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Abstract. We investigate the simple resonances of a 2 by 2 matrix of

n-dimensional semiclassical Schrödinger operators that interact through a first
order differential operator. We assume that one of the two (analytic) poten-
tials admits a well with non empty interior, while the other one is non trapping
and creates a barrier between the well and infinity. Under a condition on the

resonant state inside the well, we find an optimal lower bound on the width of
the resonance. The method of proof relies on Carleman estimates, microlocal
propagation of the microsupport, and a refined study of a non involutive dou-
ble characteristic problem in the framework of Sjöstrand’s analytic microlocal

theory.

1. Introduction.

The mathematical study of molecular predissociation goes back to [Kl], where a

general framework is set in order to study this physical phenomenon. This framework

mainly consists of semiclassical matrix Schrödinger operators, where the semiclassical

parameter h is the square root of the ratio of electronic to nuclear masses, and where po-

tential wells interact with unbounded classically allowed regions, giving rise to molecular

resonances.

In the case of two interacting electronic levels, the standard Agmon estimates method

also provides a general upper bound for the widths of these resonances. However, only

very few results exist concerning a lower bound of such quantities (let us recall that the

physical importance of the resonance widths lies in the fact that their inverses represent

the life-time of the corresponding metastable molecule).

To our knowledge, there are two cases only where such a lower bound is obtained.

The first is when the resonance is close to the ground state of the bonding potential: see

[GrMa] where a complete semiclassical asymptotic of the width is obtained. The second

one is when the resonance is highly excited and the dimension of the nuclei-space is one:

see [As]. In both cases, the lower bound is optimal, in the sense that it is of the same

order of magnitude as the upper bound given by Agmon estimates.
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The purpose of this paper is to extend Ashida’s result [As] to the case of multidi-

mensional nuclei-space.

The geometrical structure of this situation is very similar to that of shape resonances,

in the sense that one potential forms an energy well surrounded by a potential barrier

(in which both potentials are involved), and immersed inside a sea corresponding to the

second potential. And actually, both the strategy of the proof and the result (namely,

the link between the width if the resonance and the size of the resonant state inside the

well) are similar to that of [DaMa] where excited shape resonances are studied.

Roughly speaking, the starting point is the explicit link between the width of the

resonance and the size of the resonant state inside the sea, and the strategy consists in

reasoning by contradiction and in propagating the smallness of the resonant state from

the inside of the sea up to the boundary of the well. In the case of shape resonances, this

means first crossing the shore (that is, the boundary of the sea), then propagating inside

the barrier, and finally arriving at the boundary of the well. In the case of molecular pre-

dissociation, an extra difficulty appears: the crossing of the so called “crest”, that is the

place where the two potentials coincide. In contrast with the other types of propagation

(that involve the principal symbol only), the crossing of the crest is very sensitive to the

lower order interaction terms. Indeed, such a propagation would not take place without

these terms, and the mathematical problem in itself has many to do with old results

on propagation for scalar operators with non-involutive double-characteristics (see, e.g.,

[LaLa], [PeSo]). The difference is that here, after conjugation by the convenient weight,

the principal symbols of the two operators that are involved become complex-valued.

Then, in order to prove the propagation, it becomes necessary to use a FBI transform

(in the sense of [Sj]), associated with a complex canonical transform, such that both

operators take a simpler form.

Concerning the two other types of propagation (across the boundaries of the sea

and of the well), their proofs mainly follow those of [DaMa], [Ma1], with additional

technical difficulties due to the fact that we deal with a matrix-operator (while those

considered in [DaMa], [Ma1] are scalar).

The paper is organized as follows: In Section 2, we describe our analytical and

geometrical assumptions, and we recall some basic facts about the Agmon distance.

Section 3 is devoted to the statement of our main results. In Section 4 we give some

properties of the resonant state, and we establish the link between the resonance width

and the size of the resonant state inside the sea. In Section 5 we specify this link through

a contradiction argument, by transferring the smallness of the resonance width to the

smallness of the resonant state inside the sea. Then this smallness is first propagated

across the shore in Section 6, then across the crest in Section 7, and finally up to the

well in Section 8. A converse result is proved in Section 9, and Section 10 concerns the

possible examples of application.

2. Assumptions.

We consider the semiclassical 2× 2 matrix Schrödinger operator,
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P =

(
P1 hW

hW ∗ P2

)
(2.1)

with,

Pj = Pj(x, hDx) := −h2∆+ Vj(x) (j = 1, 2),

where x = (x1, . . . , xn) is the current variable in Rn (n ≥ 1), h > 0 denotes the semiclas-

sical parameter, W = W (x, hDx) is a first-order semiclassical differential operator, and

W ∗ stands for the formal adjoint of W .

This kind of operator appears in the Born–Oppenheimer approximation of molecules,

after reduction to an effective Hamiltonian (see [KMSW], [MaSo]). In that case, the

quantity h2 stands for the inverse of the mass of the nuclei.

Assumption 1. The potentials V1 and V2 are smooth and bounded on Rn, and
satisfy,

The set U := {V1 ≤ 0} is compact and connected,

∇V1 ̸= 0 on the boundary ∂U of U, and lim inf
|x|→∞

V1 > 0; (2.2)

V2 |U > 0 and E = 0 is a non-trapping energy for V2;

V2 has a strictly negative limit as |x| → ∞.
(2.3)

We define the island Î as the bounded open connected component of {V2 > 0}
containing U , and the sea as the unbounded closed set,

M := Rn\Î. (2.4)

With (2.2)–(2.3), the well U for V1 is included in the island.

The fact that 0 is a non-trapping energy for V2 means that, for any (x, ξ) ∈ p−1
2 (0),

one has | exp tHp2(x, ξ)| → +∞ as t→ ∞, where p2(x, ξ) := ξ2 + V2(x) is the symbol of

P2, and Hp2 := (∇ξ p2,−∇x p2) is the Hamilton field of p2.

Such conditions (2.2)–(2.3) correspond to the situation of molecular predissociation

as described in [Kl].

We plan to study the resonances of P near the energy level E = 0. Since our methods

will strongly rely on analytic microlocal analysis, we also add the following assumption

of analyticity:



690(18)

690 A. Martinez and V. Sordoni

Assumption 2. The potentials V1 and V2, together with the coefficients of W ,

extend to bounded holomorphic functions near a complex sector of the form, Sδ := {x ∈
Cn ; |Im x| ≤ δ|Re x|}, with δ > 0. Moreover V2 tends to its limit at ∞ in this sector

and Re V1 stays away from 0 outside a compact set of this sector.

Remark 2.1. As a matter of fact, it would have been possible for us to consider

more general kinds of interactions, such as first-order pseudodifferential operators with

analytic symbols (see, e.g., [GrMa]). However, this would have just led to heavier

notations and technical complications, without changing the key-ideas of the proof.

Now, as in [GrMa], we define the cirque Ω0 as,

Ω0 = {x ∈ Rn;V1(x) < V2(x)}. (2.5)

(Hence, the well is in the cirque and the cirque is in the island.)

Thereafter, the boundary ∂Ω0 of Ω0 will be called the crest, and the boundary ∂M
of M will be called the shore.

We also consider the Lithner–Agmon distance d associated to the pseudo-metric

(min(V1, V2))+dx
2.

Such a metric is considered in [Kl], [GrMa], [Pe]. There are three places where this

metric is not a standard smooth one.

At first, inside the well U and the sea Rn\Î, where the metric degenerates completely.

Secondly on the crest ∂Ω0 (that is, at the points where V1 = V2). This case has been

considered in Pettersson [Pe]. At such points, if one assumes that ∇V1 ̸= ∇V2, then any

geodesic that crosses transversally the hypersurface {V1 = V2} is C1 (and so is φ near

the crossing point).

Finally there are the boundaries of the island ∂Î and of the well ∂U , where

min(V1, V2) vanishes. This situation was considered in [HeSj2], [Ma1], and we will

follow them in further constructions.

We denote by φ the Lithner–Agmon distance to the well U ,

φ(x) := d(U, x), (2.6)

and we set,

S0 := d(U,M). (2.7)

We also consider the set,

G :=
{
γ ∩ (Î\U) ; γ = minimal geodesics between U and M

}
,

which coincides with the set of minimal geodesics between U and M that have only their

end-points in U ∪ M. In particular, if γ ∈ G, then γ ∩ M is a point of type 1 in the

terminology of [HeSj2].

Let us also recall that the assumption that 0 is a non trapping energy for V2 implies

that ∇V2 ̸= 0 on ∂Î, and therefore that ∂Î is a smooth hypersurface.
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3. Main results.

Under the previous assumptions we plan to study the resonances of the operator P

given in (2.1).

In order to define the resonances we consider the distortion given as follows: Let

F (x) ∈ C∞(Rn,Rn) such that F (x) = 0 for |x| ≤ R0, F (x) = x for |x| large enough. For
θ > 0 small enough, we define the distorted operator Pθ as the value at ν = iθ of the

extension to the complex of the operator UνPU
−1
ν , defined for ν real small enough, and

analytic in ν, where we have set

Uνϕ(x) = det(1 + νdF (x))1/2ϕ(x+ νF (x)). (3.1)

By using the Weyl perturbation theorem, one can see that there exists ε0 > 0 such that

for any θ > 0 small enough, the spectrum of Pθ is discrete in [−ε0, ε0] − i[0, ε0θ]. The

eigenvalues of Pθ are called the resonances of P [HeMa], [HeSj2], [Hu], [Kl].

In this paper we are interested in the imaginary part of these resonances.

For some fixed δ > 0 arbitrarily small, let Ṽ2 be a C∞ function that coincides

with V2 on {dist(x,M) ≥ δ}, and such that infRn Ṽ2 > 0. By adapting the techniques

used in [HeSj2, Section 9], it is not difficult to see that the resonances of P near 0 are

exponentially close to the eigenvalues of the operator,

P̃ :=

(
−h2∆+ V1 hW

hW ∗ −h2∆+ Ṽ2

)
, (3.2)

where the precise meaning is the following one: Let I(h) be a closed interval containing 0,

and a(h) > 0 such that a(h) → 0 as h → 0+, and, for all ε > 0 there exists Cε > 0

satisfying,

a(h) ≥ 1

Cε
e−ε/h; (3.3)

σ(P̃ ) ∩ ((I(h) + [−2a(h), 2a(h)])\I(h)) = ∅, (3.4)

for all h > 0 small enough. Then, there exists a constant ε1 > 0 and a bijection,

β̃ : σ(P̃ ) ∩ I(h) → Res(P ) ∩ Γ(h),

(where we have set, Γ(h) := (I(h) + [−a(h), a(h)]) + i[−ε1, 0]), such that, for any ε > 0,

one has,

β̃(λ)− λ = O(e−(2S0−ε)/h), (3.5)

uniformly as h→ 0+.

In particular, since the eigenvalues of P̃ are real, one obtains that, for any ε > 0,

the resonances ρ in Γ(h) satisfy,

|Im ρ| = O(e−(2S0−ε)/h). (3.6)
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Observe that, since −h2∆+ Ṽ2 is elliptic, the eigenvalues of P̃ near 0 are actually close

(up to O(h2)) to those of −h2∆+V1. In particular, using Weyl estimates, we see that the

number of eigenvalues of P̃ inside any small enough fix interval around 0 isO(h−n). Thus,

possibly by excluding some particular values of h (e.g. by taking h along a convenient

sequence tending to 0), it is in principle possible to construct many such intervals I(h)

satisfying (3.3)–(3.4) (see also [HeSj1, Section 2] and [HeSj2, Section 9]).

From now on, we consider the particular case where I(h) consists of a unique value,

that is, we assume,

Assumption 3. There exists E(h) ∈ R such that,

E(h) ∈ σdisc(P̃ );

E(h) → 0 as h→ 0+;

σ(P̃ ) ∩ [E(h)− 2a(h), E(h) + 2a(h)] = {E(h)},

(3.7)

where a(h) satisfies (3.3).

Applying (3.5), we denote by ρ = ρ(h) the unique resonance of P satisfying ρ −
E(h) = O(e−(2S0−ε)/h) for all ε > 0. We also denote by u0 the normalized eigenstate of

P̃ associated with E(h).

Remark 3.1. By standard results on the tunneling effect (see, e.g., [HeSj1]), it

can be shown that the eigenvalues of P̃ coincide, up to exponentially small errors, with

those of the Dirichlet realization PD of P on any domain D contained in Î and whose

interior contains U . As a consequence, in Assumption 3 one can equivalently replace P̃

with any of such PD’s.

As in [DaMa], [Ma1], in order to obtain a lower bound on the width |Im ρ| of ρ,
we need to add a further assumption on the size of u0 near some geometric subset of ∂U .

Assumption 4. For any ε > 0 and for any neighborhood W of the set∪
γ∈G (γ ∩ ∂U), there exists C = C(ε,W) > 0 such that, for all h > 0 small enough,

one has,

∥u0∥L2(W)⊕L2(W) ≥
1

C
e−ε/h.

Remark 3.2. Actually, introducing the microsupport MS(u0) of u0 as, e.g., in

[Ma2] (with obvious changes due to the fact that u0 has two components), in our situation

we have MS(u0) ∩ {x ∈ ∂U} ⊂ {ξ = 0}, and Assumption 4 can be rephrased into,

MS(u0) ∩
∪
γ∈G

(γ ∩ ∂U)× {0} ̸= ∅.

