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Abstract. Dirichlet’s theorem in Diophantine approximation is known
to be closely related to geometry of the hyperbolic plane. In this paper we con-
sider approximation in the setting of number fields and study relation between
systems of linear forms and geometry of products of symmetric spaces.

1. Introduction.

It has been known for a long time that Dirichlet’s theorem in Diophantine approxi-
mation is closely related to geometry of the hyperbolic plane. Let

H={z+V-1ly|z,yeR;y>0}

be the upper half-plane equipped with the Poincaré metric (dz? + dy?)/y?. The group
SL(2,R) acts on H isometrically as a group of linear fractional transformations:

Az 4+ A
= = —1 = .
z P for z=2x+v-1lye H, g (V £>€SL(2,R)

A horoball in H is an open ball tangent to the boundary at infinity of H: it is a subset
of the form

HB(C)={z+V-1lye H|y>C}

for a positive number C' or its translate by an element of SL(2,R). For a given real
number a, let 7y, : [0,00) — H be the geodesic ray defined by

Ya(s) =a+e °V/—=1 for s> 0.

The image under

3

of the horoball HB(C) is the interior of the circle

g(jﬂ)GSMZR)
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A\ 1\’ 1\?
(w‘y> + (y‘zc> = (20)
tangent to the real line at A/v if v # 0, and the following holds.

THEOREM 1.1 (Ford [11]). Let A\, v be coprime integers with v > 0 and let

_(rn
g = <V §> € SL(2,Z).
Then we have

< = (1.1)

if and only if the geodesic ray v, intersects the image under g of the horoball HB(1/(2C)).

Based on this correspondence Ford ([11]) gave a geometric proof of a theorem of
Hurwitz without using the theory of continued fractions. Similar relation as Theorem 1.1
between approximation of a complex number by ratios of algebraic integers in an imagi-
nary quadratic field and geometry of the 3-dimensional hyperbolic space was also studied
n [12], [13], [19].

In [15] we studied such relation in the case of real quadratic fields and totally complex
quartic fields. The problem is to find appropriate generalization of the inequality (1.1)
and corresponding spaces. It seems to be the answer that the inequality is the one treated
in [10], [21] and the spaces are products of 2-dimensional and 3-dimensional hyperbolic
spaces, although we treated other inequalities in [15]. In this paper we study more
general cases of linear forms. We consider the following situation.

Let k be a number field of degree d = [+2m with [ real places and m complex places.
We denote by ¢1,...,¢ : K — R the real embeddings and ¢;41,...,t+m : K — C the
complex embeddings which are not complex conjugate to each other. Let ky; = R! x C™
be the Minkowski space associated to k. We denote by ¢ the embedding R — k), defined
by

tA)=(A...,A) for AeR.
The twisted diagonal embedding tx : k — kj; is given by
Lk(a) = (Ll(a)a"'a[’l(a)?[’l-‘rl(a)a"'a[’l-‘rm/(a)) for a € k. (12)

For any positive integer ¢, this embedding ¢, induces an embedding k? — (kjr)?, which
we also denote by tg:

te(a) = (te(ar),...,w(ag)) for a=(a1,...,aq) € k7.
Forn=(n',....n"*™), p=(p',...,p!*™) € kp; and X € R, we put

= 1o A=t At
71l 1§ry§a}§mln\, n=An,. ..., "),
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and

n+p=m+p" .. 0T+, mp= (et T,

where | | is the usual Euclidean absolute value on R or C.

Let n, p be integers such that n—1>p > 1 and L = (L;;) a p X (n —p) matrix with
entries in ky;. For i = 1,...,n — p, we denote by L; the R-linear map (kp)? — ku
determined by the ith column of L:

P
Li(z) = ZLkixk for @ = (z1,...,2p) € (km)P.
k=1

We call such an R-linear map a kjp;-form. Let

L(z) = (L1(2), ..., Ln—p(@)) and [laf| = max fa,]]
<i<q
for x € (kym)P and @ = (a1, ...,aq) € (kp)9, ¢ > 1.
Let O be the ring of integers of k and consider the inequality

[l (@) [P Lk (@) = er(y) "7 < C (1.3)

for & € (Of)? — {0} and y € (O)"P.
For any ring R and positive integers ¢, ¢’ we denote by M(q,q’; R) the set of all ¢ x ¢’
matrices with entries in R. Let A be the discriminant of k and

2\ ™ 1/d
ce={(2) et} =21

Then the following generalization of Dirichlet’s theorem follows from Minkowski’s convex
body theorem.

THEOREM 1.2.  Suppose that C > (Cy)™. Then the following hold.
(1) For every L € M(p,n — p;kar) there exist & € (O)P — {0}, y € (Or)" P satisfying
the inequality (1.3).
(2) If L(tx(a)) does not belong to (tk(Ok))" P for any a € (Ok)? — {0}, then there exist
infinitely many distinct pairs (x, y) € (O)P X (Of)" P — {0} x (Ok)" P satisfying (1.3).

The inequality (1.3) is the same as the one treated in [22] and is different from
the one treated in [5] (see Section 2). It is also different from the one treated in [26,
Theorem 1]. In the case n = 2, (1.3) becomes an inequality for a single kj/-form in one
variable, which coincides with the inequality treated in [10], [21] (see also [24]).

We say that the system Lq,...,L,_, of kp-forms is badly approximable if there
exists a positive constant C such that

e (@) [P Lk (@) = er(y) "7 = C (1.4)

for any x € (Ok)? — {0} and y € (Ok)" P. Let By, p x be the set of L € M(p,n — p; k)
such that the system of k,;-forms induced from L is badly approximable.
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We show that one can treat the inequalities (1.3), (1.4) in the same geomet-
ric framework as in Theorem 1.1 by replacing the upper half-plane H with V =
(SL(n,R)/SO(n))! x (SL(n,C)/SU(n))™, SL(2,Z) with SL(n,Og), 7. with a suitable

geodesic ray vz, in V, {HB(C)}c>1 with a suitable family of horoballs in V', respectively.

Let V = SL(n,R)/SO(n) and V= SL(n,C)/SU(n). We equip V with the left
SL(n,R)-invariant Riemannian metric induced from the Killing form of the Lie algebra
of SL(n,R). Similarly we give V the left SL(n, C)-invariant Riemannian metric induced
from the Killing form of the Lie algebra of SL(n, C).

For any positive integers ¢, ¢’, each embedding ¢ can be extended to an embedding
M(q,q'; k) — M(q,q';R) by

w(9) = (x(9i5)) (1.5)

for g = (gs5) € M(q,q'; k), if ¢ is real. Similarly, in the case ¢ is complex, ¢, can be
extended to an embedding M(q,¢’; k) — M(q,q’; C) by the same formula (1.5). Then
the twisted diagonal embedding 1 given by (1.2) can be extended to an embedding
SL(n,k) — SL(n,R)! x SL(n,C)™ by

te(9) = (t1(9), -+, u(9), tu+1(9)s - - tigm(g)) for g € SL(n, k). (1.6)

Thus the group SL(n, k) acts isometrically on the Riemannian product V! x ym through
the embedding ¢g:

e(9) = (01(9) - @1, gm(9) - Tigm) for &= (21,...,214m) € VI x V™. (1.7)

We study the relation between the inequalities (1.3), (1.4) and geometry of the
symmetric space V! x ym through the action of the group I' = SL(n, Of) on V! x vm.
We define a geodesic ray v* in V! x ym by the formula (3.13) in Section 3 and take a
family of horoballs {B(v*,7)}, -, determined by v* according to Definition 3.1. We also
define a geodesic ray 7z, : [0,00) — V! x V™ for a given L € M(p,n — p;kar) by the
formula (3.19) in Section 3. Then we consider when 7y, intersects translates of B(y*, )
by elements of SL(n, k).

Let €1,...,€4m—1 be a system of fundamental units of O and let

Cy = max{|e;(e;) P, [(eq)| 720
li=1,....0+m—1;j=1,...,l+ m}.

We denote by I,, the unit matrix of order n. The relation corresponding to Theorem 1.1
is as follows.

THEOREM 1.3. Let D be a positive integer and let g = (a;5) € SL(n, k) such that
all the entries in the nth row of the matriz (DI,)g belong to O. Suppose that

V2dn
T >
T vn-—1

log D.
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Then we have the following, where r = exp{—+/2(n — 1) 7/(nVd)}.
(1) If a = (ani,-..,anp) # 0 and

Jow(@)? 1 oela)) + @) < (£)"

n

where b = (ap pi1,---,ann), then v1([0,00)) intersects the horoball ug(g)~" - B(v*, 7).

(2) If v.([0,00)) intersects the horoball 1y (g) ™" - B(v*, ), then a # 0 and there exists a
unit w € O such that

e (wa)|” || L(sk(wa)) + ui(wb)|[" 7P < (CLr)"™2.

Using this correspondence, we study the set B, . Let B be the subgroup of
SL(n, k) consisting of all the upper triangular matrices in SL(n, k) and let g;,...,gn be
a complete representative system of the double coset classes I'\SL(n, k)/B.

THEOREM 1.4. Let L € M(p,n — p;kar). The following two conditions are equiv-
alent.
(1) There exists a non-negative number T such that vr,([0,00)) does not intersect

h
U U w(ouwle) - BG" 7).

i=1gel’
(2) The system of kar-forms Lq, ..., L,—, induced from L is badly approzimable.

Let IT: VI x Vm — e (D)\ (V! x ‘7m) be the natural projection. Since the first
condition of Theorem 1.4 is equivalent to the condition that II o~y ([0,00)) is relatively
compact in tg(I)\ (V! x V™) (cf. Lemma 6.1), we have the following.

THEOREM 1.5.  The system L1, ..., Ly,_, of kar-forms is badly approzimable if and
only if IL o v£,([0, 00)) is relatively compact in v (I)\(V x V™).

By topological consideration (see Lemma 6.2) this is equivalent to the following. Let
g be the diagonal matrix such that the first p diagonal elements are equal to 1 and the
last n — p diagonal elements are equal to —A = —p/(n — p):

ap =diag(l,...,1, =\, ..., =A).
THEOREM 1.6. Let
gs = (e—wo/WIaoI), N .76—8%/(“3'&0\)) e G = (SL(n,R))! x (SL(n,C))™,
where |ag| = \/m Then the following two conditions are equivalent.

(1) The trajectory {ue(IMurgs|s > 0} is relatively compact in 1 (I)\G.
(2) The system of kps-forms induced from L is badly approzimable.



890 T. HATTORI

Theorem 1.6 is a generalization of Dani’s correspondence ([6, Theorem 2.20]), which
coincides with the one proved in [22] by a different method. If k = Q this is the origi-
nal correspondence of Dani and if n = 2 this is Proposition 3.1 of [10]. Our geometric
approach makes it clear how Theorem 1.1 relates to Dani’s correspondence and its gen-
eralization.

