \not \equiv A_{1}$. We also study automorphisms and irreducible modules for V_{R}^{+}via the isomorphism. In Section 5, we determine $\operatorname{Aut}\left(V_{L}^{\operatorname{orb}(\theta)}\right)$ under some assumptions on even unimodular lattices L. In Section 6, we prove Theorem 1.1, the main theorem of this article.

Acknowledgments. Part of this work was done while the author was staying at Institute of Mathematics, Academia Sinica, Taiwan in August, 2018. He is grateful to the institute. He also would like to thank Ching Hung Lam for helpful comments and the referee for useful suggestions.

2. Preliminary.

In this section, we review basics about integral lattices and VOAs.

2.1. Lattices.

Let $(\cdot \mid \cdot)$ be a positive-definite symmetric bilinear form on \mathbb{R}^{r}. A subset L of \mathbb{R}^{r} is called a (positive-definite) lattice of rank r if L has a basis $e_{1}, e_{2}, \ldots, e_{r}$ of \mathbb{R}^{r} satisfying $L=\bigoplus_{i=1}^{r} \mathbb{Z} e_{i}$. Let L^{*} denote the dual lattice of a lattice L of rank r, that is, $L^{*}=\{v \in$ $\left.\mathbb{R}^{r} \mid(v \mid L) \subset \mathbb{Z}\right\}$. For $v \in \mathbb{R}^{m}$, we call $(v \mid v)$ the (squared) norm of v. A lattice L is said to be even if the norm of any vector in L is even, and is said to be unimodular if $L=L^{*}$. A lattice is (orthogonally) indecomposable if it cannot be written as an orthogonal sum of proper sublattices. It is known that any lattice can be uniquely written as the orthogonal sum of indecomposable sublattices. A group automorphism g of a lattice L is called an
isometry of L if $(g(v) \mid g(w))=(v \mid w)$ for all $v, w \in L$; let $O(L)$ denote the isometry group of L.

Let L be an even lattice. Then the set of norm 2 vectors of L forms a root system. Let Q be the sublattice of L generated by norm 2 vectors of L; this sublattice is often called the root sublattice of L. We call L a root lattice if $L=Q$. It is known (e.g., [Hu72]) that the root system of an indecomposable root lattice is of type $A_{\ell}(\ell \geq 1)$, $D_{m}(m \geq 4)$ or $E_{n}(n=6,7,8)$. We often denote the root lattice by the type of its root system.

Even unimodular lattices of rank 24, called Niemeier lattices, are classified by Niemeier as follows:

Theorem $2.1([\mathbf{N i} \mathbf{7 3}]) . \quad U p$ to isometry, there exist precisely 24 Niemeier lattices. Each lattice is uniquely determined by its root sublattice; the possible root sublattices are the following:
$A_{1}^{24}, \quad A_{2}^{12}, A_{3}^{8}, A_{4}^{6}, \quad A_{5}^{4} D_{4}, \quad D_{4}^{6}, \quad A_{6}^{4}, \quad A_{7}^{2} D_{5}^{2}, A_{8}^{3}, \quad A_{9}^{2} D_{6}, D_{6}^{4}, \quad E_{6}^{4}$, $A_{11} D_{7} E_{6}, A_{12}^{2}, D_{8}^{3}, A_{15} D_{9}, A_{17} E_{7}, D_{10} E_{7}^{2}, D_{12}^{2}, A_{24}, D_{16} E_{8}, E_{8}^{3}, D_{24}, 0$.

Let us recall the automorphism groups of Niemeier lattices from [CS99, Chapter 16]. Let N be a Niemeier lattice with the root sublattice $Q \neq 0$. Let $W(Q)$ be the Weyl group, the normal subgroup of $O(N)$ generated by the reflections associated with roots in Q. Let $Q=\bigoplus_{i=1}^{t} Q_{i}$ be the orthogonal sum of indecomposable root lattices and let $H(Q)$ be the subgroup of $O(Q)$ generated by diagram automorphisms of Q_{i} and possible permutations on $\left\{Q_{i} \mid 1 \leq i \leq t\right\}$. Set $H(N)=H(Q) \cap O(N)$. Then $O(N)$ is a split extension of $H(N)$ by $W(Q)$. Let $G_{1}(N)$ be the subgroup of $H(N)$ that preserves every indecomposable component Q_{i} and set $G_{2}(N)=H(N) / G_{1}(N)$. Then $G_{2}(N)$ acts on $\left\{Q_{i} \mid 1 \leq i \leq t\right\}$ as a permutation group.

The following lemma follows immediately from the fact that the Weyl group of an indecomposable root lattice contains the -1 -isometry if and only if the root lattice is A_{1}, $D_{2 n}(n \geq 2), E_{7}$ or E_{8}.

Lemma 2.2. Assume that $Q \neq 0$. Then the -1 -isometry of N does not belong to $W(Q)$ if and only if Q is $A_{2}^{12}, A_{3}^{8}, A_{4}^{6}, A_{5}^{4} D_{4}, A_{6}^{4}, A_{7}^{2} D_{5}^{2}, A_{8}^{3}, A_{9}^{2} D_{6}, E_{6}^{4}, A_{11} D_{7} E_{6}, A_{12}^{2}$, $A_{15} D_{9}, A_{17} E_{7}$ or A_{24}.

Remark 2.3. Assume that Q is one in Lemma 2.2, that is, $-1 \notin W(Q)$. Then $G_{1}(N) \cong \mathbb{Z}_{2}\left(\left[\mathbf{C S 9 9}\right.\right.$, Table 16.1]). Hence $\left\{g \in O(N) \mid g= \pm 1\right.$ on $\left.Q_{i}, 1 \leq \forall i \leq t\right\} /\langle-1\rangle$ is isomorphic to \mathbb{Z}_{2} if Q is $A_{5}^{4} D_{4}, A_{9}^{2} D_{6}$ or $A_{17} E_{7}$; it is equal to 1 otherwise.

We summarize the groups $G_{2}(N)$ for the 14 Niemeier lattices in Lemma 2.2 from [CS99, Chapter 16].

Remark 2.4. In Table 2, we denote by $A: B$ a split extension of a group B by a group A. We also denote by $L_{n}(2)$ and M_{12} the (projective special) linear group on \mathbb{F}_{2}^{n} and the Mathieu group of degree 12, respectively.

Table 2. Groups $G_{2}(N)$.

Q	A_{2}^{12}	A_{3}^{8}	A_{4}^{6}	$A_{5}^{4} D_{4}$	A_{6}^{4}	$A_{7}^{2} D_{5}^{2}$	A_{8}^{3}
$G_{2}(N)$	M_{12}	$\mathbb{Z}_{2}^{3}: L_{3}(2)$	Sym_{5}	Sym_{4}	Alt_{4}	Sym_{2}^{2}	Sym_{3}
Q	$A_{9}^{2} D_{6}$	E_{6}^{4}	$A_{11} D_{7} E_{6}$	A_{12}^{2}	$A_{15} D_{9}$	$A_{17} E_{7}$	A_{24}
$G_{2}(N)$	Sym_{2}	Sym_{4}	1	Sym_{2}	1	1	1

2.2. Vertex operator algebras.

A vertex operator algebra (VOA) $(V, Y, \mathbb{1}, \omega)$ is a \mathbb{Z}-graded vector space $V=$ $\bigoplus_{m \in \mathbb{Z}} V_{m}$ over the complex field \mathbb{C} equipped with a linear map

$$
Y(a, z)=\sum_{i \in \mathbb{Z}} a_{(i)} z^{-i-1} \in(\text { End } V)\left[\left[z, z^{-1}\right]\right], \quad a \in V,
$$

the vacuum vector $\mathbb{1} \in V_{0}$ and the conformal vector $\omega \in V_{2}$ satisfying certain axioms ([Bo86], [FLM88]). The operators $L(m)=\omega_{(m+1)}, m \in \mathbb{Z}$, satisfy the Virasoro relation:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} c \operatorname{id}_{V}
$$

where $c \in \mathbb{C}$ is called the central charge of V. A vertex operator subalgebra (or a subVOA) is a graded subspace of V which has a structure of a VOA such that the operations and its grading agree with the restriction of those of V and they share the vacuum vector. A subVOA is said to be full if it has the same conformal vector as V.

For a VOA V, a V-module $\left(M, Y_{M}\right)$ is a \mathbb{C}-graded vector space $M=\bigoplus_{m \in \mathbb{C}} M_{m}$ equipped with a linear map

$$
Y_{M}(a, z)=\sum_{i \in \mathbb{Z}} a_{(i)} z^{-i-1} \in(\text { End } M)\left[\left[z, z^{-1}\right]\right], \quad a \in V
$$

satisfying a number of conditions ([FHL93], [DLM00]). We often denote it by M. If M is irreducible, then there exists $w \in \mathbb{C}$ such that $M=\bigoplus_{m \in \mathbb{Z} \geq 0} M_{w+m}$ and $M_{w} \neq 0$; the number w is called the conformal weight of M. Let $\operatorname{Irr}(V)$ denote the set of all isomorphism classes of irreducible V-modules. We often identify an element in $\operatorname{Irr}(V)$ with its representative.

A VOA is said to be rational if its admissible module category is semisimple. (See [DLM00] for the definition of admissible modules.) A rational VOA is said to be holomorphic if it itself is the only irreducible module up to isomorphism. A VOA V is said to be of CFT-type if $V_{0}=\mathbb{C} \mathbb{1}$ (note that $V_{n}=0$ for all $n<0$ if $V_{0}=\mathbb{C} \mathbb{1}$), and is said to be C_{2}-cofinite if the codimension in V of the subspace spanned by the vectors of the form $u_{(-2)} v, u, v \in V$, is finite. A module is said to be self-dual if it is isomorphic to its contragredient module ([FHL93]). A VOA is said to be strongly regular if it is rational, C_{2}-cofinite, self-dual and of CFT-type. Note that a strongly regular VOA is simple.

Let V be a VOA of CFT-type. Then, the weight one space V_{1} has a Lie algebra structure via the 0 -th product. Moreover, the operators $v_{(m)}, v \in V_{1}, m \in \mathbb{Z}$, define an
affine representation of the Lie algebra V_{1} on V. For a simple Lie subalgebra \mathfrak{s} of V_{1}, the level of \mathfrak{s} is defined to be the scalar by which the canonical central element acts on V (as the affine representation); when the type of \mathfrak{s} is X_{n} and the level of \mathfrak{s} is k, we denote the type of \mathfrak{s} (with level) by $X_{n, k}$.

Proposition 2.5 ([DM06, Theorem 1.1, Corollary 4.3]). Let V be a strongly regular VOA. Then V_{1} is reductive. Let \mathfrak{s} be a simple Lie subalgebra of V_{1}. Then V is an integrable module for the affine representation of \mathfrak{s}, and the subVOA generated by \mathfrak{s} is isomorphic to the simple affine VOA associated with \mathfrak{s} at some positive integral level.

Assume that V is strongly regular. Then the fusion products \boxtimes are defined on irreducible V-modules ([HL95]). An irreducible V-module M^{1} is called a simple current module if for any irreducible V-module M^{2}, the fusion product $M^{1} \boxtimes M^{2}$ is also an irreducible V-module.

2.3. Automorphisms of vertex operator algebras.

Let V be a VOA. A linear automorphism g of V is called a (VOA) automorphism of V if

$$
g \omega=\omega \quad \text { and } \quad g Y(v, z)=Y(g v, z) g \quad \text { for all } v \in V .
$$

Let us denote the group of all automorphisms of V by $\operatorname{Aut}(V)$. Note that $\operatorname{Aut}(V)$ preserves V_{n} for every $n \in \mathbb{Z}$.

Assume that V is of CFT-type. Then for $v \in V_{1}, \exp \left(v_{(0)}\right)$ is an automorphism of V_{1}, which is called an inner automorphism. Let $\operatorname{Inn}(V)$ denote the normal subgroup generated by inner automorphisms of V. When $v_{(0)}$ is semisimple on V, we set

$$
\sigma_{v}=\exp \left(-2 \pi \sqrt{-1} v_{(0)}\right) \in \operatorname{Inn}(V)
$$

We further assume that the Lie algebra V_{1} is semisimple; $V_{1}=\bigoplus_{i=1}^{s} \mathfrak{g}_{i}$, where \mathfrak{g}_{i} are simple ideals. Let

$$
\varphi_{1}: \operatorname{Aut}(V) \rightarrow \operatorname{Aut}\left(V_{1}\right)
$$

be the restriction map and let

$$
\varphi_{2}: \operatorname{Aut}\left(V_{1}\right) \rightarrow \operatorname{Out}\left(V_{1}\right)=\operatorname{Aut}\left(V_{1}\right) / \operatorname{Inn}\left(V_{1}\right)
$$

be the canonical map, where $\operatorname{Inn}\left(V_{1}\right)$ and $\operatorname{Out}\left(V_{1}\right)$ are the inner and the outer automorphism groups of the Lie algebra V_{1}, respectively. Set

$$
\begin{equation*}
K(V):=\operatorname{Ker} \varphi_{1} \subset \operatorname{Aut}(V), \quad \operatorname{Out}(V):=\operatorname{Im}\left(\varphi_{2} \circ \varphi_{1}\right) \subset \operatorname{Out}\left(V_{1}\right) . \tag{2.1}
\end{equation*}
$$

Note that $\varphi_{1}(\operatorname{Inn}(V))=\operatorname{Inn}\left(V_{1}\right)$. Set

$$
\begin{align*}
& \operatorname{Out}_{1}(V):=\left\{g \in \operatorname{Out}(V) \mid g\left(\mathfrak{g}_{i}\right)=\mathfrak{g}_{i}, 1 \leq \forall i \leq s\right\}, \\
& \operatorname{Out}_{2}(V):=\operatorname{Out}(V) / \operatorname{Out}_{1}(V) . \tag{2.2}
\end{align*}
$$

Then $\operatorname{Out}_{2}(V)$ acts faithfully on $\left\{\mathfrak{g}_{i} \mid 1 \leq i \leq s\right\}$ as a permutation group.

