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Abstract. The Fatou–Julia decomposition is significant in the study of
iterations of holomorphic mappings. Such a decomposition has been con-

sidered for foliations in a unified manner by Ghys–Gomez-Mont–Saludes,
Haefliger, the author, et al. Although the decomposition will be fundamental
in the study, it is not easy to determine the decomposition. In this article, we
give a sufficient condition for open sets to be contained in Fatou sets. We also

discuss relations between Fatou–Julia decompositions and minimal sets.

Introduction.

The Fatou–Julia decomposition is significant in the study of iterations of holo-

morphic mappings and semigroups generated by rational mappings. Such decomposi-

tions are also defined for transversely holomorphic foliations of complex codimension one

in a unified manner [11], [12], [2], [3], where foliations are not necessarily regular (non-

singular). Dynamics of foliations on Fatou sets are expected to be tame. For example,

Fatou sets of foliations are known to admit transverse invariant metrics [2, Theorem 4.21],

[3, Theorem 5.5]. However, as in the classical case, it is difficult to determine Fatou sets.

In this article, we give a criterion for open subsets of foliated manifolds to be contained

in Fatou sets in terms of transverse invariant metrics. The basic idea is to use a partial

converse to the above-mentioned result [2, Lemma 2.16], namely, if a regular foliation of a

compact manifold admits a transverse invariant metric, then its Julia set is empty, where

we consider Julia sets in the sense of [2]: if we consider Julia sets in the sense of [11]

or [12], then there are foliations which admit transverse invariant metrics and of which

the Fatou sets are empty [11, Example 8.6]. A simple example shows that existence of

transverse invariant metrics on an open set invariant under the foliation in consideration

does not assure that the open set is contained in the Fatou set (see Remark 3.13). We

will introduce a notion of compact approximations which is a slight generalization of

approximations of open sets by compact sets (Definition 3.5) and show the following

Theorem 3.9. Let F be a transversely holomorphic foliation of complex co-

dimension one, of a manifold M equipped with a reference metric g. Let U ⊂ M \SingF
be an F-invariant open set. Suppose that

1) There exists a transverse Hermitian metric on U invariant under the holonomies

and bounded from below.

2) The open set U is compactly approximated.

Then, U is contained in the Fatou set of F .
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In the above theorem, SingF denotes the singular set of F which will be defined in

Definition 1.3. A reference metric is a Riemannian metric with which transverse Hermit-

ian metrics are compared (see Definition 3.3). We will also show that both metrics and

compact approximations are necessary. A similar result is already obtained in [3, Propo-

sition 4.24], where holonomy pseudogroups are assumed to be compactly generated. In

terms of foliations, this implies that we consider regular foliations of compact manifolds.

In Theorem 3.9, we deal with singular foliations so that holonomy pseudogroups are not

necessarily compactly generated, and additional observations are needed.

When studying foliations, minimal sets are significant. In the theory of secondary

characteristic classes for foliations, some similarities between minimal sets and Julia sets

are known [2, Section 6]. We will discuss relations between minimal sets and Julia sets

from a viewpoint of dynamical systems.

This article is organized as follows. First we recall definitions of foliations and their

singularities. Next, we introduce Fatou and Julia sets after [3] in Section 2. Relations

between Fatou sets and transverse invariant metrics are discussed in Section 3, where

the main result will be shown. Finally, minimal sets are discussed in Section 4.

Acknowledgements. We are grateful to Masayuki Asaoka and Julio Rebelo for

discussions in preparing the present article. We are also grateful to referees for their

comments.

1. Foliations.

Throughout this article, we work in the C∞ or holomorphic category. In addition,

manifolds are always assumed to be second countable. In view of [8] and [1], we introduce

the following

Definition 1.1 ([1], cf. [8]). Let M be a manifold. A singular foliation of M is

a partition F = {Lλ} of M into injectively immersed manifolds, called the leaves, such

that for any p ∈ M , there exist an open neighborhood Up of p and a finite number of

vector fields, say X1, . . . , Xr, on Up which satisfy the following conditions:

1) We have [Xi, Xj ](q) ∈ ⟨X1(q), . . . , Xr(q)⟩ for any q ∈ Up, where the right hand side

denotes the subspace of TqM generated by X1(q), . . . , Xr(q).

2) We have TqLq = ⟨X1(q), . . . , Xr(q)⟩ for any q ∈ Up, where Lq denotes the (unique)

leaf which contains q.

The vector fields X1, . . . , Xr as above are called local generators of F . If M is a complex

manifold and if Xi’s are holomorphic, then F is said to be holomorphic.

In what follows, we mean by ‘foliations’ singular foliations if there is no fear of

confusion.

It is easy to show the following

Lemma 1.2. The mapping p 7→ dimLp is lower semi-continuous.

Definition 1.3. Let F be a singular foliation of M . The maximal value of

{dimLp | p ∈ M} is said to be the dimension of F and is denoted by dimF . If
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dimM = m, then m− dimF is called the codimension of F and is denoted by codimF .