Using this correspondence, Ly showed the following.

THEOREM 1.7 (cf. [22, Theorems 1.9, 1.10]). The set By pr has zero Lebesgue
measure, when we identify M (p,n — p; kyr) with RPM=P) . Burthermore, B p ke is thick,
and in particular has Hausdorff dimension dp(n — p).

We recall that the case k = Q was established in [20], [25] and the case n = 2,
p =1 was proved in [10].

For 1 < j < p, let L : (ka)""? — ks be the kp-form determined by the jth
column of 'L € M(n — p, p; kar):

n—p

Li(y) = Lisyk for y=(y1,-,yn—yp) € (kar)" 7.
k=1

Let

L'(y) = (L (y),...,L,(y)) for ye (k)" P.

THEOREM 1.8. Let n > 3. The following two conditions are equivalent.
(1) The system of knr-forms L, ..., Ly, induced from the matric L € M(p,n — p; k)
s badly approximable.
(2) The system of kar-forms LY, ..., L, induced from the transpose 'L € M (n—p, p; kar)
of L is badly approximable.

Theorem 1.8 is a new generalization of Khintchine’s theorem (Theorem 5B of [27,
Chapter IV]). This is shown by considering a family of horoballs { B(v., 7)},>0 obtained
by exchanging v* with the geodesic ray 7. defined by the formula (7.1) in Section 7.
In the case k = Q, a geometric interpretation of the transference principle is given in
[7] by means of Busemann functions on the quotient space SL(n,Z)\SL(n,R)/SO(n)
associated to two different geodesic rays.

So far we have seen that there are abundant badly approximable systems of k-
forms. However, it is another problem to find explicit examples of such systems. For
this, it is already possible to use Theorem 6.5 of [5] in general (see Proposition 2.1), and
results in [18] in the case n = 2. We present another geometric method to construct
badly approximable systems of kj;-forms by using Theorem 1.5.

Let k' be a number field of degree d’ = I’ + 2m’ with I’ real places and m’ complex
places. We denote by ¢},...,¢), : K — R the real embeddings and Lrgts s Wiy
k' — C the complex embeddings which are not complex conjugate to each other. Let
Ky = R x C™ be the Minkowski space associated to k’. Suppose that k is a subfield
of k. Then there exists a natural embedding of k', into kjs, which can be extended to
an embedding
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i et M(p,n = pikiy) — M(p,n —pikar)
(see Section 8 for precise definitions).

THEOREM 1.9. Let k # Q. Suppose that the system of k'y;-forms induced from
a matriz L' € M(p,n — p;k’y;) is badly approzimable. Then the system of kyr-forms
induced from the matriz ¢ (L") € M(p,n — p; kar) is badly approzimable.

Let k' = Q. Then ¢q k(L) induces a badly approximable system of kjs-forms if
L' € M(p,n — p;R) is a matrix which induces a badly approximable system of linear
forms. Since B,, ; q has the power of the continuum ([25]), we can construct uncountably
many matrices in B,, , k. In particular, it is possible that we obtain a concrete example
of badly approximable system of ky;-forms when L' is a matrix in M (n,n — p; R) which
induces one of Perron’s examples ([23]) of badly approximable systems of linear forms
(see Theorem 4B of [27, Chapter II]).

Finally we mention Diophantine approximation with weights in the setting of number
fields. If n = 2, [4+m > 2, it is possible to consider notion of weighted badly approximable
vectors by using weighted norms on kj,;. In the case where k is a totally real number
field, it was shown in [1] that the set of weighted badly approximable vectors with respect
to a given weighted norm is thick, which is a generalization of the result in [10] for real
quadratic fields.

This paper is organized as follows. In Section 2 we prove Theorem 1.2 and compare
it with results of Burger ([5]). We collect necessary facts on symmetric spaces in Sec-
tion 3. In Section 4 we prove Theorem 1.3 and find a basic correspondence. We prove
Theorem 1.4 in Section 5. In Section 6 we describe a relatively compactness criterion
and prove Theorem 1.5. We prove Theorem 1.8 in Section 7 and prove Theorem 1.9 in
Section 8.

2. Convex body theorem.

In this section we prove Theorem 1.2 by using Minkowski’s convex body theorem
and compare it with results in Burger’s paper [5].

We first remark that Theorem 7.1 of [28] and the standard argument as in the proof
of Theorem 2A of [27, Chapter 11| yield the following version of Minkowski’s convex body
theorem.

THEOREM 2.1. Let A be an (nd)-dimensional lattice in R™ with fundamental
domain T, and vol(T) the volume of T. Let R be a compact convex subset of R™® with
volume vol(R), which is symmetric about the origin 0 € R™. If vol(R) > 2"vol(T),
then R contains a non-zero point of A.

PrROOF OF THEOREM 1.2. Let L = (L;;) € M(p,n — p;ky) and L;; =
(L}j,...,Lijm) € kyy for each i,5. For j = 1,...,n —pand ¢ = 1,...,l, we define
an R-linear map L : R” — R by

P
L;Z-(w) = Zszxk for € = (z1,...,2,) € R”.
k=1
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Forj=1,....n—pand gq=1+1,...,l+m, we define an R-linear map L? : C?» — C
j

P
Lg(:c) = ZLijk for © = (21,...,2,) € CP.
k=1

Let Q > (Cg)™ and put

F=Qlr, = {(Cg)n}l/(np) L

Let

LT = (L}) € M(p,n — p;R)
forg=1,...,[, and

L= (L%) e M(p,n —p;C)

forgq=1+1,...,l+m. For each ¢ we put

571I 0]
Bq = (bgj) = <51 tfq _Ell'np> )

where I is the unit matrix of order k for any positive integer k. Let

Rq:{m:(xl,...,xn)eR” D bk <1 fori:L...,n}
k=1

forg=1,...,1, and

Rq:{w:(:vl,...,xn)ecn Zbgkxk <1 fori:l,...,n}
k=1

for g=1+1,...,1+m. Then the volume vol(R,) of R, is given by

QPP if 1<¢<I,
vol(Rg) =
an§2re2(n=p) if [41<q<l+m.
We put
R=RiX X Riym C (R"! x (C")™.

Under the natural identification of C with R?, we regard (R")! x (C")™ as R™ x R?"™ =
R, Then R is a compact symmetric convex subset of R"® and its volume is given by

vol(R) = vol(R1) X - -+ X VOl Ry ) = 287 (Cy )¢ = 27 Hm)| Ay |"/2,
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On the other hand, 13 ((O)") is a lattice in (kas)™ = R™ because t4(O) is a lattice
in kpr. Let A = 1((Ok)™) and T a fundamental domain of A. Since the volume of a fun-
damental domain for tx(Oy) in ks = R? is equal to 27| Ag|*/? (cf. [28, Theorem 9.4]),
the volume of T' is given by

vol(T) = {2—m|Ak|1/2}" — 2 A2,
Hence vol(R) = 2"%vol(T) and R contains a non-zero point ¢ ((a, b)) due to Theorem 2.1,
where @ = (a1,...,ap) € (O)P, b= (b1,...,bp—p) € (Ok)"P. Then

(tg(a),1q4(b)) € Ry for g=1,....1+m,
which means that

ny 1/(n—p)
)] 0= @7, |Eug(a) - oyt)| < = = { B} (2.1)

fori=1,...;p;j=1,...,n—p;and ¢=1,...,l +m. Then we have

(@) = max |lu(ai)|| = max{|ega)] [ 1<i<p 1<g<i+m}<QY"  (22)
SUsp

and

[L(tk(@)) = ue(b) ]| = | max |[L;(ee(@)) — ue(b;)l]

<j<n—p

= max{|L(14(a)) —1q(bj)| | 1 <j<n—p, 1 <qg<l+m} < {

which imply that
[k (@)[” | Lk (@) — e (D)[" 77 < (Cr)" < C.
If a = 0, then it follows from (2.1) that |¢4(b;)] < e < 1 for all j and ¢. Then the
norm Ni(b;) of b; satisfies

I+m 2

H Lq(bj)

q=Il+1

| Nie(b5)] = <1,

l
H Lq(by)
q=1

which shows that b; = 0 for j = 1,...,n —p, and b = 0. This is a contradiction, and
hence a # 0. This proves (1).

Suppose that the assumption of (2) is satisfied. Since for fixed @) there are only
finitely many pairs (a,b) with @ € (O)? — {0}, b € (Or)" P satistying (2.2) and (2.3),
let C’ be the minimum of the numbers || L(:x(a)) — tx(b)|| for such pairs. Then we have
C’ > 0. Let @’ be a positive number such that

ny 1/(n—p)
{(C;;) } ’ <.
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Then we can find a pair (a’,b’) with a’ € (O)? — {0}, b" € (Ok)" P such that
(Cr)" 1/(n—p)
)
in the same way. This pair is different from (a,b). Repeating this procedure, we obtain

infinitely many distinct solutions (z, y) € (Og)? x (Ok)" P — {0} x (O)" P of the
inequality (1.3). This proves (2). O

lew(a)ll < (@Y7, | L(ti(a)) — u(®)]| < {

We have also proved that the following holds.

THEOREM 2.2.  For every L € M(p,n—p; kys) and every real number C > (Cy)™'?,
there exist € € (Of)? — {0}, y € (Og)" P such that

lex(@)]| < C, L (@)) = ()| < (C) =P P/ =), (2.4)

REMARK 2.1. In the proof of Theorem 1.2, the existence of a = (a1,...,a,) €
(Ok)?—{0} and b = (b1, ...,b,—p) € (Ok)" P satisfying (2.1) corresponds to Lemma 5.1
of [5] in the case where S is the set Sy of all places of k lying over infinity.

For any positive integer r, let

l I+m
hs, () = { max bq(l‘i)ll/d}{ max |Lq(%)|2/d}

1<i<r 1<ilr
qg=1 q=Il+1

be the Sp-height of x for x = (z1,...,2,) € k". For a = (a1,...,a,) € k¥ and b =
(b1,...,bp—p) € " P, we regard (a,b) € k" and let

hs, (a, b) = hSo((a’a b))
be the Sp-height of a and b. We also put

H(L(ux(a)) = u(b))

l l+m
- { 13?1;?_1) ‘L?(Lq(a)) - Lq(bj)|1/d}{ H max |Lg(bq(a)) _ Lq(bj)|2/d},

Then it follows from (2.1) that the following holds, which is equivalent to [5, Theorem 5.2]
in the case where S is the set Sy of all places of k lying over infinity, under the natural
identification

M(p,n —pika) = M(p,n—p;R)! x M(p,n —p;C)™. (2.5)

THEOREM 2.3.  For every L € M(p,n—p; kys) and every real number C > (Cy)™'?,
there exist € € (Og)P — {0}, y € (Og)" P such that

hs,(z) < C,  H(L(u(2)) — w(y)) < (C)"/ P CP/ ), (2.6)
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By the inequality of arithmetic and geometric means we have

l l+m
1
hs,(x) < d{ maX |Lq(33l | +2 Z max |Lq($2)|}
1

q= l+1 ==
< max{[ig(@)] | 1<i<p, 1 <q<i+m} = @) (2.7)

and

H(L(u(x)) = tk(y))

l I+m

1

q .