2.4. Action of automorphisms on modules.

Let V be a VOA and $g \in \operatorname{Aut}(V)$. Let $M=\left(M, Y_{M}\right)$ be a V-module. The V-module $M \circ g$ is defined as follows:

$$
\begin{aligned}
& M \circ g=M \quad \text { as a vector space; } \\
& Y_{M \circ g}(a, z)=Y_{M}(g a, z) \quad \text { for any } a \in V
\end{aligned}
$$

The following lemma is immediate.
Lemma 2.6. Let M, M^{1}, M^{2} be V-modules and let $g \in \operatorname{Aut}(V)$.
(1) If M is irreducible, then so is $M \circ g$.
(2) If M^{1} and M^{2} are isomorphic, then so are $M^{1} \circ g$ and $M^{2} \circ g$.
(3) If M is a simple current module, then so is $M \circ g$.

By the lemma above, $g \in \operatorname{Aut}(V)$ acts on $\operatorname{Irr}(V)$ by $W \mapsto W \circ g$. Note that this action preserves the fusion products and that if $g \in \operatorname{Inn}(V)$ then $W \circ g=W$ for all $W \in \operatorname{Irr}(V)$.

Lemma 2.7. Let V be a VOA and U a rational full subVOA. Let $V=$ $\bigoplus_{W \in \operatorname{Irr}(U)} V(W)$ be the isotypic decomposition, where $V(W)$ is the sum of all irreducible U-submodules of V that belongs to W. Let $g \in \operatorname{Aut}(V)$ such that $g(U)=U$. Then for $W \in \operatorname{Irr}(U)$, we have $g(V(W))=V\left(W \circ g^{-1}\right)$.

Proof. Let M be an irreducible U-submodule of V. Then

$$
g Y_{M}(v, z) w=Y_{g(M)}(g v, z) g(w)=Y_{g(M) \circ g}(v, z) g(w),
$$

and g is a U-module isomorphism from M to $g(M) \circ g$. Hence $M \circ g^{-1}$ is isomorphic to $g(M)$ as U-modules, and $g(V(W)) \subset V\left(W \circ g^{-1}\right)$ for $W \in \operatorname{Irr}(U)$. Replacing W by $W \circ g$ and g by g^{-1}, we obtain the opposite inclusion.

3. Lattice VOAs V_{L}, subVOAs V_{L}^{+}and simple affine VOAs.

In this section, we review properties of lattice VOAs V_{L}, subVOAs V_{L}^{+}and simple affine VOAs.

3.1. Lattice VOAs.

Let L be an even lattice of rank r and let $(\cdot \mid \cdot)$ be a positive-definite symmetric bilinear form on $\mathbb{R} \otimes_{\mathbb{Z}} L \cong \mathbb{R}^{r}$. The lattice VOA V_{L} associated with L is defined to be $M(1) \otimes_{\mathbb{C}} \mathbb{C}\{L\}([\mathbf{F L M 8 8}])$. Here $M(1)$ is the Heisenberg VOA associated with $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ and the form $(\cdot \mid \cdot)$ extended \mathbb{C}-bilinearly, and $\mathbb{C}\{L\}=\bigoplus_{\alpha \in L} \mathbb{C} e^{\alpha}$ is the twisted group algebra with the commutator relation $e^{\alpha} e^{\beta}=(-1)^{(\alpha \mid \beta)} e^{\beta} e^{\alpha}(\alpha, \beta \in L)$. It is well-known that the lattice VOA V_{L} is strongly regular, and its central charge is equal to r, the rank of L.

Let \hat{L} be the central extension of L by $\langle-1\rangle \cong \mathbb{Z}_{2}$ associated with the commutator relation above. Let $\operatorname{Aut}(\hat{L})$ be the set of all group automorphisms of \hat{L}. For $g \in \operatorname{Aut}(\hat{L})$,
we define the element $\bar{g} \in \operatorname{Aut}(L)$ by $g\left(e^{\alpha}\right) \in\left\{ \pm e^{\bar{g}(\alpha)}\right\}, \alpha \in L$. Set

$$
O(\hat{L})=\{g \in \operatorname{Aut}(\hat{L}) \mid \bar{g} \in O(L)\}
$$

We often identify $\operatorname{Hom}\left(L, \mathbb{Z}_{2}\right)$ with $\left\{f_{u} \mid u \in L^{*} / 2 L^{*}\right\}$, where

$$
\begin{equation*}
f_{u}: L \rightarrow\{ \pm 1\} \cong \mathbb{Z}_{2}, \quad f_{u}(\alpha)=(-1)^{(u \mid \alpha)} \tag{3.1}
\end{equation*}
$$

Note that $\operatorname{Hom}\left(L, \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}^{r}$. For $f_{u} \in \operatorname{Hom}\left(L, \mathbb{Z}_{2}\right)$, the map $\hat{L} \rightarrow \hat{L}, e^{\alpha} \mapsto f_{u}(\alpha) e^{\alpha}$ is an element of $O(\hat{L})$; we view $\operatorname{Hom}\left(L, \mathbb{Z}_{2}\right)$ as a subgroup of $O(\hat{L})$. It was proved in [FLM88, Proposition 5.4.1] that the following sequence is exact:

$$
\begin{equation*}
1 \longrightarrow \operatorname{Hom}\left(L, \mathbb{Z}_{2}\right) \longrightarrow O(\hat{L}) \xrightarrow{-} O(L) \longrightarrow 1 \tag{3.2}
\end{equation*}
$$

We view $O(\hat{L})$ as a subgroup of $\operatorname{Aut}\left(V_{L}\right)$ by the following way: for $g \in O(\hat{L})$,

$$
\alpha_{1}\left(-n_{1}\right) \cdots \alpha_{m}\left(-n_{m}\right) \otimes e^{\beta} \mapsto \bar{g}\left(\alpha_{1}\right)\left(-n_{1}\right) \cdots \bar{g}\left(\alpha_{m}\right)\left(-n_{m}\right) \otimes g\left(e^{\beta}\right)
$$

is an automorphism of V_{L}, where $n_{1}, \ldots, n_{m} \in \mathbb{Z}_{>0}$ and $\alpha_{1}, \ldots, \alpha_{m}, \beta \in L$. We often identify \mathfrak{h} with $\mathfrak{h}(-1) \mathbb{1}$ via $h \mapsto h(-1) \mathbb{1}$. Then $f_{u}=\sigma_{u / 2}$ for $u \in L^{*}$; for the definition of $\sigma_{u / 2}$, see Section 2.3. Hence $\operatorname{Hom}\left(L, \mathbb{Z}_{2}\right) \subset \operatorname{Inn}\left(V_{L}\right)$. It was proved in [DN99, Theorem 2.1] that $\operatorname{Aut}\left(V_{L}\right)$ is generated by the normal subgroup $\operatorname{Inn}\left(V_{L}\right)$ and the subgroup $O(\hat{L})$.

3.2. VOAs V_{L}^{+}.

Let V_{L} be the lattice VOA associated with an even lattice L. Let θ be an element in $O(\hat{L})$ such that $\bar{\theta}=-1 \in O(L)$. Note that the order of θ is 2 and that θ is unique up to conjugation by elements in $\operatorname{Aut}\left(V_{L}\right)$ ([DGH98, Appendix D]). Let V_{L}^{+}denote the fixedpoint subspace of θ. Then V_{L}^{+}is a full subVOA and it is strongly regular ([ABD04], [DJL12]). The irreducible V_{L}^{+}-modules were classified in [AD04] as follows:

Theorem 3.1 ([AD04, Theorem 7.7]). Any irreducible V_{L}^{+}-module is isomorphic to $V_{\mu+L}^{ \pm}\left(\mu \in L^{*} \cap(L / 2)\right)$, $V_{\nu+L}\left(\nu \in L^{*} \backslash(L / 2)\right)$ or $V_{L}^{T_{\chi}, \pm}$, where T_{χ} is an irreducible module for the group $\hat{L} /\left\{a^{-1} \theta(a) \mid a \in \hat{L}\right\}$ with central character χ.

For simplicity, we use the following notations for elements of $\operatorname{Irr}\left(V_{L}^{+}\right)$:

$$
\begin{equation*}
V_{\mu+L}^{ \pm} \in(\mu)^{ \pm}\left(\mu \in L^{*} \cap(L / 2)\right), \quad V_{\nu+L} \in(\nu)\left(\nu \in L^{*} \backslash(L / 2)\right), \quad V_{L}^{T_{\chi}, \pm} \in(\chi)^{ \pm} \tag{3.3}
\end{equation*}
$$

The irreducible V_{L}^{+}-modules $V_{\mu+L}^{ \pm}$and $V_{\nu+L}$ (resp. $V_{L}^{T_{\chi}, \pm}$) are said to be of untwisted type (resp. of twisted type). Note that $(\nu)=(-\nu)$ for $\nu \in L^{*} \backslash(L / 2)$. The following lemma is straightforward.

Lemma 3.2. Let L be an even lattice and Q its sublattice. Assume that L and Q have the same rank. Let $Q=\bigoplus_{i=1}^{t} Q_{i}$ be the orthogonal sum of indecomposable sublattices. Then for any irreducible V_{L}^{+}-module of untwisted (resp. twisted) type, any irreducible $\bigotimes_{i=1}^{t} V_{Q_{i}}^{+}$-submodule is isomorphic to the tensor product of irreducible $V_{Q_{i}}^{+}$modules of untwisted (resp. twisted) type.

By the fusion rules of $\operatorname{Irr}\left(V_{L}^{+}\right)$determined in [ADL05], we obtain the following:
Proposition 3.3. Let M be an irreducible V_{L}^{+}-module of untwisted type. Then M is a simple current module if and only if $M \in(\mu)^{\varepsilon}$ for some $\mu \in L^{*} \cap(L / 2)$ and $\varepsilon \in\{ \pm\}$.

Since θ is a central element of $O(\hat{L})$ and $\left\{g \in O(\hat{L}) \mid g=i d\right.$ on $\left.V_{L}^{+}\right\}=\langle\theta\rangle \cong \mathbb{Z}_{2}$, we have $O(\hat{L}) /\langle\theta\rangle \subset \operatorname{Aut}\left(V_{L}^{+}\right)$. By (3.2), we obtain the following exact sequence:

$$
\begin{equation*}
1 \longrightarrow \operatorname{Hom}\left(L, \mathbb{Z}_{2}\right) \longrightarrow O(\hat{L}) /\langle\theta\rangle \xrightarrow{-} O(L) /\langle-1\rangle \longrightarrow 1 \tag{3.4}
\end{equation*}
$$

The actions of $O(\hat{L}) /\langle\theta\rangle$ on the subsets $\left\{(\mu)^{ \pm} \mid \mu \in L^{*} \cap(L / 2)\right\}$ and $\left\{(\nu) \mid \nu \in L^{*} \backslash\right.$ $(L / 2)\}$ of $\operatorname{Irr}\left(V_{L}^{+}\right)$are described in [Sh06, Lemma 1.7] (cf. [Sh04, Proposition 2.9]). In particular, we have the following:

Lemma 3.4. For $u \in L^{*}$ and $\mu \in L^{*} \cap(L / 2)$,

$$
(\mu)^{ \pm} \circ f_{u}= \begin{cases}(\mu)^{ \pm} & \text {if }(\mu \mid u) \in \mathbb{Z} \\ (\mu)^{\mp} & \text { if }(\mu \mid u) \in \frac{1}{2}+\mathbb{Z}\end{cases}
$$

Now, we consider $\operatorname{Aut}\left(V_{Q}^{+}\right)$for a root lattice Q.
Lemma 3.5. For a root lattice Q, the following are equivalent;
(1) there exist $W \in \operatorname{Irr}\left(V_{Q}^{+}\right)$of untwisted type and $g \in \operatorname{Aut}\left(V_{Q}^{+}\right)$such that $W \circ g$ is of twisted type;
(2) $Q \cong A_{7}, D_{8}, E_{8}$ or $D_{n} \oplus D_{n}(n \geq 2)$, where $D_{2}=A_{1} \oplus A_{1}$ and $D_{3}=A_{3}$.

Proof. Let Q be a root lattice. We note that (1) holds if $Q \cong E_{8}$ since $V_{E_{8}}^{+} \cong V_{D_{8}}$ (cf. [Sh06, Section 3.1]); we assume that $Q \neq E_{8}$.

The assertion (1) holds if and only if Q is obtained by Construction B from a doubly even binary code C ([Sh04, Proposition 3.10], [Sh06, Lemma 1.11, Corollary 4.4]). Since Q is generated by norm 2 vectors, C is also generated by weight 4 codewords and it is indecomposable. Such a doubly even binary code is equivalent to $d_{2 n}(n \geq 2)$, the Hamming code of length 7 or the extended Hamming code of length 8 ([PS75, Theorem 6.5]); in fact, these binary codes provide the root lattices $D_{n} \oplus D_{n}(n \geq 2), A_{7}$ and D_{8} by Construction B, respectively.

REmARK 3.6. If Q is A_{7}, D_{8} or $D_{n} \oplus D_{n}(n \geq 2)$, then V_{Q}^{+}has an extra automorphism of order 2 as in [FLM88, Chapter 11] that sends some irreducible V_{Q}^{+}-module of untwisted type to one of twisted type ([Sh06, Proposition 4.2]).

The case where L is unimodular was studied in [Sh06].
Lemma 3.7 ([Sh06, Proposition 7.3]). Let L be an even unimodular lattice whose rank is at least 16. Then $\operatorname{Aut}\left(V_{L}^{+}\right) \cong C_{\operatorname{Aut}\left(V_{L}\right)}(\theta) /\langle\theta\rangle \cong\left(C_{\operatorname{Inn}\left(V_{L}\right)}(\theta) O(\hat{L})\right) /\langle\theta\rangle$.