We set

SingF = {p ∈ M | dimLp < dimF}.

The restriction of F to M \SingF is called the regular part of F and is denoted by F reg.

If SingF = ∅, then F is said to be regular or non-singular.

Definition 1.4. A singular foliation F of M is said to be transversely holomorphic

if F reg is transversely holomorphic. That is, F reg admits a transversal complex structure

invariant by holonomies.

Note that a holomorphic foliation is a transversely holomorphic foliation. We can say

little about SingF in general, however, it is well-known that the complex codimension

of SingF is greater than one if F is holomorphic and if F is of dimension one [13,

Theorem 2.22] or of codimension one [6]. In view of this fact, we will assume that

the complex codimension of SingF is greater than one when holomorphic foliations are

considered. Actually, we will assume that F is of complex codimension one in what

follows even if F is only transversely holomorphic, although some of our arguments are

valid for foliations of complex codimension greater than one.

2. Fatou and Julia sets.

We briefly recall the definition of the Fatou sets for foliations in the sense of [3]. Let

F be a transversely holomorphic foliation of a manifold M , of complex codimension one.

We assume that SingF ∩ ∂M = ∅ and that the leaves of the regular part F reg of F are

transversal to ∂M . Let T be a complete transversal for F reg, namely, we assume that

T meets every leaf of F reg (so that T is quite possibly disconnected). We may moreover

assume that T is biholomorphic to a disjoint union of discs in C, where the complex

structure of T is induced by the transversal holomorphic structure of F reg. Let Γ be the

holonomy pseudogroup of F reg on T . We have then a Fatou–Julia decomposition of T

[3, Definitions 2.2 and 2.10]. Roughly speaking, the Fatou set is defined as follows. Let

T be the set of relatively compact open subsets of T . Let T ′ ∈ T and ΓT ′ the restriction

of Γ to T ′, namely, we set

ΓT ′ = {γ ∈ Γ | dom γ ⊂ T ′ and range γ ⊂ T ′},

where dom γ and range γ denote the domain and range of γ, respectively. Note that ΓT ′

is a pseudogroup on T ′. An open connected subset U of T ′ is said to be an F-open set if

every germ of elements of ΓT ′ at a point in U is represented by an element of Γ (not ΓT ′

in general) defined on U , where the letter ‘F’ stands for ‘Fatou’. We then define F ∗(ΓT ′)

to be the union of F-open sets and J∗(ΓT ′) its complement in T ′. Finally, the Julia set

of (Γ, T ) is defined by

J(Γ ) =
∪

T ′∈T

J∗(ΓT ′),

and F (Γ ) = T \ J(Γ ).



1148(124)

1148 T. Asuke

Remark 2.1. 1) The Fatou and Julia sets F (Γ ) and J(Γ ) in this article are

denoted by Fpg(Γ ) and Jpg(Γ ), respectively, in [3]. That is, we can consider pseu-

dosemigroups generated by pseudogroups, and F (Γ ) and J(Γ ) in [3] refer to the

Fatou and Julia sets of Γ as pseudosemigroups, respectively. If the pseudogroup is

compactly generated, then these coincide but in general not.

2) The notion of wF-open sets also appears in [3], and F-open sets are defined to be

wF-open sets with additional properties. It is known that a wF-open set is always

an F-open set if Γ is a pseudogroup (they may differ if Γ is a pseudosemigroup).

See [3] for the details.

Definition 2.2 ([3, Definition 5.3]). The saturation of F (Γ ) is called the Fatou

set of F and is denoted by F (F). The complement of F (F) in M is called the Julia set

of F and is denoted by J(F).

Note that J(F) is the union of SingF and the saturation of J(Γ ).

Definition 2.2 makes sense. Indeed, we have the following

Lemma 2.3 ([3, Lemma 2.18]). Both F (Γ ) and J(Γ ) are invariant under Γ .

Definition 2.4. A subset X ⊂ M is said to be F-invariant if for every p ∈ X, we

have Lp ⊂ X, where Lp denotes the leaf which contains p.

The following fundamental property is now clear from definitions.

Lemma 2.5. Both F (F) and J(F) are F-invariant.

The Fatou and Julia sets do not depend on the choice of realizations of holonomy

pseudogroups. More precisely, there is a notion of equivalence between pseudogroups.

Roughly speaking, an equivalence from (Γ1, T1) to (Γ2, T2) is a certain family of mappings

from open sets of T1 to T2 which conjugates elements of Γ1 and Γ2. Pseudogroups (Γ1, T1)

and (Γ2, T2) are equivalent if they are associated with the same foliation. For the details

of equivalence, we refer the reader to [12]. See also [3, Definition 1.22]. We have the

following

Theorem 2.6 ([3, Theorem 2.19]). Let (Γ1, T1) and (Γ2, T2) be pseudogroups and

Φ: Γ1 → Γ2 an equivalence. Then, we have Φ(F (Γ1)) = F (Γ2) and Φ(J(Γ1)) = J(Γ2).

