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Abstract. In the late 1980s, Friedlander and Parshall studied the rep-
resentations of a family of algebras which were obtained as deformations of the
distribution algebra of the first Frobenius kernel of an algebraic group. The

representation theory of these algebras tells us much about the representation
theory of Lie algebras in positive characteristic. We develop an analogue of
this family of algebras for the distribution algebras of the higher Frobenius
kernels, answering a 30 year old question posed by Friedlander and Parshall.

We also examine their representation theory in the case of the special linear
group.

1. Introduction.

In 1988 and 1990, Friedlander and Parshall published a pair of papers ([6], [7]) which

have had a great impact on our understanding of the representation theory of Lie algebras

over algebraically-closed fields of positive characteristic. Prior to the publication of these

papers, it was known that in characteristic p > 0 many of the Lie algebras that were

interesting to study came with a so-called p-structure: a map g → g which gave a notion

of p-th powers to elements of g. When considering the p-structure-preserving representa-

tions of these Lie algebras, which are called restricted representations, it was discovered

that these were in 1-1 correspondence with representations of the first Frobenius kernel

G(1) of G, in the case when g was the Lie algebra of an algebraic group G.

Friedlander and Parshall, however, were interested in the general representation

theory of g, rather than the restricted representation theory. Their method was to use

an observation of Kac and Weisfeiler in [21] that from the universal enveloping algebra

U(g) one could construct a family of algebras, which they denoted Aχ and are today

written as Uχ(g), indexed by the linear forms on g. Every irreducible (not necessarily

restricted) g-module appears as a Uχ(g)-module for some χ ∈ g∗. In the case when χ = 0,

one recovers precisely the restricted representation theory of g.

At the end of [7], Friedlander and Parshall pose a number of questions about these

algebras and their representation theory. Question 5.4 in that paper, which was posed

to them in turn by Humphreys, is as follows:

Hyperalgebra analogues. Do the algebras Aχ have natural analogues corre-

sponding to the infinitesimal group schemes Gr associated to G for r > 1 ?
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It is this question which we answer here. To do such, we must first define and study

a family of higher universal enveloping algebras U [r](G) for r ∈ N, analogues of the

universal enveloping algebra in these higher cases. When r = 0, this algebra is precisely

U(g) (where g = Lie(G)), and the family of algebras {U [r](G)}r∈N form a direct system

with limit Dist(G) (the distribution algebra of G [10]). This family of algebras was first

introduced by Kaneda and Ye in [14], however their study of it related primarily to its

connection to the study of arithmetic differential operators [1]. The sum and substance

of their results on the structure of this algebra can be found in Subsection 2.2 of this

paper, and this algebra has been minimally studied since then. Indeed, Kaneda and Ye’s

construction is not especially useful for the goals of this paper and we shall define the

algebra U [r](G) in a different way, before showing that these constructions are isomorphic

in Subsection 3.5.

The majority of the results in this paper are proved in the case when G is a reductive

algebraic group. This restriction is not unusual in this area of study—indeed many of

the most notable reviews of this subject make the same restriction fairly early on (see

[9], [11]). Nevertheless, this paper requires reductivity sooner than is typical, and in fact

several of the results proved in this paper shall hold without this assumption. This is

proved in the sequel to this paper [22], where the Hopf algebra structure of the algebras

U [r](G) is studied in greater detail. This direction would appear to be the most fruitful

in studying these algebras for more general algebraic groups.

When G is reductive, the higher universal enveloping algebras U [r](G) share many

similarities with the universal enveloping algebras. They are finitely generated over

their centre (Proposition 3.4.1), all of their irreducible modules are finite-dimensional

(Theorem 3.4.2), and they have a PBW basis (Proposition 3.3.2). In fact, there exist

surjective Hopf algebra homomorphisms U [r](G) → U(g) for each r ∈ N by Lemma 4.1.2

and Corollary 4.1.3. Furthermore, Lemma 3.2.1 enables us to define a notion of p-th

powers in these algebras, and hence to define the algebras U
[r]
χ (G) indexed by χ ∈ g∗.

These U
[r]
χ (G) are the analogues of the Uχ(g) in this higher setting, and every irreducible

U [r](G)-module is an irreducible U
[r]
χ (G)-module for some χ ∈ g∗ (Lemma 5.1.2).

In studying the representation theory of these U
[r]
χ (G), one can define the notion of

a higher baby Verma module Zr
χ(λ) analogously to the construction in the standard case.

One obtains that every irreducible U
[r]
χ (G)-module is an irreducible quotient of a higher

baby Verma module (Lemma 5.4.1), however in comparison with the standard case these

modules are often too large to pinpoint the irreducible modules explicitly. For example,

when G = SL2 and χ ̸= 0 the baby Verma modules are always irreducible—this ceases

to be true for the higher baby Verma modules. The irreducible modules for U
[r]
χ (SL2)

are characterised in Theorem 6.4.1, where we see that a different module construction,

called teenage Verma modules, behaves as the baby Verma modules do in the standard

case. It is conjectured in Section 6 that these modules provide the correct analogue of

baby Verma modules for the higher universal enveloping algebras—these conjectures are

proved in the sequel to this paper [22].

One interesting feature of the higher universal enveloping algebras is that for r ∈ N
the finite-dimensional Hopf algebra Dist(G(r)) is a normal Hopf subalgebra of U [r](G)

(here G(r) is the r-th Frobenius kernel of G and is an infinitesimal group scheme). When
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r = 0 this is automatic as Dist(G(0)) = K, but when r > 0 this adds new complexity

to these algebras. One application of this fact is Theorem 7.1.2, which shows that every

irreducible U [r](G)-module M contains a unique irreducible Dist(G(r))-submodule N and

that M ∼= N ⊗ V as Dist(G(r))-modules for a finite-dimensional vector space V . This

allows us to interpret Kac–Weisfeiler’s second conjecture (see [13], [16]) in this context:

if M is a U
[r]
χ (G)-module for χ ∈ g∗, does pdim(G·χ)/2 divide the dimension of V ? We

answer this in Proposition 7.1.7 and in the sequel [22].

The structure of this paper is as follows. We start in Section 2 by recalling the

various definitions of enveloping algebras for a Lie algebra over a field of characteristic

p > 0, as well as examining the different notions for differential operators in this context.

Then, in Section 3, we introduce the algebra U [r](G) which we study for the rest of

the paper. We develop the appropriate analogue of p-structure and pth powers in this

context and construct a basis for the higher universal enveloping algebras. We restrict to

reductive algebraic groups midway into this section. In Section 4 we show the connection

between U [r](G) and the standard universal enveloping algebra U(g). We then move on to

studying the representation theory of U [r](G) in Section 5, which allows us to define the

family of algebras U
[r]
χ (G), as well as higher notions of baby Verma modules. In Section 6

we focus specifically on the case of G = SL2 and try to understand the representation

theory of the U
[r]
χ (SL2); in particular seeing how it differs from the well-understood case

r = 0 as studied by Friedlander and Parshall (see [6], [7]). Finally, in Section 7 we give

some results on the Hopf algebraic structure of the higher universal enveloping algebras.
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2. Preliminaries.

2.1. Universal enveloping algebras.

LetG be an affine algebraic group over an algebraically closed fieldK of characteristic

p > 0, and let g = Lie(G). In positive characteristic, there are several sensible notions

for an enveloping algebra of g, all of which are isomorphic when the characteristic is zero.

Let us briefly recall their constructions.

Firstly, we can construct the universal enveloping algebra

U(g) :=
T (g)

Q
,

where T (g) is the tensor algebra of g and Q is the 2-sided ideal generated by the elements

x⊗ y − y ⊗ x− [x, y] for x, y ∈ g.

Since g is constructed here as the Lie algebra of an algebraic group, it has a p-

structure [11]. That is, there exists a map [p] : g → g such that the map ξ : g → U(g)

given by x 7→ xp − x[p] satisfies the following two conditions: (1) the image lies inside
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Z(U(g)), and (2) that ξ(ax+ by) = apξ(x) + bpξ(y) for all x, y ∈ g, a, b ∈ K. This allows

us to form the algebra

U0(g) :=
U(g)

⟨xp − x[p] |x ∈ g⟩
,

called the restricted enveloping algebra of g.

Let us now recall the definition of the distribution algebra Dist(G). If I1 := {f ∈
K[G] | f(1) = 0} (where 1 is the identity of G), then we denote Distk(G) := {µ : K[G] →
K |µ is linear andµ(Ik+1

1 ) = 0} and Dist+k (G) := {µ ∈ Distk(G) |µ(1) = 0}. We then

denote Dist(G) =
∪

k≥0 Distk(G).

Dist(G) is an algebra, and g lies inside Dist(G) as Dist+1 (G). The Lie bracket on g

corresponds to the Lie bracket [A,B] = AB−BA on Dist(G). Recall that if µ ∈ Dist+i (G)

and ρ ∈ Dist+j (G) then µρ ∈ Dist+i+j(G) and [µ, ρ] ∈ Dist+i+j−1(G) ([10]).

The distribution algebra is related to the previous enveloping algebras by the fol-

lowing observation: U0(g) is isomorphic to Dist(G(1)), where we denote by G(1) the first

Frobenius kernel of G. Throughout the paper we shall more generally denote by G(r) the

rth Frobenius kernel of G (see [10]).

2.2. Differential operators.

When studying sheaves of differential operators on a smooth variety over an alge-

braically closed field of positive characteristic there are several distinct notions, which

coincide in zero characteristic. Firstly, there are the differential operators constructed

by Grothendieck in [5]. The precise construction is omitted here, but the reader should

consult [5] for more detail. In particular, the sheaf Diff X/K of these differential operators

lies inside the sheaf EndK(OX).

This sheaf has a filtration

D(0)
X/K → D(1)

X/K → · · · → D(m)
X/K → · · · → Diff X/K = lim−→D(m)

X/K

constructed by Berthelot in [1]. This sheaf D(0)
X/K is called the sheaf of crystalline dif-

ferential operators and was constructed by Berthelot before the rest of the filtration was

developed. The sheaf was used by Bezrukavnikov, Mirković and Rumynin in [2] where

they use it to derive a version of Beilinson–Bernstein’s localisation theorem in positive

characteristic. The sheaves D(m)
X/K are called the sheaves of arithmetic differential opera-

tors.

When X = G is a smooth algebraic group we can compare the sheaves of differential

operators with the above notions of universal enveloping algebras. In particular, there is

an injective algebra homomorphism Dist(G) ↪→ Γ(G,Diff G/K), which is an isomorphism

onto the subalgebra of left invariant differential operators. See [10, I.7.18] for details.

Similarly, there is an injective algebra homomorphism U(g) ↪→ Γ(G,D(0)
X/K) which is an

isomorphism onto the left invariant crystalline differential operators.

In trying to construct the analogues to the Uχ(g) from Friedlander and Parshall’s

question, one sees that the arithmetic differential operators should play a role. To work

with arithmetic differential operators explicitly, it helps to recall from [8] that
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D(m)
X/K

∼=
TK(Diff 2pm−1)

⟨λ− λ1OX
, δ ⊗ δ′ − δ′ ⊗ δ − [δ, δ′], δ ⊗ δ′′ − δδ′′ | λ ∈ K, δ′′ ∈ Diff pm−1, δ, δ′ ∈ Diff pm⟩

,

where we denote by Diff k the sheaf of differential operators of order ≤ k.

Motivated by this, Kaneda and Ye defined in [14] the algebra

U(m) :=
TK(Dist2pm−1(G))

⟨λ− λϵG, δ ⊗ δ′ − δ′ ⊗ δ − [δ, δ′], δ ⊗ δ′′ − δδ′′ | λ ∈ K, δ′′ ∈ Distpm−1(G), δ, δ′ ∈ Distpm(G)⟩
,

with ϵG the counit of K[G]. They obtain, when G is reductive, the following commutative

diagram of K[G]-modules [14, Corollary 1.5]:

K[G]⊗K U(m) ∼−−−−→ Γ(G,D(m)
X/K)y y

K[G]⊗K Dist(G)
∼−−−−→ Γ(G,Diff G/K)

with lim−→U(m) ∼= Dist(G).

To be able to answer Parshall and Friedlander’s question we need a slightly differ-

ent construction of this algebra. We shall see that these constructions give isomorphic

algebras in Section 3.5.

3. The Algebra U [r](G).

3.1. Filtered algebras.

Before we get to the construction of the algebras U [r](G) that we will be studying

in this paper let us generalise slightly the situation we are considering, so that we can

develop some notation and tools to work with in our particular circumstance. Suppose

that A is a filtered Hopf algebra A =
∪

k∈N Ak with A0 = K and such that the associated

graded algebra gr(A) =
⊕

k∈N Ak+1/Ak is commutative (i.e. [Ak, Al] ⊆ Ak+l−1 for all

k, l). We shall denote A+
k := Ak ∩ ker(ϵA), where ϵA is the counit of A.

We can construct the following algebra.

U [k](A) :=
T (A+

k )

Qk
,

where Qk is the ideal generated by the relations:

(i) x⊗ y = xy if x ∈ A+
i , y ∈ A+

j with i+ j < k + 1, and;

(ii) x⊗ y − y ⊗ x = [x, y] if x ∈ A+
i , y ∈ A+

j with i+ j ≤ k + 1.

Definition. Let A be a filtered Hopf algebra A =
∪

k∈N Ak satisfying the above

conditions, and B an associative K-algebra. We will call a K-linear map ϕ : A+
k → B an

indexed algebra subspace homomorphism if ϕ(xy) = ϕ(x)ϕ(y) for all x ∈ A+
i and y ∈ A+

j

with i+j < k+1, and ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x ∈ A+
i and y ∈ A+

j with i+j ≤ k+1.

There is a natural indexed algebra subspace homomorphism ιQ : A+
k → U [k](A).
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Definition. Let A be a filtered Hopf algebra A =
∪

k∈N Ak satisfying the above

conditions. The indexed algebra subspace dual of A+
k is the set of all indexed algebra

subspace homomorphisms from A+
k to K. We shall denote it by (A+

k )
∗.

It is straightforward to prove the following universal property:

Proposition 3.1.1. Let A be a filtered Hopf algebra A =
∪

k∈N Ak satisfying the

above conditions, and B an associative K-algebra. Let ϕ : A+
k → B be an indexed

algebra subspace homomorphism. Then there exists a unique algebra homomorphism

ϕ : U [k](A) → B such that ϕ ◦ ιQ = ϕ.