Sd{ e 1@ )l +2 3, e 1S Lq<w>>—Lq<y]>}
9= q

< max{|LY(1y()) = tq(y;)| |1 <G <n—p, 1< g <+ m) = || L((z)) — k()]
(2.8)
for @ = (z1,...,2p) € k', y = (y1,...,Yn—p) € k" P. Therefore Burger’s inequality
(2.6) follows from (2.4), although both of them follow from the same inequalities (2.1).

We remark that Burger’s definition of ‘badly approximable Sy-systems of linear
forms’ ([5, p.237]) is rephrased as follows under the identification (2.5):

DEFINITION 2.1. Let L € M(p,n — p;ka). Then we say ‘L € M(n — p,p;R)! x
M(n —p,p; C)™ is a badly approximable Sp-system of linear forms (of dimension (n —
p) X p) if there exists a constant C(k, L) > 0 depending only on k and L such that

hso(x,y)"H(L(tk(®)) — we(y))" ™" > C(k, L)
for every x € (Og)P — {0} and y € (O)""P

PROPOSITION 2.1.  The system of kr-forms induced from L € M(p,n — p; kar) is
badly approximable if 'L is a badly approzimable So-system of linear forms in the sense
of Burger.

PRrROOF. Let L € M(p,n — p;kys) and suppose that ‘L is a badly approximable
So-system of linear forms. Then L(ix(x)) does not belong to (tg(Ok))™* P for any x €
(Ok)? — {0} and ||L(tk(x)) — te(y)|| > 0 for such « and any y € (O)"P.

Suppose that @ = (a1,...,a,) € (Og)? — {0} and b= (by,...,bp—p) € (Op)" 7P

If |[L(tk(a)) — te(b)]| > 1, then we have

lr(@)[[P [ L(tk (@) = te ()" =[x (@)[[P = 1> 0.
Suppose that | L(tg(a)) — tk(b)|] < 1. Then we have
L} (tq(@)) = 1q(bj)] < 1 (2.9)
forj=1,...,.n—pand ¢g=1,...,l +m. Let

C'=max{|L}]| |1<i<p;1<j<n—p;1<qg<l+m}



896 T. HATTORI

and C"” = pC’ + 1. Since

P

Z Li;| leg(ar)] < llex(a IIZIL 1< pC'lluw(a)l,

9(
|L(1q(@ jtalar)

it follows from (2.9) that
()] < 1+ |Lj(19(@))] <14 pC7llw(a)]| < (pC" + 1)|len(a)]| = C"|[uk(a)|
for each j and ¢. This and (2.7) show that
()] < C" k(@)
and
hs,(@,b) = hs,((a,b)) < |lu((a,b))]| < max {[we(a)l, [l (®)[} < C”|ux(a)ll
Since L is a badly approximable Sy-system of linear forms, we have
hs,(a,b)PH(L(tk(a)) — k(b)) P > C(k,L) >0
for a constant C(k, L) depending only on k and L. Then it follows from (2.8) that
() lon(@) |7 | Ltk (@) — e (B)"7 > sy (a, b H(L(in()) — ta(9))" 7 > C(k, L).
Let
C" =min {1, C(k,L)/(C")?} > 0.
Then we have
[l ()17 | L (ere () = () [P = C™
for any x € (Ok)? — {0} and y € (O)"P. O

3. Geometry of (SL(n,R)/SO(n))! x (SL(n,C)/SU(n))™.

Let n > 2, G = SL(n,R) and K = SO(n). Let V = G/K and denote by z the
coset, of the identity element of G. We denote by g and £ the Lie algebras of G and K,
respectively, and by p the set of all real symmetric matrices of order n with trace 0. Then
the direct sum decomposition g = £+ p is a Cartan decomposition. The tangent space of
V at x¢ is naturally identified with p through the differential at the identity element of
the projection G — V. The inner product { , ) on p defined by the Killing form of g is

(X,Y) =2n-trace(XY) for X,Y €p. (3.1)

It can be extended to a left G-invariant Riemannian metric on V. Then V equipped
with the resulting metric is a symmetric space of noncompact type (see [8], [17] for more
details on symmetric spaces of noncompact type).
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Similarly, let G = SL(n,C) and K = SU(n). Let V = G/K and denote by Zo the
coset of the identity element of G. We denote by g and ¥ the Lie algebras of G and K
respectively, and by p the set of all Hermitian matrices of order n with trace 0. Then the
direct sum decomposition g = T+ p is a Cartan decomposition. The tangent space of 1%
at T is naturally identified with p through the differential at the identity element of the
projection G —» V. The inner product {, ) on p defined by the Killing form of g is

(X,Y) = 4n - trace(XY) for X,Y €p. (3.2)

It can be extended to a left G-invariant Riemannian metric on V. Then V equipped with
the resulting metric is a symmetrlc space of noncompact type.

The Riemannian product V =V x V™ as well as V and V are Hadamard mani-
folds, that is, simply connected, complete Riemannian manifolds of nonpositive sectional
curvature. Let di be the distance on V induced from the product metric on V. The
group I' = SL(n, Ok) acts isometrically on 1% by (1.7) and the volume of the quotient
space 1 (I\V is finite.

Let W be a Hadamard manifold and dy the distance on W induced from the Rie-
mannian metric of W. A geodesic v : [0,00) — W is a geodesic ray if it realizes the
distance between any two points on it: dw (v(s),v(s')) = |s — ¢'| for any s,s’ > 0. Any
unit speed geodesic [0, 00) — W is a geodesic ray.

DEFINITION 3.1 (cf. [8], [2], [9]). (1) Let v :[0,00) — W be a geodesic ray. Then
the function b(7y) on W defined by

o) () = Jim {dw (2,7() =5} for @ € W

is called the Busemann function associated to =.
(2) For any geodesic ray v and any real number 7, the set B(y,7) = b(y) ™' (—o00, —7) is
called a horoball in W.

For an isometry g of W and x € W, we denote by g - x the image of x under g.
We use the similar notation for subsets of W and geodesics in W. Then we have the
following for any isometry g of W and 7 € R.

b(g-7)(x) =b(y)(g~"-x) for zeW, (3.3)
9-B(y,7)=B(g-7, 7).

PROPOSITION 3.1 (Proposition 1.10.2.(4) of [8, Chapter I]). Let v be a geodesic
ray in W. Then we have

b(v)(z) = b(V)(W)| < dw(z,y) for any z,y € W.
Let

A ={a=dag(a,...,a,) €G | a1,...,a, >0} (3.5)
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and let NV be the subgroup of GG consisting of all the upper triangular matrices with
diagonal elements 1. Then G = NAK is an Iwasawa decomposition of G and

V:NA-xoz{va-mo|v€N,a€A}.

For any g € G, gA - z¢ is a totally geodesically embedded Euclidean space in V.

Let A = A and let N be the subgroup of G _consisting of all the upper trlang‘ular
matrices with diagonal elements 1. Then G = NAK is an Iwasawa decomposition of G
and

‘7:]/\\7121\'55‘\0:{1}(1'/1’\0

UEJ\A/',aég}.

For any g € @, gﬁ - To is a totally geodesically embedded Euclidean space in V.
Let

a=0a={a=dag(a,....,an) | a1,...,an €R; &g+ + a, =0}.

The Lie algebra a of A is a maximal abelian subspace of p. For any o € a — {0} the map
Yo : [0,00) — V defined by

Ya(s) = <exp sa|> g = 31l gy = eso/lel
e
is a geodesic ray in V', where exp : g — G is the exponential mapping and |a| = v/(«, ).
Any geodesic ray in V' is of the form g-7,, for some g € G and o € a—{0} (see Theorem 6.2
of [17, Chapter V]).
Similarly, for any o € @ — {0} the map 7, : [0,00) — V defined by

aoz(s) = (exp Sa”> .’x\o — esa/HaH '550 — esoz/HaHI?
(0%

is a geodesm ray in V where exp : g — G is the exponential mapplng and |laf =
v/ {a, a). Any geodesic ray in V is of the form g - Ao for some g € Gandaed— {0}.

For any a € a — {0} = @ — {0}, 74([0,00)) C A-x¢ and A - z( is isometric to the
Euclidean space a equipped with the metric ( , ) induced from the Killing form of the
Lie algebra of G. Similarly, 74(]0,00)) C A - % and A - Z is isometric to the Euclidean
space a equipped with the metric {(, )) induced from the Killing form of the Lie algebra
of G. Hence a direct computation in R"~! gives the following.

LEMMA 3.1. Leta€a—{0}=a—{0}. Then

b(ra)(€? - o) = <@| B> for Bea (3.6)
and

b(Fa)(e® - 7o) = <<”Z| 6>> for B eq. (3.7)
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For each i =1,...,n — 1, we define a linear function 6; on a = a by
0;(a) = a; — ajp1  for a=diag(ay,...,a,) Ea=na.
Let

at ={acalbi(a)>0 for i=1,...,n—1}
= {diag(ay,...,an) €alar > az > -+ > a,}

and aT = at. Then a™ is a closed Weyl chamber of a and @t is a closed Weyl chamber
of a.

LEMMA 3.2 (cf. [14, Lemma 2-3] and [16, Lemma 5.1]). Let o € at — {0} =
at —{0}. Then the Busemann function b(vs) is invariant under the action of the group
N onV and the Busemann function b(7,) is invariant under the action of the group N
onV.

Let P(n,R) be the set of all positive definite, real symmetric matrices contained in
G. The group G acts transitively on P(n,R) as follows.

g-v=gx'g for xc P(n,R), g€ @G.

Since the isotropy group at the unit matrix is K, P(n, R) is diffeomorphic to V = G/K.
From now on we identify V' with P(n, R). Under this identification, ¢ is the unit matrix
I,,. Similarly, let P(n, C) be the set of all positive definite, Hermitian matrices contained
in G. The group G acts transitively on P(n, C) as follows.

g-x=gr'g for z€ P(n,C), ged.