Lemma 2.7. The Fatou and Julia sets F (F) and J(F) do not depend on the choice

of realizations of the holonomy pseudogroup of F reg.

Proof. By Theorem 2.6, the saturation of F (Γ ) is independent of the choice of

(Γ, T ). Therefore, so is F (F). □

Remark 2.8. The Fatou–Julia decomposition for foliations was first introduced

in [11] and refined in [12]. These definitions pay attention to deformations of foliations

while the definition in [3] follows a rather classical definition in terms of normal families.

It is known that the Julia sets in the sense of [11] and [12] are contained in those of [3].

The inclusion can be either strict or not. Note also that a Fatou–Julia decomposition of
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singular foliations of a complex surface with Poincaré type singularities is introduced in

[11, Example 8.1]. The Fatou–Julia decomposition given by Definition 2.2 of this article

differs from it in general. See 2) of Example 3.11.

We need the following

Definition 2.9 ([12, 1.3], cf. [3, Definition 3.1]). A pseudogroup (Γ, T ) is com-

pactly generated if there is a relatively compact open set T ′ of T , and a finite collection

of elements {γ1, . . . , γr} of Γ of which the domains and the ranges are contained in T ′

such that

1) the family {γ1, . . . , γr} generates ΓT ′ , where ΓT ′ is the restriction of Γ to T ′,

2) for each γi, there exists an element γ̃i of Γ such that dom γ̃i contains the closure

of dom γi and that γ̃i|dom γi = γi,

3) the inclusion of T ′ into T induces an equivalence from ΓT ′ to Γ .

The pseudogroup (ΓT ′ , T ′) is called a reduction of (Γ, T ).

It is known that if (Γ, T ) is compactly generated and if (Γ ′, T ′) is equivalent to

(Γ, T ), then (Γ ′, T ′) is also compactly generated.

Example 2.10. If (Γ, T ) is a holonomy pseudogroup associated with a regular

foliation of a closed manifold M , then (Γ, T ) is compactly generated. Also, if F is a

complex foliation of a complex surface and if every singularity of F is of Poincaré type,

then the holonomy pseudogroup of F reg is compactly generated. See 1) of Example 3.11

for a basic example of this kind.

3. Fatou sets and transverse metrics.

The following is known.

Theorem 3.1 ([3, Theorem 5.5], [2, Theorem 4.21]). The Fatou set F (F) admits

a transverse Hermitian metric transversely of class CLip
loc . If in addition Γ is compactly

generated, then there is such a metric transversely of class Cω.

Simple examples show that the converse does not hold (see Example 3.11 and Re-

mark 3.13). We will show a partial converse to Theorem 3.1 by using the notion of

compact approximations (Definition 3.5).

We will make the following

Assumption 3.2. Let F be a transversely holomorphic foliation of M , and (Γ, T )

the holonomy pseudogroup of F reg. We fix a Riemannian metric, say g on M . We

also fix a realization of (Γ, T ) by choosing a complete transversal for F reg, namely, an

embedding of T into M \ SingF .

Definition 3.3. Let M be a manifold equipped with a Riemannian metric g and

F a transversely holomorphic foliation of M . Let (Γ, T ) be a holonomy pseudogroup of
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F reg, where a realization of T in M \ SingF is fixed. If U ⊂ T and if h is a Hermitian

metric on U , then h is said to be bounded from below with respect to g if there exists

c > 0 such that cg(v, v) ≤ h(v, v) holds on TU . If M is compact, then this does not

depend on the choice of a particular Riemannian metric so that we simply say that h is

bounded from below.

We refer to [7] for basics of metrics.

Remark 3.4. If M is specifically given, then there can be a natural choice of the

reference metric. For example if M = CP 2, then the most natural one is the Fubini–

Study metric while if M = C2, then the most natural one is the standard Hermitian

metric. In examples in this article, we choose these metrics.

Definition 3.5. Let U be an open subset of M \ SingF . A family {Kn}n∈N of

closed subsets of U is called a compact approximation if the following conditions are

satisfied:

i) Each Kn is a closed subset of U with boundary of class C1, and Kn ⊊ U .

ii) Each Kn is either saturated by leaves of F reg or ∂Kn is transversal to F reg.

iii) The holonomy pseudogroup of the foliation obtained by restricting F reg to Kn is

compactly generated.

iv) For each n, we have Kn ⊂ IntKn+1, where IntKn+1 denotes the interior of Kn+1.

v) We have U =
∪

n∈N Kn.

We say also that U is compactly approximated by {Kn}n∈N.

In practice, the index n may begin by an arbitrary integer.

Remark 3.6. In Definition 3.5, the term ‘compact’ is related to the compact gener-

ation (génération compacte) of holonomy pseudogroups so that a compact approximation

{Kn}n∈N may not necessarily consist of compact sets.