3.3. Simple affine VOAs associated with simple Lie algebras.

Let \mathfrak{g} be a simple Lie algebra. Let \mathfrak{h} be a (fixed) Cartan subalgebra of \mathfrak{g} and let $(\cdot \mid \cdot)$ be the Killing form on \mathfrak{g}. We identify the dual \mathfrak{h}^{*} with \mathfrak{h} via $(\cdot \mid \cdot)$ and normalize the form so that $(\alpha \mid \alpha)=2$ for any long root $\alpha \in \mathfrak{h}$.

Let k be a positive integer and let $L_{\mathfrak{g}}(k, 0)$ be the simple affine VOA associated with \mathfrak{g} at level k ([FZ92]). When the type of \mathfrak{g} is X_{n}, it is also denoted by $L_{X_{n}}(k, 0)$. Fix a set of simple roots of \mathfrak{g}. A dominant integral weight $\Lambda \in \mathfrak{h}$ of \mathfrak{g} has level k if $(\Lambda \mid \beta) \leq k$ for the highest root β of \mathfrak{g}. Then $\operatorname{Irr}\left(L_{\mathfrak{g}}(k, 0)\right)=\left\{L_{\mathfrak{g}}(k, \Lambda)\right\}$, where Λ ranges over dominant integral weights of level k ([FZ92]).

Let $\operatorname{Inn}(\mathfrak{g})$ be the inner automorphism group of \mathfrak{g} and $\Gamma(\mathfrak{g})$ the Dynkin diagram automorphism group of \mathfrak{g}. Then $\operatorname{Aut}(\mathfrak{g})=\operatorname{Inn}(\mathfrak{g}): \Gamma(\mathfrak{g})([\operatorname{Hu72}$, Section 16.5]). Note that $\operatorname{Aut}\left(L_{\mathfrak{g}}(k, 0)\right) \cong \operatorname{Aut}(\mathfrak{g})$. The following lemma is immediate:

Lemma 3.8. Let $g \in \operatorname{Aut}\left(L_{\mathfrak{g}}(k, 0)\right)$ and Λ a dominant integral weight of level k.
(1) If g is inner, then $L_{\mathfrak{g}}(k, \Lambda) \circ g \cong L_{\mathfrak{g}}(k, \Lambda)$.
(2) If g is a Dynkin diagram automorphism, then $L_{\mathfrak{g}}(k, \Lambda) \circ g \cong L_{\mathfrak{g}}\left(k, g^{-1}(\Lambda)\right)$.

4. VOAs V_{R}^{+}associated with indecomposable root lattices R.

Let R be an indecomposable root lattice such that $R \not \not \approx A_{1}$. In this section, we prove that V_{R}^{+}is isomorphic to the simple affine VOA associated with the semisimple Lie algebra $\left(V_{R}^{+}\right)_{1}$ at some positive integral level. In addition, we study its irreducible modules and automorphisms by using the isomorphism.

4.1. Isomorphism between V_{R}^{+}and the simple affine VOA.

In this subsection, for an indecomposable root lattice $R \not \approx A_{1}$, we prove that V_{R}^{+}is generated by the weight one subspace and we describe the type and level of V_{R}^{+}as an affine VOA.

Lemma 4.1. Let R be an indecomposable root lattice such that $R \not \not A_{1}$. Then V_{R}^{+} is generated by the weight one subspace as a VOA.

Proof. Let Φ be the set of all norm 2 vectors of R. Then Φ is a root system; let Δ be a set of simple roots of Φ. Let U be the subVOA of V_{R}^{+}generated by $\left(V_{R}^{+}\right)_{1}$. Let $\alpha \in \Phi$ and set $x^{\alpha}=e^{\alpha}+\theta\left(e^{\alpha}\right) \in\left(V_{R}^{+}\right)_{1} \subset U$. Then $x_{(-1)}^{\alpha} x^{\alpha}=\lambda \alpha(-1)^{2} \mathbb{1}$ for some non-zero $\lambda \in \mathbb{C}$, and hence $\alpha(-1)^{2} \mathbb{1} \in U$.

Let $\beta, \gamma \in \Delta$. Since Φ is indecomposable, there exist unique $\beta_{0}=\beta, \beta_{1}, \ldots, \beta_{n}=$ $\gamma \in \Delta$ such that $\left(\beta_{i} \mid \beta_{j}\right)=-\delta_{1,|i-j|}+2 \delta_{i, j}$ for $0 \leq i, j \leq n$. We will prove that $\beta(-1) \gamma(-1) \mathbb{1} \in U$ by induction on n. If $n=0$, then the assertion has already been proved. Assume that the assertion holds if $n \leq \ell-1$, and consider the case $n=\ell$. By the assumption on β_{i}, we have $\sum_{i=0}^{\ell} \beta_{i} \in \Phi$. Hence

$$
\left(\sum_{i=0}^{\ell} \beta_{i}\right)(-1)\left(\sum_{i=0}^{\ell} \beta_{i}\right)(-1) \mathbb{1}=\sum_{0 \leq i, j \leq \ell} \beta_{i}(-1) \beta_{j}(-1) \mathbb{1} \in U .
$$

By the inductive hypothesis, $\beta_{i}(-1) \beta_{j}(-1) \mathbb{1} \in U$ if $|i-j| \leq \ell-1$. Hence $\beta(-1) \gamma(-1) \mathbb{1}=$ $\beta_{0}(-1) \beta_{\ell}(-1) \mathbb{1} \in U$; the assertion holds if $n=\ell$.

Thus, we have

$$
\begin{equation*}
\left\{x^{\alpha}, \beta(-1) \gamma(-1) \mathbb{1} \mid \alpha \in \Phi, \beta, \gamma \in \Delta\right\} \subset U \tag{4.1}
\end{equation*}
$$

Since the rank of R is at least 2 , we can apply a similar argument as in the proof of [FLM88, Proposition 12.2.6] to our case, and we see that the set (4.1) generates V_{R}^{+}. Hence $U=V_{R}^{+}$.

Remark 4.2. It follows from [DG98, Section 3] that $V_{A_{1}}^{+}$is isomorphic to $V_{2 A_{1}}$. Hence $V_{A_{1}}^{+}$is not generated by $\left(V_{A_{1}}^{+}\right)_{1}$ as a VOA. Indeed, $\left(V_{2 A_{1}}\right)_{1}$ generates the proper subVOA $M(1)$.

Proposition 4.3. Let R be an indecomposable root lattice such that $R \not \approx A_{1}$. Then V_{R}^{+}is isomorphic to the simple affine VOA associated with the semisimple Lie algebra $\left(V_{R}^{+}\right)_{1}$ at level k_{R}, where the type of $\left(V_{R}^{+}\right)_{1}$ and k_{R} are given as in Table 3; note that we regard D_{2} and D_{3} as A_{1}^{2} and A_{3}, respectively.

Proof. Recall that the type of the Lie algebra $\left(V_{R}\right)_{1}$ and that of the root system of R are the same. By [He01, Section 5, Table II], the Lie algebra structure of $\left(V_{R}^{+}\right)_{1}$ is given as in Table 3. In particular, it is semisimple. We have mentioned in Section 3.2 that V_{R}^{+} is strongly regular. Hence this proposition follows from Proposition 2.5 and Lemma 4.1. Note that the level k_{R} is also given as in Table 3 (see [Ka90, Corollary 12.8]).

Table 3. Lie algebra structure of $\left(V_{R}^{+}\right)_{1}$ and level k_{R}.

R	$\left(V_{R}^{+}\right)_{1}$	k_{R}
A_{2}	A_{1}	4
$A_{2 n}(n \geq 2)$	B_{n}	2
$A_{2 n-1}(n \geq 2)$	D_{n}	2
$D_{2 n}(n \geq 2)$	D_{n}^{2}	1
$D_{2 n+1}(n \geq 2)$	B_{n}^{2}	1
E_{6}	C_{4}	1
E_{7}	A_{7}	1
E_{8}	D_{8}	1

In Appendix A, we describe the correspondences between $\operatorname{Irr}\left(V_{R}^{+}\right)$and $\operatorname{Irr}\left(L_{\mathfrak{g}}\left(k_{R}, 0\right)\right)$, where $\mathfrak{g}=\left(V_{R}^{+}\right)_{1}$.

Recall that $\operatorname{Aut}\left(L_{\mathfrak{g}}\left(k_{R}, 0\right)\right) \cong \operatorname{Aut}(\mathfrak{g})$ and that the outer automorphism group $\operatorname{Out}(\mathfrak{g})=\operatorname{Aut}(\mathfrak{g}) / \operatorname{Inn}(\mathfrak{g})$ of the semisimple Lie algebra \mathfrak{g} is isomorphic to the semidirect product of the diagram automorphism group of \mathfrak{g} and the direct product of the symmetric groups on isomorphic simple ideals.

In Table 4, a set of generators in $\operatorname{Aut}\left(V_{R}^{+}\right)$of $\operatorname{Out}(\mathfrak{g})$ is given; we omit the exceptional case $R \cong E_{8}$ (cf. [Sh06, Corollary 4.4]). Here, λ_{i} are fundamental weights of R, f_{u} is an element in $\operatorname{Hom}\left(R, \mathbb{Z}_{2}\right)$ (see (3.1)), $\hat{\Gamma}$ is a set of lifts in $O(\hat{R})$ of the Dynkin diagram automorphisms of R and σ is an extra automorphism of V_{R}^{+}(cf. Remark 3.6). We adopt the labeling of simple roots as in [Hu72, Section 11.4]. This table can be verified by direct computation; indeed, the action of $O(\hat{R})$ on $\operatorname{Irr}\left(V_{R}^{+}\right)$is described in [Sh06, Lemma 1.7] (cf. [Sh04, Proposition 2.9]). On the other hand, the action of $\operatorname{Aut}\left(L_{\mathfrak{g}}\left(k_{R}, 0\right)\right)(\cong \operatorname{Aut}(\mathfrak{g}))$ on $\operatorname{Irr}\left(L_{\mathfrak{g}}\left(k_{R}, 0\right)\right)$ is determined by the action of $\operatorname{Out}(\mathfrak{g})$ on the highest weight irreducible \mathfrak{g}-modules (see Lemma 3.8). By using the correspondences between $\operatorname{Irr}\left(V_{R}^{+}\right)$and $\operatorname{Irr}\left(L_{\mathfrak{g}}\left(k_{R}, 0\right)\right)$ in Appendix A, one obtain this table.

Table 4. Generators of $\operatorname{Out}(\mathfrak{g})$ as automorphisms of V_{R}^{+}.

R	$\mathfrak{g}=\left(V_{R}^{+}\right)_{1}$	$\operatorname{Out}(\mathfrak{g})$	generators in Aut $\left(V_{R}^{+}\right)$of Out($\left.\mathfrak{g}\right)$
$A_{2}, A_{2 n}(n \geq 2), E_{6}$	A_{1}, B_{n}, C_{4}	1	
A_{3}	A_{1}^{2}	Sym_{2}	$f_{\lambda_{1}}$
A_{7}	D_{4}	Sym_{3}	$f_{\lambda_{1}}, \sigma$
$A_{2 n-1}(n=3, n \geq 5)$	D_{n}	\mathbb{Z}_{2}	$f_{\lambda_{1}}$
D_{4}	A_{1}^{4}	Sym_{4}	$f_{\lambda_{1}}, f_{\lambda_{3}}, \hat{\Gamma}$
$D_{2 n}(n=3, n \geq 5)$	D_{n}^{2}	$\mathbb{Z}_{2} 2 \operatorname{Sym}_{2}$	$f_{\lambda_{1}}, f_{\lambda_{2 n-1}}, \hat{\Gamma}$
D_{8}	D_{4}^{2}	$\operatorname{Sym}_{3} 2 \operatorname{Sym}_{2}$	$f_{\lambda_{1}}, f_{\lambda_{7}}, \hat{\Gamma}, \sigma$
$D_{2 n+1}(n \geq 2)$	B_{n}^{2}	Sym_{2}	$f_{\lambda_{1}}$
E_{7}	A_{7}	\mathbb{Z}_{2}	$f_{\lambda_{1}}$

4.2. Automorphism group of $\left(V_{R}^{+}\right)^{\otimes t}$.

In this subsection, we study the action of $\operatorname{Aut}\left(\left(V_{R}^{+}\right)^{\otimes t}\right)$ on $\operatorname{Irr}\left(\left(V_{R}^{+}\right)^{\otimes t}\right)$.
Lemma 4.4. Let R be an indecomposable root lattice such that $R \neq A_{1}$. Let t be a positive integer and let \mathfrak{s} be a simple ideal of $\left(V_{R}^{+}\right)_{1}$. Then $\operatorname{Aut}\left(\left(V_{R}^{+}\right)^{\otimes t}\right)$ is the wreath product of Aut(s) and the symmetric group on the simple ideals of $\left(V_{R}^{+}\right)_{1}$;

$$
\operatorname{Aut}\left(\left(V_{R}^{+}\right)^{\otimes t}\right) \cong \begin{cases}\operatorname{Aut}(\mathfrak{s})\left\langle\operatorname{Sym}_{t}\right. & \text { if } R \cong A_{n}(n \neq 3), E_{6}, E_{7} \text { or } E_{8}, \\ \operatorname{Aut}(\mathfrak{s})\left\langle\operatorname{Sym}_{2 t}\right. & \text { if } R \cong A_{3} \text { or } D_{n}(n \geq 5), \\ \operatorname{Aut}(\mathfrak{s})\left\langle\operatorname{Sym}_{4 t}\right. & \text { if } R \cong D_{4} .\end{cases}
$$

Proof. By Proposition 4.3, along with Table 3, $\left(V_{R}^{+}\right)^{\otimes t}$ is the tensor product of some copies of $L_{\mathfrak{s}}\left(k_{R}, 0\right)$. By the facts $\operatorname{Aut}\left(L_{\mathfrak{s}}\left(k_{R}, 0\right)\right) \cong \operatorname{Aut}(\mathfrak{s})$ and $\operatorname{Aut}\left(\mathfrak{s}^{\oplus t}\right) \cong$ $\operatorname{Aut}(\mathfrak{s})$ Sym_{t}, we obtain this lemma.