Remark 3.3. By standard results on the propagation of the microsupport (see,

e.g., [Ma2]), one can see that Assumption 4 is always satisfied when n = 1. When n ≥ 2,

a sufficient condition is that for any neighborhood W of
∪
γ∈G (γ ∩ ∂U) × {0}, the set
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t∈R exp tHp1(W ) is a neighborhood of p−1

1 (0) ∩ {x ∈ U}, where p1(x, ξ) := ξ2 + V1(x)

and Hp1 := (∂ξp1,−∂xp1) is the Hamilton field of p1.

Now, we denote by G1 ⊂ G be the set of minimal geodesics γ such that MS(u) ∩
(γ ∩ ∂U)× {0} ̸= ∅. (By Assumption 4, one has G1 ̸= ∅.)

We also denote by w0(x, ξ) the principal symbol of W and by w∗
0(x, ξ) the principal

symbol of W ∗.

We further assume,

Assumption 5. There exists γ ∈ G1 such that,

• γ intersects ∂Ω0 at a finite number of points x(1), . . . , x(N) (ordered from the closest

to ∂M up to the closest to U);

• All intersections between γ and ∂Ω0 are transversal;

• ∇V1 ̸= ∇V2 on γ ∩ ∂Ω0.

Assumption 6. For all j ∈ {1, . . . , N}, one has w∗
0(x

(j), i∇φ(x(j))) ̸= 0 if j is odd,

and w0(x
(j), i∇φ(x(j))) ̸= 0 if j is even.

Observe that N is necessarily odd. Moreover, the last property is nothing but a

condition of ellipticity on the operators of interaction, similar to that appearing in [As],

[GrMa].

Our main result is,

Theorem 3.4. Under Assumptions 1 to 6, one has,

lim
h→0+

h ln |Im ρ(h)| = −2S0.

Remark 3.5. In view of (3.6), this will be implied by the fact that, for any ε > 0,

there exists C = C(ε) > 0 such that,

|Im ρ(h)| ≥ 1

C
e−(2S0+ε)/h,

for all h > 0 small enough.

Concerning the necessity of Assumption 4, we also have the following converse result:

Theorem 3.6. Suppose that Assumptions 1 to 3 are satisfied, but Assumption 4 is

not. Assume further that for all γ ∈ G, γ satisfies the properties listed in Assumption 5.

Then, there exists δ > 0 such that,

|Im ρ(h)| ≤ e−2(S0+δ)/h.

4. Preliminaries.

In this section, we recall some basic facts on the resonant state u = (u1, u2) of P

associated with ρ, and normalized in such a way that,
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∥u∥L2(Î) = 1. (4.1)

(From now on, we always write L2 instead of L2 ⊕ L2 in order to lighten the notations,

and similarly for the Sobolev spaces.)

Typically, the properties we are going to recall can be deduced from the same ar-

guments used in the scalar case (see, e.g., [HeSj1], [HeSj2], [HiSi]), and we refer the

reader interested in more details to, e.g., [GrMa], [Kl].

First of all, by Lithner–Agmon estimates (as, e.g., in [Kl]), we have that, for any

ε > 0 and any bounded set B ⊂ Rn,

∥eφ/hu∥H1(B) = O(eε/h), (4.2)

where φ is defined in (2.6). In addition, with the same techniques used in [HeSj2], it

can be seen that near the well U , u is exponentially close to u0, in the sense that there

exists δ > 0 and a neighborhood ΩU of U such that,

∥u− u0∥H1(ΩU ) = O(e−δ/h).

In particular, the property of u0 in Assumption 4 extends to u, too.

As in [DaMa], [HeSj2], we consider the set (called the set of “points of type 1” in

[HeSj2]),

T1 :=
∪
γ∈G

(γ ∩ ∂M).

We also set p2(x, ξ) = ξ2 + V2(x) and, by the same arguments as in [HeSj2, Section 9]

(but adapted to our case of a system), we see that if a bounded subset B of M stays

away from the x-projection of the set,

T̃1 :=
∪
t∈R

exp tHp2(T1 × {0}),

then there exists δ > 0 such that,

∥u∥H1(B) = O(e−(S0+δ)/h). (4.3)

Now, let Ω1 be a smooth bounded open domain containing the closure of the island

Î, and write the interaction W as,

W = r0(x) + hr1(x) · ∇x, (4.4)

where r0 is complex-valued, and r1 is (complex) vector-valued. By the Stokes formula

on Ω1, we have,

(Im ρ)∥u∥2L2(Ω1)
= −h2 Im

∫
∂Ω1

∂u

∂ν
· uds+ h2 Im

∫
∂Ω1

(r1 · ν)u2u1ds, (4.5)

where ds is the surface measure on ∂Ω1, and ν stands for the outward pointing unit
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normal to Ω1. (Note that, if W had been a more general pseudodifferential operator, the

previous formula would not have been valid anymore, but could have been replaced by

another one involving the multiplication by a cut-off function instead of the restriction

to Ω1.)

Using (4.2)–(4.3) and (4.1), we easily deduce the existence of some δ > 0 such that,

Im ρ = −h2 Im
∫
∂Ω1∩B

∂u

∂ν
· uds+ h2 Im

∫
∂Ω1∩B

(r1 · ν)u2u1ds+O(e−(2S0+δ)/h), (4.6)

where B is an arbitrarily small neighborhood of the x-projection ΠxT̃1 of T̃1.
Now, we fix some arbitrary z1 ∈ ΠxT1, and we denote by Z1 a small enough neigh-

borhood of z1 in ∂M . For t0 > 0 sufficiently small, we set,

Λ± :=
∪

0<±t<2t0

exp tHp2(Z1 × {0}).

Then Λ± ⊂ {p2 = 0} and, since Z1×{0} is isotropic, Λ± is Lagrangian (see, e.g., [Ma2]).

Since ∇V2(z1) ̸= 0 and Hp2 = (2ξ,−∇V2), it is also easy to check that both Λ+ and Λ−
project bijectively on the base. Since in addition p2 is an even function of ξ, we finally

obtain (e.g., as in [DaMa, Section 5]) the existence of a real-analytic function ψ, defined

on the x-projection of Λ±, such that,

Λ± : ξ = ±∇ψ(x);
(∇ψ(x))2 + V2(x) = 0.

(4.7)

Setting z0 := Πx(exp t0Hp2(z1, 0)), and still denoting by ψ an holomorphic extension of

ψ to a complex neighborhood of z0, one can prove as in [DaMa, Proposition 5.1],

Proposition 4.1. For any ε1 > 0, one has,

e−iψ/h+S0/hu ∈ Hε1|Im x|,z0 ,

where Hε1|Im x|,z0 is the Sjöstrand’s space consisting of h-dependent holomorphic func-

tions v = v(x;h) defined in a complex neighborhood of z0, such that, for all ε > 0,

v(x, h) = O(e(ε1|Im x|+ε)/h),

uniformly for x ∈ Cn close enough to z0 and h > 0 small enough.

Remark 4.2. Obviously, the result of this proposition can be re-written as,

u ∈ H−Im ψ−S0+ε1|Im x|,z0 .

Proof. The proof is very similar to that of [DaMa, Proposition 5.1], with the

only difference that here we have to deal with a matrix-operator, instead of a scalar one.

For the sake of completeness, we outline the main steps. At first, for x close enough to

z0, we write v(x) := e−iψ(x)/h+S0/hu(x) as the oscillating integral,
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v(x) = (2π)−n
∫
ei|ξ|θ(x,y,ξ/|ξ|)a

(
x− y,

ξ

|ξ|

)
v(y)χ(y)dydξ, (4.8)

where χ is a cut-off function around z0, θ(x, y, τ) := (x−y)τ+ i(x−y)2/2, and a(x, τ) :=
1 + ixτ/2. Thanks to the standard ellipticity of P , for |ξ| ≥ Ch−1 (with C > 0 a large

enough constant), one can construct a C2-valued analytic symbol b = b(x, y, τ, ξ, h) ∼∑
k≥0 bk(x, y, τ, h)|ξ|−k such that,

e−i|ξ|θ(x,y,τ)Q(y, hDy)
(
ei|ξ|θ(x,y,τ)b

)
= a(x− y, τ) +O(e−δ|ξ|),

with δ > 0, and where Q(y, hDy) := t(e−iψ(y)/hP (y, hDy)e
iψ(y)/h − ρ). Inserting this

estimate into (4.8) and using that, for all ε > 0, one has v = O(eε/h) uniformly on the

real near z0, together with the fact that Qv = 0, we obtain,

v(x) = (2π)−n
∫
|ξ|≤C/h

ei|ξ|θ(x,y,ξ/|ξ|)a

(
x− y,

ξ

|ξ|

)
v(y)χ(y)dydξ +O(e−δ

′/h), (4.9)

for some δ′ > 0.

Then, splitting the remaining integral into
∫
{|ξ|≤ε1/h} and

∫
{ε1/h≤|ξ|≤C/h}, we im-

mediately observe that the first term
∫
{|ξ|≤ε1/h} is O(e(ε1|Im x|+ε)/h) for all ε > 0.

Finally, using that u is outgoing and the results of [HeSj2, Section 9], we see that

MS(eS0/hu) ∩ Λ− = ∅. Therefore, by propagation of MS, and since also MS(eS0/hu) ∩
(∂M × Rn) ⊂ {ξ = 0}, we deduce that, above a neighborhood of z0, one necessarily

has MS(eS0/hu) ⊂ Λ+, and thus MS(v) ⊂ {ξ = 0}. But, after the change of variables

ξ 7→ ξ/h, this exactly means that the term
∫
{ε1/h≤|ξ|≤C/h} is exponentially small as

h→ 0+. □

Thanks to Proposition 4.1, we can enter the framework of analytic pseudodiffer-

ential calculus of [Sj, Sections 4–5]. In particular, working in the Sjöstrand’s space

H−Im ψ−S0+ε1|Im x|,z0 , we can represent Pu as,

Pu(x) =
1

(2πh)n

∫
Γ(x)

ei(x−y)ξ/h−[(x−αx)
2+(y−αx)

2]/2hp(αx, ξ;h)v(y)dydξdαx, (4.10)

where p is a matrix-valued analytic symbol that satisfies,

p(αx, ξ;h) =

(
ξ2 + V1(αx) 0

0 ξ2 + V2(αx)

)
+O(h),

and Γ(x) is the (bounded, singular) contour of C3n defined by,

Γ(x) :


ξ = ∇ψ(αx) + 2iε1

x− y

|x− y|
;

|x− y| ≤ r, y ∈ Cn (r small enough with respect to ε1) ;

|x− αx| ≤ r, αx ∈ Rn.
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Now, as in [DaMa], we take local coordinates (x′, xn) ∈ Rn−1 × R centered at z1, in

such a way that dV2(z1) · x = −cxn with c > 0. Then, taking advantage of the fact

that hDxn
and h2D2

xn
can be represented as in (4.10) with p substituted with ξn and ξ2n,

respectively, we see that p(αx, ξ;h) can actually be written as,

p(αx, ξ;h) =

(
ξ2n + a1 hb1 + hb2ξn

hb3 + hb4ξn ξ2n + a2

)
,

where the aj ’s and the bj ’s are functions of (αx, ξ
′;h) only (not of ξn), and satisfy,

aj(αx, ξ
′;h) = (ξ′)2 + Vj(αx) +O(h) (j = 1, 2);

bk(αx, ξ
′;h) = O(1) on Γ(x) (k = 1, 2, 3, 4).

Now, on Γ(x), we have that ξ remains close to ∇ψ(αx), which in turn remains close to

(0,
√
cαxn), with αxn close to δ0 := z0,n > 0. In particular, a1 remains close to V1(z0) > 0,

and a2 remains close to V2(z0) < 0.

Then, re-writing p(αx, ξ;h) as,

p(αx, ξ;h) =

(
ξnI2 +

h

2
J

)2

+A

with,

J :=

(
0 b2
b4 0

)
;

A :=

(
a1 hb1
hb3 a2

)
− h2

4
J2,

and using the analytic symbolic calculus of [Sj], we see that, as an operator on

H−Im ψ−S0+ε1|Im x|,z0 , P − ρ can be factorized into,

P − ρ = (hDxnI2 +B+)(hDxnI2 +B−),

where the symbol β± of B± does not depend on ξn, and satisfies,

β±(αx, ξ
′;h) = ±

(
i
√
a1 − ρ 0

0
√
ρ− a2

)
+O(h).

(Here,
√
· stand for the principal square-root of complex numbers with positive real part.)

In particular, ξnI2 + β+ remains elliptic on Γ(x), and thus, by applying an analytic

parametrix of hDxnI2 +B+, the equation Pu = ρu becomes,

(hDxn +B−)u = 0 in H−Im ψ−S0+ε1|Im x|,z0 . (4.11)

In the same way, P − ρ can also be factorized into,

P − ρ = (hDxnI2 + B̃+)(hDxnI2 + B̃−),
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where the symbol β̃± of B̃± satisfies,

β̃±(αx, ξ
′;h) = ±

(
−i

√
a1 − ρ 0

0
√
ρ− a2

)
+O(h).