Remark 3.7. There are some typical cases where the condition iii) in Definition 3.5

is satisfied:

1) Each Kn is compact.

2) For each n, ∂Kn is tangent to F and there exists a compact subset, say K ′
n, of Kn

with the following properties:

i) ∂K ′
n \ ∂Kn is of class C1 and transversal to F .

ii) The restriction of F to Kn \ IntK ′
n is a product foliation.

We will actually make use of this fact in Example 3.11.

We give some basic examples of compact approximations.
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Example 3.8. Let (z, w) be the standard coordinates for C2. Let us consider

ω = µwdz−λzdw, where λ, µ ∈ C \ {0}. We set α = λ/µ and denote by Fα the foliation

of C2 defined by ω.

1) Suppose that α ̸∈ R≤0. Set Kn = {(z, w) ∈ C2 | |z|2 + |w|2 ≥ 1/n2} for n ≥ 1.

Then, {Kn}n≥1 is a compact approximation of C2 \ {(0, 0)} = M \ SingFα such

that ∂Kn is transversal to Fα for each n.

2) Suppose that α ∈ R<0. We define f : C2 → R by setting f(z, w) = |z||w|−α. If

we set Kn = {(z, w) ∈ C2 | f(z, w) ≥ 1/n} for n ≥ 1, then {Kn} is a compact

approximation of C2 \ {(z, w) ∈ C2 | zw = 0} such that ∂Kn is tangent to Fα for

each n.

3) In general, suppose that dimC M = 2, F is a holomorphic foliation of M , and

that SingF is a finite set. If moreover each singularity is of Poincaré type, then

M \SingF admits a compact approximation. Indeed, we fix a metric on M and set

Kn = {p ∈ M | dist(p,SingF) ≥ 1/n}. If N ∈ N is large enough, then {Kn}n≥N is

a compact approximation of M \SingF . For example, if α ̸∈ R in the case 1), then

Fα is extended to CP 2 with SingFα = {[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]}, where [z0 :

z1 : z2] denotes the standard homogeneous coordinates. A compact approximation

for CP 2 \ SingFα is given by setting Kn = CP 2 \ ({[z0 : z1 : 1] | |z0|2 + |z1|2 <

1/n2} ∪ {[z0 : 1 : z2] | |z0|2 + |z2|2 < 1/n2} ∪ {[1 : z1 : z2] | |z1|2 + |z2|2 < 1/n2}).

Now we will show the following

Theorem 3.9. Let F be a transversely holomorphic foliation of complex co-

dimension one, of a manifold M equipped with a reference metric g. Let U ⊂ M \SingF
be an F-invariant open set. Suppose that

1) There exists a transverse Hermitian metric on U invariant under the holonomies

and bounded from below.

2) The open set U admits a compact approximation.

Then, U is contained in the Fatou set of F .

Proof. Let (Γ, T ) be the holonomy pseudogroup of F reg. The proof is ba-

sically parallel to the case where Γ is compactly generated, we need however addi-

tional observations. We denote by T the set of relatively compact subsets of T . Let

T ′ = {T ′
i} ∈ T and ΓT ′ the restriction of Γ to T ′, where T ′

i ’s denote the connected

components of T ′. Let {Kn} be a compact approximation of U . We will show that

Kn ∩ T ′ ⊂ F ∗(ΓT ′) for any n. Once this is established, we have U ∩ T ′ ⊂ F ∗(ΓT ′) so

that U ∩ J∗(ΓT ′) = ∅ for any T ′. It follows that U ∩ (
∪

T ′∈T J∗(ΓT ′)) = ∅. Since U is

open, U ∩ J(Γ ) = U ∩
∪

T ′∈T J∗(ΓT ′) = ∅. This will complete the proof.

First, we will choose T ⊂ M \ SingF in such a way that there is an embedding

of T in C which is holomorphic with respect to the transverse holomorphic structure.

In addition, we assume that T ⊂ C is a disjoint union of relatively compact discs and

that the reference metric g restricted on T is bounded from below with respect to the

standard Hermitian metric of C which we denote by h0.
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Let now h be a transverse Hermitian metric on U as in the statement. We denote

by Γn the holonomy pseudogroup of F|Kn associated with Kn ∩ T ′. As T ′ is relatively

compact, we can find a finite set {γi} of generators of Γn. Therefore, there are δ > 0

and C > 0 such that the germ of any γi at a point, say p, in Kn ∩ T ′ is represented

by an element of Γ , actually of Γn+1, defined on the δ-ball Bδ(p) ⊂ T centered at p

and |(γ′
i)p| ≤ C. Note that we may assume that C ≥ 1. On the other hand, we have

the following, namely, let B′
δ(p) be the δ-ball with respect to h centered at p. By the

assumption, h is bounded from below so that we have h ≥ c2h0 for some c > 0. We have

then

∀ p ∈ Kn ∩ T ′, ∀ δ > 0, B′
δ(p) ⊂ T ′ ⇒ B′

δ(p) ⊂ Bδ/c(p).