Let $\operatorname{Irr}\left(V_{R}^{+}\right)_{0}$ denote the subset of $\operatorname{Irr}\left(V_{R}^{+}\right)$consisting of isomorphism classes of untwisted type.

Lemma 4.5. Let R be an indecomposable root lattice such that $R \not \approx A_{1}$. Then $\operatorname{Aut}\left(\left(V_{R}^{+}\right)^{\otimes 2}\right)$ does not preserve $\left\{M^{1} \otimes M^{2} \mid M^{i} \in \operatorname{Irr}\left(V_{R}^{+}\right)_{0}\right\} \subset \operatorname{Irr}\left(\left(V_{R}^{+}\right)^{\otimes 2}\right)$ if and only if $R \cong A_{3}, A_{7}, D_{n}(n \geq 4)$ or E_{8}.

Proof. Assume that $R \cong A_{n}(n \neq 3,7), E_{6}$ or E_{7}. By Lemma 3.5, $\operatorname{Aut}\left(V_{R}^{+}\right)$ preserves $\operatorname{Irr}\left(V_{R}^{+}\right)_{0}$. By Lemma 4.4, $\operatorname{Aut}\left(\left(V_{R}^{+}\right)^{\otimes 2}\right)$ also does $\left\{M^{1} \otimes M^{2} \mid M^{i} \in \operatorname{Irr}\left(V_{R}^{+}\right)_{0}\right\}$.

Assume that $R \cong A_{7}, D_{8}$ or E_{8}. By Lemma 3.5, $\operatorname{Aut}\left(V_{R}^{+}\right)$does not preserve $\operatorname{Irr}\left(V_{R}^{+}\right)_{0}$. Hence $\operatorname{Aut}\left(\left(V_{R}^{+}\right)^{\otimes 2}\right)$ also does not preserve $\left\{M^{1} \otimes M^{2} \mid M^{i} \in \operatorname{Irr}\left(V_{R}^{+}\right)_{0}\right\}$.

Assume that $R \cong A_{3}$ or $D_{n}(n \geq 4, n \neq 8)$. By Lemma 4.4 and Tables 8,13 and 14 in Appendix A, any element in $\operatorname{Aut}\left(\left(V_{R}^{+}\right)^{\otimes 2}\right) \backslash\left(\operatorname{Aut}\left(V_{R}^{+}\right)\right.$\Sym 2$)$ does not preserve $\left\{M^{1} \otimes M^{2} \mid M^{i} \in \operatorname{Irr}\left(V_{R}^{+}\right)_{0}\right\}$.

Lemma 4.6. Let $Q_{i}(1 \leq i \leq t)$ be an indecomposable root lattice such that $Q_{i} \not \neq$ A_{1}, E_{8}. Then, there exist $g \in \operatorname{Aut}\left(\otimes_{i=1}^{t}\left(V_{Q_{i}}^{+}\right)\right)$and $M^{i} \in \operatorname{Irr}\left(V_{Q_{i}}^{+}\right)_{0}(1 \leq i \leq t)$ such that $\left(\bigotimes_{i=1}^{t} M^{i}\right) \circ g \cong \bigotimes_{i=1}^{t} J^{i}$ and $J^{i} \notin \operatorname{Irr}\left(V_{Q_{i}}^{+}\right)_{0}$ for all i if and only if $\bigoplus_{i=1}^{t} Q_{i}$ is an orthogonal sum of copies of $A_{3}^{2}, D_{n}^{2}(n \geq 4, n \neq 8), A_{7}, D_{8}$.

Proof. By Lemmas 3.5 and 4.5, the former assertion follows from the latter assertion.

Conversely, we assume the former assertion. Let $\{1, \ldots, t\}=\bigcup_{b \in B} I_{b}$ be the partition such that $Q_{i} \cong Q_{j}$ if and only if $i, j \in I_{b}$ for some $b \in B$, where B is an index set. By Table 3, simple ideals \mathfrak{s}_{1} and \mathfrak{s}_{2} of $\left(\otimes_{i=1}^{t}\left(V_{Q_{i}}^{+}\right)\right)_{1}$ are isomorphic and have the same level if and only if $\mathfrak{s}_{1}, \mathfrak{s}_{2} \subset\left(\bigotimes_{i \in I_{b}}\left(V_{Q_{i}}^{+}\right)\right)_{1}$ for some $b \in B$. Hence $\operatorname{Aut}\left(\bigotimes_{i=1}^{t}\left(V_{Q_{i}}^{+}\right)\right) \cong \prod_{b \in B} \operatorname{Aut}\left(\bigotimes_{i \in I_{b}}\left(V_{Q_{i}}^{+}\right)\right)$. Thus it is enough to consider the case where $Q_{i} \cong Q_{j}$ for all i, j. By Lemmas 3.5 and 4.4, Q_{i} is neither $A_{n}(n \neq 3,7), E_{6}$ nor E_{7}.

Assume that $Q_{i} \cong D_{2 n}(n \geq 3, n \neq 4)\left(\right.$ resp. A_{3}, D_{4} and $\left.D_{2 n+1}(n \geq 2)\right)$. Let \mathfrak{s} be a simple ideal of $\left(V_{Q_{i}}^{+}\right)_{1}$. Then the type of \mathfrak{s} is D_{n} (resp. A_{1}, A_{1} and $\left.B_{n}\right)$. It follows from Table 13 (resp. Tables 8, 11 and 14) and the assumptions on M^{i} and J^{i} that M^{i} and J^{i} have even and odd tensor factors isomorphic to one of $\left\{\left[\Lambda_{n-1}\right],\left[\Lambda_{n}\right]\right\}$ (resp. $\left\{\left[\Lambda_{1}\right]\right\},\left\{\left[\Lambda_{1}\right]\right\}$ and $\left.\left\{\left[\Lambda_{n}\right]\right\}\right)$ as the irreducible $L_{\mathfrak{s}}\left(k_{Q_{i}}, 0\right)$-modules, respectively. Since Aut(s) preserves the set $\left\{\left[\Lambda_{n-1}\right],\left[\Lambda_{n}\right]\right\}$ (resp. $\left\{\left[\Lambda_{1}\right]\right\},\left\{\left[\Lambda_{1}\right]\right\}$ and $\left.\left\{\left[\Lambda_{n}\right]\right\}\right), \otimes_{i=1}^{t} J^{i}$ has even tensor factors isomorphic to one of $\left\{\left[\Lambda_{n-1}\right],\left[\Lambda_{n}\right]\right\}$ (resp. $\left\{\left[\Lambda_{1}\right]\right\},\left\{\left[\Lambda_{1}\right]\right\}$ and $\left.\left\{\left[\Lambda_{n}\right]\right\}\right)$. Hence t must be even and we have proved this lemma.

Remark 4.7. By Table 3, both $\left(V_{E_{8}}^{+}\right)_{1}$ and $\left(V_{D_{16}}^{+}\right)_{1}$ have a simple ideal of type $D_{8,1}$. In order to avoid this case, we assume $Q_{i} \neq E_{8}$ in Lemma 4.6, which is enough for our purpose.

5. Automorphism group of the holomorphic VOA $V_{L}^{\mathrm{orb}(\theta)}$.

Let L be an even unimodular lattice. Let V_{L} be the lattice VOA associated with L and let θ be an element of $O(\hat{L})$ such that $\bar{\theta}=-1 \in O(L)$. Let $V_{L}(\theta)$ be the irreducible θ-twisted V_{L}-module ([FLM88]). Let V_{L}^{+}be the fixed-point subspace of θ and $V_{L}(\theta)_{\mathbb{Z}}$ the subspace of $V_{L}(\theta)$ with integral conformal weights. Then V_{L}^{+}is a full subVOA of V_{L} and $V_{L}(\theta)_{\mathbb{Z}}$ is an irreducible V_{L}^{+}-module. Moreover, the V_{L}^{+}-module

$$
V=V_{L}^{\operatorname{orb}(\theta)}:=V_{L}^{+} \oplus V_{L}(\theta)_{\mathbb{Z}}
$$

has a VOA structure as a \mathbb{Z}_{2}-graded simple current extension of V_{L}^{+}([FLM88], [DGM96], [EMS20]). Note that V is strongly regular and holomorphic. Let z be the automorphism of V which acts as 1 and -1 on V_{L}^{+}and $V_{L}(\theta)_{\mathbb{Z}}$, respectively. Let $C_{\text {Aut }(V)}(z)$ be the centralizer of z in $\operatorname{Aut}(V)$. Then $C_{\operatorname{Aut}(V)}(z)=\left\{g \in \operatorname{Aut}(V) \mid g\left(V_{L}^{+}\right)=V_{L}^{+}\right\}$. Hence $C_{\operatorname{Aut}(V)}(z) /\langle z\rangle \subset \operatorname{Aut}\left(V_{L}^{+}\right)$.

Let Q be the root sublattice of L and let $Q=\bigoplus_{i=1}^{t} Q_{i}$ be the orthogonal sum of indecomposable root lattices Q_{i}. Note that Q_{i} is $A_{\ell}(\ell \geq 1), D_{m}(m \geq 4)$ or E_{n} ($n=6,7,8$). Now, we consider the following conditions:
(I) the rank of Q and L are the same, and it is at least 24;
(II) $Q_{i} \neq A_{1}$ for all i;
(III) $Q_{i} \not \neq E_{8}$ for all i and Q is not an orthogonal sum of copies of $A_{3}^{2}, D_{n}^{2}(n \geq 4$, $n \neq 8), A_{7}$ and D_{8}.

Lemma 5.1. (1) If (I) holds, then $V_{1} \cong \bigoplus_{i=1}^{t}\left(V_{Q_{i}}^{+}\right)_{1}$ and $C_{\operatorname{Aut}(V)}(z) /\langle z\rangle \cong$ $\operatorname{Aut}\left(V_{L}^{+}\right)$.
(2) If (I) and (II) hold, then the subVOA $\left\langle V_{1}\right\rangle$ generated by V_{1} is isomorphic to $\bigotimes_{i=1}^{t} V_{Q_{i}}^{+}$.
(3) If (I), (II) and (III) hold, then for any $g \in \operatorname{Aut}(V)$, we have $g\left(V_{L}^{+}\right)=V_{L}^{+}$.

Proof. Assume (I). Then the conformal weight of $V_{L}\left(\theta_{\mathbb{Z}}\right.$ is at least 2. Hence (1) follows from $V_{1}=\left(V_{L}^{+}\right)_{1}=\left(V_{Q}^{+}\right)_{1} \cong \bigoplus_{i=1}^{t}\left(V_{Q_{i}}^{+}\right)_{1}$. The assumption (I) also implies that the conformal weights of non-isomorphic irreducible V_{L}^{+}-modules are different. Hence any automorphism g of V_{L}^{+}satisfies $V_{L}(\theta)_{\mathbb{Z}} \circ g \cong V_{L}(\theta)_{\mathbb{Z}}$. Since V is a simple current extension of V_{L}^{+}, g lifts to an element in $C_{\mathrm{Aut}(V)}(z)\left(\left[\mathbf{S h 0 4}\right.\right.$, Theorem 3.3]). Thus $C_{\mathrm{Aut}(V)}(z) /\langle z\rangle \cong$ $\operatorname{Aut}\left(V_{L}^{+}\right)$.

In addition, we assume (II). Then (2) follows form (1) and Proposition 4.3.
We further assume (III). By (2), $\left\langle V_{1}\right\rangle$ is full and strongly regular. Hence V is the direct sum of finitely many irreducible $\left\langle V_{1}\right\rangle$-submodules. Let M be an irreducible $\left\langle V_{1}\right\rangle$ submodule of V_{L}^{+}. By Lemma 3.2, M is the tensor product of irreducible $V_{Q_{i}}^{+}$-modules of untwisted type. By Lemma $2.7 g(M)$ is isomorphic to $M \circ g_{\mid\left\langle V_{1}\right\rangle}^{-1}$ as $\left\langle V_{1}\right\rangle$-modules. By the assumption (III) and Lemma 4.6, $g(M)$ contains at least one irreducible $V_{Q_{i}}^{+}$-module of untwisted type as a tensor factor. Clearly, $g(M)$ is an irreducible $\left\langle V_{1}\right\rangle$-submodule of V_{L}^{+} or $V_{L}(\theta)_{\mathbb{Z}}$. By Lemma 3.2 again, we obtain $g(M) \subset V_{L}^{+}$, and hence $g\left(V_{L}^{+}\right)=V_{L}^{+}$.

By Lemma 5.1, we obtain the following:
Theorem 5.2. Let L be an even unimodular lattice satisfying (I), (II) and (III). Let $V=V_{L}^{\operatorname{orb}(\theta)}$. Then $\operatorname{Aut}(V)=C_{\operatorname{Aut}(V)}(z)$ and $\operatorname{Aut}(V) /\langle z\rangle \cong \operatorname{Aut}\left(V_{L}^{+}\right)$.

6. Automorphism groups of $V_{N}^{\mathrm{orb}(\theta)}$ for Niemeier lattices.

Let N be a Niemeier lattice and let Q be its root sublattice. Let $V=V_{N}^{\mathrm{orb}(\theta)}$ be the holomorphic VOA given in the previous section. If $Q=0$, then N is isometric to the Leech lattice and V is isomorphic to the moonshine VOA whose automorphism group is the Monster ([FLM88]); hence we assume $Q \neq 0$. We also assume that the -1 -isometry of N does not belong to the Weyl group of Q; otherwise, θ is inner, and V is isomorphic to a Niemeier lattice VOA (cf. [DGM96]). Then Q is one of 14 root lattices in Lemma 2.2, and (I) and (II) in the previous section hold. In this section, we determine the groups $K(V), \operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$, which proves Theorem 1.1 in Introduction.