Let Û [k](A) be the algebra constructed in the same way as U [k](A) except using Ai

instead of A+
i for i ∈ N whenever relevant. This has a similar universal property, and

using the universal properties for the linear maps A+
k ↪→ Ak and Ak → K⊕A+

k it can be

shown that the algebras Û [k](A) and U [k](A) are isomorphic. We shall abuse notation

to refer to both algebras as U [k](A). [A similar argument can be made regarding the

algebra U(m) defined in the Subsection 2.2].

Corollary 3.1.2. Let A be a filtered Hopf algebra A =
∪

k∈N Ak satisfying the

above conditions. Then U [k](A) is a Hopf algebra for all k ≥ 0. Furthermore, if A is

cocommutative then U [k](A) is cocommutative.

Proof. We already know that U [k](A) is an associative algebra. Applying Propo-

sition 3.1.1 to the comultiplication and counit maps on the coalgebra Ak constructs the

comultiplication and counit maps on U [k](A). Furthermore, the antipode on A sends Ak

to Ak and so we get the antipode on U [k](A) from Proposition 3.1.1. It is straightfor-

ward to check that the Hopf algebra axioms hold, and similarly straightforward to show

cocommutativity when A is cocommutative. □

Definition. Let A be a filtered Hopf algebra A =
∪

k∈N Ak satisfying the above

conditions. An indexed algebra subspace representation of A+
k is an indexed algebra

subspace homomorphism ϕ : A+
k → End(M) where M is a K-vector space.

Definition. Let A be a filtered Hopf algebra A =
∪

k∈N Ak satisfying the above

conditions. A K-vector space M is called an indexed A+
k -module if there exists an indexed

algebra subspace homomorphism θ : A+
k → End(M). For a ∈ A+

k and m ∈ M we shall

often write a ·m or just am for the element θ(a)(m).

Definition. Let A be a filtered Hopf algebra A =
∪

k∈N Ak satisfying the above

conditions, and let (M1, θ1), (M2, θ2) be indexed A+
k -modules. A homomorphism of in-

dexed A+
k -modules is a linear map ϕ : M1 → M2 such that ϕ(am) = aϕ(m) for all a ∈ A+

k

and m ∈ M .

We can use the universal property in a standard way to get the following theorem:

Proposition 3.1.3. There is a bijection between the set of (isomorphism classes

of ) indexed A+
k -modules and the set of (isomorphism classes of ) U [k](A)-modules.
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3.2. Higher universal enveloping algebras.

Observe that, for an affine algebraic group G, the distribution algebra Dist(G) is

a filtered Hopf algebra Dist(G) =
∪

k∈N Distk(G) with Dist0(G) = K, such that the

associated graded algebra gr(Dist(G)) =
⊕

k∈N Distk+1(G)/Distk(G) is commutative.

Furthermore, Dist+k (G) is the same object as Distk(G)+ and Dist+(G) is an ideal in

Dist(G).

We can now use the results of Section 3.1 to obtain analogues of the universal

enveloping algebras. In particular, we define the higher universal enveloping algebra of

G of degree r to be the algebra

U [r](G) := U [pr+1−1](Dist(G)).

The key observation which allows Parshall and Friedlander to develop and study

their deformation algebras is that the p-th power map gives rise to a semilinear map

ξ : g → Z(U(g)) (i.e. for all α, β ∈ K and x, y ∈ g, ξ(αx + βy) = αpξ(x) + βpξ(y)). In

order to make progress with the study of the structure of U [r](G) we need to construct an

analogue of the map ξ. We start with the following lemma. Note that when δ ∈ Dist+k (G)

we already know that δp ∈ Dist+pk(G).

Lemma 3.2.1. If δ ∈ Dist+k (G), then δp ∈ Dist+pk−1(G).

Proof. Recall that K[G] = K⊕I1. Hence, for m ∈ N, K[G]⊗m =
∑

Pi∈{K,I1} P1⊗
P2 ⊗ · · · ⊗ Pm. Using this and the counitary property of the Hopf algebra structure of

K[G], we have for f ∈ I1,

∆m−1(f) ∈ f⊗1⊗· · ·⊗1+1⊗f⊗1⊗· · ·⊗1+· · ·+1⊗· · ·⊗1⊗f+
∑

ai∈{0,1}
2≤

∑
ai≤m

Ia1
1 ⊗· · ·⊗Iam

1 ,

where ∆m−1 is defined inductively by setting ∆1 as the comultiplication of K[G] and

∆l := (∆l−1 ⊗ Id) ◦∆. One can hence show by induction that for f1, . . . , fn ∈ I1, with

n ∈ N, we have

∆m−1(f1 · · · fn) ∈
n∏

i=1

(fi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ fi ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ fi)

+
∑

0≤ai≤n
n+1≤

∑
ai≤mn

Ia1
1 ⊗ · · · ⊗ Iam

1 .

Rewriting this slightly, we get

∆m−1(f1 · · · fn) ∈
n∏

i=1

(fi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ fi ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ fi)

+
m∑
j=1

∑
0≤ai≤n

n+1≤
∑

ai≤mn
aj=0

Ia1
1 ⊗ · · · ⊗ Iam

1 +
∑

1≤ai≤n∑
ai=n+1

Ia1
1 ⊗ · · · ⊗ Iam

1 .
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We now fix m = p and n = pk. Given δ ∈ Dist+k (G) (so δ(Ik+1
1 ) = 0 and δ(1) = 0) and

f1, . . . , fpk ∈ I1 we have that

δp(f1 · · · fpk) = (δ ⊗ δ ⊗ · · · ⊗ δ)(∆p−1(f1 · · · fpk))

∈ (δ ⊗ δ ⊗ · · · ⊗ δ)

(
pk∏
i=1

(fi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ fi ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ fi)

)

+

p∑
j=1

∑
0≤ai≤pk

pk+1≤
∑

ai≤p2k
aj=0

δ(Ia1
1 ) · · · δ(Iam

1 ) +
∑

1≤ai≤pk
pk+1=

∑
ai

δ(Ia1
1 ) · · · δ(Iap

1 ).

Since δ(1) = 0, we get

p∑
j=1

∑
0≤ai≤pk

pk+1≤
∑

ai≤p2k
aj=0

δ(Ia1
1 ) · · · δ(Iam

1 ) = 0.

Since a1 + · · ·+ ap = pk+1 implies ai ≥ k+1 for some i, and δ(Ik+1
1 ) = 0, we also have∑

1≤ai≤pk
pk+1=

∑
ai

δ(Ia1
1 ) · · · δ(Iap

1 ) = 0.

Now, we want to compute (δ⊗ δ⊗ · · · ⊗ δ)(
∏pk

i=1(fi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ fi ⊗ 1⊗ · · · ⊗ 1 +

· · ·+ 1⊗ · · · ⊗ 1⊗ fi)).

Observe that

pk∏
i=1

(fi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ fi ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ fi) =
∑

fA1 ⊗ · · · ⊗ fAp ,

where the sum is over all ordered partitions A1, . . . , Ap of the set {1, . . . , pk} where the

sets can be empty (ordered partition meaning for example that {1, 2}, {3, 4} is different

from {3, 4}, {1, 2}), and where, if Ai = {j1, . . . , js} with j1 < · · · < js, we denote

fAi = fj1fj2 · · · fjs . Then

(δ ⊗ δ ⊗ · · · ⊗ δ)

(
pk∏
i=1

(fi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ fi ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ fi)

)
=
∑

δ(fA1) · · · δ(fAp)

where the sum is over the same set as before.

For ordered partitions containing empty sets, δ(fAi) = δ(1) = 0 for those i with

Ai = ∅. Furthermore, if two ordered partitions containing no empty sets are rearrange-

ments of each other, they give the same summand in the above sum since K is a field. In

particular, there are p! such partitions which give the same summand, so this summand
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appears p! times. Hence

(δ ⊗ δ ⊗ · · · ⊗ δ)

(
pk∏
i=1

(fi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ fi ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ fi)

)
=
∑

p!δ(fA1) · · · δ(fAp) = 0

where this time the second sum is over unordered partitions with p non-empty sets in

them.

Hence, we have that δp
(
f1 · · · fpk

)
= 0. That is to say, δp ∈ Dist+pk−1(G). □

In particular, if δ ∈ Dist+pr (G) then δp ∈ Dist+pr+1−1(G). This allows us to define a

map ξr : Dist+pr (G) → U [r](G) as ξr(δ) = δ⊗p − δp where the first exponent is in U [r](G)

and the second is in Dist(G).

Lemma 3.2.2. ξr is semilinear.

Proof. Clearly ξr(λδ) = λpξr(δ) if λ ∈ K and δ ∈ Dist+pr (G). We now want to

show ξr(µ+ ρ) = ξr(µ) + ξr(ρ) for µ, ρ ∈ Dist+pr (G). Observe that, by definition,

ξr(µ+ ρ) = (µ+ ρ)⊗p − (µ+ ρ)p.

We have that

(µ+ ρ)⊗p =
∑

ai∈{0,1}

ηa1 ⊗ · · · ⊗ ηap ,

where η0 = µ and η1 = ρ. Applying µ⊗ ρ− ρ⊗ µ = [µ, ρ] ∈ Dist+2pr−1(G), we get

(µ+ ρ)⊗p =

p∑
i=0

(
p

i

)
µ⊗i ⊗ ρ⊗(p−i) −Ψ

where Ψ is a sum of terms in U [r](G), each of which is the tensor product of elements of

Dist(G) where the sum of the grades is less than pr+1. Hence, Ψ is obtained from the

product of these elements in Dist(G), by the definition of U [r](G). Since charK = p, we

get

(µ+ ρ)⊗p = µ⊗p + ρ⊗p −Ψ.

Similarly,

(µ+ ρ)p =
∑

ai∈{0,1}

ηa1 · · · ηap ,

where η0 = µ and η1 = ρ. Applying µρ− ρµ = [µ, ρ] ∈ Dist2pr−1(G), we get

(µ+ ρ)p =

p∑
i=0

(
p

i

)
µiρp−i −Ψ
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where Ψ is exactly the same Ψ as above since the multiplication in the expression of Ψ

is the same in Dist(G) and U [r](G). So

(µ+ ρ)p = µp + ρp −Ψ.

Hence ξr(µ+ ρ) = ξr(µ) + ξr(ρ). □

For k ≤ r, define Xpk to be the K-span of {µ ∈ Dist+
pk(G) |µ = ρ1ρ2 for ρi ∈

Distji(G)with j1 + j2 ≤ pk and j1, j2 < pk} ⊂ U [r](G). Define Ypk to be a vector space

complement of this subspace in Dist+
pk(G); when G is reductive, we take it to be the one

with basis {e(p
k)

α ,
(
ht

pk

)
|α ∈ Φ, 1 ≤ t ≤ d} (see Subsection 3.3 for the notation). The next

proposition shows that ξr is only non-trivial outside of the subspace Xpr .

Proposition 3.2.3. For all 0 ≤ k ≤ r, ξr(Xpk) = 0.

Proof. SinceXpk ⊆ Xpr for all 0 ≤ k ≤ r, it is sufficient to prove that ξr(Xpr ) = 0.

Suppose µ ∈ Disti(G), ρ ∈ Distj(G), where i + j ≤ pr and i, j > 0. So µρ ∈
Distpr (G). Consider ξr(µρ) = (µρ)⊗p − (µρ)p. Note that µρ− µ⊗ ρ = 0 as i+ j ≤ pr <

pr+1. We have

(µρ)⊗p = µ⊗ (ρ⊗ µ)⊗ · · · ⊗ (ρ⊗ µ)⊗ ρ.

Furthermore ρ⊗ µ− µ⊗ ρ = [ρ, µ] ∈ Distpr−1(G). Hence

(µρ)⊗p = µ⊗p ⊗ ρ⊗p − Φ,

where Φ is a sum of terms in U [r](G), each of which is the tensor product of elements

of Dist(G) where the sum of the grades is less that pr+1. Hence, Φ is obtained from the

product of these elements in Dist(G). Similarly, we have

(µρ)p = µ(ρµ) · · · (ρµ)ρ.

Since ρµ− µρ = [ρ, µ] by definition, we get that

(µρ)p = µpρp − Φ,

where Φ is exactly the same as above, since it doesn’t matter when calculating Φ if the

multiplication is done in Dist(G) or in U [r](G) because of the grades of the elements

being multiplied.

Hence, ξr(µρ) = (µρ)⊗p− (µρ)p = µ⊗p⊗ρ⊗p−µpρp. Since µ ∈ Disti(G) and i < pr,

we have µ⊗p = µp, and similarly for ρ. So ξr(µρ) = µp ⊗ ρp − µpρp. Furthermore,

µp ∈ Distpi−1(G) and ρp ∈ Distpj−1(G), so µp ⊗ ρp = µpρp, so ξr(µρ) = 0. □

At this point, we would like to show that the image of ξr is central in U [r](G).

However, the proofs of this result which are known to the author for universal enveloping

algebras do not appear to work in this case. For example, a priori there is no reason why

ad(δp) = ad(δ)p should hold when r ̸= 0. Hence, to progress further we must move to

the case of reductive groups where calculations can be made more explicit.
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3.3. Reductive groups.

From now on, unless specified otherwise, G will be a reductive algebraic group over

an algebraically closed field K of characteristic p > 0.

Let B be a Borel subgroup of G with maximal torus T and unipotent radical U . Say

that T ∼= (Gm)d, where Gm is the multiplicative group, and let X(T ) = Hom(T,Gm)

be the group of characters of T . Let Φ be the root system of G with respect to T . We

specify a set of positive roots Φ+ with corresponding simple roots Π = {α1, . . . , αn} and

we fix an ordering on Φ.

Denote g = Lie(G), b = Lie(B), h = Lie(T ) and n+ = Lie(U). As in [10, II.1.11], g

has a basis {eα,ht ; α ∈ Φ, 1 ≤ t ≤ d} (where eα = Xα ⊗ 1 and ht = Ht ⊗ 1 in Jantzen’s

notation). We set hα = [eα, e−α]. Throughout this paper we shall abuse notation by

using the same symbols eα and ht for the corresponding elements over any base ring.

One may see this abuse, for example, in the following statement: the elements eα ∈ gC
for α ∈ Φ form a Chevalley system in gC, where a Chevalley system is as defined in [3,

Chapitre VIII, Section 12]. Here, gC is the complex reductive Lie algebra corresponding

to g over the field C.
Let us recall the construction of the standard bases for the universal enveloping

algebra U(g) and the distribution algebra Dist(G). In both cases we start by considering

the complex reductive Lie algebra gC, and we look at elements in the universal enveloping

algebra U(gC). Recall that U(gC) has C-basis{ ∏
α∈Φ+

eiαα

d∏
t=1

hkt
t

∏
α∈Φ+

ejα−α ; 0 ≤ iα, jα, kt

}
.