We now set δ′ = δc/2C. By decreasing δ′ if necessary, we may assume that Bδ′(p) ⊂ U .

We claim then that the germ of any element of Γn at any p ∈ Kn ∩ T ′ is represented by

an element of Γn+1 defined on B′
δ′(p). This is shown as follows. Let Γn(k) be the subset

of Γn which consists of elements presented by composition of at most k generators, where

Γn(0) is generated by {idKn∩T ′}, and let Γn(k)p be the set of germs at p of elements of

Γn(k). We have Γn =
∪+∞

k=0 Γn(k). If γp ∈ Γn(1)p, then B′
δ′(p) ⊂ Bδ/2C(p) ⊂ Bδ(p) so

that the claim holds. Assume by induction that γp ∈ Γn(k)p is represented by an element

of Γn+1 defined on B′
δ′(p). Let ζp ∈ Γn(k+1)p. Then, ζp is represented by an element of

Γn of the form γi ◦ γ, where γ ∈ Γn(k)p and γi is one of the generators. We may assume

that γ is well-defined on B′
δ′(p) as an element of Γn+1. We have γ(B′

δ′(p)) = B′
δ′(γ(p)) ⊂

Bδ/2C(γ(p)) ⊂ Bδ(γ(p)) because γ is an isometry on U . As γ(p) ∈ T ′, γi is well-defined

on B′
δ′(γ(p)) as an element of Γn+1. It follows that γi ◦ γ is also well-defined on B′

δ′(p)

as an element of Γn+1. Since T is assumed to be a disjoint union of relatively compact

discs in C, the family

Γn+1(U) = {γ ∈ Γn+1 | dom γ = U, γ(U) ∩ T ′ ̸= ∅}

which consists of elements of Γn+1 obtained by extension as above, is a normal family.

This directly shows that B′
δ′(p) has the property (wF) [3]. Let now γ ∈ Γn and dom γ ⊂

B′
δ′(p). Since γ(B′

δ′(p)) = B′
δ′(γ(p)), range γ itself is again a wF-open set. Thus B′

δ′(p)

is an F-open set so that p ∈ F ∗(ΓT ′). □

Remark 3.10. 1) The induction in the proof is taken from the proof of [10,

Lemme 2.2].

2) If Γ is compactly generated, then we can choose T ′ in the above proof so that

(ΓT ′ , T ′) is equivalent to (Γ, T ) and that the arguments can be simplified (cf. [3,

Proposition 4.24]).

Example 3.11 (cf. Example 3.8 and [3, Example 5.11]). Let [z0 : z1 : z2] be the

standard homogeneous coordinates for CP 2. We set x = z0/z2, y = z1/z2 if z2 ̸= 0. Let

ω = µydx− λxdy be a holomorphic 1-form on C2, where λ, µ ̸= 0. We set α = λ/µ and

let Fα be the foliation of C2 defined by ω. We denote by Gα the natural extension of Fα

to CP 2. We set a = z0/z1, b = z2/z1 if z1 ̸= 0, and u = z1/z0, v = z2/z0 if z0 ̸= 0. We

set C2(x, y) = {[x : y : 1] ∈ CP 2}. Similarly we define C2(a, b) and C2(u, v).
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1) Suppose that α ̸∈ R. Set U = CP 2 \ {z0z1z2 = 0}. It is known that the Fatou set

F (Gα) is equal to U . We define f : CP 2 → R by

f([z0 : z1 : z2]) =
|z0|2|z1|2|z2|2

(|z0|2 + |z1|2 + |z2|2)3
.

We have

f(x, y) =
|x|2|y|2

(1 + |x|2 + |y|2)3

and

∂f

∂x
(x, y) =

x̄|y|2(1− 2|y|2 + |z|2)
(1 + |x|2 + |y|2)4

,

∂f

∂y
(x, y) =

ȳ|x|2(1− 2|z|2 + |w|2)
(1 + |x|2 + |y|2)4

.

We set, for n ≥ 28,

Kn =

{
[z0 : z1 : z2] ∈ CP 2

∣∣∣∣ f([z0 : z1 : z2]) ≥
1

n

}
.

Note that Kn is a compact subset contained in U . This can be seen for example by

the fact that (1, 1) is the unique maximum of the function (t, s) 7→ (ts)/(1+ t+s)3,

where t, s > 0. We will show that ∂Kn is transversal to Gα. If we restrict ourselves

to U ∩ C2(x, y) = {(x, y) ∈ CP 2 | xy ̸= 0}, then by Lemma 3.14 below, ∂Kn is

transversal to Fα if and only if

λ(1− 2|x|2 + |y|2) + µ(1− 2|y|2 + |x|2) ̸= 0. (3.12)

Suppose the contrary and represent α = λ/µ as α = ρ +
√
−1σ, where ρ, σ ∈ R.