Since ξnI2 + β̃+ remains elliptic, too, on Γ(x), this also leads to,

(hDxn
+ B̃−)u = 0 in H−Im ψ−S0+ε1|Im x|,z0 . (4.12)

At that point, we can proceed as in [DaMa], [Ma2] (or, also, [HeSj2, Section 10]),

and, by taking a realization on the real domain of B− and B̃− near z0 (see [Sj]), we

conclude to the existence of four analytic pseudodifferential operators Qj and Q̃j (j =

1, 2) acting on L2({xn = δ0}), such that, near z0,

h
∂u1
∂xn

∣∣∣∣
xn=δ0

= Q1u1 +O(h)∥χu2∥{xn=δ0} = Q̃1u1 +O(h)∥χu2∥{xn=δ0};

h
∂u2
∂xn

∣∣∣∣
xn=δ0

= Q2u2 +O(h)∥χu1∥{xn=δ0} = Q̃2u2 +O(h)∥χu1∥{xn=δ0},

(4.13)

where χ is some cut-off function that localizes near z0, and the symbols qj and q̃j of Qj
and Q̃j satisfy,

q1(x
′, ξ′;h) = −

√
(ξ′)2 + V1(x′, δ0)− ρ+O(h);

q̃1(x
′, ξ′;h) =

√
(ξ′)2 + V1(x′, δ0)− ρ+O(h);

q2(x
′, ξ′;h) = i

√
ρ− (ξ′)2 − V2(x′, δ0) +O(h);

q̃2(x
′, ξ′;h) = i

√
ρ− (ξ′)2 − V2(x′, δ0) +O(h).

(4.14)

More precisely (see [Sj, Section 5]), these operators (say, Qj) are of the type,

Qjv(x
′;h) =

1

(2πh)3(n−1)/2

∫
R3(n−1)

ei(x
′−y′)ξ′/h−[(x′−αx′ )2+(y′−αx′ )2]/h

× qj(x
′, ξ′;h)χ0(x

′, y′, αx′ , ξ′)v(y′)dy′dαx′dξ′, (4.15)

where χ0 ∈ C∞
0 (R4(n−1)) is a cut-off function on a small enough neighborhood of the

point (z′0, z
′
0, z

′
0,∇x′ψ(z0)).

(Note that, even for such realizations on the real of analytic pseudodifferential op-

erators, ξ′ remains close to 0.)

Here we observe the important fact that Q1 + Q̃1 is O(h), a consequence of which

is that (4.13) actually implies,

h
∂u1
∂xn

∣∣∣∣
xn=δ0

= O(h)∥χu1∥{xn=δ0} +O(h)∥χu2∥{xn=δ0};

h
∂u2
∂xn

∣∣∣∣
xn=δ0

= Q2u2 +O(h)∥χu1∥{xn=δ0}.

(4.16)
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Now, denoting by C2 the pseudodifferential operators of the same form as Q2, with

symbol c2 := [Re ρ− (ξ′)2 − V2(x
′, δ0)]

1/4, the symbolic calculus of [Sj] gives us,

Q2 = iC∗
2C2 +O(h).

Turning back to formula (4.6), we can treat in that way all the points of ∂Ω1 ∩ B, and,
using a convenient partition of unity (χ2

j )1≤j≤N on this set, we can write,

Im ρ = −h2
∑
j

Im

⟨
χj
∂u

∂ν
, χju

⟩
L2(∂Ω1)

+O(h2)∥u∥2L2(∂Ω1)
+O(e−(2S0+δ)/h)

= −h
∑
j

Im ⟨iχjC2,ju2, C2,jχju2⟩L2(∂Ω1) +O(h2)∥u∥2L2(∂Ω1)
+O(e−(2S0+δ)/h)

= −h
∑
j

∥C2,jχju2∥2L2(∂Ω1)
+O(h2)∥u∥2L2(∂Ω1)

+O(e−(2S0+δ)/h),

where the C2,j ’s (j = 1, . . . , N) are the pseudodifferential operators constructed as before

on the support of χj , and where we have used (4.16) and the fact that the commutator

[χj , C2,j ] is O(h).

Using the ellipticity of the symbol of C2,j , we deduce the existence of a constant

C0 > 0 such that,

|Im ρ| ≥ h

C0

∑
j

∥χju2∥2L2(∂Ω1)
− C0h

2∥u∥2L2(∂Ω1)
− C0e

−(2S0+δ)/h,

and thus, since
∑
j χ

2
j = 1 on ∂Ω1∩B, while u = O(e−(S0+δ

′)/h) (with δ′ > 0) on ∂Ω1\B,
we have proved,

Proposition 4.3. There exist two positive constants C0 and δ, such that,

|Im ρ| ≥ h

C0
∥u2∥2L2(∂Ω1)

− C0h
2∥u1∥2L2(∂Ω1)

− C0e
−(2S0+δ)/h,

for all h > 0 small enough.

5. Reductio ad absurdum.

From now on, we proceed by contradiction, assuming the existence of some constant

δ1 > 0 such that,

|Im ρ| = O(e−(2S0+δ1)/h), (5.1)

uniformly as h→ 0+ (possibly along some sequence).

By Proposition 4.3, this implies,

∥u2∥2L2(∂Ω1)
= O(h∥u1∥2L2(∂Ω1)

+ e−(2S0+δ
′)/h), (5.2)

for some positive constant δ. Here, let us observe that the dependence with respect
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to Ω1 of the constants C0 and δ that appear in Proposition 4.3 is only related to the

ellipticity of ξn +
√
(ξ′)2 + V2(x) on {(x,∇ψ(x)) ; x ∈ ∂Ω1}. In particular, they can be

taken uniformly as long as the distance between ∂Ω1 and {V2 = 0} remains larger than

some fixed positive constant. Therefore, choosing a convenient 1-parameter family of

such open sets Ω1 (for instance Ω1,t := {V2(x) = −t} with t ∈ [t0, t1], 0 < t0 < t1 small

enough), and integrating with respect to this parameter, we obtain from (5.2),

∥u2∥2L2(A) = O(h∥u1∥2L2(A) + e−(2S0+δ
′)/h), (5.3)

where now A is a topological annulus surrounding Î, e.g. of the type,

A = {−t1 < V2(x) < −t0, x ∈ Ω′
1}, (5.4)

where Ω′
1 stands for some fixed small enough neighborhood of Î. Then, using the equation

Pu = ρu, we have,

⟨(−h2∆+ V1 − ρ)u1, u1⟩L2(A) = −h⟨Wu2, u1⟩L2(A),

and thus, by Stokes formula,

∥h∇u1∥2A+⟨(V1 − ρ)u1, u1⟩A − h2⟨∂νu1, u1⟩∂A
= O(h)

(
∥u1∥2A + ∥u2∥2A + h∥u1∥2∂A + h∥u2∥2∂A + ∥h∇u1∥2A

)
,

where ∂ν is the outward pointing normal derivative on ∂A. Taking the real part, and

using that Re (V1 − ρ) is positive near A, together with the fact that, thanks to (4.16),

one has ⟨∂νu1, u1⟩∂A = O(∥u∥2∂A), we deduce (for h sufficiently small),

∥h∇u1∥2A + ∥u1∥2A = O(h∥u2∥2A + h2∥u∥2∂A).

Now, using both (5.3) and (5.2) (with ∂A instead of ∂Ω1), this gives us,

∥h∇u1∥2A + ∥u1∥2A = O(h2∥u1∥2A + h2∥u1∥2∂A + e−(2S0+δ
′)/h),

that is, for h sufficiently small,

h2∥∇u1∥2A + ∥u1∥2A = O(h2∥u1∥2∂A + e−(2S0+δ
′)/h). (5.5)

At this point, we can use the standard Sobolev estimate,

∥u1∥2∂A = O(∥u1∥2A + ∥u1∥A∥∇u1∥A),

that implies,

h2∥u1∥2∂A = O(h∥u1∥2A + h3∥∇u1∥2A),

and thus, once inserted into (5.5), permits us to conclude that, for h small enough,

∥h∇u1∥2A + ∥u1∥2A = O(e−(2S0+δ
′)/h).
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Summing up, and gathering with (5.3), we have proved,

Proposition 5.1. Under Assumption (5.1), and with A given in (5.4), there exists

δ1 > 0 such that,

∥u∥2L2(A) = O(e−(S0+δ1)/h).

The purpose of the next sections will be to propagate this smallness of u across the

shore ∂M, the crest ∂Ω0, and up to the interior of the well U , in such a way that one

finally gets a contradiction with Assumption 4.

6. Propagation across the shore ∂M.

In order to propagate the smallness of u across ∂M, we adopt the same strategy as

in [DaMa], that is, we start by establishing global Carleman estimates around ∂M.

We fix some µ0 > 0 sufficiently small, and, for µ ∈ (0, µ0], we consider the neighbor-

hood Nµ of ∂M given by,

Nµ := {−µ0 ≤ V2(x) ≤ µ, x ∈ Ω1}, (6.1)

(where, as before, Ω1 is some fixed small enough neighborhood of Î).
We also set,

Σ := N ∩ {V2 = µ};
Σ0 := N ∩ {V2 = −µ0}.

By the same geometrical considerations as in [DaMa, Section 6], we see that, on Σ, the

function φ satisfies,

φ |Σµ ≥ S0 − c0µ
3/2,

where the constant c0 > 0 does not depend on µ. Therefore, using (4.2) and Sobolev

estimates, we deduce that, for any µ, ε > 0 small enough, we have,

u = O(e−(S0−c0µ3/2−ε)/h) uniformly on Nµ, (6.2)

and the same holds for all the derivatives of u.

In addition, since Σ0 stays away from Î, by Proposition 5.1 (plus standard Sobolev

estimates), we know the existence of some δ0 > 0 constant such that,

∥u∥H2(Σ0) = O(e−(S0+δ0)/h). (6.3)

We plan to extend this estimate up to Σ. We set,

v(x) := eα(µ−V2(x))/hu(x), (6.4)

where α > 0 satisfies,
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2αµ0 ≤ δ0.

Then, by (6.2), for any ε > 0, v satisfies,

∥v∥H2(Σ) = O(e−(S0−c0µ3/2−ε)/h), (6.5)

and, by (6.3),

∥v∥H2(Σ0) = O(e−S0/h). (6.6)

Moreover, v is solution to,

(A+ iB)v = 0,

with,

A := P − Re ρ− α2(∇V2)2;

B := −2hα(∇V2) ·Dx + ihα∆V2 − Im ρ− ihα

(
0 −r1 · ∇V2

r1 · ∇V2 0

)
,

where we have used (4.4). In particular, A and B are formally selfadjoint, and we have,

0 = ∥(A+ iB)v∥2L2(Nµ)
= ∥Av∥2L2(Nµ)

+ ∥Bv∥2L2(Nµ)
+ 2Im ⟨Av,Bv⟩L2(Nµ). (6.7)

As in [DaMa], the key-point is the following Carleman estimate:

Lemma 6.1. If α and µ0 are chosen sufficiently small, there exists a constant C > 0

and, for all ε > 0, a constant Cε > 0, such that,

Im ⟨Av,Bv⟩L2(Nµ) ≥
h

C
∥v2∥2L2(Nµ)

− Ch∥v1∥2L2(Nµ)
− Ch∥Av∥2L2(Nµ)

− Cεe
−2(S0−c0µ3/2−ε)/h,

uniformly for h > 0 small enough.

Proof. Using Green’s formula, together with (6.5)–(6.6) and the fact that ∂Nµ =

Σ0 ∪ Σ, we obtain,

Im ⟨Av,Bv⟩L2(Nµ) =
i

2
⟨[A,B]v, v⟩L2(Nµ) +O(e−2(S0−c0µ3/2−ε)/h), (6.8)

uniformly with respect to h, and with ε, µ arbitrarily small. Moreover, setting

V :=

(
V1 0

0 V2

)
, W :=

(
0 W

W ∗ 0

)
, R :=

(
0 −r1 · ∇V2

r1 · ∇V2 0

)
,

A0 := −h2∆+V − Re ρ− α2(∇V2)2 = A− hW,

B0 := −2hα(∇V2) ·Dx + ihα∆V2 − Im ρ = B + ihαR,

we have,
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i

2
[A,B] =

i

2
[A0, B0] + h[W, B]− ihα[A0,R], (6.9)

and, as in [DaMa, Section 6], a straightforward computation leads to,

i

2
[A0, B0] = αh3

(
Q2 + 2Q1 +

1

2
(∆2V2)

)
+ αh∇V2 · ∇V − α3hQ0 (6.10)

with,

Q2 := 2
∑
j,k

(∂j∂kV2)∂j∂k;

Q1 := ∇(∆V2) · ∇;

Q0 := (∇V2) · (∇(∆V2)
2).

Here, we first observe,

⟨(∇V2 · ∇V)v, v⟩Nµ = ⟨(∇V2 · ∇V1)v1, v1⟩+ ∥(∇V2)v2∥2Nµ

and therefore, since ∇V2 never vanishes on ∂M, there exists a constant C0 > 0 (depend-

ing only on the geometry of V1 and V2 near ∂M), such that,

⟨(∇V2 · ∇V)v, v⟩Nµ ≥ 1

C0
∥v2∥2Nµ

− C0∥v1∥2Nµ
. (6.11)

Then, by doing an integration by parts and by using (6.5)–(6.6) we first see,

∥h∇v∥2Nµ
= O(∥Av∥2Nµ

+ ∥v∥2Nµ
+ e−2(S0−c0µ3/2−ε)/h), (6.12)

and then,

h2⟨Q2v, v⟩Nµ = O(∥h∇v∥2Nµ
+ h2∥v∥2Nµ

+ e−2(S0−c0µ3/2−ε)/h)

= O(|⟨−h2∆v, v⟩Nµ |+ h2∥v∥2Nµ
+ e−2(S0−c0µ3/2−ε)/h).