Remark 6.1. If Q is neither A_{3}^{8} nor $D_{5}^{2} A_{7}^{2}$, then Q also satisfies the assumption (III) in Section 5, and by Theorem 5.2, $\operatorname{Aut}(V)=C_{\mathrm{Aut}(V)}(z)$. If Q is A_{3}^{8} or $D_{5}^{2} A_{7}^{2}$, then N is constructed from the doubly even self-dual binary code d_{6}^{4} or $d_{10} e_{7}^{2}$ of length 24 by the same manner as the Leech lattice, respectively (see [DGM96, Figure 3]); V has an extra automorphism not in $C_{\operatorname{Aut}(V)}(z)$ (cf. [FLM88, Chapter 11]), and $\operatorname{Aut}(V)$ is greater than $C_{\text {Aut }(V)}(z)$.

Remark 6.2. For a Niemeier lattice N with the root sublattice $Q \neq 0$, the groups $K\left(V_{N}\right)$ and $\operatorname{Out}\left(V_{N}\right)$ for the lattice VOA V_{N} are determined by the following way. Since $\left\langle\left(V_{N}\right)_{1}\right\rangle=V_{Q}$ and V_{N} is a simple current extension of V_{Q} graded by N / Q, we see that $K\left(V_{N}\right) \cong(N / Q)^{*} \cong N / Q$ and $K\left(V_{N}\right) \subset \operatorname{Inn}\left(V_{N}\right)$. By [DN99], $\operatorname{Out}\left(V_{N}\right)=\operatorname{Aut}\left(V_{N}\right) / \operatorname{Inn}\left(V_{N}\right) \cong O(N) / W(Q)$, which is the automorphism group of the glue code N / Q ([CS99, Chapter 16]).

6.1. The subgroup $K(V)$.

In this subsection, we determine $K(V)$, the subgroup of $\operatorname{Aut}(V)$ which acts trivially on V_{1}. It follows from $V_{1} \subset V_{N}^{+}$that $K(V)$ contains the automorphism z of V defined in Section 5. Let $Q=\bigoplus_{i=1}^{t} Q_{i}$ be the orthogonal sum of indecomposable root lattices.

Lemma 6.3. (1) $K(V) /\langle z\rangle \subset O(\hat{N}) /\langle\theta\rangle$;
(2) $(K(V) /\langle z\rangle) \cap \operatorname{Hom}\left(N, \mathbb{Z}_{2}\right)=\left\{f_{u} \mid u \in\left(N \cap 2 Q^{*}\right) / 2 N\right\}$;
(3) $\overline{K(V) /\langle z\rangle}=\left\{f \in O(N) \mid f= \pm 1\right.$ on $\left.Q_{i}, 1 \leq \forall i \leq t\right\} /\langle-1\rangle$, where ${ }^{-}$is the map $O(\hat{N}) /\langle\theta\rangle \rightarrow O(N) /\langle-1\rangle$ in the exact sequence (3.4).

Proof. Let $g \in K(V)$. Since g acts trivially on V_{1}, for any irreducible $\left\langle V_{1}\right\rangle$ submodule M of V, we have $M \circ g \cong M$. It follows from Lemma 5.1 (2) that $\left\langle V_{1}\right\rangle \cong$ $\bigotimes_{i=1}^{t} V_{Q_{i}}^{+}$. By Lemma 3.2, we have $g\left(V_{N}^{+}\right)=V_{N}^{+}$and $g\left(V_{N}(\theta)_{\mathbb{Z}}\right)=V_{N}(\theta)_{\mathbb{Z}}$. Hence $g \in C_{\operatorname{Aut}(V)}(z)$. Let g_{0} denote the restriction of g to V_{N}^{+}. Since the four (non-isomorphic) irreducible V_{N}^{+}-modules have different conformal weights, we have $V_{N}^{-} \circ g_{0} \cong V_{N}^{-}$. Note that $V_{N}=V_{N}^{+} \oplus V_{N}^{-}$is a \mathbb{Z}_{2}-graded simple current extension of V_{N}^{+}. Hence, there exists a lift $\hat{g} \in C_{\operatorname{Aut}\left(V_{N}\right)}(\theta)$ of g_{0} by [Sh04, Theorem 3.3]. Since any irreducible $\left\langle V_{1}\right\rangle$-submodule of V_{Q} is a simple current module, its multiplicity is one, and \hat{g} acts by a scalar on it. In particular \hat{g} preserves the Cartan subalgebra \mathfrak{h} of $\left(V_{Q}\right)_{1}$. Recall from [DN99, Section 2.4] that the stabilizer of \mathfrak{h} in $C_{\operatorname{Aut}\left(V_{N}\right)}(\theta)$ is $O(\hat{N})$. Hence, $\hat{g} \in O(\hat{N})$, and $g_{0} \in O(\hat{N}) /\langle\theta\rangle$.

Since $\left\{h \in \operatorname{Aut}(V) \mid h=i d\right.$ on $\left.V_{N}^{+}\right\}=\langle z\rangle$, we have $K(V) /\langle z\rangle \subset O(\hat{N}) /\langle\theta\rangle$, which proves (1).

The assertion (1) shows that $K(V) /\langle z\rangle=\left\{h \in O(\hat{N}) /\langle\theta\rangle \mid h=i d\right.$ on $\left.\left(V_{N}^{+}\right)_{1}\right\}$. The assertion (2) follows from $V_{1} \cong \bigoplus_{i=1}^{t}\left(V_{Q_{i}}^{+}\right)_{1}$ and the explicit action of $\operatorname{Hom}\left(N, \mathbb{Z}_{2}\right)$ in (3.1).

Set $F=\left\{f \in O(N) \mid f= \pm 1\right.$ on $\left.Q_{i}, 1 \leq \forall i \leq t\right\} /\langle-1\rangle$. Clearly $\overline{K(V) /\langle z\rangle} \subset F$. By Remark 2.3, if Q is $A_{5}^{4} D_{4}, A_{9}^{2} D_{6}$ or $A_{17} E_{7}$, then $F \cong \mathbb{Z}_{2}$ and $K(V) /\langle z\rangle$ contains a lift of the -1 -isometry of the root lattice D_{4}, D_{6} or E_{7}, respectively, and $\overline{K(V) /\langle z\rangle}=F$; otherwise $F=1$. Thus (3) holds.

Proposition 6.4. Let P^{\vee} be the coweight lattice of the Lie algebra $\mathfrak{g}=V_{1}$. Then $K(V)=\left\{\sigma_{x} \mid x \in P^{\vee}\right\}$. Moreover, the group structure of $K(V)$ is given as in Table 1.

Proof. It is clear that $\sigma_{x} \in K(V)$ for all $x \in P^{\vee}$. By Lemma 6.3 and the properties of N and $O(N)$ in [CS99, Chapters 16 and 18], the order of $K(V)$ is determined as in Table 5. By using Tables 6 to 16 in Appendix A, along with the generators of the glue code N / Q in [CS99, Section 18.4], we can describe the module structure of V_{N}^{+}for simple affine VOAs. Then for $x \in P^{\vee}$, we know the action of σ_{x} on the irreducible $\left\langle V_{1}\right\rangle$ submodule of V_{N}^{+}as an element of $O(\hat{N})$; we see that $\left\{\sigma_{x} \mid x \in P^{\vee}\right\}$ contains generators of $K(V)$ (see Lemma 6.3 and Table 5). Thus the group structure of $K(V)$ is determined as in Table 1. Note that the vectors for the case A_{3}^{8} in Table 5 are described with respect to some specified coordinate (see Section 6.2.1 below).

Corollary 6.5. The group $K(V)$ is contained in $\operatorname{Inn}(V)$.

Table 5. Vectors in P^{\vee} such that the associated inner automorphisms generate $K(V)$.

Q	V_{1}	$\|K(V)\|$	z	$(K(V) /\langle z\rangle) \cap \operatorname{Hom}\left(N, \mathbb{Z}_{2}\right)$	$\overline{K(V) /\langle z\rangle}$
A_{2}^{12}	$A_{1,4}^{12}$	2	$\left(\Lambda_{1}, 0^{11}\right)$	1	1
A_{3}^{8}	$A_{1,2}^{16}$	2^{5}	$\left(\Lambda_{1}, \Lambda_{1}, 0^{14}\right)$	$\left(\Lambda_{1}, 0^{15}\right),\left(0^{2}, \Lambda_{1}, 0^{13}\right)$, $\left(0^{4}, \Lambda_{1}, 0^{11}\right),\left(0^{8}, \Lambda_{1}, 0^{7}\right)$	1
A_{4}^{6}	$B_{2,2}^{6}$	2	$\left(\Lambda_{1}, 0^{5}\right)$	1	1
$A_{5}^{4} D_{4}$	$A_{3,2}^{4} A_{1,1}^{4}$	2^{5}	$\left(2 \Lambda_{1}, 0^{7}\right)$	$\left(\Lambda_{1}, 0^{7}\right),\left(0, \Lambda_{1}, 0^{6}\right),\left(0^{2}, \Lambda_{1}, 0^{5}\right)$	$\left(0^{4}, \Lambda_{1}^{4}\right)$
A_{6}^{4}	$B_{3,2}^{4}$	2	$\left(\Lambda_{1}, 0^{3}\right)$	1	1
$A_{7}^{2} D_{5}^{2}$	$D_{4,2}^{2} B_{2,1}^{4}$	2^{3}	$\left(\Lambda_{1}, 0^{5}\right)$	$\left(\Lambda_{4}, 0^{5}\right),\left(0^{4}, \Lambda_{1}, 0\right)$	1
A_{8}^{3}	$B_{4,2}^{3}$	2	$\left(\Lambda_{1}, 0,0\right)$	1	1
$A_{9}^{2} D_{6}$	$D_{5,2}^{2} A_{3,1}^{2}$	2^{4}	$\left(0^{2}, 2 \Lambda_{3}, 2 \Lambda_{3}\right)$	$\left(0^{2}, \Lambda_{3}, \Lambda_{3}\right),\left(0^{2}, 2 \Lambda_{3}, 0\right)$	$\left(0^{2}, \Lambda_{3}, 0\right)$
E_{6}^{4}	$C_{4,1}^{4}$	2	$\left(\Lambda_{4}, 0^{3}\right)$	1	1
$A_{11} D_{7} E_{6}$	$D_{6,2} B_{3,1}^{2} C_{4,1}$	2^{2}	$\left(\Lambda_{1}, 0,0\right)$	$\left(\Lambda_{6}, 0,0\right)$	1
A_{12}^{2}	$B_{6,2}^{2}$	2	$\left(\Lambda_{1}, 0\right)$	1	1
$A_{15} D_{9}$	$D_{8,2} B_{4,1}^{2}$	2^{2}	$\left(\Lambda_{1}, 0,0\right)$	$\left(\Lambda_{8}, 0,0\right)$	1
$A_{17} E_{7}$	$D_{9,2} A_{7,1}$	2^{3}	$\left(0, \Lambda_{4}\right)$	$\left(0, \Lambda_{2}\right)$	1
A_{24}	$B_{12,2}$	2	$\left(\Lambda_{1}\right)$		1

6.2. The groups $\operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$.

In this subsection, we determine the $\operatorname{groups}^{\operatorname{Out}_{1}(V) \text { and } \operatorname{Out}_{2}(V) \text {. Let } V_{1}=}$ $\bigoplus_{i=1}^{s} \mathfrak{g}_{i}$ be the direct sum of simple ideals.

Lemma 6.6. If $Q_{i} \notin\left\{A_{2 n-1}, D_{2 n}, E_{7}, E_{8} \mid n \geq 3\right\}$ for all $1 \leq i \leq t$, then $\operatorname{Out}_{1}(V)=1$.

Proof. By Table 3, for any simple ideal of V_{1}, its type is neither $A_{n}(n \geq 2), D_{n}$ $(n \geq 4)$ nor E_{6}, which shows that $\operatorname{Out}_{1}(V)=1$.

Lemma 6.7. The group $\operatorname{Aut}\left(V_{N}^{+}\right)$preserves the set $\left\{\left(V_{Q_{i}}^{+}\right)_{1} \mid 1 \leq i \leq t\right\}$ of semisimple ideals of V_{1}. Moreover, its action is the same as that of $G_{2}(N)$ on $\left\{Q_{i} \mid 1 \leq i \leq t\right\}$.

Proof. By (3.2) (see also Section 2.1), $O(\hat{N})$ acts on $\left\{\left(V_{Q_{i}}\right)_{1} \mid 1 \leq i \leq t\right\}$ as the permutation group $G_{2}(N)$ on $\left\{Q_{i} \mid 1 \leq i \leq t\right\}$. Hence $O(\hat{N}) /\langle\theta\rangle$ also acts on $\left\{\left(V_{Q_{i}}^{+}\right)_{1} \mid 1 \leq i \leq t\right\}$ by the same manner. On the other hand, $\operatorname{Inn}\left(V_{N}\right)$ preserves $V_{Q_{i}}$ for all i. Thus we obtain this lemma by Lemma 3.7.

Lemma 6.8. (1) $\operatorname{Out}\left(V_{N}^{+}\right) \subset \operatorname{Out}(V)$.
(2) If Q is neither A_{3}^{8} nor $A_{7}^{2} D_{5}^{2}$, then $\operatorname{Out}(V)=\operatorname{Out}\left(V_{N}^{+}\right)$.
(3) If $Q_{i} \notin\left\{A_{3}, D_{n} \mid n \geq 4\right\}$ for all $1 \leq i \leq t$, then $\operatorname{Out}_{2}(V) \cong G_{2}(N)$.

Proof. The assertion (1) follows from Lemma 5.1 (1), $V_{1}=\left(V_{N}^{+}\right)_{1}$ and $z \in K(V)$.
If Q is neither A_{3}^{8} nor $A_{7}^{2} D_{5}^{2}$, then by Theorem 5.2 (cf. Remark 6.1), $\operatorname{Aut}(V) /\langle z\rangle \cong$ $\operatorname{Aut}\left(V_{N}^{+}\right)$. Hence (2) holds.