We then look at the following Z-forms in U(gC):

U(g)Z = Z

{ ∏
α∈Φ+

eiαα

d∏
t=1

hkt
t

∏
α∈Φ+

ejα−α ; 0 ≤ iα, jα, kt

}
,

Ũ(g)Z = Z

{ ∏
α∈Φ+

e(iα)
α

d∏
t=1

(
ht

kt

) ∏
α∈Φ+

e
(jα)
−α ; 0 ≤ iα, jα, kt

}

where e
(iα)
α := eiαα /iα! and

(
ht

kt

)
:= (ht(ht − 1) · · · (ht − kt + 1))/kt!. We call e

(iα)
α and(

ht

kt

)
divided powers of eα and ht.

It is easy to see that the first of these is a Z-form from the definitions of the commu-

tators, while the fact that the second is a Z-form was proved by Kostant in [15] in the

case when G is semisimple and simply-connected—the more general result can be found

in Jantzen [10, II.1.12]. From this, we get U(g) = U(g)Z⊗ZK and Dist(G) = Ũ(g)Z⊗ZK.

To get a basis for the algebra U [r](G) we shall apply the same process with a Z(p)-

form. Recall here that Z(p) = {a/b ∈ Q | hcf(a, b) = 1, p ∤ b} is a commutative local

ring.

Given an integer M = a0 + a1p+ · · ·+ arp
r where 0 ≤ a0, . . . , ar−1 < p and ar ≥ 0,

we shall define

eJMK
α = ea0

α (e(p)α )a1 · · · (e(p
r)

α )ar ∈ U(gC)
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for α ∈ Φ. Furthermore, define(
htJMK
)

=

(
ht

1

)a0
(
ht

p

)a1

· · ·
(
ht

pr

)ar

∈ U(gC)

for 1 ≤ t ≤ d.

Proposition 3.3.1. The subset

U JrK(g)Z(p)
:= Z(p)

{ ∏
α∈Φ+

eJiαK
α

d∏
t=1

(
htJktK
) ∏

α∈Φ+

e
JjαK
−α ; 0 ≤ iα, jα, kt

}
⊂ U(gC)

is a well-defined Z(p)-form of U(gC).

Proof. For this to be well defined, we need to show that it closed under multi-

plication. It is clearly enough to show that certain commutators lie inside U JrK(g)Z(p)
.

Let us introduce the notation

Ũ JrK(g)Z(p)
:= Z(p)

{ ∏
α∈Φ+

e(iα)
α

d∏
t=1

(
ht

kt

) ∏
α∈Φ+

e
(jα)
−α ; 0 ≤ iα, jα, kt < pr+1

}
,

which lies inside Ũ(g)Z(p)
∩ U JrK(g)Z(p)

.

One can now compute that, for α, β ∈ Φ, 1 ≤ t, t1, t2 ≤ d and 0 ≤ s, u < r + 1,

we have

[e(p
s)

α , e
(pu)
β ] ∈ Ũ JrK(g)Z(p)

,

[e(p
s)

α , e
(pu)
−α ] ∈ Ũ JrK(g)Z(p)

,[
e(p

s)
α ,

(
ht

pu

)]
=

pu−1∑
l=0

(
−α(ht)p

s

pu − l

)(
ht

l

)
e(p

s)
α ∈ Ũ JrK(g)Z(p)

,[(
ht1

ps

)
,

(
ht2

pu

)]
= 0.

More specifically, we know that when we write these commutators in the divided powers

basis we have coefficients in Z(p) (this just follows from Ũ(g)Z(p)
being a Z(p)-form).

Hence, all we have to show is that none of the divided power indices exceed pr+1 − 1.

The first two of these calculations can be checked directly using [15] and [4], while the

second two are clear. For example, if {α, β} form the fundamental roots for a root system

of type G2 with β the long root, then we have

[e(p
s)

α , e
(pu)
β ] =

∑
ϵk1,k2,k3,k4e

(pu−k1−k2−k3−2k4)
β

(
3∏

j=1

e
(kj)
jα+β

)
e
(k4)
3α+2βe

(ps−k1−2k2−3k3−3k4)
α

where the sum is over all k1, k2, k3, k4 ≥ 0, not all zero, such that k1+k2+k3+2k4 ≤ ps

and k1+2k2+3k3+3k4 ≤ pu and ϵk1,k2,k3,k4 ∈ {1,−1} for all k1, k2, k3, k4. In particular,

none of the heights of the divided powers are greater than or equal to pr+1. The rest are

similar. □
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We can hence form U JrK(g) := U JrK(g)Z(p)
⊗Z(p)

K.

Proposition 3.3.2. There is an isomorphism of algebras U JrK(g) ∼= U [r](G).

Proof. We prove this by constructing an algebra homomorphism U [r](G) →
U JrK(g) using the universal property and showing that it sends a basis of U [r](G) to

a basis of U JrK(g).
Distpr+1−1(G) has K-basis{ ∏

α∈Φ+

e(iα)
α

d∏
t=1

(
ht

kt

) ∏
α∈Φ+

e
(jα)
−α :

∑
α∈Φ+

(iα + jα) +
d∑

t=1

kt < pr+1

}
.

Define ϕ : Distpr+1−1(G) → U JrK(g) by
ϕ

( ∏
α∈Φ+

e(iα)
α

d∏
t=1

(
ht

kt

) ∏
α∈Φ+

e
(jα)
−α

)
=
∏

α∈Φ+

e(iα)
α

d∏
t=1

(
ht

kt

) ∏
α∈Φ+

e
(jα)
−α .

The fact that ϕ(δρ) = ϕ(δ)ϕ(ρ) if δ ∈ Dist+i (G), ρ ∈ Dist+j (G) with i + j < pr+1 and

ϕ([δ, ρ]) = [ϕ(δ), ϕ(ρ)] if δ ∈ Dist+i (G), ρ ∈ Dist+j (G) with i+j ≤ pr+1 is obvious from how

basis elements in Distpr+1−1(G) multiply (since below the pr+1 level, the multiplication is

the same in U JrK(g) and Dist(G)). Hence we get an algebra homomorphism ϕ : U [r](G) →
U JrK(g) from the universal property.

We now need some notation for the elements in U [r](G). Given an integer M =

a0 + a1p+ · · ·+ arp
r where 0 ≤ a0, . . . , ar−1 < p and ar ≥ 0, we shall define

eJMK⊗
α = e⊗a0

α ⊗ (e(p)α )⊗a1 ⊗ · · · ⊗ (e(p
r)

α )⊗ar ∈ U [r](G)

for α ∈ Φ. Furthermore, define(
htJMK⊗

)
=

(
ht

1

)⊗a0

⊗
(
ht

p

)⊗a1

⊗ · · · ⊗
(
ht

pr

)⊗ar

∈ U [r](G)

for 1 ≤ t ≤ d. Then

ϕ

( ⊗
α∈Φ+

eJiαK⊗
α

d⊗
t=1

(
htJktK⊗

) ⊗
α∈Φ+

e
JjαK⊗
−α

)
=
∏

α∈Φ+

eJiαK
α

d∏
t=1

(
htJktK
) ∏

α∈Φ+

e
JjαK
−α .

Furthermore, it is not difficult to see that the
⊗

α∈Φ+ e
JiαK⊗
α

⊗d
t=1

(
htJktK⊗)⊗

α∈Φ+ e
JjαK⊗
−α , for iα, j−α, kt ∈ N, span U [r](G) as a vector space. They are also linearly

independent, since their images under the map ϕ are. Thus, ϕ maps a basis to a basis,

and the result holds. □

Hence U JrK(g) ∼= U [r](G) as algebras and U [r](G) has the desired basis, which we

shall generally abuse notation to denote it as
{∏

α∈Φ+ e
JiαK
α

∏d
t=1

(
htJktK)∏α∈Φ+ e

JjαK
−α : 0 ≤

iα, jα, kt
}
.
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Note that the universal property of U(g) gives a K-algebra homomorphism U(g) →
U [0](G). This basis guarantees that this is an isomorphism of K-algebras (in fact, of Hopf

algebras, by considering the effect of the comultiplication, counit and antipode on the

corresponding bases). Hence, the representation theory of reductive Lie algebras over a

field of characteristic p > 0 as studied by Friedlander and Parshall in [6] and [7] exists

within our theory as the case when r = 0. One can also see this using Kaneda and Ye’s

construction U(0) and Proposition 3.5.1 below.

With a basis of U [r](G) in place, we can now prove the following proposition.

Proposition 3.3.3. If G is reductive, the image of ξr is central in U [r](G).

Proof. By Propositions 3.2.2 and 3.2.3, it is enough to show that ξr(e
(pr)
α ) and

ξr
((

ht

pr

))
are central for α ∈ Φ and 1 ≤ t ≤ d. We know that ξr(e

(pr)
α ) = (e

(pr)
α )⊗p

and ξr
((

ht

pr

))
=
(
ht

pr

)⊗p −
(
ht

pr

)
. By the given basis of U [r](G), it is enough to show that

ξr(e
(pr)
α ) and ξr

((
ht

pr

))
commute with each element of Dist+pr (G).

Observe that in the notation coming from the Z(p)-form the multiplicative notation

means the tensor product notation in U [r](G). This gives us that for α, β ∈ Φ with

α ̸= −β and 0 < s ≤ r, Lemma 4.1 in [4] shows

[(e(p
r)

α )p, e
(ps)
β ] =

pr+1!

(pr!)p
[e(p

r+1)
α , e

(ps)
β ] ∈ pr+1!

(pr!)p
U JrK(g)Z(p)

,

[(e(p
r)

α )p, e
(ps)
−α ] =

pr+1!

(pr!)p
[e(p

r+1)
α , e

(ps)
−α ] ∈ pr+1!

(pr!)p
U JrK(g)Z(p)

.

In fact, the equations from [4, Lemma 4.1] show that these commutators lie in

(pr+1!/(pr!)p)Ũ JrK(g)Z(p)
, not just in (pr+1!/(pr!)p)U JrK(g)Z(p)

. The reader can see this

with the observation that if, for example, {α, β} form the fundamental roots for a root

system of type G2 with β the long root, then we have as in [4, Lemma 4.1] that

[e(p
r+1)

α , e
(ps)
β ] =

∑
ϵk1,k2,k3,k4e

(ps−k1−k2−k3−2k4)
β

(
3∏

j=1

e
(kj)
jα+β

)
e
(k4)
3α+2βe

(pr+1−k1−2k2−3k3−3k4)
α

where the sum is over all k1, k2, k3, k4 ≥ 0, not all zero, such that k1+k2+k3+2k4 ≤ pr+1

and k1+2k2+3k3+3k4 ≤ ps and ϵk1,k2,k3,k4 ∈ {1,−1} for all k1, k2, k3, k4. In particular,

none of the divided powers are greater than or equal to pr+1.

Since pr+1!/(pr!)p ∈ Z vanishes modulo p, the above equations hence show that the

commutators vanish in U JrK(g) = U JrK(g)Z(p)
⊗Z(p)

K.

Furthermore,[
(e(p

r)
α )p,

(
ht

ps

)]
=

ps−1∑
l=0

(
−α(ht)p

r+1

ps − l

)(
ht

l

)
(e(p

r)
α )p = 0,

where the last equality follows from the observation that
(−α(ht)p

r+1

ps−l

)
= 0 modulo p for

all 0 ≤ l ≤ ps − 1. This comes from Lucas’ theorem and the fact that s < r + 1. This
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gives the centrality of ξr(e
(pr)
α ). For ξr

((
ht

pr

))
we have[(

ht

pr

)⊗p

−
(
ht

pr

)
,

(
hu

ps

)]
= 0

and((
ht

pr

)⊗p

−
(
ht

pr

))
e(p

s)
α = e(p

s)
α

((
ht − α(ht)p

s

pr

)⊗p

−
(
ht − α(ht)p

s

pr

))

= e(p
s)

α

((
pr∑
l=0

(
ht

l

)(
−α(ht)p

s

pr − l

))⊗p

−
pr∑
l=0

(
ht

l

)(
−α(ht)p

s

pr − l

))

= e(p
s)

α

(
pr∑
l=0

(
ht

l

)⊗p(−α(ht)p
s

pr − l

)
−

pr∑
l=0

(
ht

l

)(
−α(ht)p

s

pr − l

))

= e(p
s)

α

((
ht

pr

)⊗p

−
(
ht

pr

))
since

(
ht

l

)⊗p
=
(
ht

l

)
for l < pr. This gives the centrality of ξr

((
ht

pr

))
. Hence the image of

ξr is central. □

3.4. Centres.

As always from now on, G is reductive. Let Zr(G) be the subalgebra of Z(U [r](G))

generated by the ξr(δ) for δ ∈ Dist+pr (G). Using Propositions 3.3.2 and 3.3.3, we can

easily see that Zr(G) is generated by (e
(pr)
α )⊗p for α ∈ Φ and

(
ht

pr

)⊗p−
(
ht

pr

)
for 1 ≤ t ≤ d.

From Proposition 3.3.2, it is clear that these elements are algebraically independent over

K.

Note the semilinearity of ξr induces an algebra homomorphism from S(Y
(1)
pr ) (the

symmetric algebra on the vector space Y
(1)
pr defined above) to Zr(G). This map is bijec-

tive.

As a Zr(G)-module under left multiplication, U [r](G) is free of rank p(r+1) dim(g)

with basis { ∏
α∈Φ+

eJiαK
α

d∏
t=1

(
htJktK
) ∏

α∈Φ+

e
JjαK
−α ; 0 ≤ iα, jα, kt < pr+1

}
.

This leads us to the following proposition.

Proposition 3.4.1. The centre Z(U [r](G)) of U [r](G) is a finitely generated alge-

bra over K. As a Z(U [r](G))-module, U [r](G) is finitely generated.

Theorem 3.4.2. Let E be an irreducible U [r](G)-module. Then E is finite-

dimensional, of dimension less than or equal to p(r+1) dim(g).

Proof. This follows in exactly the same way as Theorem A.4 in [12]. □
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3.5. Comparison with Kaneda–Ye construction.