Therefore, for any constant C ≥ 1 arbitrarily large, and h > 0 sufficiently small,

h2|⟨Q2v, v⟩Nµ | ≤ C∥h2∆v∥2Nµ
+

2

C
∥v∥2Nµ

+ Cεe
−2(S0−c0µ3/2−ε)/h

(where Cε depends on ε only, which in turn is arbitrarily small). We deduce (with some

new constant C ′ > 0),

h2|⟨Q2v, v⟩Nµ | ≤2C∥Av∥2Nµ
+ 2C∥(V − Re ρ− α2(∇V2)2)v∥2Nµ

+ C ′h∥v∥2Nµ

+ C ′h∥h∇v∥2Nµ
+

2

C
∥v∥2Nµ

+ Cεe
−2(S0−c0µ3/2−ε)/h.

(6.13)

Now, for h small enough, on Nµ we have |V2 −Re ρ− α2(∇V2)2| ≤ 2µ0 + α2|∇V2|2, and
thus,
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∥(V − Re ρ− α2(∇V2)2)v∥2Nµ
≤ (2µ0 + cα2)2∥v2∥2Nµ

+ C ′′∥v1∥2Nµ
. (6.14)

As a consequence, by first choosing C sufficiently large, then µ0 and α sufficiently small,

we can make true the inequality

2

C
+ 2C(2µ0 + cα2)2 ≤ 1

4C0
, (6.15)

where C0 is the constant appearing in (6.11).

Inserting (6.14)–(6.15) into (6.13), and using (6.12), for h small enough we obtain

(possibly by increasing C ′′),

h2|⟨Q2v, v⟩Nµ
| ≤ C ′′∥Av∥2Nµ

+
1

2C0
∥v2∥2Nµ

+ C ′′∥v1∥2Nµ
+ Cεe

−2(S0−c0µ3/2−ε)/h. (6.16)

Since Q1 is a vector-field, by similar (but rougher) arguments, we also have,

h|⟨Q1v, v⟩Nµ | = O(∥h∇v∥Nµ∥v∥Nµ) = O(∥h∇v∥2Nµ
+ ∥v∥2Nµ

)

= O(∥Av∥2Nµ
+ ∥v∥2Nµ

+ e−2(S0−c0µ3/2−ε)/h)
(6.17)

and, of course,

|⟨Q0v, v⟩Nµ | = O(∥v∥2Nµ
). (6.18)

Using (6.16)–(6.18) together with (6.10) and (6.11), we obtain,

Re
i

2
⟨[A0, B0]v, v⟩Nµ ≥ αh

3C0
∥v2∥2Nµ

− C1αh(∥Av∥2Nµ
+ ∥v1∥2Nµ

)

− Cεe
−2(S0−c0µ3/2−ε)/h,

(6.19)

with C1 ≥ 1 independent of h, α and µ, all of them small enough.

In addition, we also have,

[W, B] = [W, B0]− iαh[W,R],

and thus, since B0 is a scalar first-order semiclassical differential operator, and R is

0-th order,

[W, B] = αhF1(x, hDx)

where F1(x, hDx) is a matrix of first-order semiclassical differential operators with

bounded coefficients. As a consequence, by the same arguments as before, we have,

⟨h[W, B]v, v⟩ = O(h2∥Av∥2Nµ
+ h2∥v∥2Nµ

+ e−2(S0−c0µ3/2−ε)/h). (6.20)

Finally, since A0 is a scalar second-order semiclassical differential operator, we see that

h−1[A0,R] is a matrix of first-order semiclassical differential operators with bounded

coefficients, too, and thus,
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⟨iαh[A0,R]v, v⟩ = O(h2∥Av∥2Nµ
+ h2∥v∥2Nµ

+ e−2(S0−c0µ3/2−ε)/h). (6.21)

Inserting (6.19)–(6.21) into (6.9), and using (6.8), the result follows. □

For h small enough, Lemma 6.1 and (6.7) imply,

∥Av∥2Nµ
+ ∥Bv∥2Nµ

+ h∥v2∥2Nµ
= O(h∥v1∥2Nµ

+ e−2(S0−c0µ3/2−ε)/h). (6.22)

Now, we prove,

Lemma 6.2. For any C ≥ 1, there exists C1 = C1(C) > 0 such that, for all h > 0

small enough, one has,

∥Av∥2Nµ
≥ h

C1
∥h∇v∥2Nµ

+
1

C1
∥v1∥2Nµ

− h

C
∥v2∥2Nµ

− C1e
−2(S0−c0µ3/2−ε)/h.

Proof. We have,

∥Av∥2Nµ
= ∥A0v∥2Nµ

+ ∥hWv∥2Nµ
+ 2hIm ⟨[A0,W]v, v⟩Nµ , (6.23)

and thus, setting Aj := −h2∆+ Vj − Re ρ− α2(∇V2)2 (j = 1, 2),

∥Av∥2Nµ
≥ ∥A1v1∥2Nµ

+ ∥A2v2∥2Nµ
+ 2hIm ⟨[A0,W]v, v⟩Nµ

. (6.24)

Moreover, by an integration by parts,

⟨A1v1, v1⟩Nµ = ∥h∇v1∥2Nµ
+ ⟨(V1 − Re ρ− α2(∇V2)2)v1, v1⟩Nµ +O(e−2(S0−c0µ3/2−ε)/h),

and, by Assumption 1, one has minV1 |∂M > 0. Therefore, by Cauchy–Schwarz inequal-

ity, for α and h sufficiently small, we obtain the existence of a constant C1 > 0 such

that,

∥A1v1∥Nµ · ∥v1∥Nµ ≥ ∥h∇v1∥2Nµ
+

1

C1
∥v1∥2Nµ

+O(e−2(S0−c0µ3/2−ε)/h).

Since also ∥A1v1∥Nµ · ∥v1∥Nµ ≤ 2C1∥A1v1∥2Nµ
+ (1/(2C1))∥v1∥2Nµ

, we deduce,

∥A1v1∥2Nµ
≥ 1

2C1
∥h∇v1∥2Nµ

+
1

4C2
1

∥v1∥2Nµ
+O(e−2(S0−c0µ3/2−ε)/h). (6.25)

On the other hand, setting Ṽ2 := V2 − Re ρ− α2(∇V2)2, we have,

∥A2v2∥2Nµ
= ∥h2∆v2∥2Nµ

+ ∥Ṽ2v2∥2Nµ
+ 2Im ⟨[−h2∆, Ṽ2]v2, v2⟩Nµ

= ∥h2∆v2∥2Nµ
+ ∥Ṽ2v2∥2Nµ

+O(h∥h∇v2∥Nµ∥v2∥Nµ + h2∥v2∥2Nµ
), (6.26)

and, still with an integration by parts and Cauchy–Schwarz inequality,

∥h2∆v2∥Nµ∥v2∥Nµ ≥ ⟨−h2∆v2, v2⟩Nµ = ∥h∇v2∥2Nµ
+O(e−2(S0−c0µ3/2−ε)/h).
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Then, writing,

∥h2∆v2∥Nµ∥v2∥Nµ ≤ 1

Ch
∥h2∆v2∥2Nµ

+ Ch∥v2∥2Nµ
,

where C ≥ 1 is arbitrary, we deduce,

∥h2∆v2∥2Nµ
≥ Ch∥h∇v2∥2Nµ

− C2h2∥v2∥2Nµ
+O(e−2(S0−c0µ3/2−ε)/h). (6.27)

Inserting (6.27) into (6.26), we obtain the existence of a constant C2 > 0 such that, for

any C ≥ C2,

∥A2v2∥2Nµ
≥ Ch∥h∇v2∥2Nµ

− 2C2h2∥v2∥2Nµ
− C2h∥h∇v2∥Nµ∥v2∥Nµ

+O(e−2(S0−c0µ3/2−ε)/h). (6.28)

In particular,

∥A2v2∥2Nµ
≥ (C−C2

√
C )h∥h∇v2∥2Nµ

−
(
2C2h2 +

C2h√
C

)
∥v2∥2Nµ

+O(e−2(S0−c0µ3/2−ε)/h),

and thus, for C sufficiently large,

∥A2v2∥2Nµ
≥

√
Ch∥h∇v2∥2Nµ

−
(
2C2h2 +

C2h√
C

)
∥v2∥2Nµ

+O(e−2(S0−c0µ3/2−ε)/h). (6.29)

Finally, concerning the term 2hIm ⟨[A0,W]v, v⟩Nµ
appearing in (6.24), since A0 is scalar,

we have,

h⟨[A0,W]v, v⟩Nµ = O(h2)

( ∑
|α|≤2

|⟨(hDx)
αv, v⟩Nµ |

)
,

and thus, with an integration by parts, and still using (6.5)–(6.6),

h⟨[A0,W]v, v⟩Nµ = O(h2)(∥h∇v∥2Nµ
+ ∥v∥2Nµ

) +O(e−2(S0−c0µ3/2−ε)/h). (6.30)

Inserting (6.25), (6.29), and (6.30) into (6.24), we obtain the existence of a constant

C3 > 0 such that, for any C ≥ 1 sufficiently large, and for h sufficiently small (depending

on C), one has,

∥Av∥2Nµ
≥ 1

C3
∥h∇v1∥2Nµ

+
1

C3
∥v1∥2Nµ

+ Ch∥h∇v2∥2Nµ
− h

C
∥v2∥2Nµ

− C3h
2∥h∇v∥2Nµ

− C3h
2∥v∥2Nµ

− C3e
−2(S0−c0µ3/2−ε)/h.

In particular, Lemma 6.2 follows. □

Gathering Lemma 6.2 and (6.22), we obtain,

h

C1
∥h∇v∥2Nµ

+
1

C1
∥v1∥2Nµ

+ h

(
1− 1

C

)
∥v2∥2Nµ

= O(h∥v1∥2Nµ
+ e−2(S0−c0µ3/2−ε)/h),
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where C ≥ 1 is arbitrarily (and sufficiently) large, and ε > 0 is arbitrary. Choosing

C ≥ 2, we conclude that, for any ε > 0, for any µ > 0 sufficiently small, there exists

h0 = h0(ε, µ) > 0 such that, for h ∈ (0, h0], one has,

∥h∇v∥2Nµ
+ ∥v∥2Nµ

= O(e−2(S0−c0µ3/2−ε)/h). (6.31)

In particular,

∥h∇v∥2Nµ/2
+ ∥v∥2Nµ/2

= O(e−2(S0−c0µ3/2−ε)/h). (6.32)

Now, recall from (6.4) that, on Nµ/2, on has |v| ≥ e(1/2)αµ/h|u|. Therefore, (6.32) implies,

∥h∇u∥2Nµ/2
+ ∥u∥2Nµ/2

= O(e−(2S0+αµ−2c0µ
3/2−2ε)/h).

Here, α > 0 has been previously fixed sufficiently small, while µ can still be taken

arbitrarily small. Therefore, by choosing µ > 0 in such a way that 4c0µ
3/2 ≤ αµ (that is

µ ≤ α2/(16c20)), and by taking ε ≤ c0µ
3/2, we have proved,

Proposition 6.3. There exists δ2 > 0 and a neighborhood N of ∂M, such that,

∥u∥L2(N ) + ∥h∇u∥L2(N ) = O(e−(S0+δ2)/h).

7. Propagation across the crest ∂Ω0.

7.1. Preliminaries.

In this section, we work near the minimal d-geodesic γ ∈ G1 given by Assumption 5,

and we will travel it, starting from ∂M up to ∂U . We denote by x0 ∈ ∂M its starting

point, by y0 ∈ ∂U its ending point, and by x(1), . . . , x(N) the sequence of points that

constitute γ ∩ ∂Ω0, ordered from the closest to ∂M up to the closest to U . We also

denote by γ(1), γ(2), . . . , γ(N+1) the portions of γ\ (∂Ω0 ∪ ∂M∪ ∂U) that are in-between

∂M and x(1), x(1) and x(2), . . . , x(N) and U , respectively, in such a way that we have,

γ = {x0} ∪ γ(1) ∪ {x(1)} ∪ γ(2) ∪ · · · ∪ {x(N)} ∪ γ(N+1) ∪ {y0},

where the unions are all disjoints.

Since γ is a minimal d-geodesic, we know that the function φ is analytic in a neigh-

borhood of γ(1) (that of course may shrink as we get closer to the end points of γ(1)), and

satisfies |∇φ|2 = V2 there. Moreover, by standard arguments of Riemannian geometry,

γ(1) can be parametrized on some interval (0, t1) in such a way that, for all t ∈ (0, t1),

one has,

γ̇(1)(t) = −∇φ (γ(1)(t)). (7.1)

Now, we set,

v := eφ/hu.
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By Proposition 6.3, we know that there exists δ2 > 0 such that u = O(e−(S0+δ2)/h)

near x0 (and analogous estimates for the derivatives of u). Hence (since φ(x0) = S0 and

φ ≤ S0 everywhere), we obtain that v is exponentially small near γ(1)(t) for all t close

enough to 0.

On the other hand, using the equation Pu = ρu, on a neighborhood of γ(1) we

obtain, (
−h2∆+ 2h(∇φ) · ∇ − |∇φ|2 + h(∆φ) +V + hW − ρ

)
v = 0,

that we prefer to write as,(
i

2
h2∆+ h(∇φ) ·Dx +

i

2
V2 −

ih

2
(∆φ)− i

2
V − ih

2
W +

iρ

2

)
v = 0,

that is,

Q(x, hDx;h)v = 0, (7.2)

where Q(x, hDx;h) is a semiclassical differential matrix-operator, with diagonal principal

symbol q0 = diag(q1, q2) given by,

q1(x, ξ) = (∇φ) · ξ − i

2
ξ2 +

i

2
(V2 − V1)

q2(x, ξ) = (∇φ) · ξ − i

2
ξ2.