Assume that $Q_{i} \notin\left\{A_{3}, D_{n} \mid n \geq 4\right\}$ for all $1 \leq i \leq t$. By Table 3, every $\left(V_{Q_{i}}^{+}\right)_{1}$ is a simple ideal of V_{1}. Hence $\left\{\left(V_{Q_{i}}^{+}\right)_{1} \mid 1 \leq i \leq t\right\}=\left\{\mathfrak{g}_{i} \mid 1 \leq i \leq s\right\}$ and $s=t$. By (2) and Lemma 6.7, we have $\operatorname{Out}_{2}(V) \cong \operatorname{Out}_{2}\left(V_{N}^{+}\right) \cong G_{2}(N)$.

Combining Lemmas 6.6 and 6.8 (3), we obtain the following:
Proposition 6.9. If $Q \cong A_{2}^{12}, A_{4}^{6}, A_{6}^{4}, A_{8}^{3}, E_{6}^{4}, A_{12}^{2}$ or A_{24}, then $\operatorname{Out}_{1}(V)=1$ and $\operatorname{Out}_{2}(V) \cong G_{2}(N)$. In particular, the group structures of $\operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$ are given as in Table 1.

Let us consider the remaining cases. Set $N_{0}=N \cap(Q / 2)$.
Lemma 6.10. (1) $V_{N_{0}}^{+}$is the direct sum of all simple current $\left\langle V_{1}\right\rangle$-submodules of V_{N}^{+}.
(2) $\operatorname{Aut}(V)$ preserves $V_{N_{0}}^{+}$.

Proof. (1) follows from Lemma 3.2 and Proposition 3.3.
If Q is neither A_{3}^{8} nor $A_{7}^{2} D_{5}^{2}$, then by Theorem 5.2 (cf. Remark 6.1), $\operatorname{Aut}(V)$ preserves V_{N}^{+}. By (1), Lemmas 2.6 (3) and 2.7, we obtain (2).

If Q is $A_{3}^{8}\left(\right.$ resp. $\left.A_{7}^{2} D_{5}^{2}\right)$, then by Table 8 (resp. Tables 10 and 14), $V_{N_{0}}^{+}$is the sum of all irreducible $\left\langle V_{1}\right\rangle$-submodules of V isomorphic to the tensor products of $L_{A_{1}}(2,0)$
and $L_{A_{1}}\left(2,2 \Lambda_{1}\right)\left(\operatorname{resp} . L_{D_{4}}(2,0), L_{D_{4}}\left(2,2 \Lambda_{i}\right)(i=1,3,4), L_{B_{2}}(1,0)\right.$ and $\left.L_{B_{2}}\left(1, \Lambda_{1}\right)\right)$. By Lemmas 2.7 and 3.8, $\operatorname{Aut}(V)$ preserves $V_{N_{0}}^{+}$.

Let M be an irreducible $\left\langle V_{1}\right\rangle$-submodule of $V_{N_{0}}^{+}$. Since M is a simple current module (see Lemma $6.10(1)$), the multiplicity of M in $V_{N_{0}}^{+}$is one. Moreover, for irreducible $\left\langle V_{1}\right\rangle$ submodules M^{1} and M^{2} of $V_{N_{0}}^{+}$, the fusion product $M^{1} \boxtimes M^{2}$ is an irreducible $\left\langle V_{1}\right\rangle$-module and it appears as a $\left\langle V_{1}\right\rangle$-submodule of $V_{N_{0}}^{+}$.

Let S_{i} be the set of (the isomorphism classes of) simple current $L_{\mathfrak{g}_{i}}\left(k_{i}, 0\right)$-modules, where k_{i} is the level of \mathfrak{g}_{i} in V. Then S_{i} has an abelian group structure under the fusion product. By [Li01, Theorem 2.26], $S_{i} \cong \mathbb{Z}_{n+1}, \mathbb{Z}_{2}, \mathbb{Z}_{2}, \mathbb{Z}_{2}^{2}, \mathbb{Z}_{4}, \mathbb{Z}_{3}$ or \mathbb{Z}_{2} if the type of \mathfrak{g}_{i} is $A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 2), D_{2 n}(n \geq 2), D_{2 n+1}(n \geq 2), E_{6}$ or E_{7}, respectively. Let $S_{N}=\prod_{i=1}^{s} S_{i}$ be the direct product of the groups S_{i}. We often view a simple current $\left\langle V_{1}\right\rangle$-module as an element of S_{N} via the map $\bigotimes_{i=1}^{s} M^{i} \mapsto\left(M^{1}, \ldots, M^{s}\right)$.

Let $\{1,2, \ldots, s\}=\bigcup_{b \in B} I_{b}$ be the partition such that $\mathfrak{g}_{i} \cong \mathfrak{g}_{j}$ if and only if $i, j \in I_{b}$ for some $b \in B$, where B is an index set. By Lemma 3.8 (2) and the explicit description of S_{i}, the Dynkin diagram automorphism group $\Gamma\left(\mathfrak{g}_{i}\right) \subset \operatorname{Aut}\left(L_{\mathfrak{g}_{i}}\left(k_{i}, 0\right)\right)$ acts faithfully on S_{i}. The automorphism group $\operatorname{Aut}\left(S_{N}\right)$ of S_{N} is defined to be $\left(\prod_{i=1}^{s} \Gamma\left(\mathfrak{g}_{i}\right)\right):\left(\prod_{b \in B} \operatorname{Sym}_{\left|I_{b}\right|}\right)$, where the symmetric group $\operatorname{Sym}_{\left|I_{b}\right|}$ acts naturally on $\prod_{i \in I_{b}} S_{i}$.

Let C_{N} be the subgroup of S_{N} consisting of all the irreducible $\left\langle V_{1}\right\rangle$-submodules of $V_{N_{0}}^{+}$. The automorphism group $\operatorname{Aut}\left(C_{N}\right)$ of C_{N} is defined to be the subgroup of $\operatorname{Aut}\left(S_{N}\right)$ stabilizing $C_{N} . \operatorname{Let} \operatorname{Aut}_{1}\left(C_{N}\right)=\left(\prod_{i=1}^{s} \Gamma\left(\mathfrak{g}_{i}\right)\right) \cap \operatorname{Aut}\left(C_{N}\right)$ and $\operatorname{Aut}_{2}\left(C_{N}\right)=$ $\operatorname{Aut}\left(C_{N}\right) / \operatorname{Aut}_{1}\left(C_{N}\right)$. Then $\operatorname{Aut}_{1}\left(C_{N}\right)$ is the subgroup of $\operatorname{Aut}\left(C_{N}\right)$ stabilizing every S_{i}, and $\operatorname{Aut}_{2}\left(C_{N}\right)$ acts faithfully on $\left\{S_{i} \mid 1 \leq i \leq s\right\}$ as a permutation group.

Since $\operatorname{Out}\left(\mathfrak{g}_{i}\right)$ acts faithfully on S_{i}, so does $\operatorname{Out}(V)$ on S_{N}. Hence $\operatorname{Out}(V) \subset$ $\operatorname{Aut}\left(S_{N}\right)$. In addition, by Lemma 6.10 (2), we obtain the following:

Lemma 6.11. $\operatorname{Out}(V)$ is a subgroup of $\operatorname{Aut}\left(C_{N}\right)$.
Remark 6.12. In general, $\operatorname{Out}(V)$ is not equal to $\operatorname{Aut}\left(C_{N}\right)$. For example, if $Q=A_{2}^{12}$, then $\operatorname{Out}(V) \subsetneq \operatorname{Aut}\left(C_{N}\right)$; indeed, $N_{0}=N \cap(Q / 2)=Q$ and C_{N} is the set of all even weight codewords of $\prod_{i=1}^{12} S_{i} \cong \mathbb{Z}_{2}^{12}$. Hence $\operatorname{Aut}\left(C_{N}\right) \cong \operatorname{Sym}_{12}$. On the other hand, $\operatorname{Out}(V) \cong M_{12}$ by Proposition 6.9.

Proposition 6.13. Let N be a Niemeier lattice whose root sublattice is $A_{3}^{8}, A_{5}^{4} D_{4}$, $A_{7}^{2} D_{5}^{2}, A_{9}^{2} D_{6}, A_{11} D_{7} E_{6}, A_{15} D_{9}$ or $A_{17} E_{7}$ and let $V=V_{N}^{\mathrm{orb}(\theta)}$. Then $\operatorname{Out}_{i}(V)=$ $\operatorname{Aut}_{i}\left(C_{N}\right)$ for $i=1,2$ and $\operatorname{Out}(V)=\operatorname{Aut}\left(C_{N}\right)$. In particular, the group structures of $\operatorname{Out}_{1}(V)$ and $\operatorname{Out}_{2}(V)$ are given as in Table 1.

By Propositions 6.4, 6.9 and 6.13 , we obtain Theorem 1.1, the main theorem of this article.

In the following subsections, we will prove Proposition 6.13 by a case-by-case analysis. By Lemma 6.11, it suffices to prove $\operatorname{Out}_{i}(V) \supset \operatorname{Aut}_{i}\left(C_{N}\right)$ for $i=1,2$. In order to describe C_{N} explicitly, we denote elements of \mathbb{Z}_{n} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by their representatives in $\{0,1, \ldots, n-1\}$ and $\{0,1, w, 1+w\}$, respectively. For the action of $\operatorname{Hom}\left(N, \mathbb{Z}_{2}\right)$ on
S_{N}, see Lemma 3.4 and tables in Appendix A (cf. Table 4). Note that λ_{i} denote the fundamental weights for indecomposable root lattices.

6.2.1. Case $Q \cong A_{3}^{8}$.

In this case, the type of V_{1} is $A_{1,2}^{16}$. Then $S_{N} \cong \mathbb{Z}_{2}^{16}$ and $\operatorname{Out}_{1}(V)=\operatorname{Aut}_{1}\left(C_{N}\right)=1$.
By the description of the glue code N / Q in [CS99, Section 18.4, III] and Table $8, C_{N}$ is equivalent to the second order Reed-Muller code of length 16 (see [MS77, Chapter 13] for its definition). It is well-known ([MS77, Section 13.9]) that $\operatorname{Aut}_{2}\left(C_{N}\right) \cong \mathbb{Z}_{2}^{4}: L_{4}(2)$.

Let us prove $\operatorname{Out}_{2}(V) \supset \operatorname{Aut}_{2}\left(C_{N}\right)$. The subgroup $\operatorname{Hom}\left(N, \mathbb{Z}_{2}\right)=\left\{f_{u} \mid u \in N / 2 N\right\}$ of $\operatorname{Aut}\left(V_{N}^{+}\right)$acts on $\left\{S_{i} \mid 1 \leq i \leq 16\right\}$ as an elementary abelian 2-subgroup $X \subset \operatorname{Sym}_{16}$ of order 2^{4}; indeed, $\left\{f_{u} \mid u \in\left(N \cap 2 Q^{*}\right) / 2 N\right\}$ acts trivially on C_{N}, and $X \cong N /\left(N \cap 2 Q^{*}\right) \cong$ \mathbb{Z}_{2}^{4}. Note that X preserves every $V_{Q_{i}}^{+}$. In addition, by Lemma 6.7, $\operatorname{Aut}\left(V_{N}^{+}\right)$acts on $\left\{\left(V_{Q_{i}}^{+}\right)_{1} \mid 1 \leq i \leq 8\right\}$ as $G_{2}(N) \cong \mathbb{Z}_{2}^{3}: L_{3}(2)$. Combining these two actions, we obtain a subgroup of $\operatorname{Out}(V)$ of shape $\mathbb{Z}_{2}^{4}:\left(\mathbb{Z}_{2}^{3}: L_{3}(2)\right)$, which is a maximal subgroup of $\mathbb{Z}_{2}^{4}: L_{4}(2)$. In addition, V has an extra automorphism (see Remark 6.1) not in the maximal subgroup above. Hence $\operatorname{Out}_{2}(V)=\operatorname{Aut}_{2}\left(C_{N}\right) \cong \mathbb{Z}_{2}^{4}: L_{4}(2)$.

6.2.2. Case $Q \cong A_{5}^{4} D_{4}$.

In this case, the type of V_{1} is $A_{3,2}^{4} A_{1,1}^{4}$. Then $S_{N} \cong \mathbb{Z}_{4}^{4} \times \mathbb{Z}_{2}^{4}$. For the explicit description of the glue code N / Q, see [CS99, Section 18.4 XVI].

By the generator of N / Q and Tables 10 and $11, C_{N}$ is generated by

$$
(2,0,0,0,1,1,1,1),(1,1,0,0,1,1,0,0),(0,1,0,1,0,1,0,1),(1,1,1,1,0,0,0,0) .
$$

Here the type of \mathfrak{g}_{i} is $A_{3,2}$ (resp. $A_{1,1}$) if $1 \leq i \leq 4$ (resp. $5 \leq i \leq 8$). It is easy to see that $\operatorname{Aut}_{1}\left(C_{N}\right)\left(\cong \mathbb{Z}_{2}\right)$ is generated by -1 on $\prod_{i=1}^{4} S_{i}$ and that $\operatorname{Aut}_{2}\left(C_{N}\right)$ has the shape $\mathbb{Z}_{2}^{4}: \operatorname{Sym}_{3}$, where the normal subgroup \mathbb{Z}_{2}^{4} is the direct product of the Klein foursubgroups of Sym_{4} on $\left\{S_{i} \mid 1 \leq i \leq 4\right\}$ and $\left\{S_{i} \mid 5 \leq i \leq 8\right\}$, and Sym_{3} acts diagonally on $\left\{S_{i} \mid 1 \leq i \leq 4\right\}$ and $\left\{S_{i} \mid 5 \leq i \leq 8\right\}$ as a subgroup of Sym_{4}.