By the assumption σ ̸= 0, the equalities

(1 + ρ) + (−2 + ρ)|x|2 + (1− 2ρ)|y|2 = 0,

1− 2|y|2 + |x|2 = 0

hold by (3.12). It follows that 3 − 3|y|2 = 0 and further that |x| = |y| = 1. As
f(1, 1) = 1/27, we never have (|x|, |y|) = (1, 1) for (x, y) ∈ ∂Kn∩C2(x, y). SinceKn

is contained in C2(x, y), we see that ∂Kn is transversal to Gα. Therefore {Kn}n≥28

is a compact approximation of U . We now set ω′ = (1/λ)(dz/z) − (1/µ)(dw/w).

Then, dω′ = 0 and ω′ also defines Gα on U . Therefore, an invariant metric on U

is defined by setting h = ω′ ⊗ ω′. The metric h is bounded from below so that U

is contained in the Fatou set of Gα. In this case, it is also known that F (Fα) =

U ∩ C2(x, y). The family {Kn}n≥28 is a compact approximation of U ∩ C2(x, y)

with respect to Fα.

2) If α ∈ R, then the Fatou–Julia decomposition of F (Fα) and that of F (Gα) are

known to be different [3, Example 5.11]. This is also seen by Theorem 3.9 as

follows.
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i) First we study Fα.

a) Assume that α > 0. Then, F (Fα) = C2\{(0, 0)} and a transverse invariant

metric, say h, on F (Fα) is given by h = ηα ⊗ ηα, where

ηα =
αydx− xdy

|x|α+1 + |y|(α+1)/α
.

Note that h is bounded from below. If we set Kn = {(x, y) ∈ C2 | 1/n ≤
|x|2+|y|2 ≤ n}, then {Kn}n≥1 is a compact approximation of C2\{(0, 0)}.

b) Assume that α < 0. Then, F (Fα) = C2 \ {(x, y) ∈ C2 | xy = 0} and a

transverse invariant metric h on F (Fα) is given by h = να ⊗ να, where

να = α
dx

x
− dy

y
.

The metric h is bounded from below. A compact approximation of F (Fα)

is given by {Kn} with Kn = {(x, y) ∈ C2 | 1/n ≤ |x||y| ≤ n}.
ii) Next we study Gα.

a) Assume that α > 0. By exchanging z0 and z1 if necessary, we may assume

that 0 < α < 1. We have F (Gα) = CP 2 \ {[z0 : z1 : z2] ∈ CP 2 | z1z2 = 0}.
Note that we have F (Gα) ∩ C(x, y) = {(x, y) ∈ C2 | y ̸= 0} while we have

F (Fα) = C2 \ {(0, 0)}. This is because Gα is isomorphic to Fα/(α−1) on

C2(a, b) and to F1/(1−α) on C2(u, v). As 0 < α < 1, we have α/(α−1) < 0

so that we are in the same situation as in the case i)-b). Namely, the

singularity (0, 0) on C2(a, b) is of Siegel type (not of Poincaré type) so

that both the a-axis and the b-axis are contained in the Julia set J(Gα) of

Gα. Therefore the y-axis and the u-axis are contained in J(Gα). It follows

that J(Fα) ̸= C2 ∩ J(Gα). Note that this shows that the Julia sets in

the sense of Definition 2.2 and those of [11, Example 8.1] are different in

general. Set

γα =
αydx− xdy

|x|k(|x|αl + |y|l)
,

where k + αl = 1 + α. We have

|γα| =
|αbda− (α− 1)adb|

|a|k|b|3−k−l(|a|αl|b|(1−α)l + 1)

=
|(1− α)udv − vdu|

|v|3−k−l(|u|l + |v|(1−α)l)
.

Therefore h = γα ⊗ γα gives an invariant metric on F (Gα). If we set k =

l = 1, then h is bounded from below. A compact approximation of F (Gα)

is given by {Kn}n≥1 with Kn = {[z0 : z1 : z2] | |z0|1−α|z2|α ≥ |z1|/n}.
We have Kn ∩ C2(x, y) = {(x, y) | |x|1−α ≥ |y|/n} and Kn ∩ C2(a, b) =

{(a, b) | |a|1−α|b|α ≥ 1/n}.



1155(131)

On Fatou and Julia sets of foliations 1155

b) If α = 1, then G1 is transversal to the line at infinity {[z0 : z1 : 0]} and we

have Sing G1 = {[0 : 0 : 1]}. We have F (G1) = CP 2 \ {[0 : 0 : 1]}. Note

that F (F1) = F (G1) ∩ C(x, y). If we set

Kn = {[z0 : z1 : z2] | |z0|2 + |z1|2 ≥ 1/n|z2|}
= {(x, y) ∈ C(x, y) | |x|2 + |y|2 ≥ 1/n} ∪ {[z0 : z1 : 0]},

then {Kn}n≥1 is a compact approximation of CP 2 \ {[0 : 0 : 1]}. An

invariant metric on CP 2 \ {[0 : 0 : 1]} is given by η1 ⊗ η1.

c) If α < 0, then [0 : 1 : 0] and [1 : 0 : 0] are of Poincaré type so that we have

the case a) again.