Since V1 > V2 near γ(1), we see that q1 is elliptic there, while, thanks to (7.1), the curve

t 7→ (γ(1)(t), 0) is a (real) integral curve of the Hamilton flow Hq2 = (∇ξq2,−∇xq2) of

q2. As a consequence, Equation (7.2) can actually be locally reduced to a scalar one (e.g.

by using a parametrix of Q1), and we can apply standard results on the micro-support

(see, e.g., [Ma2, Chapter 4] or [Ma1, Section 5]). In particular, by Hanges’ theorem

of propagation, and since v is exponentially small near γ(1)(t) for t small, we deduce

(denoting by MS(v) the micro-support of v),

γ(1) × {0} ∩ MS(v) = ∅. (7.3)

But since q−1
2 (0) ⊂ {ξ = 0}, we also know that MS(v) ⊂ {ξ = 0}, and thus, (7.3)

implies,

γ(1) × Rn ∩ MS(v) = ∅.

Still by standard results of analytic microlocal analysis (see, e.g. [Ma2], [Sj]), we conclude

that v is exponentially small on a whole neighborhood of γ(1) as h → 0+, that is, we

have proved,

Proposition 7.1. For any x ∈ γ(1), there exists δ = δ(x) > 0 such that ueφ/h =

O(e−δ/h) on a neighborhood of x, uniformly for h > 0 sufficiently small.

The next step will consist in crossing ∂Ω0 at the ending point x(1) of γ(1).
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By [Pe], Theorem 2.14, we know that there exists a neighborhood V1 of x(1) and

two positive real-analytic functions φ1, φ2 on V1, such that,

φ1 = φ on V1 ∩ {V1 < V2};
φ2 = φ on V1 ∩ {V2 < V1};
|∇φj(x)|2 = Vj(x) (j = 1, 2);

φ1 = φ2 and ∇φ1 = ∇φ2 on V1 ∩ ∂Ω0;

φ1(x)− φ2(x) ∼ d(x, ∂Ω0)
2.

(7.4)

Actually, φ1 is nothing but the analytic continuation of φ(x) from V1 ∩ {V1 < V2}
obtained by using the metric V1(x)dx

2 near x(1) (instead of min(V1, V2)dx
2), while φ2

is the (analytic) phase function of the Lagrangian manifold obtained as the flow-out of

{(x,∇φ1(x)) ; x ∈ V1 ∩ ∂Ω0} under the Hamilton flow of q2(x, ξ) := ξ2 − V2(x).

Now, we set,

v := eφ2/hu,

and

V±
1 := V1 ∩ {±V1 > ±V2}.

By (4.2) and standard Sobolev estimates, we know that, for all ε > 0, w is O(e(φ2−φ+ε)/h)

together with all its derivatives. In particular, since, by (7.4), φ = φ1 > φ2 on V−
1 , we

obtain that v is locally exponentially small there. Moreover, by Proposition 7.1, w is

also locally exponentially small in V+
1 (on which φ = φ2). Thus, the microsupport of v

satisfies,

MS(v) ∩ {x ∈ V1} ⊂ {V1 = V2}. (7.5)

On the other hand, v is solution to Qv = ρv with,

Q := eφ2/hPe−φ2/h,

and the semiclassical principal symbol of Q is given by,

q0(x, ξ) =

(
(ξ + i∇φ2)

2 + V1 0

0 (ξ + i∇φ2)
2 + V2

)
=

(
ξ2 + V1 − V2 + 2iξ · ∇φ2 0

0 ξ2 + 2iξ · ∇φ2

)
.

In particular, the characteristic set Char(Q) := (det q0)
−1(0) of Q satisfies,

Char(Q) ⊂ {ξ = 0} ∪ {ξ2 = V2(x)− V1(x)}, (7.6)

and since we know that MS(v) ⊂ Char(Q) (see, e.g., [Ma2]), we conclude from (7.5)–

(7.6) that we have,
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MS(v) ∩ {x ∈ V1} ⊂ {V1(x) = V2(x) , ξ = 0} = ∂Ω0 × {0}. (7.7)

Therefore, in order to prove that v is exponentially small near x(1), it remains to

show,

Proposition 7.2. One has,

(x(1), 0) /∈MS(v).

Remark 7.3. This result can be seen as a propagation of the microsupport for a

(matrix-) operator with non-involutive double characteristics, and has connections with

the results proved in [LaLa], [PeSo].

7.2. Proof of Proposition 7.2.

To begin with, let us write in a more precise way the expression of Q. We have,

Q =

(
(hDx + i∇φ2)

2 + V1 hr0(x) + ihr1(x) · (hDx + i∇φ2)

hr0(x)− ih(hDx + i∇φ2) · r1(x) (hDx + i∇φ2)
2 + V2

)
,

and thus, the equation Qv = ρv can be written as,{
(Q1 − ρ)v1 = hA1v2 ;

(Q2 − ρ)v2 = hA2v1,
(7.8)

with,

Q1 := −h2∆+ V1 − V2 + 2i∇φ2 · hDx + h∆φ2 ;

Q2 := −h2∆+ 2i∇φ2 · hDx + h∆φ2,

and,

A1 := −r0(x) + ir1(x) · (hDx + i∇φ2) ;

A2 := −r0(x) + ir1(x) · (hDx + i∇φ2) + hdiv r1(x).

(In particular, by Assumption 6, A2 is elliptic at (x(1), 0).)

We plan to transform Q2 − ρ into ihDzn microlocally near (x(1), 0) by the use of

a convenient Fourier–Bros–Iagolnitzer transform in the same spirit as in [Sj, Section 7].

For this purpose, we first take local (real-analytic) coordinates x = (x′, xn) ∈ Rn−1 × R
centered at x(1) in such a way that the hypersurface ∂Ω0 = {V1 = V2} becomes {xn = 0}
(and {V1 > V2} becomes {xn > 0}). Then, using Assumption 5, we see that ∇φ2

is transversal to {V1 = V2}, and thus (since it also points-out towards {V1 > V2})
another change of analytic coordinates transforms the vector-field 2∇φ2(x) ·∇x into ∂xn .

Therefore, in the new local coordinates (that we still denote by (x′, xn)), the operators

Q1 and Q2 become,

Q1 = Λ(x, hDx) + ihDxn + xng(x) ;

Q2 = Λ(x, hDx) + ihDxn ,
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where Λ(x, hDx) is a second-order semiclassical differential operator with non-negative

real-valued principal symbol Λ0(x, ξ) homogeneous with respect to ξ, and where the

function g is real-analytic and positive at x = 0.

We first get rid of ρ in the system (7.8). For this purpose, we consider the function

σ = σ(x) solution to,  i
∂σ

∂xn
+ Λ0(x,∇xσ) = ρ ;

σ |xn=0 = 0,
(7.9)

and we set,

w := e−iσ/hv.

Since σ = O(ρ) and ρ = ρ(h) → 0 as h → 0, for any ε > 0 we still have w = O(eε/h),

and w is solution to the system, {
Q̃1w1 = hÃ1w2 ;

Q̃2w2 = hÃ2w1,
(7.10)

with,

Q̃1 := Λ̃(x, hDx) + ihDxn + xng(x) ;

Q̃2 := Λ̃(x, hDx) + ihDxn ,

where Λ̃(x, hDx) is a second-order semiclassical differential operator, with principal sym-

bol,

Λ̃0(x, ξ) = Λ0(x, ξ) + (∇ξΛ0)(x, ξ) · ∇xσ(x), (7.11)

and with Ã2 elliptic at (0, 0).

In particular, we have,

Λ̃0(x, ξ) = O(|ξ|2 + |ρξ|); ∇ξΛ̃0(x, ξ) = O(|ξ|+ |ρ|). (7.12)

At this point, it may be useful to make a few considerations, in order to explain that

the reasons for which the computations below (that may seem somehow obscure) do

work, are actually rather natural. A way to understand this consists in considering the

toy-model system, {
(ihDxn + xn)w1 = hw2 ;

ihDxnw2 = hw1.

Substituting w1 = iDxnw2 in the first equation, we obtain Qw2 = 0 where the Weyl-

symbol q of Q satisfies,
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q(x, ξ;h) = −ξ2n + ixnξn − h

2
+O(h2).

If in addition we conjugate Q with e−2δx2
n/h with δ > 0 small enough, then we obtain a

differential operator with principal symbol q̃ satisfying,

Re q̃(x, ξ;h) ≤ −ξ2n − δx2n − h

4
. (7.13)

Therefore, if the solution is exponentially small for xn ̸= 0, it becomes natural to expect

it to be (microlocally) exponentially small at (0, 0), too.

In several dimensions and in the analytic setting, however, the technical procedure

is more complicated, and in order to eliminate the term Λ̃(x, hDx), it will be necessary

to use a Fourier integral operator with complex phase-function.

The microlocal transformation of Q̃2 will also take into account the operator Q̃1, in

the sense that we will do it in such a way that the operator of multiplication by xng(x)

keeps a nice form. In order to do so, we consider the holomorphic function ψ0 = ψ0(x, z
′),

solution to the system, 
∂ψ0

∂xn
+ iΛ̃0(x,∇xψ0) = iµxn ;

ψ0 |xn=0 = iµ(z′ − x′)2/2.

(7.14)

(Here, µ > 0 is a constant that will be fixed small enough later on.)

Then, we consider the holomorphic function ψ = ψ(x, z) defined on a complex

neighborhood of (0, 0), solution to the eikonal system,
∂ψ

∂zn
= −iΛ̃0(x,∇xψ)−

∂ψ

∂xn
;

ψ |zn=0 = ψ0.
(7.15)

We prove,

Lemma 7.4. One has,

ψ(z, x) = iµ
(z − x)2

2
+ xnα(x

′, z′) +O
(
|(xn, zn)|2(|x′ − z′|+ |ρ|) + |(xn, zn)|3

)
;

∇z′ψ(z, x) = iµ(z′ − x′) + xn∇z′α(x
′, z′) +O(|(xn, zn)|2);

∂znψ(z, x) = iµ(zn − xn) +O(|zn|(|x′ − z′|+ |ρ|) + |(xn, zn)|2),

uniformly in a neighborhood of (0, 0), where α = α(x′, z′) is the unique complex solution

near 0 to the equation,

α+ iΛ0(x
′, 0; iµ(x′ − z′), α) = 0. (7.16)

Proof. From (7.14) and the definition of α, we immediately obtain,
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∂ψ0

∂xn

∣∣∣∣
xn=0

= α,

and, using (7.12), we see that,

α = O(|x′ − z′|2 + |ρ(x′ − z′)|) ;
|∇x′α|+ |∇z′α| = O(|x′ − z′|+ |ρ|).

(7.17)

Then, differentiating (7.14) with respect to xn, we deduce,

∂2ψ0

∂x2n

∣∣∣∣
xn=0

= iµ+O(|x′ − z′|+ |ρ|),

and thus, by Taylor’s formula,

ψ0(x, z
′) = iµ

(z′ − x′)2

2
+ xnα(x

′, z′) + iµ
x2n
2

+O((|x′ − z′|+ |ρ|)x2n + |xn|3);

∇xψ0(x, z
′) = O(|x′ − z′|+ |xn|).

(7.18)

On the other hand, using (7.15), we obtain,

∂ψ

∂zn

∣∣∣∣
zn=0

= −iΛ̃0(x,∇xψ0)−
∂ψ0

∂xn
= −iµxn.

In particular, ∇z′∂znψ |zn=0 = 0, and, differentiating (7.15),

∂2ψ

∂z2n

∣∣∣∣
zn=0

= −i(∇ξΛ̃0)(x,∇xψ0) · ∇x
∂ψ

∂zn

∣∣∣∣
zn=0

− ∂xn

∂ψ0

∂zn

∣∣∣∣
zn=0

= iµ+O(|∇xψ0|+ |ρ|) = iµ+O(|x′ − z′|+ |xn|+ |ρ|).

The result follows by Taylor’s formula. □

Now, by [Sj, Theorem 9.3], we can find an analytic symbol a(x, z;h) defined in a

complex neighborhood of (0, 0), such that,

e−iψ(x,z)/h
(
ihDzn − tQ2(x, hDx)

) (
a(x, z;h)eiψ(x,z)/h

)
= O(e−2δ0/h), (7.19)

where tQ2(x, hDx) stands for the formal transposed of Q2.

Then, fixing a cut-off function χ0 = χ0(x) on a small enough neighborhood of 0,

we set,

Tw(z;h) :=

∫
Rn

eiψ(x,z)/ha(x, z;h)χ0(x)w(x)dx. (7.20)

By Lemma 7.4 and (7.17), we have,

∇xψ(0, 0) = 0; Im ∇2
xψ(0, 0) > 0; det∇z∇xψ(0, 0) ̸= 0,
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and thus, by the general theory of [Sj] (and its obvious generalization for the study of

the microsupport near the nul section of T ∗Rn: see, e.g., [Ma2]), T is a Fourier–Bros–

Iagolnitzer transform that can be used to characterize the microsupport of h-dependent

functions near (0, 0): Setting,

Φ(z) := sup
x∈Rn

(−Im ψ(x, z)),

and introducing the local (complex) canonical transformation,

κ : (x,−∇xψ) 7→ (z,∇zψ),

then, for any w = w(x;h) (say, in L∞(V0) where V0 is a neighborhood of 0 containing

the support of χ0), such that ∥w∥L∞(V0) = O(eε/h) for all ε > 0 and h small enough,

and for (x0, ξ0) ∈ R2n close enough to (0, 0), we have the equivalence,

(x0, ξ0) /∈MS(w) ⇔


There exists δ > 0 and a complex neighborhood

ω0 of the z-projection of κ(x0, ξ0), such that

∥e−Φ/hTw∥L2(ω0) = O(e−δ/h) uniformly for

h small enough.