Let us prove that $\operatorname{Out}_{i}(V) \supset \operatorname{Aut}_{i}\left(C_{N}\right)$ for $i=1,2$. For $x \in N$, we use the coordinate $x=\left(x_{1}, \ldots, x_{5}\right) \in\left(A_{5}^{*}\right)^{4} D_{4}^{*} \cap N$. The automorphism $f_{\left(\lambda_{1}, \lambda_{1}, \lambda_{1}, \lambda_{1}, 0\right)}$ generates a subgroup of $\operatorname{Out}_{1}(V)$ of order 2, and hence $\operatorname{Out}_{1}(V)=\operatorname{Aut}_{1}\left(C_{N}\right) \cong \mathbb{Z}_{2}$. The automorphisms $f_{\left(0, \lambda_{1}, 2 \lambda_{1},-\lambda_{1}, \lambda_{3}\right)}$ and $f_{\left(3 \lambda_{1}, 3 \lambda_{1}, 0,0, \lambda_{1}\right)}$ generate the Klein four-group of Sym_{4} on $\left\{S_{i} \mid 5 \leq\right.$ $i \leq 8\}$. By Lemma 6.7, $\operatorname{Aut}\left(V_{N}^{+}\right)$acts on C_{N} as a permutation group $G_{2}(N) \cong \operatorname{Sym}_{4}$; it acts on $\left\{S_{i} \mid 1 \leq i \leq 4\right\}$ as Sym_{4} but it does on $\left\{S_{i} \mid 5 \leq i \leq 8\right\}$ as the quotient group Sym_{3} of Sym_{4}. Thus $\mathrm{Out}_{2}(V)$ contains a subgroup of shape $\mathbb{Z}_{2}^{4}: \operatorname{Sym}_{3}$, and $\operatorname{Out}_{2}(V)=\operatorname{Aut}_{2}\left(C_{N}\right)$.

6.2.3. Case $Q \cong A_{7}^{2} D_{5}^{2}$.

In this case, the type of V_{1} is $D_{4,2}^{2} B_{2,1}^{4}$. Then $S_{N} \cong\left(\mathbb{Z}_{2}^{2}\right)^{2} \times \mathbb{Z}_{2}^{4}$. For the explicit description of the glue code N / Q, see [CS99, Section 18.4 XVII].

By the generator of N / Q and Tables 10 and $14, C_{N}$ is generated by

$$
(1,1,0,0,0,0),(w, w, 0,0,0,0),(0,0,1,1,1,1),(1,0,1,1,0,0),(w, 0,1,0,1,0)
$$

Here, the type of \mathfrak{g}_{i} is $D_{4,2}$ (resp. $B_{2,1}$) if $1 \leq i \leq 2$ (resp. $3 \leq i \leq 6$). It is easy to see that $\operatorname{Aut}_{1}\left(C_{N}\right)=1$ and that $\operatorname{Aut}_{2}\left(C_{N}\right)$ is $\operatorname{Sym}_{2} \times \operatorname{Sym}_{4}$, where Sym_{2} and Sym_{4} act on
$\left\{S_{1}, S_{2}\right\}$ and $\left\{S_{i} \mid 3 \leq i \leq 6\right\}$ as the symmetric group, respectively.
Clearly, $\operatorname{Out}_{1}(V)=1$. Let us prove that $\operatorname{Out}_{2}(V) \supset \operatorname{Aut}_{2}\left(C_{N}\right)$. For $x \in N$, we use the coordinate $x=\left(x_{1}, \ldots, x_{4}\right) \in\left(A_{7}^{*}\right)^{2}\left(D_{5}^{*}\right)^{2} \cap N$. The automorphism $f_{\left(3 \lambda_{1}, \lambda_{1}, \lambda_{1}, 0\right)}$ (resp. $\left.f_{\left(5 \lambda_{1}, \lambda_{1}, 0, \lambda_{1}\right)}\right)$ acts as the order 2 permutation on $\left\{S_{3}, S_{4}\right\}$ (resp. $\left\{S_{5}, S_{6}\right\}$). By Lemma 6.7, $\operatorname{Aut}\left(V_{N}^{+}\right)$acts on $\left\{S_{1}, S_{2}\right\}$ and $\left\{\left\{S_{3}, S_{4}\right\},\left\{S_{5}, S_{6}\right\}\right\}$ as the symmetric group $G_{2}(N) \cong \operatorname{Sym}_{2} \times \operatorname{Sym}_{2}$. Combining these actions, we obtain a subgroup of $\operatorname{Out}_{2}(V)$ of order 2^{4}, which is a maximal subgroup of $\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2} \times \operatorname{Sym}_{4}$. In addition, V has an extra automorphism (see Remark 6.1) not in the maximal subgroup above. Thus we have $\operatorname{Out}_{2}(V)=\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2} \times \operatorname{Sym}_{4}$.

6.2.4. Case $Q \cong A_{9}^{2} D_{6}$.

In this case, the type of V_{1} is $D_{5,2}^{2} A_{3,1}^{2}$. Then $S_{N} \cong \mathbb{Z}_{4}^{2} \times \mathbb{Z}_{4}^{2}$. For the explicit description of the glue code N / Q, see [CS99, Section 18.4, XVIII].

By the generator of N / Q and Tables 10 and $13, C_{N}$ is generated by

$$
(1,1,2,0),(1,0,1,1)
$$

Here, the type of \mathfrak{g}_{i} is $D_{5,2}$ (resp. $A_{3,1}$) if $1 \leq i \leq 2$ (resp. $3 \leq i \leq 4$). It is easy to see that $\operatorname{Aut}_{1}\left(C_{N}\right) \cong \mathbb{Z}_{2}$ is generated by -1 on C_{N} and that $\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2} \times \operatorname{Sym}_{2}$.

Let us prove that $\operatorname{Out}_{i}(V) \supset \operatorname{Aut}_{i}\left(C_{N}\right)$ for $i=1,2$. For $x \in N$, we use the coordinate $x=\left(x_{1}, x_{2}, x_{3}\right) \in\left(A_{9}^{*}\right)^{2} D_{6}^{*}$. The automorphism $f_{\left(\lambda_{5}, \lambda_{5}, \lambda_{1}\right)}$ acts on C_{N} by -1 , and hence $\operatorname{Out}_{1}(V)=\operatorname{Aut}_{1}\left(C_{N}\right) \cong \mathbb{Z}_{2}$. The automorphism $f_{\left(\lambda_{1}, \lambda_{2}, \lambda_{5}\right)}$ permutes S_{3} and S_{4}. In addition, $\operatorname{Aut}\left(V_{N}^{+}\right)$acts on the permutation group $G_{2}(N) \cong \operatorname{Sym}_{2}$ on $\left\{S_{1}, S_{2}\right\}$. Hence we have $\operatorname{Out}_{2}(V)=\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2} \times \operatorname{Sym}_{2}$.
6.2.5. Case $Q \cong A_{11} D_{7} E_{6}$.

In this case, the type of V_{1} is $D_{6,2} B_{3,1}^{2} C_{4,1}$. Then $S_{N} \cong\left(\mathbb{Z}_{2}^{2}\right) \times\left(\mathbb{Z}_{2}\right)^{2} \times \mathbb{Z}_{2}$. For the explicit description of the glue code N / Q, see [CS99, Section 18.4, XXIII].

By the generator of N / Q and Tables 10, 14 and $15, C_{N}$ is generated by

$$
(1,1,1,0),(1,0,0,1),(w, 1,0,0)
$$

Here, the types of $\mathfrak{g}_{1}, \mathfrak{g}_{2}, \mathfrak{g}_{3}, \mathfrak{g}_{4}$ are $D_{6,2}, B_{3,1}, B_{3,1}$ and $C_{4,1}$, respectively. It is easy to see that $\operatorname{Aut}_{1}\left(C_{N}\right)=1$ and that $\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2}$. Hence $\operatorname{Out}_{1}(V)=1$. The automorphism $f_{\left(\lambda_{1}, \lambda_{1}, \lambda_{1}\right)}$ permutes S_{2} and S_{3}, where $\left(\lambda_{1}, \lambda_{1}, \lambda_{1}\right) \in A_{11}^{*} D_{7}^{*} E_{6}^{*} \cap N$. Thus we have $\operatorname{Out}_{2}(V)=\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2}$.

6.2.6. Case $Q \cong \boldsymbol{A}_{15} \boldsymbol{D}_{9}$.

In this case, the type of V_{1} is $D_{8,2} B_{4,1}^{2}$. Then $S_{N} \cong\left(\mathbb{Z}_{2}^{2}\right) \times\left(\mathbb{Z}_{2}\right)^{2}$. For the explicit description of the glue code N / Q, see [CS99, Section 18.4, XIX].

By the generator of N / Q and Tables 10 and $14, C_{N}$ is generated by

$$
(1,1,1),(w, 0,0)
$$

Here, the types of $\mathfrak{g}_{1}, \mathfrak{g}_{2}, \mathfrak{g}_{3}$ are $D_{8,2}, B_{4,1}, B_{4,1}$, respectively. It is easy to see that $\operatorname{Aut}_{1}\left(C_{N}\right)=1$ and that $\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2}$. Hence $\operatorname{Out}_{1}(V)=1$. The automorphism
$f_{\left(\lambda_{2}, \lambda_{1}\right)}$ permutes S_{2} and S_{3}, where $\left(\lambda_{2}, \lambda_{1}\right) \in A_{15}^{*} D_{9}^{*} \cap N$. Thus we have $\operatorname{Out}_{2}(V)=$ $\operatorname{Aut}_{2}\left(C_{N}\right) \cong \operatorname{Sym}_{2}$.

6.2.7. Case $Q \cong A_{17} E_{7}$.

In this case, the type of V_{1} is $D_{9,2} A_{7,1}$. Then $S_{N} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{8}$ and $\operatorname{Out}_{2}(V)=$ $\operatorname{Aut}_{2}\left(C_{N}\right)=1$. For the explicit description of the glue code N / Q, see [CS99, Section 18.4, XXII].

By the generator of N / Q and Tables 10 and $16, C_{N}$ is generated by

$$
(1,2)
$$

Here, the types of \mathfrak{g}_{1} and \mathfrak{g}_{2} are $D_{9,2}$ and $A_{7,1}$, respectively. It is easy to see that $\operatorname{Aut}\left(C_{N}\right)=\operatorname{Aut}_{1}\left(C_{N}\right) \cong \mathbb{Z}_{2}$ and it is generated by -1 on C_{N}. The automorphism $f_{\left(\lambda_{3}, \lambda_{1}\right)}$ generates $\operatorname{Aut}_{1}\left(C_{N}\right)$, where $\left(\lambda_{3}, \lambda_{1}\right) \in A_{17}^{*} E_{7}^{*} \cap N$. Hence $\operatorname{Out}_{1}(V)=\operatorname{Aut}_{1}\left(C_{N}\right) \cong \mathbb{Z}_{2}$.

Remark 6.14. The subgroup C_{N} of S_{N} is called "Glue" in [$\mathbf{S c 9 3}$, Table 1].
Combining Theorem 5.2, Remark 6.1, Corollary 6.5 and the arguments in Sections 6.2 .1 and 6.2 .3 , we obtain the following corollary:

Corollary 6.15. Let N be a Niemeier lattice with root sublattice Q and let $V=$ $V_{N}^{\mathrm{orb}(\theta)}$.
(1) If $Q \cong A_{2}^{12}, A_{4}^{6}, A_{5}^{4} D_{4}, A_{6}^{4}, A_{8}^{3}, A_{9}^{2} D_{6}, E_{6}^{4}, A_{11} D_{7} E_{6}, A_{12}^{2}, A_{15} D_{9}, A_{17} E_{7}$ or A_{24}, then z is a central element of $\operatorname{Aut}(V)$ and $\operatorname{Aut}(V) /\langle z\rangle \cong \operatorname{Aut}\left(V_{N}^{+}\right)$.
(2) If $Q \cong A_{3}^{8}$ or $A_{7}^{2} D_{5}^{2}$, then $\operatorname{Aut}(V)$ is generated by $C_{\mathrm{Aut}(V)}(z)$ and an extra automorphism in [FLM88].

A. Correspondence between $\operatorname{Irr}\left(V_{R}^{+}\right)$and $\operatorname{Irr}\left(L_{\mathfrak{g}}\left(k_{R}, 0\right)\right)$.

Let R be an indecomposable root lattice such that $R \not \approx A_{1}$. In this appendix, we describe in Tables 6 to 17 correspondences between $\operatorname{Irr}\left(V_{R}^{+}\right)$and $\operatorname{Irr}\left(L_{\mathfrak{g}}\left(k_{R}, 0\right)\right)$ via the isomorphism $V_{R}^{+} \cong L_{\mathfrak{g}}\left(k_{R}, 0\right)$ in Proposition 4.3 (see also Table 3), where $\mathfrak{g}=\left(V_{R}^{+}\right)_{1}$. For the notations of irreducible V_{R}^{+}-modules, see (3.3). For a dominant integral weight Λ of a simple Lie algebra \mathfrak{s} of level k, we denote by $[\Lambda]$ the irreducible $L_{\mathfrak{s}}\left(k_{R}, 0\right)$-module $L_{\mathfrak{s}}\left(k_{R}, \Lambda\right)$. Here we adopt the labeling in [Hu72, Section 11.4] of simple roots and the associated fundamental weights for both R and \mathfrak{s}. In these tables, λ_{i} and Λ_{i} mean the fundamental weights for R and for \mathfrak{s}, respectively. We omit the detail of central characters χ for irreducible V_{R}^{+}-modules of twisted type. In the tables, for $R=A_{7}$ and D_{8} (resp. E_{8}), we assume that (0$)^{-}$corresponds to $\left[2 \Lambda_{1}\right]$ (resp. $\left[\Lambda_{7}\right]$).

Table 6. Case $R=A_{2}$.