Recall that Kaneda and Ye in [14] construct the algebra U(r) as

U(r) :=
TK(Dist2pr−1(G))

⟨λ− λϵG, δ ⊗ δ′ − δ′ ⊗ δ − [δ, δ′], δ ⊗ δ′′ − δδ′′ | λ ∈ K, δ′′ ∈ Distpr−1(G), δ, δ′ ∈ Distpr (G)⟩
,

with ϵG the counit of K[G].

Proposition 3.5.1. The algebras U(r) and U [r](G) are isomorphic.

Proof. The algebra U(r) has a clear universal property, which causes the inclusion

Dist2pr−1(G) ↪→ U [r](G) to induce an algebra homomorphism U(r) → U [r](G). The

surjectivity of this homomorphism is obvious from the basis constructed in Section 3.3.

It is left as an exercise for the reader to show that the proof of Proposition 3.3.2,

showing that the algebra U [r](G) has the given basis, applies equally well to the algebra

U(r). This guarantees that the algebra homomorphism U(r) → U [r](G) is an isomorphism.

□

4. Connection with other algebras.

4.1. Universal enveloping algebra.

Recalling that reductive algebraic groups are defined over Fp, we may consider the

Frobenius kernelG(s) (s ∈ N) as the kernel of the geometric Frobenius endomorphism F s
g :

G → G, i.e. the endomorphism of G corresponding to the Hopf algebra homomorphism

Fp[G] ⊗Fp K → Fp[G] ⊗Fp K which sends f ⊗ a to fps ⊗ a. Applying the distribution

functor to F s
g , we get a Hopf algebra homomorphism

Ξs : Dist(G) → Dist(G), Ξs(δ)(f ⊗ a) = δ(fps

⊗ a).

Proposition 4.1.1. For each r, s ∈ N, the map Ξs induces a Hopf algebra homo-

morphism Υr,s : U
[r](G) → U [r−s](G).

Proof. First, note that if f⊗a ∈ Ik+1
1 , with f ∈ Fp[G] and a ∈ K, then Ξs(δ)(f⊗

a) = δ(fps ⊗ a) ∈ δ(I
ps(k+1)
1 ). So if δ ∈ Distm(G) for m ∈ N, Ξs(δ) ∈ Distn(G) for

n ≥ (m + 1)/ps − 1. Now, observe that δ(1 ⊗ 1) = 0 implies Ξs(δ)(1 ⊗ 1) = 0, so

δ ∈ Dist+m(G) for m ∈ N in fact implies that Ξs(δ) ∈ Dist+n (G) for n ≥ (m + 1)/ps − 1.

We can deduce that if δ ∈ Dist+m(G) for m < ps then Ξs(δ) ∈ Dist+0 (G) = 0 since

(m+1)/ps−1 ≤ 0. Hence, Ξs(Dist+m(G)) = 0 for m < ps. Similarly, if δ ∈ Dist+pr+1−1(G)

then Ξs(δ) ∈ Dist+pr−s+1−1(G).

Furthermore Ξs : Dist+pr+1−1(G) → Dist+pr−s+1−1(G) ↪→ U [r−s](G) is an indexed

algebra homomorphism. This follows because if δ ∈ Dist+i (G) and µ ∈ Dist+j (G) with

i+ j < pr+1 then Ξs(δ) ∈ Dist+⌈(i+1)/ps⌉−1(G) and Ξs(µ) ∈ Dist+⌈(j+1)/ps⌉−1(G) (here ⌈x⌉
denotes the smallest integer ≥ x), and⌈

i+ 1

ps

⌉
− 1 +

⌈
j + 1

ps

⌉
− 1 ≤ i+ j

ps
< pr−s+1,
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and similarly for the commutator. Hence the universal property gives an algebra homo-

morphism Υr,s : U
[r](G) → U [r−s](G).

The fact that Υr,s is a Hopf algebra homomorphism follows from the fact that Ξs is a

Hopf algebra homomorphism and the fact that the comultiplication, counit and antipode

of U [r](G) come from the corresponding maps on Dist(G). □

Let M be a G-module. Since F s
g : G → G is an endomorphism, it induces a new

G-module structure on M . We denote M with this induced G-module structure by M [s].

Lemma 4.1.2. Υr,s : U
[r](G) → U [r−s](G)[s] is G-equivariant for all r, s ∈ N.

Proof. This will follow immediately from the same fact for Dist+pr+1−1(G) →
Dist+pr−s+1−1(G)[s]. For this to hold, it is enough that the geometric Frobenius com-

mutes with conjugation (where in the codomain the conjugation is pre-composed with

the geometric Frobenius). This condition holds since F s
g is a homomorphism. □

Corollary 4.1.3. Υr,s is surjective if r ≥ s.

Proof. We can see by explicit calculation (cf. [10]) that Ξs(e
(pr)
α ) = e

(pr−s)
α and

Ξs

((
ht

pr

))
=
(

ht

pr−s

)
for α ∈ Φ, 1 ≤ t ≤ d. □

A special case of the previous observation is that when r = s the above process gives

a surjective algebra homomorphism Υr,r : U
[r](G) → U(g), and a surjective G-module

homomorphism Υr,r : U
[r](G) → U(g)[r].

5. Representation theory.

5.1. Deformation algebras.

In this section we start to consider the representation theory of the algebra U [r](G).

From Theorem 3.1.3, we have the immediate result:

Corollary 5.1.1. There is a bijection between the set of (isomorphism classes of )

indexed Dist+pr+1−1(G)-modules and the set of (isomorphism classes of ) U [r](G)-modules.

One of the most important differences between the representation theory of Lie alge-

bras in characteristic zero and in positive characteristic is the fact that in characteristic

p > 0 all irreducible representations of U(g) are finite-dimensional. Theorem 3.4.2 tells

us that we can conclude a similar result for irreducible U [r](G)-modules. The natural

question to ask is: how much of the representation theory of U(g) can be similarly ex-

tended to develop the representation theory of U [r](G)? To that end, let us follow the

path well-trodden in the r = 0 case and see how many difficulties we discover in the

generalisation.

Suppose that E is an irreducible U [r](G)-module, with G reductive. It is finite-

dimensional by Theorem 3.4.2. Hence, by Schur’s lemma, ξr(δ) ∈ Zr(G) acts as a scalar

on E for each δ ∈ Dist+pr (G). By the semilinearity of ξr, we can deduce that there exists

χE ∈ Dist+pr (G)∗ (the vector space dual) such that
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ξr(δ)|E = χE(δ)
pIdE for all δ ∈ Dist+pr (G).

Note that χE(δ) = 0 ⇐⇒ χE(δ)
p = 0 ⇐⇒ ξr(δ) = 0. In particular, this means that

χE(Xpr ) = 0, where Xpr is defined as in Subsection 3.2.

Recall from Proposition 4.1.1 and Corollary 4.1.3 that Υr,r : U [r](G) → U(g) is a

surjective algebra homomorphism such that Υr,r(Dist+pr (G)) = g. The linear map (in fact

indexed algebra subspace homomorphism) Υr,r|Dist
+
pr

(G) : Dist+pr (G) → g has kernel Xpr

and hence χE passes to a linear map χ̂E : g → K. Similarly, given χ̂ ∈ g∗ we can extend

along Υr,r|Dist
+
pr

(G) to get a linear form χ : Dist+pr (G) → K. We shall abuse notation

slightly in the following way: given χ ∈ g∗, we shall also denote by χ the linear form

Dist+pr (G) → K induced by Υr,r.

This allows us to make the following definition for χ ∈ g∗:

U [r]
χ (G) =

U [r](G)

⟨ξr(δ)− χ(δ)p | δ ∈ Dist+pr (G)⟩
.

We immediately get the following result:

Proposition 5.1.2. Every irreducible U [r](G)-module is a U
[r]
χ (G)-module for

some χ ∈ g∗.

It is straightforward to show that as a vector space over K this algebra has dimension

p(r+1) dim(g) with basis the classes of{ ∏
α∈Φ+

eJiαK
α

d∏
t=1

(
htJktK
) ∏

α∈Φ+

e
JjαK
−α ; 0 ≤ iα, jα, kt < pr+1

}

in U
[r]
χ (G). At times, it will also be beneficial to consider another basis of this algebra,

which can be derived easily from properties of divided powers. This basis consists of the

classes of { ∏
α∈Φ+

e(iα)
α

d∏
t=1

(
ht

kt

) ∏
α∈Φ+

e
(jα)
−α ; 0 ≤ iα, jα, kt < pr+1

}

in U
[r]
χ (G).

Using this basis, and the fact that in Dist(G(r+1)) we have (e
(pr)
α )p = 0 and

(
ht

pr

)p
=(

ht

pr

)
, it is straightforward to show that U

[r]
0 (G) = Dist(G(r+1)). One can also show that,

for χ ∈ g∗ and s ≤ r, we get that Υr,r−s : U
[r]
χ (G) → U

[s]
χ (G) is a well-defined algebra

homomorphism. So we get the sequence of algebra homomorphisms

U [r]
χ (G) ↠ U [r−1]

χ (G) ↠ · · · ↠ U [1]
χ (G) ↠ Uχ(g).

Given g ∈ G we get an adjoint action of g, Ad(g), on Dist+pr (G). This leads to a

coadjoint action of g on Dist+pr (G)∗. We furthermore have a twisted coadjoint action of

g on (g∗)[r], corresponding to the twisted adjoint action Ad(F r
g (g)).
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Lemma 5.1.3. Given (χ ∈ g∗)[r] and g ∈ G, there is an isomorphism U
[r]
χ (G) ∼=

U
[r]
g·χ(G).

Proof. Consider the coadjoint actions of G on Dist+pr (G)∗ and on g∗ (untwisted

and twisted respectively). A priori, the actions need not be compatible when we switch

between considering (χ ∈ g∗)[r] as a linear form on g and a linear form on Dist+pr (G).

However, theG-equivariance of Υr,r (see Lemma 4.1.2) means that this is not a problem—

the actions are compatible.

As a result, one can show by inspection that

U [r]
χ (G) ∼= U

[r]
g·χ(G)

where we mean by g ·χ the twisted coadjoint action of g on χ—by Section 4.1, it doesn’t

matter here if we consider the action of g on (χ ∈ g∗)[r] or χ ∈ Dist+pr (G)∗. □

In particular, much like in the r = 0 case, to understand the representation theory

of U [r](G) it is enough to understand the representation theory of U
[r]
χ (G) for (χ ∈ g∗)[r]

in distinct G-orbits.

5.2. Frobenius kernels.

We would now like to show that Dist(G(r)) is a subalgebra of U
[r]
χ (G) for any choice

of χ ∈ g∗. We saw earlier that

Dist(G(r+1)) ∼=
U [r](G)

⟨δ⊗p − δp | δ ∈ Dist+pr (G)⟩
,

so it is enough to show that

Dist(G(r)) ∼=
U [r−1](G)

⟨δ⊗p − δp | δ ∈ Dist+pr−1(G)⟩
↪→ U [r](G)

⟨δ⊗p − δp − χ(δ)p1 | δ ∈ Dist+pr (G)⟩
.

Inclusion gives us a map i : Dist+pr−1(G) ↪→ Dist+pr+1−1(G) ↪→ U [r](G) which clearly

satisfies all the conditions for the universal property, so we get an algebra homomorphism

i : U [r−1](G) → U [r](G) ↠ U [r]
χ (G).

It is straightforward to see from the basis description of U [r](G) that Im(i) ∩ ⟨δ⊗p −
δp − χ(δ)p1 | δ ∈ Dist+pr (G)⟩ = 0, so we just need to show that ker(i) = ⟨δ⊗p − δp | δ ∈
Dist+pr−1(G)⟩. This follows easily from the basis descriptions of U [r−1](G) and U [r](G)

once we notice that i(e
(pr−1)p

α ) = 0 and i
((

ht

pr−1

)p)
=
(

ht

pr−1

)
.

In particular, we have the following diagram of inclusions and projections:

· · ·

'' ''OO
OOO

OOO
OOO

OO U [r−1](G)

(( ((RR
RRR

RRR
RRR

RROO

� ?

U [r](G)

(( ((RR
RRR

RRR
RRR

RROO

� ?

U [r+1](G)

'' ''OO
OOO

OOO
OOO

OOOO

� ?
· · · �

� // Dist(G(r−1))
� � // Dist(G(r))

� � // Dist(G(r+1))
� � // · · ·
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This hence provides us with a direct system · · · → U [r−1](G) → U [r](G) → U [r+1](G) →
· · · with direct limit lim−→U [r](G) = Dist(G). From what we have already shown, we can

use this to deduce some details of the module theory of U
[r]
χ (G).

Proposition 5.2.1. Every U
[r]
χ (G)-module is a Dist(G(s))-module for all 0 ≤ s ≤ r.

Proposition 5.2.2. Every U
[s]
χ (G)-module can be lifted to a U

[r]
χ (G)-module via

Υr,r−s.

We can put these two results together in the following theorem. The proof follows

easily from Subsection 4.1.

Proposition 5.2.3. Let M be a U
[r]
χ (G)-module. If M is lifted from a U

[s]
χ (G)-

module along Υr,r−s then Dist+(G(s))M = 0. On the other hand, if Dist+(G(s))M = 0,

then M is a U
[s]
χ (G)-module via a lifting along Υr,s.

5.3. Examples.

Example 1. Consider the additive algebraic group G = Ga. We know from [10,

I.7.8] that Distpr+1−1(G) has basis γ1, γ2, . . . , γpr+1−1 and that in Dist(G) the multipli-

cation is γkγl =
(
k+l
k

)
γk+l. Using these facts one can show that

U [r](Ga) =
K[t0, t1, . . . , tr]

⟨tpi | 0 ≤ i ≤ r − 1⟩
.

Furthermore, given χ ∈ g∗ = K, we get

U [r]
χ (Ga) =

K[t0, t1, . . . , tr]

⟨tpr − χp; tpi | 0 ≤ i ≤ r − 1⟩
∼=

K[t]

⟨tp⟩
⊗ · · · ⊗ K[t]

⟨tp⟩
⊗ K[t]

⟨tp − χp⟩
.

Example 2. Consider the multiplicative algebraic group G = Gm. We know

from [10, I.7.8] that Distpr+1−1(G) has basis δ1, δ2, . . . , δpr+1−1 and that in Dist(G) the

multiplication is δkδl =
∑min(k,l)

i=0 ((k + l − i)!/(k − i)!(l − i)!i!)δk+l−i. Using these facts

one can show that

U [r](Gm) =
K[t0, t1, . . . , tr]

⟨tpi − ti | 0 ≤ i ≤ r − 1⟩
.