(7.21)

Moreover, Tw belongs to the Sjöstrand space HΦ,0 of h-dependent holomorphic functions

v = v(z;h) near z = 0, such that, for all ε > 0, v = O(e(Φ+ε)/h) uniformly as h→ 0+.

Now, by construction (in particular (7.19)), near z = 0 we have,

TQ̃2w = ihDznTw +O(e(Φ−δ0)/h). (7.22)

On the other hand, by [Sj, Proposition 7.4], we also have,

T (xng(x)w) = LTw, (7.23)

where L = L(z, hDz) is a pseudodifferential operator in the complex domain (in the sense

of [Sj]), with principal symbol l0(z, ζ) such that,

l0(κ(x, ξ)) = xng(x). (7.24)

We show,

Lemma 7.5. One has,

l0(z, ζ) =

(
zn +

i

µ
ζn

)
g

(
z′ +

i

µ
ζ ′
)
+O

(
|(zn, ζn)|(|ζ ′|+ |ρ|) + |(zn, ζn)|2

)
.

Proof. By definition, if (z, ζ) = κ(x, ξ), then ξ = −∇xψ(x, z) and ζ = ∇zψ(x, z),

and thus, by Lemma 7.4,

ζn = iµ(zn − xn) +O
(
|zn|(|x′ − z′|+ |ρ|) + |(xn, zn)|2

)
;

ζ ′ = iµ(z′ − x′) + xn∇z′α(x
′, z′) +O

(
|(xn, zn)|2

)
.
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In view of (7.17), we first deduce,

xn = O (|(zn, ζn)|) ;
x′ = O

(
|(z′, ζ ′)|+ |ρ| · |(zn, ζn)|+ |(zn, ζn)|2

)
,

then,

xn = zn +
i

µ
ζn +O

(
|zn|(|x′ − z′|+ |ρ|) + |(zn, ζn)|2

)
;

x′ = z′ +
i

µ
ζ ′ +O

(
|(zn, ζn)|(|x′ − z′|+ |ρ|) + |(zn, ζn)|2

)
,

and finally,

xn = zn +
i

µ
ζn +O

(
|(zn, ζn)|(|ζ ′|+ |ρ|) + |(zn, ζn)|2

)
;

x′ = z′ +
i

µ
ζ ′ +O

(
|(zn, ζn)|(|ζ ′|+ |ρ|) + |(zn, ζn)|2

)
.

Inserting this into (7.24), the result follows. □

Now, we set,

ŵ = (ŵ1, ŵ2) := Tw.

By (7.22) and (7.23), the system (7.10) becomes{
(ihDzn + L)ŵ1 = hÂ1ŵ2 ;

ihDznŵ2 = hÂ2ŵ1,
(7.25)

where Â1, Â2 are 0-th order pseudodifferential operators in the complex domain, with Â2

elliptic at (0, 0).

We also need a general result on the pseudodifferential operators in the complex

domain. Let A(z, hDz) be such a operator, acting on some Sjöstrand’s space Hϕ,z0 with

ϕ ∈ C2. Then (see [Sj, Chapter 4]), A can be written as,

Au(z) =
1

(2πh)n

∫∫
Γ(z)

ei(z−y)ζ/ha(z, ζ;h)u(y;h)dy dζ,

where a is an analytic symbol defined near (z0, (2/i)∇ϕ(z0)), and Γ(z) is the complex

contour of C2n given by,

Γ(z) :

 ζ =
2

i
∇ϕ(z) + iR(z − y) ;

y ∈ Cn, |z − y| ≤ r,
(7.26)

where R > 0 is chosen sufficiently large with respect to the Hessian of ϕ, and r > 0

is chosen sufficiently small in such a way that u is well defined in the ball centered at
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z0 with radius 2Rr (in which case the previous formula defines Au(z) for z in the ball

centered at z0 with radius Rr).

In all these formulas, ∇ := (∇Re z − i∇Im z)/2 stands for the holomorphic gradient.

We have,

Lemma 7.6.

Au(z) = a

(
z,

2

i
∇ϕ(z)

)
u(z) + (∇ζa)

(
z,

2

i
∇ϕ(z)

)(
hDz −

2

i
∇ϕ(z)

)
u(z) + v(z),

with,

∥e−ϕ/hv∥L2(|z−z0|<Rr) ≤ Ch∥e−ϕ/hu∥L2(|z−z0|<2Rr),

where the positive constant C can be taken independent of R and r, as long as Rr remains

small enough.

Proof. For ζ = (2/i)∇ϕ(z) + iR(x− y), we write,

a(z, ζ) = a

(
z,

2

i
∇ϕ(z)

)
+ iR(∇ζa)

(
z,

2

i
∇ϕ(z)

)
· (x− y) +O(|z − y|2)

= a

(
z,

2

i
∇ϕ(z)

)
+ (∇ζa)

(
z,

2

i
∇ϕ(z)

)
·
(
ζ − 2

i
∇ϕ(z)

)
+O(|z − y|2),

where the O(|z − y|2) only depends on the behaviour of a near z0. Then, we observe

that, since Γ(z) is a good contour (in the sense of [Sj]), along Γ(z) we have,∣∣∣eϕ(z)/hei(z−x)ζ/he−ϕ(y)/h∣∣∣ = O(e−c|z−y|
2/h)

with c > 0 constant, and the result follows by an application of the Schur lemma (see,

e.g., [Ma2]) and the fact that,

h−n
∫
x∈Cn

|x|2e−c|x|
2/hL(dx) = O(h).

(Here, L(dx) stands for the Lebesgue measure on Cn.) □

In order to perform exponential weighted estimates with Tw, we have to specify

better the function Φ. We show,

Lemma 7.7.

Φ(z) = µ
(Im z)2

2
+O

(
|ρ|4 + |Im z′|4 + |zn|(|Im z′|2 + |ρ|2) + |zn|3

)
.

Proof. By definition, Φ(z) = −Im ψ(xc(z), z), where xc(z) is the (real) critical

point of x 7→ −Im ψ(x, z). By computations similar to those of Lemma 7.4, we see,
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∇x′ψ(x, z) = iµ(x′ − z′) + xn∇x′α(x′, z′) +O(|(xn, zn)|2);
∂xnψ(x, z) = α(x′, z′) + iµ(xn − zn) +O(|(xn, zn)|2).

Hence, using (7.17), the critical point xc(z) = (x′c, x
c
n) of Im ψ satisfies,

x′c − Re z′ = O
(
|xcn|(|x′c − z′|+ |ρ|) + |(xcn, zn)|2

)
;

xcn − Re zn = O
(
|x′c − z′|(|x′c − z′|+ |ρ|) + |(xcn, zn)|2

)
.

We first deduce,

x′c − Re z′ = O
(
|xcn|(|Im z′|+ |ρ|) + |(xcn, zn)|2

)
;

xcn = O (|zn|+ |x′c − z′|(|x′c − z′|+ |ρ|)) ,

and then,

x′c − Re z′ = O
(
|zn|(|Im z′|+ |ρ|) + |Im z′|(|Im z′|2 + |ρ|2) + |zn|2

)
;

x′c − z′ = O
(
|Im z′|+ |ρzn|+ |zn|2

)
;

xcn − Re zn = O
(
|Im z′|2 + |ρIm z′|+ |ρ|2|zn|+ |zn|2

)
;

xcn = O
(
|zn|+ |Im z′|2 + |ρIm z′|

)
.

(7.27)

By Lemma 7.4, we also have,

Φ(z) =
µ

2
(Im z)2 +O

(
|xc − Re z|2 + |xcnα(x′c, z′)|

)
+O

(
|(xcn, zn)|2(|x′c − z′|+ |ρ|) + |(xcn, zn)|3

)
and thus, using (7.27) and (7.17), we find,

Φ(z) = µ
(Im z)2

2
+O

(
|Im z′|4 + |ρ|2|Im z′|2 + |Im z′|3|ρ|

)
+O

(
|zn|(|Im z′|2 + |ρIm z′|) + |zn|2(|Im z′|+ |ρ|) + |zn|3

)
,

and the result follows by Cauchy–Schwarz inequality. □

In particular, in a small enough neighborhood of 0, we deduce from Lemma 7.7,

Φ(z) ≤ µ
(Im z)2

2
+

1

2
|Im z′|2 + C|zn|3 + |ρ|2,

where C > 0 is a constant. For δ > 0 small enough, we set,

Φδ(z) := µ
(Im zn)

2

2
+ 2|z′|2 + C|zn|3 + |ρ|2 − δ(Re zn)

2. (7.28)

In particular Φδ is C2, and if µ has been chosen ≤ 1, we have,

Φ(z) ≤ Φδ(z)− |z′|2 + δ(Re zn)
2. (7.29)
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Now, we fix δ0 > 0 sufficiently small, and we set,

Ω := {z ∈ Cn ; |zn| < δ0, |z′| < δ0}, (7.30)

and we observe,

• On {|zn| = δ0} ∩ Ω: Analysing κ−1(z, ζ), we see that these points correspond to

(x, ξ) such that |(xn, ξn)| ≥ δ0/2, and thus, by (7.7), there exists δ1 > 0 such that, for

such points,

ŵ(z;h) = O(e(Φ(z)−2δ1)/h).

Therefore, by (7.29),

ŵ(z;h) = O(e(Φδ(z)−2δ1+δδ
2
0)/h),

and thus, if we choose δ ≤ δ1δ
−2
0 ,

ŵ(z;h) = O(e(Φδ(z)−δ1)/h). (7.31)

• On {|z′| = δ0} ∩ Ω: For any ε > 0, we have,

ŵ(z;h) = O(e(Φ(z)+ε)/h).

Hence, by (7.29), and taking ε sufficiently small (and δ < 1/2), at these points we obtain,

ŵ(z;h) = O(e(Φδ(z)+ε−δ20+δδ
2
0)/h) = O(e(Φδ(z)−(1/2)δ20)/h).

Summing up, we have proved the existence of a constant δ2 > 0 such that,

e−Φδ/hŵ = O(e−δ2/h) on ∂Ω. (7.32)

Now, the idea is to perform estimates on ŵ in the space,

L2
Φδ

(Ω) := L2(Ω ; e−2Φδ(z)/hL(dz)).

Before that, we go back to (7.25), and, taking advantage of the ellipticity of Â2, we

re-write it as,  ŵ1 =
1

h
B̂2 ihDznŵ2 ;

Â2(−hDzn + iL)B̂2 hDznŵ2 = h2Â2Â1ŵ2,
(7.33)

where B̂2 is a parametrix of Â2 near (0, 0), and where the identities hold in HΦ,0.

We set,

Q̂ := Â2(−hDzn + iL)B̂2 hDzn , (7.34)

and we plan to investigate the quantity,
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J := ⟨Q̂ŵ2, ŵ2⟩L2
Φδ

(Ω) =

∫
Ω

e−2Φδ(z)/hQŵ2(z) ŵ2(z)L(dz). (7.35)

At first, we write,

Q̂ = (−hDzn + iL)hDzn + [Â2,−hDzn + iL]B̂2 hDzn ,

and we approximate the pseudodifferential operators [Â2,−hDzn + iL]B̂2 and L by using

Lemma 7.6 with ϕ = Φδ. We obtain,

Q̂ŵ2 = Q̂0ŵ2 + v,

where Q̂0 is the differential operator,

Q̂0 :=

(
−hDzn + il0

(
z,

2

i
∇Φδ

)
+ i(∇ζ l0)

(
z,

2

i
∇Φδ

)(
hDz −

2

i
∇Φδ

))
hDzn , (7.36)

and with v satisfying,

∥e−Φδ/hv∥L2(Ω) ≤ C0h∥e−Φδ/hhDznŵ2∥L2(Ω′)

where Ω′ is an arbitrarily small neighborhood of Ω, and where C0 > 0 does not depend

on the (sufficiently small) size of Ω. In the same way as for (7.32), we see that,

∥e−Φδ/hhDznŵ2∥L2(Ω′\Ω) = O(e−δ2/h),

and thus, we actually have,

∥e−Φδ/hv∥L2(Ω) ≤ C0h∥e−Φδ/hhDznŵ2∥L2(Ω) + Ce−δ2/h, (7.37)

where C > 0 and δ2 may depend on the size of Ω, but not C0. Therefore, we can write,

J = ⟨Q̂0ŵ2, ŵ2⟩L2
Φδ

(Ω) + J1, (7.38)

with,

|J1| ≤
(
C0h∥e−Φδ/hhDznŵ2∥L2(Ω) + Ce−δ2/h

)
∥e−Φδ/hŵ2∥L2(Ω). (7.39)

We first study J0 := ⟨Q̂0ŵ2, ŵ2⟩L2
Φδ

(Ω). Since ŵ2(z) is anti-holomorphic, we have

hDzŵ2(z) = 0 and thus, an integration by parts leads us to,

J0 =

∫
Ω

tQ̂0(e
−2Φδ(z)/h)ŵ2(z)ŵ2(z)L(dz) +O(e−δ2/h), (7.40)

where tQ̂0 is the formal adjoint of Q̂0, and is given by,

tQ̂0 = −hDzn

(
hDzn + il1(z)− i

(
hDz +

2

i
∇Φδ

)
· l2(z)

)
,
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where we have set,

l1(z) := l0

(
z,

2

i
∇Φδ

)
; l2(z) := (∇ζ l0)

(
z,

2

i
∇Φδ

)
.