Since the isotropy group at the unit matrix is K, P(n,C) is diffeomorphic to V=G / K.
From now on we identify V with P(n, C). Under this identification, Zy is the unit matrix
I,

We remark that P(n,R) C P(n,C). For z € P(n, C) we denote by [J;(z) the (j x j)-
minor determinant in the lower right corner of z. For a permutation ¢ of n letters and
z = (25) € P(n,C), let

Zo(1)o(1)  Ro(1)a(2) " Ro(l)o(n)

Fo(2)o(1)  Ro(2)a(2) "7 Fo(2)a(n)
02 = (Z5()o(j)) = : : :

RZo(n)o(l) Ro(n)a(2) " Ro(n)o(n)

LEMMA 3.3 (cf. [14, Lemma 2-5] and [16, Lemma 5.3]). Let a = diag(ayq, ..., ap)
€a—{0} =a—{0}. If we take a permutation o such that

Qg(1) 2= Qp(2) 2 " 2 Qg(n)s

then we have
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n—1
b(a)(2) = = log { ] o )}

ol i

for z € P(n,R) and

n—1
2
b(Fa)(2) = o log { [0 z>%<nk>—%<w+l>}
k=1

[l

for z € P(n,C).

Let o € a™ and define a geodesic 7, : [0,00) — V=vVixym by

a(s) = (7 (55) w0 (5) Ao (@) A (@

for s > 0. In the right hand side of (3.10), the first [ entries are equal to

S\ L sa/(Vdlal)
o =e - X
! (ﬂ) 0

and the last m entries are equal to

/’)7a \/53 _ e\/isoc/(\/g”a”) ‘T = esa/(\/&la\) - Tg.
Vd

Since

() ()

Yo 18 a unit speed geodesic. From [2, Section 3.8] we have

\/é l4+m

l
b (21 21em) = —= 4 S b)(z) p+ Y203 bE) ()
Vi) Vi

Jj=l+1
for z1,...,21 € P(n,R) and z41,...,214m € P(n,C).
Let G=G' x @™, K = K' x K™,
A=AlxAm = Al x A" c G
and N = N! x N™. Then we have V! x V™ = NA - zo, where
20 = (g, . . ., To, To,...,T0) € V! x vm,

Let

(3.8)

(3.10)

(3.11)
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ZlQ: {(a,...,a) eﬁ’aeA:E}
and
A = {(aiag(pl,...,b}), .., diag (o™, b5™)) € A

[0 O =1 for =1,

Then A = A’ EQ. Using the method ‘restriction of scalars’ (cf. Proposition 6.1.3 and
Corollary 6.1.4 of [29]), one can find an algebraic group G defined over Q such that
the group Gr of real points of G is isomorphic to G and the group Gz of integral
points of G is isomorphic to I" = SL(n, Ok). Then KQ is isomorphic to the topological
identity component of the group of real points of a maximal Q-split torus of G and Alis
isomorphic to the topological identity component of the group of real points of a maximal
R-split torus of G. The Lie algebra dq of Aq and the Lie algebra @ of A’ are orthogonal
to each other with respect to the product metric of (a) x (@)™.
Ifaca—{0}and 8= (B1,...,B4m) €&, then it follows from (3.11) that

b(%é)((eﬁ1 CZg, ..., €0 g, P T, L P - Zo))
l I+m
1 <a V2 o
R YRR N I ST
va| &\ va\~ 2\l
WIS
=——F=(— D _Bi+2 ﬁj>
i\l &2 2

From this and Lemma 3.2 we have the following, because V = NA KQ - zo and A’
normalizes N.

LEMMA 34. Ifaeat — {0} =at — {0}, then
b(Fa)(ua - 2) = b(Fa)(2) for zeV,ue N and o' € A'. (3.12)

Let o* be the diagonal matrix in a* = @™ such that the first n— 1 diagonal elements
are equal to 1:

o =diag(l,...,1,—(n —1)).
Then we have
la*] =/2n%(n—1), |la*] =+4n%(n—1).

We define a geodesic ray v* : [0,00) — V! x Vm by

7 (8) = o (5) = (w (\%) e Ve (\;g) B <\/\/2;> e P (%)) (3.13)

for s > 0.
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It follows from Lemma 3.3 that

b(Var)(z) = m log{01 (2)}" = mk’g 0 (2) (3.14)

n n
*

for z = (2;;) € P(n,R) and

~ 2n n_ N
R0 )(2) = T g0 (2))" =~ 1o i (2) (3.15)
for z = (2;;) € P(n,C). From (3.11), (3.14) and (3.15) we have
l l+m
b(Y) (2155 214m) = % ;b(%*)(zj) + g j;lb(%*)(%)
n l \/§n +m

:\/ﬁ ;10g51(2j) +m j;llogml(zj)

l I+m 2
n
=—log Dl(z-)> < Dl(z-)> (3.16)
2d(n — 1) <]1:[1 ! j:llll !
for z1,...,2z1 € P(n,R) and z41,...,214+m € P(n,C).

Let ag be the diagonal matrix in a® = @t such that the first p diagonal elements
are equal to 1 and the last n — p diagonal elements are equal to —\ = —p/(n — p):

ap =diag(l,..., 1, =\, ..., =A). (3.17)
Then we have
o] = V/{ao, ag) = v/2n%p/(n —p), laol = V{0, ao) = V/4n2p/(n — p).

We define a geodesic ray 7o : [0, 00) — V! x Vm by

90(5) = T (8) = (€770 T0D s/ (ool g,
esa0/(Vdlaol) g0 g=sao/(V]ao]) .560) (3.18)
for s > 0.

Let L = (L;;) be a p x (n — p) matrix with entries in kj;. Let

Lij = (L;

oo Ll LI L e by =R x CT

130 Hig
for each 7, j. We put

— (74 .
Lq*(Lij) GM(p,’ﬂ*p,R)

forg=1,...,1, and
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L% = (Lj;) € M(p,n —p; C)

forq=1+1,...,1+m. Let

I, L4
wl =77 ) € SL(n,R)
t (O Inp

forg=1,...,1,

I, L1
a _ (1p
uj = (O Inp> € SL(n,C)

forq=1+1,...,l+m, and
uL:(ulL,...,ulL,ulL+l,...,ulL+m)Gé:Gl x G™,

where [ is the unit matrix of order k for any positive integer k.
We define a geodesic ray vz, : [0,00) — V! x V™ by

vL(s) = ur -yo(s) for s> 0. (3.19)

4. Basic correspondence.
In this section we prove Theorem 1.3.

PRrROOF OF THEOREM 1.3. (1) It suffices to show the following: if v, (][0, 00)) does
not intersect 1x(g)~1 - B(y*, 7), then @ = 0 or

(@) 7 | L(er (@) + e (B = (g)nﬂ'

First we compute the value of b(y*)(tk(g) - yL(s)). Let
w(9) -vL(s) = (21, .., z14m) € VEX V™,

The gth entry z, of tx(g) - vr(s) is

o {Lq(g) . que_SQD/(\/g‘aol) B lf 1 S q S l’
q =
U

tq(9) %e—sao/(\/a\aon - Zo i l+1<qg<i+m.
Let (c¢f -+ - ¢2) be the nth row of the matrix
L (g)uq e*Sao/(\/aaoD = (g) 6_8/(\/E|a0|)_[p e/\S/(\/E|a0|)Lq
q L q 0 eAs/(\/E\a[)DIn_p .

In the sequel, we write y@ instead of ¢, (y) for y € k, y(9) instead of 1,(y) for y € k
with j > 2:

y(q) = 14(y), y(q) =1(y) for yek,ye k. (4.1)
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For 1 < j < n — p, we denote by Lg- the linear form determined by the jth column
of L9. If 1 < ¢ <, L] : R? — R is given by

P
Li(y) = ZLijk for y = (y1,...,yp) €R?
k=1

and if [ +1 < ¢ <l+m, L] : C? — C is given by

P
Li(y) = Zszyk for y = (y1,...,yp) € CP.
k=1

Then we have

%

= (L;I(a(q)) + a(q) )e)\S/(\/Ela()D for 1 S ] S n —p.

cl = e_s/(‘/amo‘)ag) for 1<i<p,
q . .
n,p+j

Cp-‘r]

From (3.16) we have

b(v*) (ke (g) - vL(5) = b(v") (215 - -+, 214m)

l l+m 2
:LIO |:|1 Zq |:|1 Zq 4.
(o) (o)) o

and

Oi(zq) = |c§1? + [ + - + | ]?

n—p
— |a(Q)|2e—28/(\/3|ao\) + Z |L;1.(a(q)) + GSI;,HP 2rs/(Vd|aol) (4.3)
j=1

where |a(?| is the Euclidean norm on R? or C?: |a(?|? = \a£q1)|2 +o 4 |a§l‘2|2.
Suppose that 77, ([0, 00)) does not intersect tx(g) ™! - B(v*, 7). Then we have

b(v )(k(g) - vr(s)) > —7 for all s> 0.
Since
@@ =109+ 1 08D < uwlan) |2+ -+ rlanp)? < pllew(a)|

and

n—p
S IL4 @) +all)
j=1

< |[|L1 (ke (@) + Lk(an’pﬁLl)HQ + o A [ Ln—p(ik(a)) + Lk(ann)||2
< (n = p)| L(wk(a)) + (D),
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it follows from (4.3) that
01 (zg) < pHLk(a)Hze—zs/(\/ﬁlaol) + (n—p)|Llw(a)) + Lk(b)Hzez,\s/(\/ﬁ\ao\)_

This and (4.2) imply that

n

i
m -d log {p”Lk(a)Hze 2s/(v/d |awo))
+ (= D) Llue(a)) + ()10

> b ek (9) - () > —7 »

for all s > 0. We recall that

A= L ) n:exp(—Tm/(\/gn)).

n-—p

Let
1/(n-p)
X {625/(\/E|0¢0|)} L €= ||L(k(@)) + u(B)?
and
F(X) = (n—p)EX" = KX™ P + pllg(a)||*.

Then (4.4) implies that f(X) > 0 for any X > 1.
Let a = 0. Then b # 0 and

F(X) = (n—p)|u(B)2X"P {Xp - Mﬁ“@n} '

Since 0 < k < 1/D? and (n — p)||we(b)||> > 1/D?, we have f(X) > 0 for any X > 1.
Let @ # 0. If £ =0, then
F(X) = —kX"7P + pllu(@)||* < 0
for sufficiently large X, which is a contradiction. Hence £ # 0. Then

F/(X) = n(n — p)ex"—r-! (xp _ T’;) |

Let Xo = {x/(n€)}*/P. Then f(X) is monotone decreasing in the interval (0, Xo) and
monotone increasing in (Xy, oo). If

n/p (n—p)/p
s =-o(5)" () olt@l? <o

then
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(n—p)/p n/
()7 ()t

and

o ky(-p)/p 1\ PPy 9 9 1
car = (5)"(E) S Pt 2 et =,

which means that the inequality f(X) < 0 has a solution in the interval [1, 00). Therefore
f(Xo) > 0, which implies that

n (1 n—p
et = (£)" (3
The last inequality is equivalent to
H)n/2

o (@)” L o)) + ea(0) "7 >

(2) Suppose that 7 ([0,00)) intersects tg(g) ™t - B(y*, 7). Then there exists s > 0
such that

b(v*)(ek(9) - vz (50)) < —T.
Let tx(g) - vL(s0) = ud'a - zp;
(I, & I, 2\ o
(5 2) (57
a = (a',...,d"™) ceA, a=(b,...,b) GAQ,
where

=k e M(p,n—p;R) for k=1,...,1, e M(p,n—p;C) for k=1+1,...,14+m,

a® = diag(a¥,...,a¥) for k=1,...,14+m

and
b= diag(by,...,b,) € A= A.
For any units vy, ...,v, € Ok such that vy ---v,, =1, let
YT = (vi,...,vp), ky=dag(v1,...,v,) €T
and

ay = t,(ky) = (diag (Uil), el vy(Ll)) ,...,diag (ng_m), . ,vfj*m))) .