Furthermore, given χ ∈ g∗ = K, we get

U [r]
χ (Gm) =

K[t0, t1, . . . , tr]

⟨tpr − tr − χp; tpi − ti | 0 ≤ i ≤ r − 1⟩
∼= K× · · · ×K

where there are rp copies of K in the final expression, since tpi − ti and tpr − tr − χp are

separable polynomials. This tells us that the algebra U
[r]
χ (Gm) is semisimple.

5.4. Higher baby Verma modules.

One of the main constructions which we use to study Uχ(g)-modules is that of baby

Verma modules. We would like to construct a similar module for this higher case. We

shall assume that there exists a G-invariant non-degenerate bilinear form on g, so that
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as in [11] we can also assume that χ(n+) = 0. One of the benefits of the work we

have done so far is that assumptions like these are nothing new—any conditions on χ

hold independently of the power of p we are working with, except that the G-action is

twisted by the corresponding geometric Frobenius. In particular, this is a reasonable

assumption for exactly the same reasons as in the standard case. This assumption in

this case also tells us that, when χ is viewed as a linear form on Dist+pr (G), we have that

χ(Dist+pr (U)) = 0.

Let 0 ̸= M be a U
[r]
χ (B)-module. We have that χ(e

(k)
α ) = 0 for all α ∈ Φ and

0 < k ≤ pr and that ξr(e
(k)
α ) = (e

(k)
α )⊗p. This means that every e

(k)
α acts nilpotently on

M . As a result, using an argument similar to that of Rudakov in [17] we get that{
m ∈ M

∣∣Dist+pr+1−1(U)m = 0
}
̸= 0.

Let us consider the action of Dist+pr+1−1(T ) on this set. Since Dist+pr+1−1(T ) is

commutative as an indexed algebra subspace (i.e. δµ = µδ whenever δ ∈ Dist+i (T ) and

µ ∈ Dist+j (T ) with i + j < pr+1) and U
[r]
χ (T ) is semi-simple by Example 2 there exists

0 ̸= m0 ∈ M such that Dist+pr+1−1(U)m = 0 and there exists λ ∈ Dist+pr+1−1(T )
∗ (the

indexed algebra subspace dual) such that, for each δ ∈ Dist+pr+1−1(T ), δm0 = λ(δ)m0.

Now, given λ ∈ Dist+pr+1−1(T )
∗, we can define the one-dimensional Dist+pr+1−1(B)-

module Kλ where Dist+pr+1−1(U) acts as zero and δ ∈ Dist+pr+1−1(T ) acts as multiplication

by λ(δ). This Dist+pr+1−1(B)-module will give a U
[r]
χ (B)-module if and only if λ ∈ Λr

χ

where

Λr
χ := {λ ∈ Dist+pr+1−1(T )

∗ |λ(δ)p − λ(δp) = χ(δ)p for all δ ∈ Dist+pr (T )}.

Note that for δ ∈ Dist+pr (T ) we in fact have that δp = δ, so the criterion can also be

written as λ(δ)p−λ(δ) = χ(δ)p for all δ ∈ Dist+pr (T ). A necessary and sufficient condition

for λ ∈ Dist+pr+1−1(T )
∗ to lie inside Λr

χ is hence that λ
((

ht

pk

))p−λ
((

ht

pk

))
= 0 for 1 ≤ k < r

and λ
((

ht

pr

))p − λ
((

ht

pr

))
= χ

((
ht

pr

))p
, for all 1 ≤ t ≤ d.

Given λ ∈ Λr
χ we can hence define the higher baby Verma module:

Zr
χ(λ) = U [r]

χ (G)⊗
U

[r]
χ (B)

Kλ.

Letting vλ = 1⊗ 1, we get that a basis of Zr
χ(λ) is{ ∏

α∈Φ+

e
(iα)
−α vλ : 0 ≤ iα < pr+1

}

and thus that Zr
χ(λ) has dimension p(r+1)|Φ+|.

As in the r = 0 case, Frobenius reciprocity gives the following lemma:

Lemma 5.4.1. Every irreducible U
[r]
χ (G)-module is a homomorphic image of Zr

χ(λ)

for some λ ∈ Λr
χ.

Observe that when r = 0, we just get baby Verma modules as in the existing theory.
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6. Special linear group.

Let us examine the particular case of the algebraic group G = SL2, and try to under-

stand the module theory of U
[r]
χ (SL2) for (χ ∈ sl∗2)

[r]. We assume p > 2 in this section.

Recall from Lemma 5.1.3 that to understand the irreducible modules of U [r](SL2) it is

enough to understand the irreducible U
[r]
χ (SL2)-modules up to the G-orbit of χ under

the twisted coadjoint action.

We observe that the G-orbits of (sl∗2)
[r] are the same as the G-orbits of sl∗2. This

follows from Proposition I.9.5 in [10], since SL
(r)
2 and SL2 are isomorphic through the

arithmetic Frobenius homomorphism. It is well-known (see, for example, Subsection 5.4

in [11]) that each element of sl∗2 is conjugate under the SL2-action to a linear form of

one of the following types:

e 7→ 0, f 7→ 0, h 7→ t− s,

e 7→ 0, f 7→ 1, h 7→ 0,

where t, s ∈ K and we are using the standard notation of e,h, f ∈ sl2 to mean

e =

(
0 1

0 0

)
, h =

(
1 0

0 −1

)
, f =

(
0 0

1 0

)
.

A linear form conjugate to the first type is called semisimple, and a linear form

conjugate to the second type (or 0) is called nilpotent. From now on we shall assume

that χ takes one of the above forms. In the rest of this chapter we shall classify the

irreducible U
[r]
χ (G)-modules for χ non-zero semisimple, χ non-zero nilpotent, and χ = 0

in Subsections 6.1, 6.2 and 6.3 respectively.

From the above discussion, we see that given χ ∈ sl∗2 and λ ∈ Λr
χ we can form the

higher baby Verma module Zr
χ(λ). In the case of SL2, this module has basis {vi | 0 ≤

i < pr+1}, where we denote vi := f (i) ⊗m0—here m0 is a generator of Kλ. With a little

work, we can write down how generators of U
[r]
χ (G) act on the basis:

e(p
j)vi =


0 if pj > i,(

pj∑
t=0

λ

((
h

t

))(
pj − i

pj − t

))
vi−pj if pj ≤ i,

(
h

pj

)
vi =

(
pj∑
t=0

(
−2i

pj − t

)
λ

((
h

t

)))
vi,

f (p
j)vi =



(
pj + i

pj

)
vi+pj if i+ pj < pr+1,

0 if j ̸= r and i+ pj ≥ pr+1,
1

(p− 1)!
χ(f (p

r))pvk if j = r and i+ pr = pr+1 + k for k ≥ 0.

(1)

Note that here we are defining λ(1) to be equal to 1.

In fact, we can even say that
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e(l)vk =


0 if l > k,

λ

((
h− k + l

l

))
vk−l =

(
l∑

t=0

λ

((
h

t

))(
l − k

l − t

))
vk−l if l ≤ k

(2)

and (
h

l

)
vk = λ

((
h− 2k

l

))
vk =

(
l∑

t=0

(
−2k

l − t

)
λ

((
h

t

)))
vk (3)

for 0 ≤ k, l < pr+1.

Before going any further, let us recall some properties of the divided powers of e,h, f .

Suppose that k = a0 + a1p+ · · ·+ ar−1p
r−1 + arp

r with 0 ≤ ai < p for each i. Then we

have

e(k) = e(a0)e(a1p) · · · e(ar−1p
r−1)e(arp

r) =
1

a0!a1! · · · ar!
ea0(e(p))a1 · · · (e(p

r−1))ar−1(e(p
r))ar ,

f (k) = f (a0)f (a1p) · · · f (ar−1p
r−1)f (arp

r) =
1

a0!a1! · · · ar!
fa0(f (p))a1 · · · (f (p

r−1))ar−1(f (p
r))ar ,

(
h

k

)
=

(
h

a0

)(
h

a1p

)
· · ·
(

h

ar−1pr−1

)(
h

arpr

)
=

1

a0!a1! · · · ar!
h(h− 1) · · · (h− a0 + 1)

((
h

p

))
×
((

h

p

)
− 1

)
· · ·
((

h

pr

)
− ar + 2

)((
h

pr

)
− ar + 1

)
.

Since λ is an indexed algebra subspace homomorphism, this tells us that

λ

((
h

k

))
=

1

a0!a1! · · · ar!
λ(h)(λ(h)− 1) · · · (λ(h)− a0 + 1)

(
λ

((
h

p

)))
×
(
λ

((
h

p

))
− 1

)
· · ·
(
λ

((
h

pr

))
− ar + 2

)(
λ

((
h

pr

))
− ar + 1

)
.

Another useful observation to make is that e(t)vt = λ
((

h
t

))
v0. Let us now examine the

different cases for χ.

6.1. Non-zero semisimple χ.

The definition of Λr
χ in this case tells us that λ

((
h
pr

))p − λ
((

h
pr

))
= χ

((
h
pr

))p ̸= 0

and hence that λ
((

h
pr

))
/∈ Fp. We also know that χ(f (p

r)) = 0. In particular, using the

above notation, we get that λ
((

h
k

))
= 0 if and only if ai > λ

((
h
pi

))
for some 0 ≤ i < r

(here we are abusing notation slightly to treat Fp as the subset {0, 1, 2, . . . , p− 1} of the

integers—observing that λ
((

h
pi

))p
= λ

((
h
pi

))
for 0 ≤ i < r means that all such λ

((
h
pi

))
lie

inside Fp).

Consider the vector subspace of Zr
χ(λ) with basis
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vk

∣∣∣∣λ((hk
))

= 0

}
.

By above this is the same as{
va0+a1p+···+ar−1pr−1+arpr

∣∣∣∣ ai > λ

((
h

pi

))
for some i ∈ {0, 1, . . . , r − 1}

}
.

We shall denote this subspace by Mr
χ(λ). Note that M0

χ(λ) = 0 for all choices of χ, λ.

Lemma 6.1.1. Mr
χ(λ) is a U

[r]
χ (G)-submodule of Zr

χ(λ).

Proof. We need to show that this subspace is preserved by e(l),
(
h
l

)
and f (l) for

0 ≤ l < pr+1. It is clearly preserved by all
(
h
l

)
, so we just need to show it for e(l) and

f (l).

Let l = a0+a1p+· · ·+ar−1p
r−1+arp

r and k = b0+b1p+· · ·+brp
r with 0 ≤ ai, bi < p

for all i. Then we have

f (l)vk =
1

a0!a1! · · · ar−1!ar!b0!b1! · · · br−1!br!

× fa0+b0(f (p))a1+b1 · · · (f (p
r−1))ar−1+br−1(f (p

r))ar+br ⊗m0.

If ai + bi ≥ p for some 0 ≤ i < r then this expression is zero, since (f (p
i))p = 0. If

ai + bi < p for all 0 ≤ i ≤ r, then we have just increased the exponent in each term,

which clearly will preserve Mr
χ(λ).

The only remaining case is if ai + bi < p for all 0 ≤ i < r and ar + br = p + s for

some 0 ≤ s < p. In this case, we get that

f (l)vk =
χ(f (p

r))p

a0!a1! · · · ar−1!ar!b0!b1! · · · br−1!br!

× fa0+b0(f (p))a1+b1 · · · (f (p
r−1))ar−1+br−1(f (p

r))s ⊗m0 = 0

as χ(f (p
r)) = 0 by assumption. Hence, we get that Mr

χ(λ) is preserved by the f (l).

Observe that over C, we have for l ≤ k < pr+1 that
∑l

t=0

(
h
t

)(
l−k
l−t

)
=
(
h+l−k

l

)
and

that
(
h+l−k

l

)(
h

k−l

)
=
(
k
l

)(
h
k

)
. In particular, this means that in U

[r]
χ (G) we have(

l∑
t=0

(
h

t

)(
l − k

l − t

))(
h

k − l

)
=

(
k

l

)(
h

k

)
and hence (

l∑
t=0

λ

((
h

t

))(
l − k

l − t

))
λ

((
h

k − l

))
=

(
k

l

)
λ

((
h

k

))
. (4)

Now let us compute e(l)vk for k with λ
((

h
k

))
= 0. When l > k the expression is 0

and the result follows, so we may assume l ≤ k. Using Equation (2), we get that
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e(l)vk =

(
l∑

t=0

λ

((
h

t

))(
l − k

l − t

))
vk−l.

Since λ
((

h
k

))
= 0, Equation (4) tells us that either

(∑l
t=0 λ

((
h
t

))(
l−k
l−t

))
= 0, in which case

e(l)vk = 0 by above, or λ
((

h
k−l

))
= 0 in which case vk−l ∈ Mr

χ(λ) and so e(l)vk ∈ Mr
χ(λ).

In either case, Mr
χ(λ) is preserved by the e(l) and we are done. □

Proposition 6.1.2. Mr
χ(λ) is a maximal submodule of Zr

χ(λ).

Proof. It is enough to show that the quotient module Lr
χ(λ) := Zr

χ(λ)/M
r
χ(λ) is

irreducible. From the above description it is clear that Lr
χ(λ) has as basis the images

under the quotient map of the elements{
vk

∣∣∣∣λ((hk
))

̸= 0

}
.

We shall abuse notation to denote by vk both the element in Zr
χ(λ) and its image in the

quotient.

We can see that e(k)vk = λ
((

h
k

))
v0 ̸= 0 for the vk in this basis.

Let N be a non-zero submodule of Lr
χ(λ). There hence exists a non-zero element

v =
∑

αtvt ∈ N where the sum is over all 0 ≤ t < pr+1 with λ
((

h
t

))
̸= 0. Suppose s is

the largest such element with αs ̸= 0. Then we have

e(s)v =
∑

αte
(s)vt = αsλ

((
h

s

))
v0 ̸= 0.

Hence v0 ∈ N and it easy to see that we must have N = Lr
χ(λ), so Lr

χ(λ) is irreducible.

□

Proposition 6.1.3. Mr
χ(λ) is the unique maximal submodule of Zr

χ(λ).

Proof. Let N be a maximal submodule of Zr
χ(λ) with N ̸= Mr

χ(λ). Hence, there

exists

w =

pr+1−1∑
i=0

αivi ∈ N

with αi ̸= 0 for at least one i with λ
((

h
i

))
̸= 0. Let l be the largest such integer. Then

we have

e(l)w =

pr+1−1∑
i=0

αie
(l)vi = αlλ

((
h

l

))
v0 +

pr+1−1∑
i=1

βivi ∈ N

where we have βi = 0 whenever λ
((

h
i

))
̸= 0. This follows from the description of the

action and from Equation (4). Let k1 < · · · < ks be the integers between 1 and pr+1 − 1

with λ
((

h
ki

))
= 0. Rescaling, we can assume
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v := v0 +
s∑

i=1

γ0
i vki ∈ N

where γ0
i ∈ K (here the superscripts are used for indexing).