Using that hDz(e
−2Φδ(z)/h) = −(2/i)∇Φδ, and setting,

l3(z) :=

n∑
j=1

i
∂

∂zj

(
∂l0
∂ζj

(
z,

2

i
∇Φδ

))
,

we find,

tQ̂0(e
−2Φδ(z)/h) = −hDzn

((
−2

i
∂znΦδ + il1(z) + ihl3(z)

)
e−2Φδ(z)/h

)
=
(
4(∂znΦδ)

2 + 2l1(z)∂znΦδ + hl4(z)
)
e−2Φδ(z)/h,

with,

l4 := −2∂2znΦδ − ∂zn l1 + 2l3∂znΦδ − h∂zn l3.

Then, going back to (7.28), we compute,

∂znΦδ = −δRe zn − iµ

2
Im zn +O(|zn|2);

∂2znΦδ = −δ
2
− µ

4
+O(|zn|);

∇z′Φδ = 4z′,

(7.41)

and thus, by Lemma 7.5,

l1(z) = (1− δ)g(0)Re zn +O
(
|zn|(|z′|+ |ρ|) + |zn|2

)
;

l4(z) = δ +
µ

2
− (1− δ)g(0)

2
+O(|z|+ |ρ|+ h).

Therefore,

Re
(
4(∂znΦδ)

2 + 2l1(z)∂znΦδ + hl4(z)
)

= −µ2|Im zn|2 − 2δ(1− 3δ)g(0)|Re zn|2 −
(1− δ)g(0)− µ− 2δ

2
h

+O
(
|zn|3 + |zn|2(|z′|+ |ρ|) + h(|z|+ |ρ|+ h)

)
.

(7.42)

Now, we see on (7.42) that if we choose µ < g(0), δ small enough, and the diameter of

Ω small enough, then there exists a constant C1 > 0 (independent of the diameter of Ω)

such that, on Ω,

Re
(
4(∂znΦδ)

2 + 2l1(z)∂znΦδ + hl4(z)
)
≤ − 1

C1
(|zn|2 + h). (7.43)
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Of course, this estimate is the analogue of (7.13), obtained for the toy-model.

Going back to (7.38), we deduce from (7.43),

Re J0 ≤ − h

C1
∥ŵ2∥2L2

Φδ
(Ω) + Ce−δ2/h. (7.44)

Now, concerning J1, we write,

∥hDznŵ2∥2L2
Φδ

(Ω) =

∫
Ω

−hDzn(e
−2Φδ/h) ŵ2 hDznŵ2 L(dz) +O(e−δ2/h)

≤ 2∥(∂znΦδ)ŵ2∥L2
Φδ

(Ω)∥hDznŵ2∥L2
Φδ

(Ω) + Ce−δ2/h,

and therefore, by (7.41),

∥hDznŵ2∥L2
Φδ

(Ω) ≤ C2∥znŵ2∥L2
Φδ

(Ω) + C ′e−δ
′
2/h,

with C2, C
′, δ′2 positive, and C2 independent of the (sufficiently small) size of Ω.

Inserting into (7.39), and recalling (7.30), we deduce,

|J1| ≤ C3δ0h∥ŵ2∥2L2
Φδ

(Ω) + C ′′e−δ
′′
2 /h (7.45)

with C3, C
′′, δ′′2 positive, and C3 independent of δ0. Putting together (7.44) and (7.45),

and choosing δ0 sufficiently small, we finally obtain the existence of a (new) constant

C > 0 such that

⟨Q̂ŵ2, ŵ2⟩L2
Φδ

(Ω) ≤ − h

C
∥ŵ2∥2L2

Φδ
(Ω) + Ce−δ2/h. (7.46)

Finally, going back to (7.33), we deduce,

h∥ŵ2∥2L2
Φδ

(Ω) = O(h2)∥ŵ2∥2L2
Φδ

(Ω) +O(e−δ
′/h)

with δ′ > 0 constant, and thus, for h sufficiently small,

∥ŵ2∥2L2
Φδ

(Ω) = O(e−δ
′/h).

Since Φδ(0) = |ρ(h)|2 → 0 as h → 0, by taking Ω′ ⊂ Ω a sufficiently small complex

neighborhood of 0, we obtain

∥ŵ2∥L2(Ω′) = O(e−δ
′/4h),

and by (7.21) (and the fact that Φ(0) ≤ |ρ|2), this implies that (0, 0) /∈ MS(w2). Using

the first equation of (7.33), we also deduce that (0, 0) /∈MS(w1), and thus, finally, that

(0, 0) /∈MS(w). Hence, Proposition 7.2 is proved. □
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8. Propagation up to the well U .

Thanks to Proposition 7.2, we know that eφ2/hu is exponentially small near x(1),

and since φ2(x
(1)) = φ1(x

(1)) = φ(x(1)), we conclude that the same is true for eφ/hu.

Then, proceeding as for Proposition 7.1, this information can be propagated along γ(2),

up to a small neighborhood of x(2). But in x(2), the situation is completely similar to

that in x(1), with the only difference that the roles of the two components u1 and u2 are

exchanges. But thanks to Assumption 6, the arguments of the previous section can be

first repeated identically, and we conclude that eφ/hu is exponentially small near x(2).

Iterating N times this procedure, we arrive to the existence of δ > 0 such that,

eφ/hu = O(e−δ/h) uniformly near x(N). (8.1)

Again, we can propagate this information along γ(N+1) up to a small neighborhood of

y0 ∈ ∂U , and it remains to show that, in that case, u is exponentially small near y0 (since

γ ∈ G1, this will be in contradiction with Assumption 4, and the proof of Theorem 3.4

will be completed).

We adopt the strategy used in [Ma2, Theorem 1.1] (see also [DaMa, Section 7]),

with some modifications due to the fact that we deal with a matrix operator, and with

some technical improvements (where it has been possible) and corrections (where it has

been necessary).

At first, proceeding as in [Ma2, Section 3], we slightly modify the definition of all the

geometric quantities by changing the potentials V1 and V2 into V1 −Re ρ and V2 −Re ρ.

Since Re ρ → 0 as h → 0, this does not modify the geometric situation (see [Ma2, End

of Section 1]), and we still denote by U , d, γ, y0 the corresponding quantities after this

change. From now on, the quantity E := Re ρ is considered as an extra small parameter,

with respect to which all the estimates will be uniform.

We also fix y1, z1 ∈ γ(N+1) such that d(y1, y0) < d(z1, y0) and, for (y, z) sufficiently

close to (y1, z1), we consider the function,

F (y, z) := d(y, z)− d(z, U).

Then F is analytic, and it is solution to,

(∇yF (y, z))
2 = V1(y)− E.

Moreover, F can be analytically continued with respect to y along γ in the direction of y0.

At y0, the map y 7→ F (z, y) develops a singularity, typically in dist(y, Cz)3/2, where “dist”
stands for the Euclidean distance, and Cz (the caustic set) is an analytic hypersurface

tangent to ∂U at some point y0(z). However, using a technique form [HeSj2, Section 10],

it is possible to go round this singularity in the complex domain and to extend analytically

F (y, z) up to {V1(y) < E}, avoiding Cz. Depending on the way we turn around Cz, we
obtain two possible (complex-valued) extensions F±(y, z), that satisfy,

(∇yF±(y, z))
2 = V1(y)− E;

F−(y, z) = F+(y, z); Im F+(y, z) ∼ dist(y, Cz)3/2.
(8.2)
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Furthermore, Cz has a contact of order exactly 2 with ∂U , at the unique point y0(y)

that is connected to z through a minimal geodesic γz ⊂ Rn\U (see [Ma2, Lemmas 3.1 and

3.2]). Thanks to this, if we fix some small real-analytic hypersurface Γ ⊂
◦
U transversal to

the x-projection of the bicharacteristic
∪
t∈R exp tHp1(y0, 0), together with a real-analytic

hypersurface Σ ⊂ Rn\U transversal to γ at z1, then, one can prove the existence of a

constant C > 0 such that, for all (y, z) ∈ Γ× Σ,

Re F±(y, z) ≥
1

C
|y − w(z)|2, (8.3)

where w(z) is the point of intersection between Γ and the x-projection αz of the bichar-

acteristic
∪
t∈R exp tHp1(y0(z), 0) (see [Ma2, Formula (3.5)]).

In addition, if (y′, z′) stands for local coordinates on Γ×Σ, we also have (see [Ma2,

Section 3]),

∇y′Re F±(w(z), z) = 0; det∇y′∇z′Re F±(z1, w(z1)) ̸= 0. (8.4)

Since P2 is elliptic near ∂U ×{0}, and F± satisfies (8.2), it can be used to construct

asymptotic solutions v± = v±(y, z;h) to the equation (P (y, hDy) − E)v± ∼ 0. More

precisely, for y away from Cz, v± is constructed of the form a±(y, z;h)e
−F±(y,z)/h, with a±

a (vector-valued) classical analytic symbol, while, for y close to Cz, v± can be represented

as a Airy-type integral (see [Ma2, Section 3]), and we have,

eRe F±(y,z)/h(P (y, hDy)− E)v±(y, z) = O(e−δ/h), (8.5)

where δ is some positive constant, and where z may vary in a complex neighborhood of

z1, and y in a (real) neighborhood Ω′ of y0, that may be taken tubular around γ ∪ αz1 ,
with boundary Γ ∪ Σ′ ∪ T , where T ∩ (γ ∪ αz1) = ∅ and Σ′ ⊂ Rn\U .

In addition, since P2 is elliptic there, the symbol appearing in (8.5) is of the form,

a± =

(
a±1

ha±2

)
,

where a±1 and a±2 are 0-th order classical analytic symbols, with a±1 elliptic.

The next step consists in applying the Green formula to the (exponentially small)

quantity ⟨(P −E)u, v±(y, ·)⟩L2(Ω′)−⟨u, (P −E)v±(y, ·)⟩L2(Ω′). Using the same notations

as in (4.4)–(4.5), and setting v± = (v±1 , v
±
2 ), this gives,∫

∂Ω′

(
∂u

∂ν
v± − u

∂v±
∂ν

+ (r1 · ν)
(
u1v

±
2 − u2v

±
1

))
ds = O(e−δ

′/h),

with δ′ > 0 constant.

Then, using the fact that eφ/hu is exponentially small on Σ′, together with the

properties of F± (in particular the fact that Re F±(y, z1)+d(y, U) remains non negative,

and is positive for z away from γ ∪ αz1 : see [Ma2, Formula (4.2)]), we obtain,
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Γ

(
∂u

∂ν
v± − u

∂v±
∂ν

+ (r1 · ν)
(
u1v

±
2 − u2v

±
1

))
ds = O(e−δ

′/h). (8.6)

Then, using the ellipticity of a±1 , we can write,

v±2 = h
a±2
a±1

v±1 =: hf±v
±
1 ;

h
∂v±1
∂ν

= −
(
a±1

∂F±

∂ν
+ h

∂a±1
∂ν

)
e−F±/h =: g±1 v

±
1 ;

h
∂v±2
∂ν

= hf±g
±
1 v

±
1 + h2

∂f

∂ν
v±1 := hg±2 v

±
1 ,

(8.7)

where f±, g
±
j are 0-th order classical symbols, and g±1 = −∂F±/∂ν + O(h). Inserting

(8.7) into (8.6) and multiplying by h, we find,∫
Γ

(G±u)v
±
1 ds = O(e−δ

′/h), (8.8)

with,

G±u := h
∂u1
∂ν

+ h2f±
∂u2
∂ν

− g±1 u1 − hg±2 u2 + h(r1 · ν)(hf±u1 − u2). (8.9)

Now, we specify a little bit better our choice of Γ. We set,

f2(y) := Im F+(y, z1).

Then, it can be seen that, inside U , the curve αz1 actually coincides with γ̃ :=∪
t>0 exp t∇f2(y0) (indeed, using (8.2), we see that ∇yRe F±(y, z1) = 0 along γ̃, and,

setting x(t) := exp 2t∇f2(y0) and ξ(t) := (1/2)ẋ(t), we deduce that (x(t), ξ(t)) is solution

to the Hamilton system associated with p1).

Now, we make depend the hypersurface Γ of a parameter t close enough to some

fixed t0 > 0, and we choose it in such a way that Γ = Γt is orthogonal to γ̃ at yt :=

exp t∇f2(y0).
Observing that the constant δ′ appearing in (8.8) can be taken independent of t, we

multiply this expression by e−(s−t)2/h (where s is some extra complex parameter), and

integrate with respect to t around t0. We obtain,∫
ω

(G±u)θ
±dy′dt = O(e((Im s)2−δ′)/h), (8.10)

where θ± := Jv±1 e
−(s−t)2/2h, J being the Jacobian coming from the change of coordinates

y 7→ (y′, t) (with y′ = Euclidean coordinates orthogonal to γ̃ at yt0), and ω is a small

volume around yt0 .

By construction, θ± is of the form,

θ±(y
′, t; z′, τ) = b±eiψ±(y′,t;z′,s)/h,



725(53)

Multidimensional molecular predissociation 725

where b is an elliptic analytic classical symbol, ψ± := iF± + (i/2)(s− t)2, and z′ stands

for local coordinates on the complexified ΣC of Σ.