Remark 3.13. We need both a metric and a compact approximation in The-

orem 3.9. Let Fα be as in Example 3.11.

1) If α ̸∈ R, then C2 \ {(0, 0)} admits a compact approximation with respect to Fα

however there are no invariant metrics on U . Indeed, the dynamics along the z-axis

and the w-axis are contracting-repelling.

2) If α = −1, then C2 \ {(0, 0)} admits an invariant metric. Indeed, if we set η′ =

ydx+ xdy, then η′ ⊗ η′ gives an invariant metric. However, C2 \ {(0, 0)} does not

admit a compact approximation. Indeed, if {Kn} is a compact approximation, then

the restriction of F reg to Kn is compactly generated so that it cannot contain the

x-axis and y-axis at the same time. Note that η′ ⊗ η′ is not bounded from below.

3) Let again α = −1, and set η′ = ydx+xdy. If we set U = {(x, y) ∈ C2 | y ̸= 0}, then
U admits a compact approximation {Kn}, where Kn = {(x, y) ∈ C2 | |x| ≥ 1/n}.
The metric η′⊗η′ is certainly invariant but not bounded from below. As the y-axis

is contained in J(F−1), U is not contained in F (F−1).

The following lemma is well-known but we give a proof for completeness.

Lemma 3.14. Let U ⊂ Cn be an open subset and g : U → R a smooth function.

Set M = g−1(c), where c ∈ g(U) is assumed to be a regular value. Finally let X =∑n
i=1 fi(∂/∂zi) be a holomorphic vector field on U , where (z1, . . . , zn) are the standard

coordinates for Cn. Then, X is transversal to M at p ∈ M if and only if

n∑
i=1

fi(p)
∂g

∂zi
(p) ̸= 0

holds, where X is said to be transversal to M at p if the integral curve of X transversally

intersects M at p.

Proof. First note thatX is transversal toM at p if and only ifX is not tangent to

M for the dimensional reason. We identify Cn with R2n and equip Cn with the standard

Euclidean metric. Let xi, yi be the real and imaginary parts of zi, respectively. Then,

the normal direction of TpM is given by
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n∑
i=1

(
∂g

∂xi
(p)

∂

∂xi p

+
∂g

∂yi
(p)

∂

∂yi p

)
.

On the other hand, the tangent space of the integral curve of X at p is spanned by

n∑
i=1

(
ai(p)

∂

∂xi p

+ bi(p)
∂

∂yi p

)
and

n∑
i=1

(
−bi(p)

∂

∂xi p

+ ai(p)
∂

∂yi p

)
.

Therefore, X(p) is tangent to TpM if and only if both

n∑
i=1

(
ai(p)

∂g

∂xi
(p) + bi(p)

∂g

∂yi
(p)

)
= 0, and

n∑
i=1

(
−bi(p)

∂g

∂xi
(p) + ai(p)

∂g

∂yi
(p)

)
= 0

hold. This is equivalent to

n∑
i=1

fi(p)
∂g

∂zi
(p)

=
1

2

n∑
i=1

(
ai(p)

∂g

∂xi
(p) + bi(p)

∂g

∂yi
(p)

)
+

√
−1

2

n∑
i=1

(
bi(p)

∂g

∂xi
(p)− ai(p)

∂g

∂yi
(p)

)
= 0. □

4. Julia sets and minimal sets.

We recall the following classical

Definition 4.1. Let F be a foliation of a manifold M . A subset M of M is said

to be minimal if the following conditions are satisfied:

1) M is non-empty and closed.

2) M is minimal with respect to inclusions.

3) M is saturated by leaves of F , namely, if p ∈ M , then the leaf which passes through

p is contained in M .

Definition 4.2. Let M be a minimal set.

1) We say that M is trivial if it consists of a point in SingF .

2) We say that M is proper if it consists of a closed leaf of F reg.

3) We say that M is exceptional if it is non-trivial, non-proper and not equal to the

whole M .
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Remark 4.3. Let M be a minimal set.

1) If F is singular, then M cannot be equal to M .

2) It is well-known that foliations of CPn do not admit a closed leaf in F reg (cf. [5,

Theorem 2]). Therefore, non-trivial minimal sets of CPn are exceptional.

3) The classification of minimal sets in Definition 4.2 is known to work well for real

codimension-one regular foliations [9]. On the other hand, even in the complex

codimension-one case, it is not sufficient. For example, let us consider a suspension

of an action of a torsion-free Kleinian group on CP 1. In this case, M is contained

in J(F) which coincides with the suspension of the limit set [2]. On the other

hand, let F be a foliation of S3 ⊂ C2 induced from the flow of a vector field

z(∂/∂z) + αw(∂/∂w) with α ∈ R>0. Then, F is always transversely Hermitian

(cf. 2) of Example 3.11). Suppose that α ̸∈ Q and let L be a leaf which does

not belong to the Hopf link. Then, the closure of L forms a minimal set which is

diffeomorphic to a 2-torus as a submanifold of S3. This means that the notion of

exceptional minimal sets should be made more precise.