Now, we see that for 1 ≤ j ≤ s we have

f (kj)v = f (kj)v0 +

s∑
i=1

γ0
i f

(kj)vki = vkj +

s∑
i=1

γ0
i

(
ki + kj

kj

)
vki+kj ∈ N.

We know f (kj)vki =
(
ki+kj

kj

)
vki+kj . Since χ(f (p

r)) = 0, we get that f (kj)vki = 0 if

ki + kj > pr+1. On the other hand, f (kj)vki ∈ Mr
χ(λ) for i = 1, . . . , s, since Mr

χ(λ) is

a submodule of Zr
χ(λ). Thus, f (kj)vki is a linear combination of those basis elements of

Mχ(λ) whose index is at least ki + kj . In other words,

f (kj)v = vkj +

s∑
i=j+1

γj
i vki ∈ N

for some γj
i ∈ K.

In particular, this tells us that

f (ks)v = vks ∈ N,

f (ks−1)v = vks−1 + γs−1
s vks ∈ N,

f (ks−2)v = vks−2 + γs−2
s−1vks−1 + γs−2

s vks ∈ N

and so on. This tells us inductively that vki ∈ N for all 1 ≤ i ≤ s, and hence that

Mr
χ(λ) ⊆ N . But since we know that Mr

χ(λ) ̸= N , we must have that N = Zr
χ(λ),

contradicting maximality.

Hence, Mr
χ(λ) is the unique maximal submodule of Zr

χ(λ). □

We have constructed all irreducible U
[r]
χ (SL2)-modules in the case when χ ̸= 0 is

semisimple. Given λ ∈ Λr
χ, we therefore get a unique irreducible U

[r]
χ (SL2)-module of

dimension:

(λ(h) + 1)

(
λ

((
h

p

))
+ 1

)
· · ·
(
λ

((
h

pr−1

))
+ 1

)
p,

where we view λ
((

h
pi

))
as elements of the set {0, 1, 2, . . . , p− 1} for 0 ≤ i < r.

We can also say something about the structure of these irreducible modules as

Dist(G(r)) modules.

Proposition 6.1.4. Each irreducible U
[r]
χ (G)-module M decomposes as Dist(G(r))-

modules into a direct sum of p copies of the same irreducible Dist(G(r))-module. In

particular, if M is a quotient of Zr
χ(λ) for λ ∈ Λr

χ then this irreducible Dist(G(r))-module

is the module Lr(λ) defined in [10].
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Note that we are abusing notation slightly to identify λ ∈ Λr
χ with λ ∈ Xr(T ) (as

defined in [10]), but it is straightforward to see how this can be done. Specifically, each

λ ∈ Dist+pr+1−1(T )
∗ with λ

((
h
pk

))p − λ
((

h
pk

))
= 0 for 1 ≤ k < r and λ

((
h
pr

))p − λ
((

h
pr

))
=

χ
((

h
pr

))p
, restricts to λ ∈ Dist+pr−1(T )

∗ with λ
((

h
pk

))p − λ
((

h
pk

))
= 0 for 1 ≤ k < r. This

then induces an algebra homomorphism λ : Dist(T(r)) → K, which gives λ ∈ Xr(T ).

This argument is independent of χ, so shall also be used in subsequent sections.

Proof. By Lemma 6.1.1 and Propositions 6.1.2 and 6.1.3, we know that each

irreducible U
[r]
χ (G)-module is obtained as the unique irreducible quotient module of Zr

χ(λ)

for some λ ∈ Λr
χ and has as basis the images under the quotient map of{

vk

∣∣∣∣λ((hk
))

̸= 0 and 0 ≤ k < pr+1

}
or equivalently those of{
va0+a1p+···+ar−1pr−1+arpr

∣∣∣∣ 0 ≤ ai ≤ λ

((
h

pi

))
for all i ∈ {0, 1, . . . , r − 1}, 0 ≤ ar < p

}
.

We shall denote this module as Lr
χ(λ). We shall abuse notation to denote by vk both the

element in Zr
χ(λ) and its image in Lr

χ(λ).

Let N be the subspace of Lr
χ(λ) with basis{

vk

∣∣∣∣λ((hk
))

̸= 0 and 0 ≤ k < pr
}

=

{
va0+a1p+···+ar−1pr−1

∣∣∣∣ ai ≤ λ

((
h

pi

))
for all i ∈ {0, 1, . . . , r − 1}

}
.

We claim that N is a Dist(G(r))-module. It suffices, by Equations (2) and (3), to check

that f (l)N ⊆ N for 0 ≤ l < pr. This, however, is clear since f (l)vk =
(
k+l
l

)
vk+l and so

either k+ l < pr and we are done, or k+ l ≥ pr and then Lucas’ theorem gives
(
k+l
l

)
= 0.

From the basis description and Lucas’ theorem it is straightforward to see that

Lr
χ(λ) =

⊕p−1
a=0 f

(apr)N . So to get our result, we just need to show that N is irreducible

and thatN ∼= f (ap
r)N as Dist(G(r))-modules for all 0 ≤ a < p. ThatN is irreducible (and

in fact isomorphic to Lr(λ)) follows easily from the well known representation theory of

Dist(G(r)) (see [10, II.3] or Subsection 6.3 below).

We now define, for 0 ≤ a < p, the linear map ϕa : N → f (ap
r)N which is defined on

the basis of N as

va0+a1p+···+ar−1pr−1 7→ f (ap
r)va0+a1p+···+ar−1pr−1 = va0+a1p+···+ar−1pr−1+apr .

This map is clearly surjective and, by the irreducibility of N , it will be injective once

we show that ϕa is a homomorphism of Dist(G(r))-modules. To show this, it suffices

to show for 0 ≤ l, z < pr that f (l)ϕa(vz) = ϕa(f
(l)vz),

(
h
l

)
ϕa(vz) = ϕa

((
h
l

)
vz
)
and

e(l)ϕa(vz) = ϕa(e
(l)vz).
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That f (l)ϕa(vz) = ϕa(f
(l)vz) follows easily from the action of U

[r]
χ (G) on Zr

χ(λ)

(Equation (1)) and Lucas’ theorem.

Observe that if b0, b1, . . . , br < p and l < pr then
(
b0+b1p+···+br−1p

r−1+brp
r

l

)
=(

b0+b1p+···+br−1p
r−1

l

)(
br
0

)
=
(
b0+b1p+···+br−1p

r−1

l

)
. In other words, the coefficient of pr

does not matter when computing such a binomial coefficient.

For
(
h
l

)
, by Equation (3) we need to show that

(−2apr−2z
l−t

)
=
(−2z
l−t

)
for all 0 ≤ t ≤ l.

Observing that
(−2apr−2z

l−t

)
= (−1)l−t

(
2apr+2z+l−t−1

l−t

)
, the previous observation tells us

that this is equal to (−1)l−t
(
2z+l−t−1

l−t

)
(unless z = 0 and l = t in which case the result is

trivial) and this is equal to
(−2z
l−t

)
. Hence

(
h
l

)
ϕa(vz) = ϕa

((
h
l

)
vz
)
.

For e(l), suppose first that l < z. Then Equation (2) gives e(l)vz =(∑l
t=0 λ

((
h
t

))(
l−z
l−t

))
vz−l and e(l)vapr+z =

(∑l
t=0 λ

((
h
t

))(
l−apr−z

l−t

))
vapr+z−l. Since(

l−apr−z
l−t

)
= (−1)l−t

(
apr+z−t−1

l−t

)
= (−1)l−t

(
z−t−1
l−t

)
=
(
l−z
l−t

)
, the result holds. On the

other hand, if l ≥ z then e(l)vz = 0 and e(l)vapr+z = λ
((

h−apr−z+l
l

))
vapr+z−l. Since,

as in the proof of Lemma 6.1.1, λ
((

h−apr−z+l
l

))
λ
((

h
apr+z−l

))
=
(
apr+z

l

)
λ
((

h
apr+z

))
, and(

apr+z
l

)
= 0, we get that either λ

((
h−apr−z+k

l

))
= 0 or λ

((
h

apr+z−l

))
= 0. The first option

clearly gives e(l)vapr+z = 0, while the second shows that e(l)vapr+z ∈ Mr
χ(λ) and so is

zero in Lr
χ(λ). Thus e

(l)ϕa(vz) = ϕa(e
(l)vz).

The result follows. □

6.2. Non-zero nilpotent χ.

In this case, we have χ(f (p
r)) = 1 and, from the definition of Λr

χ, λ
((

h
pr

))p
= λ(

(
h
pr

)
),

which hence implies λ
((

h
pr

))
∈ Fp.

For this case we consider the vector subspace of Zr
χ(λ) with basis{

vk

∣∣∣∣λ((hz
))

= 0 where k = apr + z with 0 ≤ z < pr, 0 ≤ a < p

}
.

By a similar argument to the semisimple case, this is the same as{
va0+a1p+···+ar−1pr−1+arpr

∣∣∣∣ ai > λ

((
h

pi

))
for some i ∈ {0, 1, . . . , r − 1}

}
.

We shall once again denote this subspace by Mr
χ(λ). Again, M

0
χ(λ) = 0 for all choices of

χ, λ.

Lemma 6.2.1. Mr
χ(λ) is a U

[r]
χ (G)-submodule of Zr

χ(λ).

Proof. We need to show that this subspace is preserved by e(l),
(
h
l

)
and f (l) for

0 ≤ l < pr+1. It is clearly preserved by all
(
h
l

)
, so we just need to show it for e(l) and

f (l).

Let l = a0 + a1p + · · · + ar−1p
r−1 + arp

r and k = b0 + b1p + · · · + br−1p
r−1 + brp

r

with 0 ≤ ai, bi < p for all i. Then we have

f (l)vk =
1

a0!a1! · · · ar−1!ar!b0!b1! · · · br−1!br!
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× fa0+b0(f (p))a1+b1 · · · (f (p
r−1))ar−1+br−1(f (p

r))ar+br ⊗m0.

If ai + bi ≥ p for some 0 ≤ i < r then this expression is zero, since (f (p
i))p = 0. If

ai + bi < p for all 0 ≤ i ≤ r, then we have just increased the exponent in each term,

which clearly will preserve Mr
χ(λ).

The only remaining case is if ai + bi < p for all 0 ≤ i < r and ar + br = p + s for

some 0 ≤ s < p. In this case, we get from Equation (1) that

f (l)vk =
χ(f (p

r))p

a0!a1! · · · ar−1!ar!b0!b1! · · · br−1!br!

× fa0+b0(f (p))a1+b1 · · · (f (p
r−1))ar−1+br−1(f (p

r))s ⊗m0.

By the second interpretation of the basis this clearly preserves Mr
χ(λ), since we have just

increased the exponents in the f (p
i) with i < r. Hence, we get that Mr

χ(λ) is preserved

by the f (l).

Recall from the semisimple case that we have for l ≤ k < pr−1(
l∑

t=0

λ

((
h

t

))(
l − k

l − t

))
λ

((
h

k − l

))
=

(
k

l

)
λ

((
h

k

))
. (5)

Now let us compute e(l)vk for k = apr + z with 0 ≤ a < p and 0 ≤ z < pr such that

λ
((

h
z

))
= 0. When l > k the expression is 0 and we are fine, so we may assume l ≤ k.

First, let us assume that k < pr. So vk ∈ Mr
χ(λ) is equivalent to λ

((
h
k

))
= 0. Using

the above formula, we get that

e(l)vk =

(
l∑

t=0

λ

((
h

t

))(
l − k

l − t

))
vk−l.

Since λ
((

h
k

))
= 0, Equation (4) tells us that either

(∑l
t=0 λ(

(
h
t

)
)
(
l−k
l−t

))
= 0, in which

case e(l)vk = 0, or λ
((

h
k−l

))
= 0. Since k < pr, we also have k − l < pr, so λ(

(
h

k−l

)
) = 0

if and only if vk−l ∈ Mr
χ(λ), and we are done.

Now suppose that k = apr + z for 0 ≤ z < pr. One can easily check that f (k) =

f (ap
r)f (z), so vk = f (ap

r)vz. Hence, we get

e(l)vk = e(l)f (ap
r)vz =

min(apr,l)∑
t=0

f (ap
r−t)

(
h− apr − l + 2t

t

)
e(l−t)vz

where
(
h−apr−l+2t

t

)
=
∑t

i=0

(
2t−apr−l

t−i

)(
h
i

)
. Since z < pr, we know by the previous case

that e(l−t)vz ∈ Mr
χ(λ) for all t since λ

((
h
z

))
= 0. Hence, since we have already shown that

Mr
χ(λ) is preserved by the

(
h
i

)
and the f (ap

r−t), we get that e(l)vk = e(l)f (ap
r)vz ∈ Mr

χ(λ).

Hence, Mr
χ(λ) is preserved by the e(l) and we are done. □

Proposition 6.2.2. Mr
χ(λ) is a maximal submodule of Zr

χ(λ).
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Proof. It is enough to show that the quotient module Lr
χ(λ) := Zr

χ(λ)/M
r
χ(λ) is

irreducible. From the above description it is clear that Lr
χ(λ) has as basis the images

under the quotient map of the elements{
vk

∣∣∣∣λ((hz
))

̸= 0 where k = apr + z with 0 ≤ z < pr, 0 ≤ a < p

}
.

We shall abuse notation to denote by vk both the element in Zr
χ(λ) and its image in the

quotient.

Let vk be an element of this basis, with k = apr + z for 0 ≤ z < pr, 0 ≤ a < p. Then

we have

e(z)vk =
z∑

t=0

λ

((
h

t

))(
−apr

z − t

)
vapr .

We can calculate that
(−apr

z−t

)
= (−1)z−t

(
apr+z−t−1

z−t

)
. Hence, for z ̸= t, we have(

apr + z − t− 1

z − t

)
+

(
apr + z − t− 1

z − t− 1

)
=

(
apr + z − t

z − t

)
.

Using Lucas’ theorem, since z, t < pr, we get that
(
apr+z−t−1

z−t−1

)
= 1 and

(
apr+z−t

z−t

)
= 1.