In particular, using (8.3) and the fact that ∇yRe F±(yt0 , z1) = 0 and (thanks to our

choice of Γt) ∇y′f2(yt0) = 0, we see that, for any τ0 ∈ R, ψ± satisfies,

∇(y′,t)ψ±(0, t0; z
′
1, t0 − iτ0) = −(0, τ0);

Im ∇2
(y′,t)ψ±(0, t0; z

′
1, t0 − iτ0) > 0;

det∇(y′,t)∇z′,τψ±(0, t0; z
′
1, t0 − iτ0) ̸= 0;

Φ±(z
′, τ) := sup

(y′,t) real
(−Im ψ±(0, t0; z

′
1, t0 − iτ0)) = τ20 .

(8.11)

Therefore, according to the general theory of [Sj] (see also [HeSj3, Appendix a]), the

estimate (8.10) expresses the fact that, for any τ0 ∈ R, we have,

(yt0 ; 0, τ0) /∈MS(G±u). (8.12)

Now, since P2 is elliptic on ∂U ×{0}, we can construct a microlocal parametrix of P2−ρ
near (yt0 , 0), and from the system (P − ρ)u = 0 we deduce,

u2 = hQu1 (8.13)

where Q a 0-th order analytic pseudodifferential operator. Therefore, we see on (8.9)

that G±u can be microlocally re-written as,

G±u ∼ (1 + hA±)h
∂u1
∂ν

− (g±1 + hB±)u1,

where A± and B± are 0-th order analytic pseudodifferential operators (here, the symbol

“∼” means that the identity is valid in a microlocal sense only, and we refer to [HeSj3,

Appendix] for details on this notion).

Since elliptic operators do not change the microsupport, by taking a parametrix of

(1 + hA±) we see that (8.12) is equivalent to,

(yt0 ; 0, τ0) /∈MS

(
h
∂u1
∂ν

− (g±1 + hB̃±)u1

)
, (8.14)

still with B̃± a 0-th order analytic pseudodifferential operator. Taking the difference

between the two functions in (8.14) (that is, the one with the + index and the one with

the − index), we deduce,

(yt0 ; 0, τ0) /∈MS
(
(g+1 − g−1 + hB̃+ − hB̃−)u1

)
. (8.15)

Now, we observe on (8.7) that the symbols g+1 and g−1 are such that Im g±1 is elliptic

(this is because ∂νf2(yt0) ̸= 0), and Im g−1 = −Im g+1 +O(h). In particular, g+1 − g−1 is

elliptic, and (8.15) implies that, for all τ0 ∈ R, we have,

(yt0 ; 0, τ0) /∈MS(u1). (8.16)



726(54)

726 A. Martinez and V. Sordoni

Since, for all ε > 0, u1 is O(eε/h) uniformly near y0, and u1 is solution to (P1 − ρ −
h2W ∗)u1 = 0 there, by standard results on the propagation of the micro-support, we

know that MS(u1) is invariant under the Hamilton flow of p1. In particular, taking

τ0 =
√
E − V1(yt0) (so that (yt0 ; 0, τ0) is in {p1 = E} and it can be joined to (y0, 0) by

a bicharacteristic of p1), we conclude that (y0, 0) /∈ MS(u1). By (8.13) this also implies

that (y0, 0) /∈MS(u2), and therefore,

(y0, 0) /∈MS(u). (8.17)

Recall that here, y0 is the point of ∂U = ∂U(E) := {V1 = E} where the modified

geodesic γ = γ(E) reaches U(E), and that, in (8.17), E is considered as an extra (h-

independent) parameter. However, since all the previous estimates are uniform with

respect to E small enough, and sinceMS(u) is a closed subset of R2n, we can particularize

to E = E(h) := Re ρ(h), and finally obtain (this time with the original quantities),

(γ ∩ ∂U)× {0} ∩ MS(u) = ∅.

But, by Remark 3.2 (and the fact that u and u0 are exponentially close to each other near

y0), this is in contradiction with Assumption 4, and therefore Theorem 3.4 is proved.

9. Proof of Theorem 3.6.

The fact that Assumption 4 is not satisfied means that, for any γ ∈ G, there exists

δ0 > 0 and a neighbourhood W of γ ∩ ∂U , such that

∥u∥L2(W)⊕L2(W) = O(e−δ0/h). (9.1)

In addition, since ∂U is compact, the value of ε0 can be taken independent of γ.

By (4.6), it is enough to prove that v := eφ/hu remains exponentially small first

along γ, and then along Πx exp tHp2((γ ∩ ∂M)× {0}) (t small enough).

At first, using (9.1), we see that for t > 0 small enough (that is, for γ(t) is sufficiently

close to γ ∩U), we have (γ(t), 0) /∈MS(v). Then, by the same argument of propagation

used for (7.3), we see that this property remains valid for all t ∈ [0, t1), where t1 is the first

time for which γ(t) reaches the crest ∂Ω0. Hence, usingMS(v)∩[(γ∩Ω0)×Rn] ⊂ {ξ = 0},
we deduce the existence, for any t′1 < t1, of δ1 = δ1(t

′
1) > 0 and a neighbourhood W1 of

γ(t′1) such that,

∥eφ/hu∥L2(W1)⊕L2(W1) = O(e−δ1/h). (9.2)

Fixing t′1 < t1 sufficiently close to t1, and taking local Euclidean coordinates (x′, xn)

centered at γ(t1) such that γ̇(t1) is in {x′ = 0, xn > 0}, we consider the weight-function,

ψ(x) := ε1(1− ε−2
2 |x′|2)φ0 + (1− ε3)φ(x), (9.3)

where φ0 := φ(γ(t1)) and ε1, ε2, ε3 > 0 are small enough. Denoting by (x′1, x
1
n) the

corresponding coordinates of γ(t′1), we have x1n < 0, x1n ∼ t′1 − t1, x
′
1 = O((t1 − t′1)

2),

and φ(0, x′1) < φ(0).
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Then, we consider the open set,

ω := {|x′| < ε2 ; |xn| < |x1n|},

and, setting φ+ := min{φ(x) ; xn = −x1n , x ∈ ω} > φ0, we observe,

• On |x′| = ε2: We have ψ(x) = (1− ε3)φ(x) < φ(x);

• On xn = x1n: ψ(x) ≤ ε1φ0+(1−ε3)φ(x) ≤ φ(x)+ δ1 if we have chosen ε1 ≤ δ1/φ0;

• On xn = −x1n: ψ(x) ≤ ε1φ0+(1−ε3)φ(x) < φ(x) if we have chosen ε1 < ε3(φ+/φ0);

• On ωε: |∇ψ(x)|2 = (1− ε3)
2|∇φ(x)|2 +O(|ε1/ε2|2) ≤ (1− ε3)|∇φ(x)|2 if we have

chosen ε3 << 1 and ε1 << ε2;

• ψ(0) = (1 + ε1 − ε3)φ0 > φ0 if we have chosen ε1 > ε3.

In particular, taking ε1 ∈ (ε3, ε3(φ+/φ0)) and ε3 << ε2 << 1, on ∂ω we have eψ/hu =

O(1). Thus, performing Agmon estimates on ω (by using Green’s formula), we easily

conclude,

∥h∇(eψ/hu)∥L2(ω) + ∥eψ/hu∥L2(ω) = O(1).

Since ψ(0) > φ(γ(t1)), we deduce the existence of δ2 > 0 such that eφ/hu = O(e−δ2/h)

near γ(t1).

Again, as before we can propagate this information along γ up to the next point

where γ crosses ∂Ω0, where the same argument applies. Iterating the procedure, we

reach in this way any point of gamma, except its final end-point {x0} := γ ∩ ∂M.

In particular, if we fix x̃0 ∈ γ\{x0} close enough to x0, then there exists δ > 0 such

that e(φ+2δ)/hu is bounded near x̃0.

In a spirit similar to that of (9.3), for ε1, ε2, ε3 > 0 small enough, we set,

φ̃(x) = min (φ(x) + ε1 ; S0 + d(x,M)) ,

and we define,

ψ̃(x) := ε2(1− ε−2
3 |x′|2)S0 + (1− ε2)φ̃(x),

where, this time, (x′, xn) are Euclidean coordinates centered at x0, with {xn = 0} =

Tx0∂M and x̃0 ∈ {xn < 0}.
We have,

• On {|x′| = 2ε3}: ψ̃(x) = −3ε2S0 + (1 − ε2)φ̃(x) ≤ φ(x) + ε1 − 3ε2S0, and thus,

ψ̃(x) ≤ φ(x) if ε1 ≤ 3ε2S0;

• On {xn = x̃0n} (where x̃0n < 0 is the last coordinate of x̃0): ψ̃(x) ≤ ε2S0+φ(x)+ε1 ≤
φ(x) + δ if we have taken ε2S0 + ε1 ≤ δ;

• On {xn = |x̃0n|}: ψ̃(x) ≤ S0;
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• On {|x′| < 2ε3 , |xn| < |x̃0n|}: |∇ψ̃(x)|2 = (1 − ε2)
2|∇φ̃(x)|2 + O(|ε2/ε3|2) ≤

(1− ε2)|∇φ̃(x)|2 if we have taken ε2 << ε3;

• On {φ(x) + ε1 = S0 + d(x,M)} ∩ {|x′| ≤ ε3}: Since d(x,M ≥ S0 − φ(x), on this

set we have φ(x) ≥ S0 − ε1/2, and thus φ̃(x) ≥ S0 + ε1/2. Therefore ψ̃(x) ≥
(1 − ε2)(S0 + ε1/2), and then, if we have taken ε1 > 2ε2S0/(1 − ε2), we obtain

ψ̃(x) > S0 there.

Hence, using the fact that |∇φ̃(x)|2 ≤ V2(x) almost everywhere, and performing as

before Agmon estimates on ω̃ := {|x′| < 2ε3 , |xn| < |x̃0n|}, we obtain,

∥h∇(eψ̃/hu)∥L2(ω̃) + ∥eψ̃/hu∥L2(ω̃) = O(eε/h).

For all ε > 0, and thus, thanks to the last property of ψ̃, denoting by ω1 a small enough

neighborhood of {φ(x) + ε1 = S0 + d(x,M)} ∩ {|x′| ≤ ε3} ∩ ω̃,

∥u∥H1(ω1) = O(e−(S0+δ1)/h),

for some constant δ1 > 0.

This can be done along any γ ∈ G, and since we already know that eS0/hu is expo-

nentially small near ∂M\
∪
γ∈G(γ ∩ ∂M), we conclude that there exists a neighborhood

V of ∂M such that, for any µ > 0 small enough, eS0/hu (together with all its derivatives)

is exponentially small on V ∩ {V2 = −µ}.
Then, setting Ω2 := Î ∩ {V2 < −µ} and applying the Stokes formula on Ω2, we

obtain,

(Im ρ)∥u∥2L2(Ω2)
= −h2 Im

∫
∂Ω2

∂u

∂ν
· uds+ h2 Im

∫
∂Ω2

(r1 · ν)u2u1ds, (9.4)

and the result follows.

10. About examples.

In contrast with the case of highly excited shape resonances (see [DaMa]) where

examples are not easy to construct, here, because of the presence of two potentials, the

task is simpler.

A first type of examples can be made by considering a rotationally invariant po-

tential V1. In that case, it is well known that the eigenvalues of P1 corresponding to

rotationally invariant eigenfunctions are separated by a gap of order h2 from the rest of

the spectrum. Since the eigenvalues of P̃ (defined in (3.2)) coincide with those of P1 up

to some O(∥W∥2h2), if the interaction W is sufficiently small, the same gap will hold for

the corresponding eigenvalues of P̃ , so that Assumption 3 will be satisfied for them. In

addition, one can see that the corresponding eigenfunctions of P̃ are close, up to O(h2),

to those of P1. On the other hand, the normalized rotationally invariant eigenfunctions

of P1 can be constructed by means of one dimensional (WKB or so) methods (see, e.g.,

[Ya]), and near the boundary of the well U (that corresponds to turning points), it can be

seen that they are of size at least 1. Therefore, the same will be true for the corresponding
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eigenfunctions of P̃ , and Assumption 4 will be satisfied, too. Concerning Assumption 5,

it strongly depends on the choice of the potential V2, and one can for instance take it in

such a way that the crest of the cirque realizes its (Euclidean) distance with the well at

only one point, with sufficient non degeneracy in order to satisfy Assumption 5.

Another kind of examples may be given by taking V1 with separated variables. For

instance, in dimension 2, one may take V1(x, y) = v1(x) + v2(y), where v−1
2 (0) is a

bounded interval with non empty interior, while v−1
1 (0) = {0}. In that case, as in [Ma2,

Section 7], one can construct sequences of values of h for which some eigenvalues of P1

that are close to 0 are separated by a gap of order h3 from the rest of its spectrum, and

the corresponding eigenfunctions are concentrated on x = 0. If in addition the interaction

W vanishes at x = 0, then, the arguments of the previous paragraph can be repeated,

and give other examples where Theorem 3.4 applies, for instance if V2 is chosen in such a

way that the minimal geodesics between the well and the sea starts on x = 0. If, on the

contrary, V2 is chosen in such a way that any minimal geodesic γ between the well and

the sea starts away from x = 0, then the eigenfunction is exponentially small on γ ∩ U ,

and Assumption 4 is not satisfied anymore. In that case, Theorem 3.6 applies and shows

that the width of the corresponding resonance is exponentially smaller that e−2S0/h.
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