If foliations of CPn are considered, then it is known that an exceptional minimal

set contains a hyperbolic holonomy [4, Théorème]. That is, there is a loop on a leaf

contained in the minimal set such that the associated holonomy, in other words, the

first return map, or the Poincaré map, is of modulus not equal to one. This implies the

following

Theorem 4.4. The Fatou set of a foliation of CPn, of codimension one, does not

contain any exceptional minimal sets.

Proof. The Fatou set admits an invariant transverse Hermitian metric by The-

orem 3.1. By [5, Theorem 2], we can find a hyperbolic holonomy in the Fatou set. This

is impossible because the holonomy should be an isometry for the transverse Hermitian

metric. □

Note that foliations of CP 2 have unique minimal sets [5, Theorem 1]. Such minimal

sets are contained in the Julia sets by Theorem 4.4. As an immediate consequence, we

have the following

Proposition 4.5. Let F be a foliation of CP 2 and CP 2 = F (F) ∪ J(F) the

Fatou–Julia decomposition. Then, we have exactly one of the following :

1) We have J(F) = SingF , and F admits no exceptional minimal set.

2) We have SingF ⊊ J(F) ⊊ CP 2. If F admits an exceptional minimal set, say M ,

then either M ⊂ ∂F (F) \ SingF or M ⊂ J(F) \ (∂F (F) ∪ SingF). In the latter

case, the closure of any leaf in ∂F (F) meets SingF .

3) We have CP 2 = J(F). If F admits an exceptional minimal set, say M , then

M ⊂ CP 2 \ SingF = J(F) \ SingF .
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Proof. First not that if M is an exceptional minimal set, then it is contained

in J(F) \ SingF by Theorem 4.4. Therefore, if J(F) = SingF , then such an M does

not exist. Suppose that SingF ⊊ J(F). If F (F) = ∅, then we have the last case. If

F (F) ̸= ∅, then ∂F (F) is a non-empty invariant closed subset contained in J(F). Indeed,

if ∂F (F) = ∅, then we have CP 2 = F (F), which is absurd. If ∂F (F) = SingF , then

we have F (F) = CP 2 \ SingF because SingF consists of a finite set of points. This

implies that J(F) = SingF , which contradicts the assumption. Since M is unique, M is

contained in exclusively either ∂F (F) or J(F)\∂F (F). Suppose that M ⊂ J(F)\∂F (F)

and that L is a leaf in ∂F (F). If ∂L ̸= ∅, then it contains a minimal set, which should

be trivial. Therefore ∂L ⊂ SingF . □

We introduce the following in view of [4, Chapitre IV].

Definition 4.6. Let M be a complex manifold and F a holomorphic foliation

of M , of codimension one. We say that F satisfies the condition (H) if there exists a

meromorphic 1-form on M which is not identically zero and which defines F .

Definition 4.7. Let ω be a meromorphic 1-form on a complex manifold M . We

denote by Singω the union of zeroes and poles of ω.

Note that SingF ⊂ Singω.

In a quite particular case, we can find a large Fatou set. Suppose that F satisfies

the condition (H) and that ω has no zeroes. This occurs for example on M = CP 2, or

almost equivalently, on C2. Let ω = Pdx+Qdy be a polynomial 1-form on C2. If we set

ω′ = dx/Q+ dy/P , then ω′ also defines F on C2 \ Pole(ω′), where Pole(ω′) = {(x, y) ∈
C2 | P (x, y) = 0 or Q(x, y) = 0}. Then ω′ has no zeroes.

Assume still that ω has no zeroes. If moreover we can find a compact approximation

of M \ Pole(ω), then we have the following

Theorem 4.8. Let F be a holomorphic foliation of a compact complex manifold

M , of codimension one. Suppose that F satisfies the condition (H) and let ω be a

meromorphic 1-form which defines F . Suppose that the following conditions are satisfied :

1) The 1-form ω is closed and has no zeroes.

2) The complement M \ Pole(ω) admits a compact approximation.

Then we have F (F) ⊃ M \ Pole(ω).

Proof. We set h = ω ⊗ ω and U = M \ Pole(ω). As dω = 0, h determines

an invariant Hermitian metric on U . Moreover, singularities of h are poles so that h is

bounded from below. Then by Theorem 3.9, U is contained in the Fatou set of F . □

Note that as ω is closed, there are no exceptional minimal sets. The assertion

F (F) ⊃ M \ Pole(ω) can be seen as a reproduction of this fact by Theorem 4.4. Note

also that a typical example is a linear foliation of CP 2 discussed in Example 3.11.
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