This tells us that
(
apr+z−t−1

z−t

)
= 0 when z ̸= t, and when z = t we clearly get(

apr+z−t−1
z−t

)
= 1. Hence,

e(z)vk = λ

((
h

z

))
vapr ̸= 0.

Now, let N be a non-zero submodule of Lr
χ(λ). There hence exists a non-zero element

v =
∑

αtvt ∈ N

where the sum is over all 0 ≤ t < pr+1 with λ
((

h
z

))
̸= 0 when t = apr+z with 0 ≤ z < pr.

Suppose s = apr + z with 0 ≤ z < pr and 0 ≤ a < p is the largest such integer with

αs ̸= 0. Then we have that the term of e(z)v ∈ N that has the largest index and non-

zero coefficient is of the form vapr (this has non-zero coefficient since λ
((

h
z

))
̸= 0). Then

either our new vector has a v0 constituent or we can get that (f (p
r))p−av ∈ N has a v0

constituent (since χ(f (p
r))p = 1).

Suppose our vector still contains a term whose index is not divisible by pr. If the

new largest term of our vector is divisible by pr, apply f (p
r) until the largest term is not

divisible by pr, say it has remainder y < pr. Applying e(y) will remove the v0 term and

make the index of the largest term divisible by pr. Our new vector has fewer terms.

We can keep applying this process until all the terms in our vector are divisible by

pr, since at each step we are decreasing the number of terms and our vector has only

finitely many terms to start with. Furthermore, we never make the largest term zero

when we apply our steps. Hence, our final vector cannot be zero. Finally, since N is a

submodule, our final vector lies inside N . Hence we get that N contains an element of
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the form

v =

p−1∑
i=0

αivipr ,

where αi ∈ K are not all zero. In fact, it is easy to see that we may assume α0 = 1 by

applying powers of f (p
r) and rescaling. We can further assume that λ

((
h
ipr

))
= 0 for all

i ̸= 0 with αi ̸= 0 by applying e(p
r) enough times.

One can calculate that
(
h
pr

)
vipr =

(
λ
((

h
pr

))
− 2i

)
vipr and hence we get(

h

kpr

)
vipr =

(
λ

((
h

pr

))
− 2i

)(
λ

((
h

pr

))
− 2i− 1

)
· · ·
(
λ

((
h

pr

))
− 2i− k + 1

)
vipr .

By applying
(

h
kpr

)
for sufficiently large k, we therefore (for p ̸= 2) end up with a vector

w ∈ N which is a non-zero scalar multiple of a basis element whose index is divisible by

pr. Applying f (p
r) enough times, we get that v0 ∈ N and therefore get that N is the

whole module.

Hence, we get that Mr
χ(λ) is irreducible. □

Proposition 6.2.3. Mr
χ(λ) is the unique maximal submodule of Zr

χ(λ).

Proof. Suppose that N is a maximal submodule of Zr
χ(λ) distinct from Mr

χ(λ).

Since Mr
χ(λ) + N = Zr

χ(λ), there exists v ∈ N with v = v0 +
∑

αtvt, where the

sum is over the set of numbers 0 ≤ t < pr+1 such that t = apr + z with 0 ≤ a < p and

0 ≤ z < pr with λ
((

h
z

))
= 0.

Let k1 < k2 < · · · < ks be the set of integers between 1 and pr − 1 (inclusive) with

λ
((

h
ki

))
= 0. Recall from the proof of Lemma 6.2.1 that if z = z0+z1p+ · · ·+zr−1p

r−1 <

pr and k = b0 + b1p+ · · ·+ brp
r with 0 ≤ zi, bi < p for all i then we have

f (z)vk =
1

z0!z1! · · · zr−1!b0!b1! · · · br−1!br!

× fz0+b0(f (p))z1+b1 · · · (f (p
r−1))zr−1+br−1(f (p

r))br ⊗m0.

In particular, we can compute f (ks)vapr+z. If z ̸= 0 and z + ks < pr then by the

maximality of ks we have λ
((

h
z+ks

))
̸= 0 and hence, as Mr

χ(λ) is a submodule, that

f (ks)vapr+z = 0. On the other hand, if z ̸= 0 and z + ks ≥ pr then, setting ks−1 =

b0 + b1p + · · · + brp
r, we get zi + bi ≥ p for some 0 ≤ i ≤ r − 1, and hence the above

formula gives f (ks)vapr+z = 0. Therefore, (as λ
((

h
0

))
= 1) we get that f (ks)Mr

χ(λ) = 0.

We conclude that vks = f (ks)v0 = f (ks)v ∈ N and hence
∑p−1

a=0 Kvapr+ks ≤ N .

Now, we can compute f (ks−1)vapr+z. If z ̸= 0 and z + ks < pr then by the maxi-

mality of ks we either have that λ
((

h
z+ks−1

))
̸= 0 and, as Mr

χ(λ) is a submodule, that

f (ks−1)vapr+z = 0, or that z + ks−1 = ks and that f (ks−1)vapr+z ∈ K{vapr+ks | 0 ≤
a < p} ⊆ N . On the other hand, if z ̸= 0 and z + ks−1 ≥ pr then, now setting

ks−1 = b0 + b1p + · · · + brp
r, we get zi + bi ≥ p for some 0 ≤ i ≤ r − 1, and hence

the above formula gives f (ks−1)vapr+z = 0. Therefore, (as λ
((

h
0

))
= 1) we get that

f (ks−1)Mr
χ(λ) ⊆ N . We conclude that vks−1 = f (ks−1)v0 = f (ks−1)v −

∑
αtf

(ks−1)vt ∈ N .
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An inductive argument gives that vki ∈ N for all 1 ≤ i ≤ s, and hence that

Mr
χ(λ) ⊆ N . This contradiction tells us that Mr

χ(λ) is the unique maximal submodule

of Zr
χ(λ). □

Hence, we have constructed all irreducible U
[r]
χ (SL2)-modules in the case when χ ̸= 0

is nilpotent. Given λ ∈ Λr
χ, we hence get a unique irreducible U

[r]
χ (SL2)-module of

dimension:

(λ(h) + 1)

(
λ

((
h

p

))
+ 1

)
· · ·
(
λ

((
h

pr−1

))
+ 1

)
p

where we view λ
((

h
pi

))
as elements of the set {0, 1, 2, . . . , p− 1} for 0 ≤ i < r.

Again, we can also say something about the structure of these irreducible modules

as Dist(G(r)) modules.

Proposition 6.2.4. Each irreducible U
[r]
χ (G)-module M decomposes as Dist(G(r))-

modules into a direct sum of p copies of the same irreducible Dist(G(r))-module. In

particular, if M is a quotient of Zr
χ(λ) for λ ∈ Λr

χ then this irreducible Dist(G(r))-module

is the module Lr(λ) defined in [10].

Proof. By Lemma 6.2.1 and Propositions 6.2.2 and 6.2.3, we know that each

irreducible U
[r]
χ (G)-module is obtained as the unique irreducible quotient module of Zr

χ(λ)

for some λ ∈ Λr
χ and has as basis the images under the quotient map of{

vk

∣∣∣∣λ((hz
))

̸= 0 where k = apr + z with 0 ≤ z < pr, 0 ≤ a < p

}
or equivalently those of{
va0+a1p+···+ar−1pr−1+arpr

∣∣∣∣ 0 ≤ ai ≤ λ

((
h

pi

))
for all i ∈ {0, 1, . . . , r − 1}, 0 ≤ ar < p

}
.

We shall denote this module as Lr
χ(λ). We shall, as before, abuse notation to denote by

vk both the element in Zr
χ(λ) and its image in Lr

χ(λ).

We proceed as in the proof of Proposition 6.1.4. The only part of the proof that

has to be modified for the nilpotent case is the proof that e(l)ϕa(vz) = ϕa(e
(l)vz), for

0 ≤ l, z < pr and 1 ≤ a < p. When l < z the result follows as in Proposition 6.1.4. When

l ≥ z we still get that e(l)vz = 0 and e(l)vapr+z = λ
((

h−apr−z+l
l

))
vapr+z−l, but now we

need to observe that λ
((

h−apr−z+l
l

))
λ
((

h−(a−1)pr

pr+z−l

))
= λ

((
h−(a−1)pr

pr+z

))(
pr+z

l

)
(this comes

from the similar result over C, using the Z(p)-form). Since
(
pr+z

l

)
= 0, we have that

either λ
((

h−apr−z+l
l

))
= 0, in which case we are done, or λ

((
h−(a−1)pr

pr+z−l

))
= 0.

We now observe that λ
((

h−(a−1)pr

pr+z−l

))
=

∑pr+z−l
t=0 λ

((
h
t

))(−(a−1)pr

pr+z−l−t

)
and that(−(a−1)pr

pr+z−l−t

)
= (−1)p

r+z−l−t
(
apr+z−l−t−1

pr+z−l−t

)
. If t ̸= pr + z − l then Lucas’ theorem gives

that
(
apr+z−l−t
pr+z−l−t

)
= 1 and

(
apr+z−l−t−1
pr+z−l−t−1

)
= 1, so since

(
apr+z−l−t−1

pr−l−t

)
+
(
apr+z−l−t−1
pr+z−l−t−1

)
=(

apr+z−l−t
pr+z−l−t

)
we get that

(
apr+z−l−t−1

pr−l−t

)
= 0 for all t ̸= pr + z − l. In particular,

λ
((

h−(a−1)pr

pr+z−l

))
=
∑pr+z−l

t=0 λ
((

h
t

))(−(a−1)pr

pr+z−l−t

)
= λ

((
h

pr+z−l

))
.
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Hence, e(l)vapr+z = λ
((

h−apr−z+l
k

))
vapr+z−l ∈ Mr

χ(λ) and its image in Lr
χ(λ) is zero,

as required. The result follows as in Proposition 6.1.4. □

6.3. Zero χ.

Recall that U
[r]
0 (G) ∼= Dist(G(r+1)). This case has hence been well-studied before

(see, for example, [10, II.3]), but let us understand how the results can be derived in our

context.

As in the semisimple case, we take

Mr
χ(λ) := K

{
vk

∣∣∣∣λ((hk
))

= 0 and 0 ≤ k < pr+1

}
.

The main difference in this case is that this vector space is now equal to{
va0+a1p+···+ar−1pr−1+arpr

∣∣∣∣ ai > λ

((
h

pi

))
for some i ∈ {0, 1, . . . , r}

}
since λ

((
h
pj

))
∈ Fp for all 0 ≤ j ≤ r.

The proofs in the semisimple case now work almost exactly the same in the χ = 0

case. Hence we get that, for each λ ∈ Λr
0, we have a unique irreducible U

[r]
0 (G)-module,

and this module has dimension

(λ(h) + 1)

(
λ

((
h

p

))
+ 1

)
· · ·
(
λ

((
h

pr

))
+ 1

)
,

where we view λ
((

h
pi

))
as elements of the set {0, 1, 2, . . . , p− 1} for 0 ≤ i ≤ r.

Let us now examine the structure of the irreducible U
[r]
χ (G)-modules when we con-

sider them as Dist(G(r))-modules.

Proposition 6.3.1. Each irreducible U
[r]
χ (G)-module decomposes as Dist(G(r))-

modules into a direct sum of λ
((

h
pr

))
+1 copies of the same irreducible Dist(G(r))-module.

In particular, if M is a quotient of Zr
χ(λ) for λ ∈ Λr

χ then this irreducible Dist(G(r))-

module is the module Lr(λ) defined in [10].

Proof. Very similar to Propositions 6.1.4 and 6.2.4, adapted for the appropriate

basis. Details are left to the interested reader. □

6.4. Classification.

Now that we know the irreducible modules for U
[r]
χ (G), we can reinterpret them

using a different construction. Define the subalgebra Û
[r]
χ (B) of U [r](G) as the subalgebra

generated by Dist(G(r)) and U
[r]
χ (B), which has basis {f (i)

(
h
k

)
e(j) | 0 ≤ i < pr and 0 ≤

j, k < pr+1}. Suppose that N is an irreducible Dist(G(r))-module, coming from λr−1 ∈
Λr−1
0 . Note thatN has a unique (up to scalar multiplication) highest weight vector v0 [10,

II.3.10], and so has a basis consisting of the non-zero elements of {f (i)v0 | 0 ≤ i < pr}. By
choosing an extension of λr−1 to λr ∈ Λr

χ, we can extend the Dist(G(r))-module structure

on N to a Û
[r]
χ (B)-module structure on N by letting e(p

r) act as 0 and
(
h
pr

)
act by scalar
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multiplication as it does on the basis elements {f (i)v0}0≤i<pr of the higher baby Verma

modules (which depends on λr).

We can then define the teenage Verma module Z
[r]
χ (N,λr) as

Z [r]
χ (N,λr) := U [r]

χ (G)⊗
Û

[r]
χ (B)

N.

Recall that throughout this section we assuming p > 2.

Theorem 6.4.1 (Classification of irreducible U
[r]
χ (SL2)-modules). We have the

following classification of irreducible U
[r]
χ (SL2)-modules, for (χ ∈ sl∗2)

[r] :

• If χ ̸= 0 is semisimple, then the irreducible modules are the Z
[r]
χ (N,λr) for N an

irreducible Dist(SL2,r)-module with weight λr−1 ∈ Λr−1
0 , and λr ∈ Λr

χ extending

λr−1. Furthermore, these are all non-isomorphic, so there are exactly pr+1 non-

isomorphic U
[r]
χ (SL2)-modules.

• If χ ̸= 0 is nilpotent, then the irreducible modules are the Z
[r]
χ (N,λr) for N an

irreducible Dist(SL2,r)-module with weight λr−1 ∈ Λr−1
0 , and λr ∈ Λr

χ extending

λr−1. Furthermore, Z
[r]
χ (N,λr) = Z

[r]
χ (M,λ′

r) if and only if N = M and λr = λ′
r or

λ′
r

((
h
pr

))
= p−λr

((
h
pr

))
−2 and λr

((
h
pr

))
≤ p−2 (as an element of {0, 1, . . . , p−1}),

so there are exactly pr((p+ 1)/2) non-isomorphic U
[r]
χ (SL2)-modules.

• If χ = 0, every irreducible U
[r]
0 (SL2) is the unique irreducible quotient of Z

[r]
χ (N,λr)

for N an irreducible Dist(SL2,r)-module with weight λr−1 ∈ Λr−1
0 and λr ∈ Λr

χ

extending λr−1.