Recall that the norm Ng(p) of an element p of k is given by
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l I+m
N =JTww I lu@l*
j=1 =141
Let
. . l+m m
v = (dlag (\v%l)\,...ﬁvg)o ,...,diag <|v§+ )|,...,|v7(1“r )|>>
Since

l I+m
(Hlv§“)l)< 11 Iv§q>l2> = |Ne(vj)| = 1

q=Il+1

for each j, we have by, € A’. Let

by = (p’lIV)pngn)a

where

p?f:diag(p{;l,...,p{)n% pf)i:\vgj)mgbi forj=1,....,0+m;i=1,...

Since
(+8attn) (o att) = o] = (1ol ett) (1o et
we have
ayad'a-zg = byd'a-zg = by - 2.
Let v’ = ayu(ay)~* € N. Then it follows from Lemma 3.4 and (4.5) that
te(kr)k(9) - vo(s0) = ayud’a - 29 = v'ayad'a- 29 = u'biyd’a - 2
and

b(v*) (tre(kr ) er(g) - Y2 (50)) = b
b

() (W'brd'a- z) = b(y")(a- z)
() (ua'a - z0) = b(v")(tk(g) - vL(50))-

M.

907

(4.5)

Hence we may consider tg(ky)tr(g)vL(so) instead of tx(g)vr(s0) by taking suitable units

ViyeooyUp.
Let

v (ky)ie(g)ve(s0) = (215 -+ Z14m)-

For 1 < ¢ <1 we have
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(9) (U§Q))—1

q
pvl

ol (el o,
and
Dh(z0) = (p2,)" = [ () (b)*
Similarly, for [ + 1 < ¢ <[+ m we have
= |02 |* = |09 (a2)? (b,)?.
Let Ug be the group of units of O and let
Uk — Wi ={(1,- - yrm) ER™™ | y1 4+ + yigm = 0}
be a homomorphism defined by
p(v) = (loglu(v)],... log|u(v)|,log |1 (V)% .. ., 10g trsm(v)[)
for v € Ug. Let

D= {Mople1) + 4+ Agm-10(E14m-1) |
—1/2< X <1/2 for i=1,....,l+m—1}.

Then the image ¢(Uyg) is a cocompact lattice of Wj, with a fundamental domain D due
to Dirichlet’s unit theorem. Accordingly, there exists a unit w such that

(logal,...,logal,2logalt™, ... 2loga™) + ¢(w) € D.

n?
Let
Cy = max{log|t;(&;)], —loglej(es)| |i=1,...,0+m—1;j=1,...,l+m}.

Then O = e2(Hm=1C2 and there exist A, ..., \iym_1 € [—1/2, 1/2) such that

I+m—1
log a, + log |¢;(w Z Ai log |e;(e5)],
for j=1,...,1+ m. This shows that
I+m—1
. (l—l—m— 1)02
log(lu; @laf)] < Y il [log |ej (=) | < ——————.
i=1

Hence we have

—(I+m = 1)Cs < log|i;(w)]a], — log |tj:(w)]al, < (I+m —1)Cs
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and
e~(rm-10s ¢ 1@ em-nca o e 1 m).
‘Lj/ (w)|a%
Let
vy = =Up_9=1, Un_lzw_l, Up = W.

Then we have

) 2 N2
Ui(z) _ [ ly(@)lapbn | _ [ 4 w)las,
Or(z3) — \Jigo(w)la b (@)l
and
1 Oi(25)
— < < (.
C1 ~ Oi(z) !
In particular,
Oi(25) > = O (z4) (4.6)

for any j. From (3.16) we obtain

d- max Dl(zq)] <b(Y )21y ey Zipm) < =T

n 1 [ 1
M joe | =
2d(n — 1) lCr 1eiinm

This means that

max [y(z,) < Cyexp {—T V2(n— 1)/(n\/g)} = C1k. (4.7)

1<q<l+m

On the other hand, we have

tq(kr)iq(g) = diag (1, o (w(q))fl,w(q)) (az(g))
and

D (z) = |(wa) @220/ (Vo)

n—p
DL (@a) ) 4 @)D | 0/ VoD ay)
j=1

Hence it follows from (4.7) that

|(wa) (@ |2e =250/ Vilaol) < ¢y

and
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n—p
Z |L?((wa)(q)) + (wan,p+j)(‘1)|2 e2Xso/(Vdlaol) ~ Ok
=1

for each ¢q. Then we have

||Lk(wam)||2 = max |(wam)(Q)|2 < max |(wa,)(q)|2 < C’mezs"/(‘/g‘o‘ol)
1<q<i+m 1<q<i+m

for 1 <i <p, and

12 (0ew0) + ()P = | mare L)) + (i p0,)

< Cllie_Q)\So/(\/E‘aol)
for 1 < j < n — p, which imply that
re(wa)||?> = max [|ee(wan;)||> < Cyre2so/ (Vdlao)
1<i<p

and

|L(ok(w0)) + k(@b) |2 = | max || L (uk(wa) + (wan pey)|F < Crie 2o/ Ve,
SJsn—p

We recall that A = p/(n — p). Then we have
ek (wa)||P < (Cyi)P/2epso/ (Vdlao])

and

| Lo (wa)) + i (wb) [P < (Cy) P/ 2empool (VoD
We conclude that

ek (wa)[? | L (wa)) + ue(wb) "7 < (Crr)"/2.
If @ = 0, then b # 0 and it follows from (4.8) that
O1(zq) = |(wh)(@ 2290/ VdlooD) for g =1, 1+ m.

This shows that

l +m n—p 2
|Nk(Dwan, +)‘ so/|a 1
Hml(zj) H Oi(z) | > Z ngp E e2VdAso/|ao| > D2d’
j=1 j=l+1 j=1

which implies that

—7 > b(y") (e (kr)er(g) - vL(50))
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2

Lem —V2dn

l
n
=———7—"1lo Ui (z4 (24 > ———logD
and
V2d
T< r log D
n—1

This is a contradiction. Hence a # 0. O

5. Badly approximable systems and horoballs.

In this section we prove Theorem 1.4.

We recall that B is the subgroup of SL(n, k) consisting of all the upper triangular
matrices in SL(n,k) and I" = SL(n,Ok). Let g1,...,gn be a complete representative
system of the double coset classes I'\SL(n,k)/B. Let D be a positive integer such that

(DIn)g;1 € M(n,n;O) for j=1,...,h. (5.1)

PROOF OF THEOREM 1.4. Suppose that (1) is not satisfied. Then there exist a
number ig € {1,...,h} and sequences {\;}32; C R, {s;}52; C [0, 00),

{kj };il C ngo
such that

V2dn

n —

logD <A <A <Az <---, hm)\J:oo

J—0o0

[t

and
b(v) (ke (k1) - yn(s5)) < = A,

Let (aj1---ajn) be the nth row of kj_l and let

1 P 1 e
a; = ((le,...,ajp) € <D0k> s bj = (aj7p+1,...,ajn) S (D0k> .
From Theorem 1.3 (2), there exists a unit w; € O such that
ok (s B o 50) + ey |7 < (O 2 exp { Vi T, /v3E} . (5.2
and a; # 0 for each j. Since

lim exp{fm&/\/ﬁ} =0,

j—o0

the inequality (5.2) shows that the system of kjs-forms induced from L is not badly
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approximable and the condition (2) is not satisfied.

Suppose that the condition (1) is satisfied. Let
a=(a1,...,ap) € (Og)? —{0}, b= (b1,...,bp—p) € (O)" L.

Suppose that a,4, # 0 with 1 < go < p. We define a matrix g’ = (g;;) € SL(n, k) by

e/ aq, if i=1 and j=n,
1 if i+j=n+1and 2<i<n-—1,
—0g, if i=n and j=1,

ggj: ay if i=n and j = qo,
a; it i=n,2<j<p and j# q,
bi—p if i=n and p+1<y,
0 otherwise,

where ¢ is equal to 1 or —1. Let eq,..., e, be the standard basis of R" and put
w=("eq, 'ez-egq-1 —'er 'egi1---"en) € SL(n,Z).

Let go' = g'w. Then g=* € SL(n, k) and the nth row of g7 is (a1 ---ap by -+ bp_p).

There exist ig € {1,...,h}, u € B and k € I' such that g7! = ugi_olk. Let
(@ig1 -+ Giyn) be the nth row of the matrix (DIn)g;Ol. The ideal generated by the
set of all the elements in the nth row of the matrix (DI,,)g;, ! coincides with the ideal
generated by the set of all the elements in the nth row of the matrix (D1,)g;, 1k, which
we denote by ¢;,. Let v be the (n,n)-entry of the matrix u~!. Since

(DL)u"g™" = (DI,)g;. 'k,
we have
(D)(@1,...,ap, b1,...,bn—p)(¥) = ¢4
and
DA Ng(v)|N((a1, ... ap, by,...,by_p)) = N(ci,).

This implies that

N ()] < o)

< (5.3)

From Dirichlet’s unit theorem, for any u € k with |Ng(p)| = 1 there exists a unit w
of k with

ler(wp) || < Cs,
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where

Cy = elbtm=1C2/2 _ /e
Let 1/ € k—{0}. Applying the above to u'/|N(p')]/¢, one can find a unit w’ such that

lew (@' i) < Cs| Nie(u)|M
(cf. Lemma 2.4 of [10]). We take a unit w” such that

(") || < Cs|Nie ()] (5.4)
and put

v =diag((w”)™",1,...,1,u").
From (3.16) we have
by )ik (v) - 2) = b )(z) for 2 € T
Let ¢" =u"1lg7' € g;)lf'. From the assumption we have
b(v) (e (V)ure(9”) - YL (5)) = b(v) (ke (g”) - v (s)) = =7

for s > 0. Hence v7(]0, 00)) does not intersect g ((vg”))™! - B(y*, 7). Since the nth row
of the matrix vg” is (w”va w"”vb), it follows from Theorem 1.3 (1) that

" p 1 " n—p K n/2
lew(w va) [ L{ee (W va)) + w(w vb) "7 2 ()

From (5.4) we have

lo(wvag)| = | max (") al]
< (V)| max |al?| = [l (w V) | le(az)] < Os| N (@)Y er(ay)]]
1<i<l4+m
for each j = 1,...,p. Hence we obtain

lee(w"va)[| = max [lu(w"va;)|| < Cs|Ni()[V*|luk(a)].
ISP

Let L = (L;;) and

Ly = (L}

oo L, LN L) € by =R x €

igr Hig o

From (5.4) we have

L' " " b —
2o ("va)) + onle"vby)]| = | max

P
(Z L;,J— (w”y)(i)as,)> + (w”u)(i)b;z)

n’/=1




914 T. HATTORI

o () 1)

=  max
1§i§l+m
< ™Il e (Zl L g ) 057 = o (@ DI 1Ly (@) + 0 (B5)
for each j =1,...,n — p. Hence we obtain
IL(wk(w"va)) + u(w vb)[| = max |L;(wke(w"va)) + u(w"vh;)|

1<j<n—p

< e V)| 1L (@) + wk(B)]| < C3|Nip()[ /| Lt (@) + i (B) ]

from (5.4). Therefore

1 1
ek (a)l| > WH%(W va)l,

IL(ek(@)) + (D) = mL(Lk(w"m)) + e (W'vb)),

C3|Nk 1%

and

Jen(@)P 1Ea(a)) + B > s (5) (55)

Let ¢; be the ideal generated by the set of all entries in the nth row of the matrix
(DIn)gi_1 for each i =1,...,h and let

Cy = max N(¢;).