$\operatorname{Irr}\left(V_{A_{2}}^{+}\right)$	$\operatorname{Irr}\left(L_{A_{1}}(4,0)\right)$
$(0)^{ \pm}$	$[0],\left[4 \Lambda_{1}\right]$
$\left(\lambda_{1}\right)$	$\left[2 \Lambda_{1}\right]$
$(\chi)^{ \pm}$	$\left[\Lambda_{1}\right],\left[3 \Lambda_{1}\right]$

Table 7. Case $R=A_{2 n}(n \geq 2)$.

$\operatorname{Irr}\left(V_{A_{2 n}}^{+}\right)$	$\operatorname{Irr}\left(L_{B_{n}}(2,0)\right)$
$(0)^{ \pm}$	$[0],\left[2 \Lambda_{1}\right]$
$\left(\lambda_{i}\right)(1 \leq i \leq n-1)$	$\left[\Lambda_{i}\right](1 \leq i \leq n-1)$
$\left(\lambda_{n}\right)$	$\left[2 \Lambda_{n}\right]$
$(\chi)^{ \pm}$	$\left[\Lambda_{n}\right],\left[\Lambda_{1}+\Lambda_{n}\right]$

Table 8. Case $R=A_{3}$.

$\operatorname{Irr}\left(V_{A_{3}}^{+}\right)$	$\operatorname{Irr}\left(L_{A_{1}}(2,0)^{\otimes 2}\right)$
$(0)^{ \pm}$	$[0] \otimes[0],\left[2 \Lambda_{1}\right] \otimes\left[2 \Lambda_{1}\right]$
$\left(\lambda_{2}\right)^{ \pm}$	$\left[2 \Lambda_{1}\right] \otimes[0],[0] \otimes\left[2 \Lambda_{1}\right]$
$\left(\lambda_{1}\right)$	$\left[\Lambda_{1}\right] \otimes\left[\Lambda_{1}\right]$
$\left(\chi_{i}\right)^{ \pm}(i=1,2)$	$\left[\Lambda_{1}\right] \otimes\left[c \Lambda_{1}\right],\left[c \Lambda_{1}\right] \otimes\left[\Lambda_{1}\right](c \in\{0,2\})$

Table 9. Case $R=A_{5}$.

$\operatorname{Irr}\left(V_{A_{5}}^{+}\right)$	$\operatorname{Irr}\left(L_{A_{3}}(2,0)\right)$
$(0)^{ \pm}$	$[0],\left[2 \Lambda_{2}\right]$
$\left(\lambda_{3}\right)^{ \pm}$	$\left[2 \Lambda_{1}\right],\left[2 \Lambda_{3}\right]$
$\left(\lambda_{1}\right)$	$\left[\Lambda_{2}\right]$
$\left(\lambda_{2}\right)$	$\left[\Lambda_{1}+\Lambda_{3}\right]$
$\left(\chi_{i}\right)^{ \pm}(i \in\{1,2\})$	$\left[\Lambda_{1}\right],\left[\Lambda_{3}\right],\left[\Lambda_{1}+\Lambda_{2}\right],\left[\Lambda_{2}+\Lambda_{3}\right]$

Table 10. Case $R=A_{2 n-1}(n \geq 4)$.

$\operatorname{Irr}\left(V_{A_{2 n-1}}^{+}\right)$	$\operatorname{Irr}\left(L_{D_{n}}(2,0)\right)$
$(0)^{ \pm}$	$[0],\left[2 \Lambda_{1}\right]$
$\left(\lambda_{n}\right)^{ \pm}$	$\left[2 \Lambda_{n-1}\right],\left[2 \Lambda_{n}\right]$
$\left(\lambda_{i}\right)(1 \leq i \leq n-2)$	$\left[\Lambda_{i}\right](1 \leq i \leq n-2)$
$\left(\lambda_{n-1}\right)$	$\left[\Lambda_{n-1}+\Lambda_{n}\right]$
$\left(\chi_{i}\right)^{ \pm}(i \in\{1,2\})$	$\left[\Lambda_{n-1}\right],\left[\Lambda_{n}\right],\left[\Lambda_{1}+\Lambda_{n-1}\right],\left[\Lambda_{1}+\Lambda_{n}\right]$

Table 11. Case $R=D_{4}$.

$\operatorname{Irr}\left(V_{D_{4}}^{+}\right)$	$\operatorname{Irr}\left(L_{A_{1}}(1,0)^{\otimes 4}\right)$
$(0)^{ \pm}$	$[0]^{\otimes 4},\left[\Lambda_{1}\right]^{\otimes 4}$
$\left(\lambda_{i}\right)^{ \pm}$	$\sigma\left(\left[\Lambda_{1}\right]^{\otimes 2} \otimes[0]^{\otimes 2}\right),\left(\sigma \in \operatorname{Sym}_{4}\right)$
$\left(\chi_{i}\right)^{ \pm}(i \in\{1,2,3,4\})$	$\sigma\left(\left[\Lambda_{1}\right] \otimes[0]^{\otimes 3}\right), \sigma\left(\left[\Lambda_{1}\right]^{\otimes 3} \otimes[0]\right),\left(\sigma \in \operatorname{Sym}_{4}\right)$

Table 12. Case $R=D_{6}$.

$\operatorname{Irr}\left(V_{D_{6}}^{+}\right)$	$\operatorname{Irr}\left(L_{A_{3}}(1,0)^{\otimes 2}\right)$
$(0)^{ \pm}$	$[0] \otimes[0],\left[\Lambda_{2}\right] \otimes\left[\Lambda_{2}\right]$
$\left(\lambda_{1}\right)^{ \pm}$	$\left[\Lambda_{2}\right] \otimes[0],[0] \otimes\left[\Lambda_{2}\right]$
$\left\{\left(\lambda_{5}\right)^{ \pm}\right\},\left\{\left(\lambda_{6}\right)^{ \pm}\right\}$	$\left\{\left[\Lambda_{i}\right] \otimes\left[\Lambda_{i}\right] \mid i \in\{1,3\}\right\},\left\{\left[\Lambda_{i}\right] \otimes\left[\Lambda_{j}\right] \mid\{i, j\}=\{1,3\}\right\}$
$\left(\chi_{i}\right)^{ \pm}(i \in\{1,2,3,4\})$	$\left[c \Lambda_{2}\right] \otimes\left[\Lambda_{i}\right],\left[\Lambda_{i}\right] \otimes\left[c \Lambda_{2}\right],(i \in\{1,3\}, c \in\{0,1\})$

Table 13. Case $R=D_{2 n}(n \geq 4)$.

$\operatorname{Irr}\left(V_{D_{2 n}}^{+}\right)$	$\operatorname{Irr}\left(L_{D_{n}}(1,0)^{\otimes 2}\right)$
$(0)^{ \pm}$	$[0] \otimes[0],\left[\Lambda_{1}\right] \otimes\left[\Lambda_{1}\right]$
$\left(\lambda_{1}\right)^{ \pm}$	$\left[\Lambda_{1}\right] \otimes[0],[0] \otimes\left[\Lambda_{1}\right]$
$\left\{\left(\lambda_{2 n-1}\right)^{ \pm}\right\},\left\{\left(\lambda_{2 n}\right)^{ \pm}\right\}$	$\left\{\left[\Lambda_{i}\right] \otimes\left[\Lambda_{i}\right] \mid i \in\{n-1, n\}\right\},\left\{\left[\Lambda_{i}\right] \otimes\left[\Lambda_{j}\right] \mid\{i, j\}=\{n-1, n\}\right\}$
$\left(\chi_{i}\right)^{ \pm}(i \in\{1,2,3,4\})$	$\left[c \Lambda_{1}\right] \otimes\left[\Lambda_{i}\right],\left[\Lambda_{i}\right] \otimes\left[c \Lambda_{1}\right],(i \in\{n-1, n\}, c \in\{0,1\})$

Table 14. Case $R=D_{2 n+1}(n \geq 2)$.

$\operatorname{Irr}\left(V_{D_{2 n+1}}^{+}\right)$	$\operatorname{Irr}\left(L_{B_{n}}(1,0)^{\otimes 2}\right)$
$(0)^{ \pm}$	$[0] \otimes[0],\left[\Lambda_{1}\right] \otimes\left[\Lambda_{1}\right]$
$\left(\lambda_{1}\right)^{ \pm}$	$\left[\Lambda_{1}\right] \otimes[0],[0] \otimes\left[\Lambda_{1}\right]$
$\left(\lambda_{2 n-1}\right)$	$\left[\Lambda_{n}\right] \otimes\left[\Lambda_{n}\right]$
$(\chi)^{ \pm}$	$\left[\Lambda_{1}\right] \otimes\left[\Lambda_{n}\right],\left[\Lambda_{n}\right] \otimes\left[\Lambda_{1}\right]$

Table 15. Case $R=E_{6}$.

$\operatorname{Irr}\left(V_{E_{6}}^{+}\right)$	$\operatorname{Irr}\left(L_{C_{4}}(1,0)\right)$
$(0)^{ \pm}$	$[0],\left[\Lambda_{4}\right]$
$\left(\lambda_{1}\right)$	$\left[\Lambda_{2}\right]$
$(\chi)^{ \pm}$	$\left[\Lambda_{1}\right],\left[\Lambda_{3}\right]$

Table 16. Case $R=E_{7}$.

$\operatorname{Irr}\left(V_{E_{7}}^{+}\right)$	$\operatorname{Irr}\left(L_{A_{7}}(1,0)\right)$
$(0)^{ \pm}$	$[0],\left[\Lambda_{4}\right]$
$\left(\lambda_{1}\right)^{ \pm}$	$\left[\Lambda_{2}\right],\left[\Lambda_{6}\right]$
$\left(\chi_{i}\right)^{ \pm}(i \in\{1,2\})$	$\left[\Lambda_{j}\right],(j \in\{1,3,5,7\})$

Table 17. Case $R=E_{8}$.

$\operatorname{Irr}\left(V_{E_{8}}^{+}\right)$	$\operatorname{Irr}\left(L_{D_{8}}(1,0)\right)$
$(0)^{ \pm}$	$[0],\left[\Lambda_{7}\right]$
$(\chi)^{ \pm}$	$\left[\Lambda_{1}\right],\left[\Lambda_{8}\right]$

References

[ABD04] T. Abe, G. Buhl and C. Dong, Rationality, regularity, and C_{2}-cofiniteness, Trans. Amer. Math. Soc., 356 (2004), 3391-3402.
[AD04] T. Abe and C. Dong, Classification of irreducible modules for the vertex operator algebra V_{L}^{+}: general case, J. Algebra, 273 (2004), 657-685.
[ADL05] T. Abe, C. Dong and H. Li, Fusion rules for the vertex operator algebras $M(1)^{+}$and V_{L}^{+}, Comm. Math. Phys., 253 (2005), 171-219.
[Bo86] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A., 83 (1986), 3068-3071.
[CS99] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd edition, Grundlehren Math. Wiss., 290, Springer, New York, 1999.
[DGM96] L. Dolan, P. Goddard and P. Montague, Conformal field theories, representations and lattice constructions, Comm. Math. Phys., 179 (1996), 61-120.
[DG98] C. Dong and R. L. Griess, Jr., Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra, 208 (1998), 262-275.
[DGH98] C. Dong, R. L. Griess, Jr. and G. Höhn, Framed vertex operator algebras, codes and the Moonshine module, Comm. Math. Phys., 193 (1998), 407-448.
[DJL12] C. Dong, C. Jiang and X. Lin, Rationality of vertex operator algebra V_{L}^{+}: higher rank, Proc. Lond. Math. Soc. (3), 104 (2012), 799-826.
[DLM00] C. Dong, H. Li and G. Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys., 214 (2000), 1-56.
[DM06] C. Dong and G. Mason, Integrability of C_{2}-cofinite vertex operator algebras, Int. Math. Res. Not., 2006 (2006), Art. ID 80468, 15 pp.
[DN99] C. Dong and K. Nagatomo, Automorphism groups and twisted modules for lattice vertex operator algebras, In: Recent Developments in Quantum Affine Algebras and Related Topics, Raleigh, NC, 1998, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 117-133.
[EMS20] J. van Ekeren, S. Möller and N. R. Scheithauer, Construction and classification of holomorphic vertex operator algebras, J. Reine Angew. Math., 759 (2020), 61-99.
[FHL93] I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104 (1993), viii+64 pp.
[FLM88] I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, 1988.
[FZ92] I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J., 66 (1992), 123-168.
[He01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Corrected reprint of the 1978 original, Grad. Stud. Math., 34, Amer. Math. Soc., Providence, RI, 2001.
[HL95] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, III, J. Pure Appl. Algebra, 100 (1995), 141-171.
[Hu72] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math., 9, Springer-Verlag, New York-Berlin, 1972.
[Ka90] V. G. Kac, Infinite-Dimensional Lie Algebras, third edition, Cambridge Univ. Press, Cambridge, 1990.
[Li01] H. Li, Certain extensions of vertex operator algebras of affine type, Comm. Math. Phys., 217 (2001), 653-696.
[MS77] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, NorthHolland Math. Library, 16, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
[Ni73] H.-V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory, 5 (1973), 142-178.
[PS75] V. Pless and N. J. A. Sloane, On the classification and enumeration of self-dual codes, J. Combin. Theory Ser. A, 18 (1975), 313-335.
[Sc93] A. N. Schellekens, Meromorphic $c=24$ conformal field theories, Comm. Math. Phys., 153 (1993), 159-185.
[Sh04] H. Shimakura, The automorphism group of the vertex operator algebra V_{L}^{+}for an even lattice L without roots, J. Algebra, 280 (2004), 29-57.
[Sh06] H. Shimakura, The automorphism groups of the vertex operator algebras V_{L}^{+}: general case, Math. Z., 252 (2006), 849-862.

Hiroki Shimakura
Graduate School of Information Sciences Tohoku University
Sendai 980-8579, Japan
E-mail: shimakura@tohoku.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 17B69; Secondary 20B25.
 Key Words and Phrases. holomorphic vertex operator algebra, automorphism group, Niemeier lattice.

 This work was partially supported by JSPS KAKENHI Grant Number JP17K05154.