1<i<h
Then it follows from (5.3) that
Cy
|Nk(V)| < ﬁ.
From this and (5.5), we obtain
D K\"/2

P >~ (2 .
o) " 1 Gex(a)) + )" 2 s () >0

Therefore the system of k,;-forms induced from L is badly approximable and the condi-
tion (2) is satisfied. O

6. Relatively compactness criterion.

We recall that D is a positive integer satisfying (5.1) and I : V — 1 (I)\V is the
natural projection.

PROPOSITION 6.1.  For any q € {1,...,h}, we have
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di (20, tk(99¢)b - 20) > diz (20, b+ 20) —2nV2dn log D for any b e Aq and geT.
PROOF. Suppose that b # e. Let
B = diag(B1,...,8,) €logA
such that

18l = /(8. B) =1/Vd

and
b= (e3P, ... e0P),
We consider the geodesic ray 73 : [0, 00) — V defined by
Yp(s) = (esﬂ Zo,...,eB xg, e T, ..., e o) for s>0.
Let (9g4)~" = (9i7) and let o be a permutation such that

Bo1) = Bo2) =+ 2 Bon)-

We define an element ¢’ = (ggj) of SL(n, k) by
9ii = 9o (i) o ()

Let

ue(9') 20 =0 (tk(ggq) ™" - 20) = (&1, .., &n).

For each r € {1,...,n — 1}, there exists r integers n},...,n. such that
! DY !
gnJrlfT, n} gn+l—r, nl
e #0.
/ /
In,n} T In,n’.

We denote by A\, the value of this minor determinant. Then

oY 2 )
(&) = {0}, D) = (809
for 1 <+ <landl+1<j <I+m. Hence we have

l I+m 2
<Hm,.<§,»>> 1 O | = M)

i'=1 §'=l+1

Since D" A, € O, we also have
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1 1
>

— D32dr — D2dn

We remark that |B,1)| < |B]/v2n, |Bom)| < |B]/vV2n, and hence

50(1)—5a(n):|ﬂa(1)—5a(n)| 1Bl |ﬁa(n)|<\/?
18 18 el Bl ~— Vn

Then it follows from Lemma 3.3 and (3.11), (3.8), (3.9) that

[N (A)? >

l \/5 l+m
b(35) (1 (994) " - 20) Z 78)(&;) G PIRICHLE))
j=1 j=l+1
2\ Bo(n—r)~Bo(n—r+1)
" e | T1 (T | [ TT o0
= O r . r .
vas e BT AT

n—1 Bg n—r 750 n—r+1
n 1 ( ) ( +1)
- {1 o)
Vd 15| {U D2dn

Bo(1)=Bo(n
1 W~ Bon) ) — Botn
= \/En|6| log<D2dn> =—2n2Vd M log D > —2nv2dn log D.

18]
Suppose that

di (20, tk(99¢)b - 20) < diz (20, b~ 20) — 2nV2dn log D.
Then we have

dy (tk(994) ™" - 20, F5(50)) = diy (20, tk(994) - 5(50)) = diy (20, tk(994)b - 20)
< dy (20, b+ 20) — 2nV2dn log D = s — 2nV2dn log D.

Since the function
[0,00) 3 5 — dy (tr(999) ™" - 20, T5(5)) — 5
is monotone decreasing by the triangle inequality (cf. [2, Section 3]), we obtain
b(36)(1r(99q) " - 20) = lim {dg (tre(99q) " - 20, F5(5)) — 5}
< dg(we(994) " 20, Y5(s0)) — 50 < —2nV2dn log D,
which is a contradiction.
LEMMA 6.1.  Lety:[0,00) — V=VixV™ be an arbitrary geodesic ray and
a = diag(ay,...,a,) € at — {0} =a* - {0}.

Then the following two conditions are equivalent.
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(1) v([0,00)) does not intersect

h
U U 9)ue(9:) - B(Fas 7)

for some non-negative constant 7.
(2) o y([0,00)) is relatively compact in 1(I)\V.
For positive numbers c let
A, = {a = diag(a,...,a,) € A‘ai/ai+1 >c for t=1,...,n— 1}, (6.1)
(A). = {(a.....0) € Aq|ac A} (6.2)

and let  be a compact subset of NA containing the identity element. Then a Siegel set
in V is a set of the form &, e = n(AQ)C zo for some ¢ > 0 and a compact subset n of
NA containing the identity element.

THEOREM 6.1 (cf. [3], [4]). There exist a positive number Cs < 1 and a compact
subset 1 of NA' containing the identity element such that the following holds:

h
r) (_U 1k (90) 6) =V

if 0 <c<Cs (mdanCﬁg’.

Let
pw=logCs, S=6¢c;n = nl(gQ)c5 - 20 (6.3)
and
h
G = U te(g:) - S. (6.4)
i=1

We remark that

log(Aq)1 = {logb|b & (Aq)i } = {(5,....6) € (a") x @)™} < log(Aq)c,
and

log(AqQ)c, = {(B,...,8) €d' xad " |60;(B) > p=1ogCs for i=1,...,n—1}.

We first consider in the Lie algebra a. Let

1 n—3 n—2n-—1
ﬁodlag<u, 3 u,u-,()u)Ea, (6.5)
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where the ith diagonal element is equal to {n — (2i — 1)} u/2. Foreach i =1,...,n — 1,
let v; be the diagonal matrix such that the first ¢ diagonal elements are equal to 1/i and
the last n — i elements are equal to —1/(n — 4):

1 1 1 1
vi_diag( <, = ey — ,>€a. (6.6)

2 PICECICY 7/
We denote by I; the half-line
[0,00) 3 s — By + sv; (6.7)

in a. Then log Ac, is the smallest convex subset of a containing the n — 1 half-lines
l1,...,1p,—1 and it is an infinite cone in a with apex f.
Let a € at — {0} and let [ be the line

(—00, 00) S8 8-
|

For v > 0, let H(v) be the hyperplane in a through va/|a| which is perpendicular to I.
Let 9;; be the angle between v; and v;. For ¢ < j we have

0 < cosd;j =

<1 (6.8)

and 0 < §;; < m/2. Since o € at — {0}, we may write a = 22;11 AV by non-
negative numbers A1,...,A,_1. Then, for each i = 1,...,n — 1, the angle between «
and v; is smaller than 7/2 and hence I; intersects H(v) at one point, say P;(v). The
intersection H(v) Nlog Ac, is the smallest convex subset of H(v) containing the n — 1
points Py (v),..., P,—_1(v), and is compact.

We recall that di; is the distance on V induced from the product metric on V=
Vi x V™. We define a distance d on v, (I)\V by

d(TI(z), TI(2")) = glIGI? dy (2, te(g) - 2') for z,2/ € V.

PROOF OF LEMMA 6.1. Suppose that the condition (1) is satisfied. Then the
subset

{B=5.....8) e log(Aq)cy

‘b(aa)((eﬁ'mOa"'7€ﬁ'x07eB"&:\07"'76ﬁ'EO)) > _T}

« T
6 € 1OgA05, <M7 ﬂ> < \/&}

of at x @™ is homeomorphic to a cone in a over H(7/+v/d) Nlog Ac, with apex By, and is
compact. Let

_ {g (B,...,B) € log(Aq)c,
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C1 =8 Nb(Fa) " ([-7,00)).

Since b(J4) is N A'-invariant (cf. Lemma 3.4), we have
C = {v-(eB-xo,...,eﬁ-xo, e’ T, ....e% Z)

’5 € log A, <0‘, /3> <r/Vd,ve m}

|

and C; is compact. Let

Cj = tk(95) - C1 = tk(g5) - S Nb(tke(g;) - Ya) ' ([—7,00))

for j=1,...,h and

C: Cj.

h
1

J

Then C is also compact.

919

For each s > 0, there exist g € I"and iy € {1,..., h} such that tk(g)-v(s) € tk(giy)-S,

due to Theorem 6.1. From the assumption, v(s) does not belong to
e (9) ™" k(o) - B(Far 7) = wh(9) " - Bltke(gio) - Fs )
and
bk (gio) - Vo) (tk(g) - 7(s5)) > —T.
This means that

e(g) - (s) € e(gi,) -CL CC

and II(v(s)) < II(C). Since s > 0 is arbitrary and II(C) is compact, we have

TI(y([0,00))) C II(C) and II(~([0, 00))) is relatively compact.

Suppose that the condition (2) is satisfied.

CLAIM.  There exists a positive number Cg such that the following holds: if g € I,

s >0 and te(g) - v(s) € tk(gi) - S, then b(tk(g:) - Vo) (te(g) - v(s)) > —Cs.

PROOF OF CrLAIM. If this is not true, then there exist a number iy € {1,...,h}

and sequences {\;}32; C R, {k;}32, C I, {s;}32; C [0, 00) such that

0< A <A <Az3<---, lim Aj = o0,

J—0o0

ue(kj) - v(8;5) € te(gio) - S and b(er(9io) - Vo) (re(F5) - ¥(s5)) < —A;.
Let
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ve(k) -7 (s5) = (3005 - 20 uj € M, a; € (AQ)cy-
It follows from Lemma 3.4 that

b(Fa)(a; - 20) = b(Va)(uja; - 2o0)

=b
= b(tk(Gio) * Vo) (ke (Gio)uja;z - 20) = b(tr(iy) - Vo) (th(kj) - (55)) < =A;.

Since
b(Fa)(2) = b(Fa)(2)| < dg (2, 2) for z,2' €V
from Proposition 3.1, we obtain
dy (20, a5 - 20) Z [b(Ya)(20) — b(Ya)(a; - 20)| = [b(Ya)(a; - 20)| > ;- (6.9)
Remark that the set {a 'va|a € (Ag)cs, v € M1} is compact. We put
Cr = max{d;/(va 20,0 - 2p) | a € (/TQ)CS, v E 771} .

For any g € I' we have

di (r(gks) - v(s5), 20) = diy (te(9)ne (930 )uja; - 2o, 20)
> diy (20, tk(9)tk (i) aj - 20) — di (te(9)the(gio )as - 20, tae(9)tr(Gio )ujaj - 20)
= d (20, tk(9)tk(gio)a; - 20) — dip(a; - 20, uja; - 20)
> di (20, tk(9)tr(gio)a; - 20) — C7.

Then, it follows from Proposition 6.1 and (6.9) that
di (te(gk;) -v(s5), 20) > dir (20, aj - 20) — 2nV2dn log D — C7 > \; —2nV 2dn log D — Cy.

Since g is an arbitrary element of I', we obtain

d(TI(v(s;)), H(20)) > A\j — 2nv2dn log D — C.
Hence ITo~([0, 00)) is not bounded because lim;_, o, A; = co. This is a contradiction. [J

Let Cs be the diameter of the compact set b(7,) " ([~Cs,0)) N'S. For any s > 0,
there exist a number ig € {1,...,h} and g € I" such that tx(g) - v(s) € tx(gi,) - S. From
Claim we have

te(9) - ¥(s) € tke(gio) - {b(Fa) " ([~ Cs, 00)) N S}
and
dir (20, te(g;,'9) - ¥(s)) < Cs.

Then, for any j € {1,...,h} and ¢’ € I', we obtain
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b(Fa) (g g'™") - ( )) = b(Fa) (k950" 97 gi0) 0 971) - (s))
> b(Fa) (g5 g ™ 0 9i0) - 20)
—dy (e ((g] Y 90009 9) - (s), gty

1—1

g_lgio) : ZO)

= b(Fa) k(959" 9 01 - 20) — dip (95, 9) - ¥(5), 20)
> b(Fa) k(95 (9" 97")g0) - 20) = Cs.
Since
g, (D" '1,)g;, (DIn)g;()1 € M(n,n; Og),
we have

(D"I,,) { O 19’1)91-0}_1 € M(n,n; Og).
By the same argument as that in the proof of Proposition 6.1, we have
b(Fa) (g5 (9’ 97 )gio) - 20) = —2n? V2dn log D.
Let Cy = 2n%v/2dn log D. Then we have

b(tk(9'97) - Fa) V() = b(Fa) (kg5 19’ ™") - ¥(5)) > —(Cs + Co).

We conclude

h h
¥(s) & | B(tk(9'9)) - Yar Cs + Co) = U k(9'9j) - B(a, Cs + Co)
j=1 j=1
for all ¢’ € I', s € [0,00), which shows that the condition (1) is satisfied. O

Applying Lemma 6.1 to the geodesic ray v*, we obtain Theorem 1.5 from Theo-
rem 1.4.

We consider three natural projections f, : G — G/K, fo : G — 1u(I')\G and
(NG — u(D)\G/K.

We remark that V = G / K is equipped with the quotient topology induced from
f1 and (I )\G is equipped with the quotient topology from f;. Then the quotient
topology on tg (I )\CNT' / K induced from II coincides with the quotient topology induced
from 7 because ITo f; = wo fs.

LEMMA 6.2. Let E be a subset of G. Then Il o f1(E) is relatively compact in
e (D\G/K if and only if f2(E) is relatively compact in v (I")\G.

PROOF. Suppose that fo(F) is relatively compact. Then there exists a compact
subset V of 1k (I")\G such that fo(E) C V. Since Ilo f1(E) = wo fo(E) C n#(V) and 7(V)
is compact, I o f1(F) is relatively compact.



922 T. HATTORI

Suppose that II o f1(E) is relatively compact. Then there exists a compact subset
W of 1 (I)\G/K such that Il o f1(E) C W.

Let w € W. We choose a point @ of V = G/K such that IL(#) = w. Since the
action of ¢ (I") on Vis properly discontinuous, there exists an open neighborhood U of
w such that

#{9€F|Lk(g)-@€b{} < 0.
For a positive number r we consider an open ball
Bg(2r)={z € 1% | d (2, w) < 2r}

of radius 2r in V. If r is sufficiently small, then the following holds: if g € I', then
tk(9) - Bz(2r) = Bg(2r) or w(g) - B(2rr) N Bg(2r) = 0. By replacing r with a smaller
positive number if necessary, we may suppose that the closure of Bg(r) is compact and
contractible. Let

Then

14 (U) = [ o) - U

ger

and U, is an open subset of 1(I")\G/K containing w.

For each w € W we take such an open subset U, of Lk(F)\é/f( Then {Uy bwew
is an open covering of W. Since W is compact we can choose a finite subcovering, which
we denote by Uy, ...,U,;. We also denote by (71, ceey ﬁq the corresponding open subsets
U, of V:

UZ-:H([I-) forall t=1,...,q.

Let F; be the closure of (71-. Then F; is a compact subset of V and

q

U)o LqJUi SDW D Ilo fi(E).

i=1 i=1

The map f; : G — (?/I? is a fiber bundle with fiber K. Since each F; is contractible,
the restriction of f; to f; ' (F}) is a trivial bundle. Hence f; *(F;) is diffeomorphic to the

product F; x K and in particular compact.
Let

q
z=J ).
i=1

Then Z is compact and
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q

AZ)=JF, Tofi(2)=|J1(F) Do fi(E).

i=1 i=1
This means that for each a € F there exist g € I" and b € Z such that f1(a) = tx(g)- f1(b).
In other words, we have a K = 1x(g)bK and
a € w(l) - (bK) C (D) - (ZK).

Since a is arbitrary, we have E C 1x(I') - (ZK) and fo(E) C f2(ZK). This shows that

f2(E) is relatively compact because ZK, and hence f3(ZK) is compact. O

From Lemma 6.2 it follows that Theorem 1.5 is equivalent to Theorem 1.6.

7. Dual systems of kp;-forms.

In this section we prove Theorem 1.8.

From Lemma 6.1 it is natural to ask if analogous results to Theorem 1.3, Theorem 1.4
(and hence Theorems 1.5, 1.6) hold for geodesic rays 7, in ‘7, with a € at — {0} =
at — {0}, different from ~*.

We show that the following geodesic ray -, is related to the system of kj;-forms
L}, ..., L;, induced from the transpose 'L € M(n — p,p; kas) of L.

Let a, be the diagonal matrix in a™ = a™ such that the last n — 1 diagonal elements
are equal to —1:

a, = diag(n — 1, —1,...,-1).
Then we have
lae] = v/2n2(n—1), |la.] = v4n2(n—1).

We define a geodesic ray v, : [0,00) — V=vVixpm by

u(5) = o (5) = <m (55) e (T5) - 3o (*\%) P (@)) (r1)

for s > 0.
Let g = (gij) € SL(n, k). We calculate the value of b(v4)(tk(g) - vr.(s)). For this, we
recall that L = (L;;) € M(p,n — p; kar),

Lij = (L;

1 +1 I+
L, L L™ € Ry

ijr Hijg >
and

Li=(L1)e M(p,n—p;R) if 1<q<l,

v]

L= (L{;) € M(p,n —p;C) if I+1<g<Il+m.

If we write



924 T. HATTORI

vo(s) = (v(s), - L™ (s)),

then

q ,—sao/(Vd|aol) . if 1<¢g<l
1(s) = {“ i (7.2)

u%e_sao/(‘/&‘“‘)') - &0 if l+1<q¢g<l+m,

where

I, L1
g _ (1p
i=(5 2"
Let (LJ)" be the linear form determined by the jth column of *(L7). If 1 < ¢ <, then
(L§) : R""? — R is given by

n—p
(L;]),(y) = Z L;Ikyk for Yy = (ylv s vynfp) e R"P.
k=1

IfI+1<q<l+m,then (L})": C""? — C is given by

n—p
(LY (y)=> Liye for y=(y1,...,yn—p) € C* 7.
k=1
Let
gi:(ia"'a§£+m)€kM fOI'Z':l,...,’I’L—p7
and let

1= (..., &) for g=1,....1+m.
If1<g<l thené?eR"Pandifl+1<qg<I[+m,then £2 € C"P. Let
E=(&,...,&n—p) € (k)" P.
Then we have
L'(§) = (L1(8), - -, Ly, (&) € (kar)”

and
L&) = (L)) (€Y, ..., (LF™)(EF™) € kar for j=1,...,p.
From Lemma 3.3 we have

b(Ya.)(2) = —

o] log{O,-1(2)}" = m logO,_1(2) for z€ P(n,R) (7.3)

and
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n

vn—1

n log{O,,—1(2)}" = logO,_1(z) for z € P(n,C). (7.4)

2
[l |
From (3.11), (7.3) and (7.4) we have

b(Ya)(2) =

B 1 l - \/5 I+m R -
b(ye) (21, - - s 214m) = 7 ;b(va*)(%) + 73 j;l b(ar. )(25)
n l \/ﬁn I+m

:\/ﬁ jz::llogDn,l(zj) +m j;llogﬂn,l(zj)

2

l +m
n
=" tog{ | ] Ducs(z) Ot (z) (7.5)
et (o) (1T

for z1,...,z1 € P(n,R) and z41,...,214m € P(n,C).
For z € P(n,C), the minor determinant [J,,_;(z) is the (1, 1)-cofactor of z and is
equal to the (1,1)-entry of 27 1. Let

zZ = (Zla ceey Zl+m) = Lk(g) : ’YL(S)
From (7.2), we have
2y = gD =500/ (Valaol) . g _ ()8 =300/ (Vao]) g=sa0/ (Valaol) t,9 140

if 1 <qg<lI, and

—sao/(Vd|ao|) (Q)u%e—sao/(\/a\Oéol)e—sao/(\/m&o\) tﬂ% tﬁ

2 =g Pule “Ep=g
ifl+1<g<Il+4+m. Then we have

~1 —1
L1 {tgm)} t(uld )~ eseo/ (VlaoD gseo/(ValaoD) (4,4 )7 {g<q>}

—1
:t{g@)} t(ud ) oo/ (ValaoD) g

—N-1 _ -1
L1 {tg q>} t(u?) lesao/w&\aonesao/(mao\)(qu) 1 {g<q>}
— 51 J—
- t{g<q>} H(uT) " Leseo/ (Valao) . g

fl+1<g<l+m.
Remark that
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Let (¢f -+ ¢2) be the 1st row of the matrix
B -1 es/(Vlaoh ] o
g\ Ty sao/wﬁlao\):t{ ()} ¢ ?
{gq } (uL) [ g\ _es/(\/a‘aontﬁ e_AS/(\/E‘aO|)I7L—p .
Let a@;; be the (i, j)-cofactor of g and @ = (@1, p41,...,a1,). Then we have
o = {@? = (Liy @) e/ oo for i=1,.p,
CZJFJ.:EY’I;JFJ —As/(Vd|ao]) for j=1,...,n—p.

We obtain

b(v) (tr(g) - vL(8)) = b(v) (21, - - - s 2i4m)

q=Il+1

and

On-1(2q) = [ef]* + [c51* + -+ + [cL [
p
|a |2 72/\5/(\f|ao\ <Z|(qu)/(a(lﬁ) _agz”?) 625/(\/&\&00'
=1

By the same argument as that in the proof of Theorem 1.3 we obtain the following.

THEOREM 7.1.  Let D' be a positive integer, g = (a;;) € SL(n, k), and a;; the
(i,4)-cofactor of g. Suppose that all the entries in the 1st row of the matriz (D'I,)'g~!
belong to O and

v2d
T> v logD'.
vn—1

Then we have the following, where k = exp{—+/2(n — 1) 7/(nVd)}
(1) If& = (517],4_1, N ,51n) # 0 and

(@) || P | L (u(@)) — e (B)]|P < (%)n/za

where b = (@11, ., a1p), then v([0,00)) intersects tk(g) ™' - B(7s, 7).

(2) If v.(]0, 00)) intersects tk(g) ™t - B(7vs, T), then a # O and there exists a unit w € O,
such that

lere(wa@) | P L (1 (w@)) = ca (WP < (Cam)™>.

From this we obtain the following by the same argument as that in the proof of
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Theorem 1.4.

THEOREM 7.2. Let L € M(p,n — p;kar). The following two conditions are equiv-
alent.

(1) There exists a non-negative number T such that v, ([0,00)) does not intersect

h
U U w(@)e(gi) - B(y, 7).

i=1gel’

(2) The system of kyr-forms L, ..., Lj, induced from the transpose tLe M(n—p,p; k)
of L is badly approximable.
Combining Theorem 7.2 with Lemma 6.1, we obtain

THEOREM 7.3.  The following two conditions are equivalent.

(1) The system of kas-forms induced from the transpose tL of L is badly approzimable.
(2) Mo ~vL([0,00)) is relatively compact in 1, (I)\V.

Theorem 1.8 now follows from Theorem 1.5 and Theorem 7.3.

8. Constructing badly approximable systems of kj;-forms.

Let k' be a number field of degree d’ =1’ + 2m’ with I’ real places and m’ complex
places. Suppose that k' is a subfield of k. We denote by ¢},...,¢), : k' — R the

real embeddings and L;,_H, ceey L§,+m, : k' — C the complex embeddings which are not
complex conjugate to each other.

For each j € {1,...,l+m}, we consider the restriction ¢;|s of ¢; to k’. If the image of
this monomorphism ¢;|g is contained in R, there exists a unique number n; € {1,...,1'}
such that ¢l = ¢;, . If the image of ¢;p is not contained in R, there exists a unique
number n; € {I'+1,...,I'+m'} such that ¢;|p = L;lj or ;| coincides with the complex

conjugate of ¢, .
Let k', = R! x C™ be the Minkowski space associated to k’. Then there exists a
natural embedding ¢ x : ky; — kar defined by

@k/,k(gh cee 7§l’+m’) = (7717 cee 777l+m)7

where 1j = &, if tj|wr = 1, , 1j = &, if the image of ¢ is not contained in R and ¢][x/
coincides with the complex conjugate of L/nj. This map can be extended to an embedding
o,k s M(p,n = pikhy) — M(p,n— pikar) by

@k',k(Ll) = ((Pk:’,k(L;ij)) for L' = (ng) € M(p,n —D; k?vz)
We define the twisted diagonal embedding ¢y : k' — k'y; by

we(a) = (d(a),. ..o (a), iy (a), ..oty (a)) for a €k,
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and let Oy be the ring of integers of k'.

We prove Theorem 1.9 in the same manner as in the proof of Proposition 8.5 in [15].

PROOF OF THEOREM 1.9. For each j € {I+1,...,1 + m} there exists a unique
number n; € {1,...,I" +m'} such that ¢;[xr = ¢, or ¢j|p coincides with the complex
conjugate of L;L],. In the latter case, we exchange ¢; with its complex conjugate. After
this procedure, we may suppose that for any j € {1,...,l + m} there exists a unique
number n; € {1,...,0" +m'} such that ¢;|x =17, .

When we replace complex embeddings Utk o5 bitkg with their complex conju-

gates in this way, the twisted embedding ¢, should be changed. Let ¢}, be the resultant
embedding and let II” : VI x V™ — )/ (I")\(V! x V™) be the natural projection. For

L= (L;j) € M(p,n—pikn); Lij = (L}

l +1 l+m
Lo L LY L™ € R,

179
let

L" = (Lj;) € M(p,n — p;kn); Ly = (L]

(YR

Ly (L) (@)™ € K,

K

where

T l+k
(LQG)l+k1 _ Léj—kl’ el (L;‘Ij)H*kq — L” q

and (L)% = LII* for other k. The diffeomorphism of G = (SL(n,R))" x (SL(n,C))™
which sends (g1, ..., gi4m) € G to (g1, . .. 9L G Glem) € G, where

" e " e
Gitky = Gitkyr 5 9itky = Ji4k,

and g’ , = g1 for other k, induces a diffeomorphism of Vix V™ and a homeomorphism
(D\(VE x V™) —s B\(VEx V™). Since I o ([0,00)) is sent to II” o vz ([0, 00))
by the last homeomorphism, it follows from Theorem 1.5 that L induces a badly approx-
imable system of k,;-forms with respect to the embedding ¢ if and only if L induces a
badly approximable system of kas-forms with respect to ¢j,.

From this observation, it suffices to prove the assertion of this theorem under the
following conditions (A) and (B).
(A) For any j € {1,...,l 4+ m}, there exists a unique number n; € {1,...,I' +m'} such
that Lj|k,f = L/nj.

(B) The embedding ¢’ & is given by

r k(€1 Grpm) = (M5 mam); My =&y for j=1,...,04+m.

We define a geodesic ray v} : [0,00) — Vi= VU x by
’Y(/)(S) — (e—sao/(ﬁ‘aon SZg, ... ,e—sao/(ﬁ\aob - 20,

g0/ (VT laol) 30 o=sao/ (VA faol) .@0>
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for s > 0. Let L' = (Lj;) € M(p,n — p; k};) and
Ly = (W) ()Y () (L) ™) € Ky = RY x €™
for each 7, j. We put
(L) = ((Li;)?) € M(p,n — p;R)
forgq=1,...,I', and
(L) = ((Li;)?) € M(p,n —p; C)

forq=1+1,...,I' + m’. Let

forg=1,...,0,
\a
uf, = (Ip (') > € SL(n,C)

forg=0U+1,...,I'+m/, and
up = (uk, ..., ulL', , u%,“, cee ulL/j'm/) cG' x G™.
We define a geodesic ray vz : [0,00) — VI x V™' by
v (8) =up -yy(s) for s>0. (8.1)
There is a natural embedding by Vo— V defined by
ty.p(g-20) =930 for g€ SL(n,R).

We identify each point z € V' with ¢, (2) € V.Let A: VU x V™ — VI x V™ be an
embedding defined by

A(Zlu .. '7Zl’+m/) = (’LUl, e 7wl+m);

wj =z, for j=1,...;1+m.
We also define an embedding ¢ : G x G™ — G x G™ by

LO(glla"'vgl/’+m’) = (gla'--agl-‘rm);
9j =g, for j=1,....1+m.

Then we have

Alg -2) =10(g)-Alz) for ¢ eG' xG™, ze V! x V™, (8.2)
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and

!
A (,YL, ( \(/Z;)) =r(s) fors>0, (8.3)
where L = g g (L').

Let IV = SL(n, O) and let Iy : VEx V™ — 10( (I7))\ (V! x V™) be the natural
projection to the quotient space. Since to(tg (1)) is contained in g (1), we also have the
projection IIy : to(tgr (I")\ (V! x V™) — 1 (I)\(V! x V™) as in the following diagram.

Vl/ « f}m’ i) Vi x f}nL L) LQ(Lk/(FI))\(Vl % ‘7m)

x \LHQ
w(D\(VE x V™)
Then II5 is continuous and II = II5 o IT;.

Let II' : VI' x V™' — 1 (I")\(VV x V™) be the natural projection. We re-
mark that ¢o(tg (I7))) acts on the image Im A of the embedding A. Let IIp : InA —
to(tr (I"))\Im A be the natural projection. It follows from (8.2) that A induces a home-
omorphism A : 1 (I")\ (VY x V™) — 19(1r (I")\Im A defined by

A(IT'(2)) = My(A(z)) for ze VI x V™.

Since the system of k'y;-forms induced from L’ is badly approximable, it follows from
Theorem 1.5 that there exists a compact subset Z of ¢z (I")\(V? x V™) such that

I (72/([0, ) C Z.
From (8.3) we have
Io(v2([0,00))) = A (IT' (v ([0, 00))) ) € A(Z).

Let 11 : ot (I")\IMA — 19(er (I")\(V! x V™) be the natural inclusion and let

7' = 1,(A(Z)). Then Z' is compact and
I (7£([0, 00))) = e (Tho (72 ([0, 00)))) € 11(A(2)) = Z".
Therefore
I 0 ([0, 00)) = TIy (T (v£([0, 0))) ) C a(Z").

Since II5(Z’) is compact, II o v (][0, 00)) is relatively compact. From Theorem 1.5 we
conclude that the system of kjs-forms induced from L = ¢y (L’) is badly approximable.
O

If ¥ = Q, then K}, = R and badly approximable systems of k’,-forms are the
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usual badly approximable systems of linear forms. Since the set B,, , @ has the power of
the continuum ([25, Theorem 1]), we take a matrix L' = (L};) € M(p,n — p;R) which
induces a badly approximable system of linear forms. Let L;; = (L;j7 L) € ky
for each 4,j and let L = (L;;) € M(p,n — p;kar). Then we have L = ¢pq k(L) and L

induces a badly approximable system of kj;-forms.

’
ij
’
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Note Added in Proof. After this paper was published online in Advance Publi-
cation, the author found that the description of the point tx(g) - yr(so) in the lines 12-19
on page 906 was not correct. It should be as follows.

Let tx(g) - vL(s0) = ud'a - zp;
u:(ul,...,uHm) eN:leNm,
a = (al,...,aHm) c A, a=(b,...,b) EZQ,
where

k

a® = diag(a¥,...,a") for k=1,...,14+m

and
b= diag(b,...,b,) € A= A.
The formula in the first line on page 908 should be replaced with

gq) (qu))q

q
p’Ul

Un (Un )_1 pgn

due to this change.

Editorial Comment. A few typos were also corrected on this occasion.
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