Proof. Most of this theorem is proved in Subsections 6.1, 6.2 and 6.3. All that

remains is to prove the isomorphism conditions. Observe that Propositions 6.1.4 and

6.2.4 show that for χ ̸= 0 we have that Z
[r]
χ (N,λr) ≇ Z

[r]
χ (M,λ′

r) for distinct irreducible

Dist(G(r))-modules N and M , independent of the choice of λr and λ′
r.

When χ ̸= 0 is semisimple, one can show using Proposition 6.1.4 and methods similar

to those used in the rest of this chapter, that

{
v ∈ Z [r]

χ (N,λr)
∣∣ e(pr)v = 0

}
= K

{
vi

∣∣∣∣ i < pr, λr

((
h

i

))
̸= 0

}
.

Letting z be the largest integer less than to pr such that λr

((
h
z

))
̸= 0, we hence have

that

e(z)
{
v ∈ Z [r]

χ (N,λr)
∣∣ e(pr)v = 0

}
= Kv0.

In particular, λr is determined by the action of the
(
h
k

)
on this subspace.

When χ ̸= 0 is nilpotent, fix a = λr

((
h
pr

))
∈ Fp = {0, 1, . . . , p−1}. One can similarly

show that{
v ∈ Z [r]

χ (N,λr)
∣∣ e(pr)v = 0

}
= K

{
vi, vapr+i

∣∣∣∣ i < pr, λr

((
h

i

))
̸= 0

}
.
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Letting z be the largest integer less than to pr such that λr

((
h
z

))
̸= 0, we hence have

that

e(z)
{
v ∈ Z [r]

χ (N,λr)
∣∣ e(pr)v = 0

}
= Kv0 +Kvλr(( h

pr))pr .

By calculation, one can check that the line Kvλr(( h
pr))pr is a U

[r]
χ (B)-module isomor-

phic to Kµr where µr

((
h
pi

))
= λr

((
h
pi

))
for i < r and µr

((
h
pr

))
= p − λr

((
h
pr

))
− 2. In

particular, Z
[r]
χ (N,λr) ∼= Z

[r]
χ (N,µr). On the other hand, the description of e(z){v ∈

Z
[r]
χ (N,λr) | e(p

r)v = 0 } guarantees that these are the only possible (non-identity) iso-

morphisms. The uniqueness when χ = 0 is well known (see [10]). □

Corollary 6.4.2. Let (χ ∈ sl∗2)
[r] and let λ, µ ∈ Λr

χ with µ ̸= λ. Keeping the

notation from Subsections 6.1, 6.2 and 6.3, let Lr
χ(λ) and Lr

χ(µ) be the corresponding

irreducible U
[r]
χ (SL2)-modules. If χ is zero or non-zero semisimple then Lr

χ(λ) ≇ Lr
χ(µ).

If χ is non-zero nilpotent, then Lr
χ(λ)

∼= Lr
χ(µ) if and only if µ

((
h
pj

))
= λ

((
h
pj

))
for all

j < r and µ
((

h
pr

))
= −λ

((
h
pr

))
− 2.

6.5. Conjectures.

Based on our understanding of the case in Section 6 and of the r = 0 case (see [11]),

we can formulate some conjectures about the representation theory of U
[r]
χ (G).

Conjecture. Let N be an irreducible Dist(G(r))-module with corresponding

weight λr−1 ∈ Λr−1
0 . Let Û

[r]
χ (B) be the subalgebra of U

[r]
χ (G) generated by Dist(G(r))

and U
[r]
χ (B). Then each extension of λr−1 to λr ∈ Λr

χ determines an irreducible Û
[r]
χ (B)-

module structure on the Dist(G(r))-module N , and every irreducible Û
[r]
χ (B)-module re-

stricts to an irreducible Dist(G(r))-module.

A proof of this result would immediately lead to a proof of the following conjecture,

an analogue of the result from the r = 0 case that every irreducible g-module is the

quotient of a baby Verma module.

Conjecture. Every irreducible U
[r]
χ (G)-module is a homomorphic image of

Z
[r]
χ (N,λr) := U

[r]
χ (G)⊗

Û
[r]
χ (B)

N for some irreducible Dist(G(r))-module N and λr ∈ Λr
χ

extending the weight of N , where N is given the structure of a Û
[r]
χ (B)-module as in the

previous conjecture.

These conjectures are proved in the sequel [22].

7. Hopf algebra structure.

7.1. Hopf subalgebra structure.

Corollary 3.1.2 tells us that, much like the universal enveloping algebra and distri-

bution algebra, the higher universal enveloping algebras U [r](G) have the structure of
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cocommutative Hopf algebras. This Hopf-algebraic structure is not used substantially in

the rest of this paper, but is a key focus in the sequel [22]. Nonetheless, in the case of

reductive groups, it is worthwhile to take a moment and use the results of this paper to

derive some Hopf-algebraic properties of the higher universal enveloping algebras.

We start with some important observations.

Lemma 7.1.1. For a reductive algebraic group G, the algebra U [r](G) satisfies the

following properties :

(1) Dist(G(r)) is a normal Hopf subalgebra of U [r](G).

(2) U [r](G) is free as a left and right Dist(G(r))-module.

(3) U [r](G) is faithfully flat as a left and right Dist(G(r))-module.

(4) U [r](G)/Dist+(G(r))U
[r](G) is isomorphic to the Hopf algebra U(g).

(5) Dist(G(r)) ⊂ U [r](G) is a U(g)-Galois extension, with Dist(G(r)) = U [r](G)coU(g).

Proof. Recall that a Hopf subalgebra B of a Hopf algebra A is said to be normal

if adl(a)(b) ∈ B and adr(a)(b) ∈ B for all a ∈ A and b ∈ B where, using Sweedler’s

Σ-notation,

adl(a)(b) =
∑

a(1)bS(a(2)), adr(a)(b) =
∑

S(a(1))ba(2).

Since U [r](G) is cocommutative, these two conditions are equivalent, so it is enough

to prove closure under the left adjoint. Since adl(aa
′)(b) = adl(a)adl(a

′)(b) and

adl(a)(bb
′) =

∑
(adl(a(1))b)(adl(a(2))b

′) for a, a′ ∈ A and b, b′ ∈ B, it is enough to

show closure for generators of A and B. When G is reductive, Dist(G(r)) ⊂ Dist(G) is

generated by Distpr−1(G) and U [r](G) is generated by Distpr (G). Let δ ∈ Distpr (G) and

µ ∈ Distpr−1(G). Then

adl(δ)(µ) =
∑

δ(1) ⊗ µ⊗ S(δ(2)),

where the ⊗ represents the multiplication in U [r](G), and we have δ(1) ∈ Disti(G),

δ(2) ∈ Distj(G) with i+ j = pr. In particular, i+ pr − 1 + j < pr+1 and so in fact

adl(δ)(µ) =
∑

δ(1)µS(δ(2)),

with the multiplication now in Distpr+1−1(G), the restriction of the multiplication in

Dist(G). Since Dist(G(r)) is normal in Dist(G) [10, I.7.18], we hence conclude that

adl(δ)(µ) ∈ Dist(G(r)). This proves (1).

Part (2) then follows from Theorem 2.1(2) in [19], and (3) follows from (2). Further-

more, (4) is easy to see from the results of Section 4, and (5) follows from Remark 1.1(4)

in [18]. □

Recall that X(T ) = Hom(T,Gm) is the character group of T , where Gm is the

multiplicative group and T is a maximal torus of G. Let Y (T ) = Hom(Gm, T ) be
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the cocharacter group of G. Then, as in [10, II.1.3], there exists a bilinear pairing

X(T ) × Y (T ) given by (λ, µ) 7→ ⟨λ, µ⟩, where ⟨λ, µ⟩ is the integer corresponding to

µ ◦ λ ∈ End(Gm) = Z.
As always, we have Φ is the root system of G with respect to T , and we choose Φ+

a system of positive roots and Π a set of simple roots inside Φ+. Given α ∈ Φ, we define

αν ∈ Y (T ) be the coroot of α. We hence define

X(T )+ := {λ ∈ X(T )| ⟨λ, αν⟩ ≥ 0 for all α ∈ Π}

to be the set of dominant weights of T with respect to Φ+ and, for r ≥ 1, we set

Xr(T ) := {λ ∈ X(T )| 0 ≤ ⟨λ, αν⟩ < pr for all α ∈ Π}.

Throughout this section we shall make the assumption that the abelian group

X(T )/prX(T ) has a set of representatives X ′
r(T ) with X ′

r(T ) ⊆ Xr(T ). We shall call

this assumption (R).

Now, suppose N is an irreducible left Dist(G(r))-module and M is an irreducible left

U [r](G)-module. Since N is an irreducible left Dist(G(r))-module it is a left Dist(G(r+1))-

module by Proposition II.3.15 in [10] (using assumption (R), the fact that Xr(T ) ⊂
Xr+1(T ), and the fact that the irreducible Dist(G(r))-modules are indexed by X ′

r(T )—

see [10, II.3.10]). Hence, as U [r](G) surjects onto Dist(G(r+1)), N can be extended to a

U [r](G)-module.

We can also define a left U [r](G)-module structure on HomD(N,M) as follows (defin-

ing D := Dist(G(r)) for ease of notation):

x · ϕ : n 7→
∑

x(1)ϕ(S(x(2))n) for x ∈ U [r](G), n ∈ N, ϕ ∈ HomD(N,M),

where here we are using the U [r](G)-module structure on N defined in the previous

paragraph. It is a straightforward calculation that this makes HomD(N,M) into a

U [r](G)-module, and that the ideal U [r](G)Dist+(G(r)) acts trivially upon it. Hence,

HomD(N,M) has the structure of a U(g) = U [r](G)/U [r](G)Dist+(G(r))-module.

Putting these two observations together and again using the Hopf algebra struc-

ture of U [r](G), we can define a U [r](G)-module structure on N ⊗ HomDist(G(r))
(N,M).

Furthermore, if x ∈ Dist(G(r)), n ∈ N and ϕ ∈ HomD(N,M), then

x·(n⊗ϕ) =
∑

x(1)n⊗x(2)ϕ =
∑

x(1)n⊗ϵ(x(2))ϕ =
(∑

x(1)ϵ(x(2))n
)
⊗ϕ = xn⊗ϕ, (6)

using here that elements of Dist(G(r)) act on HomD(N,M) via ϵ, the counit. So we see

that the U [r](G)-module structure on N⊗HomDist(G(r))
(N,M) restricts to the Dist(G(r))-

module structure on copies of N .

The following result should be compared to Propositions 6.1.4, 6.2.4 and 6.3.1 above.

Theorem 7.1.2. Suppose assumption (R) holds. Let M be an irreducible U [r](G)-

module. Then there exists an irreducible Dist(G(r))-module N such that M ∼= N ⊗
HomDist(G(r))

(N,M) as U [r](G)-modules.
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Proof. Let N be an irreducible Dist(G(r))-submodule of M . As above can then

equip N ⊗HomD(N,M) with the structure of a U [r](G)-module.

We define the map

Ψ : N ⊗HomD(N,M) → M, Ψ(n⊗ ϕ) = ϕ(n).

It is straightforward to check that this is a homomorphism of U [r](G)-modules. Since M

is irreducible, it is clearly surjective. Hence, using Equation (6), as Dist(G(r))-modules

M ∼=
k⊕

i=1

N,

for some k ∈ N. In particular, this implies that HomD(N,M) ∼= Kk and so dimK(M) =

k dimK(N). Furthermore, dimK(N ⊗HomD(N,M)) = k dimK N . Hence, Ψ is an isomor-

phism. □

So Theorem 7.1.2 shows that an irreducible U [r](G)-module can be decomposed into

an irreducible Dist(G(r))-module and a U(g)-module.

There is another way to obtain this result. This alternative method shall be more

useful in the sequel [22], and is inspired by papers of Schneider [18] and Witherspoon

[23].

Lemma 7.1.3. Suppose assumption (R) holds. Let N be an irreducible left

Dist(G(r))-module, and define the algebra E := EndU [r](G)(U
[r](G) ⊗D N)op. Let U be

an irreducible left E-module. Then N ⊗K U can be given a left U [r](G)-module structure

which restricts to the natural left Dist(G(r))-module structure.

Proof. The proof of this lemma can essentially be found in [23], but we include

elements of it here for completeness. As described above, N can be extended to a

U [r](G)-module. Remark 3.2(3) of [18] shows that N is U [r](G)-stable (i.e. there is a

left Dist(G(r))-linear and right U(g)-collinear isomorphism U [r](G)⊗Dist(G(r))
N ∼= N ⊗K

U(g)— see, for example, [18] or [23] for the U(g)-comodule structures on these spaces).

It was proved in [20] that N ⊗K E is isomorphic to U [r](G) ⊗Dist(G(r))
N as right

E-modules, using the U [r](G)-stability of N . In particular, by applying − ⊗E U , this

implies that

N ⊗K U ∼= (U [r](G)⊗Dist(G(r))
N)⊗E U (7)

can be given the structure of a left U [r](G)-module. Theorem 2.2(i) of [23] further shows

that this U [r](G)-module structure restricts to the natural Dist(G(r))-module structure

(although this theorem is not directly applicable to this setting, Witherspoon observed

in [23] that the result still holds in this situation). □

Remark. Lemma 7.1.3 gives another way to get a U [r](G)-module structure on

N ⊗ HomDist(G(r))
(N,M), using the observation that HomDist(G(r))

(N,M) is a left E-

module (see, for example Theorem 2.2.(ii) in [23]).
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The key point of the proof of Lemma 7.1.3 is Equation (7), which in our context

gives an isomorphism of U [r](G)-modules

N ⊗HomD(N,M) ∼= (U [r](G)⊗D N)⊗E HomU [r](G)(U
[r](G)⊗D N,M).

It is straightforward to show that the map

ηM : (U [r](G)⊗DN)⊗EHomU [r](G)(U
[r](G)⊗DN,M) → M, ηM (a⊗Dn⊗Eϕ) = ϕ(a⊗Dn)

is a U [r](G)-module homomorphism, and a similar argument to Theorem 7.1.2 shows

that it is an isomorphism. So we once again obtain the result:

Theorem 7.1.4. Suppose assumption (R) holds. Let M be an irreducible

U [r](G)-module. Then there exists an irreducible Dist(G(r))-module N such that M ∼=
N ⊗ HomDist(G(r))

(N,M) as U [r](G)-modules, where the U [r](G)-module structure on

N ⊗HomDist(G(r))
(N,M) comes from Lemma 7.1.3.

Remark. Partial credit for this proof and that of Lemma 7.1.5 below goes to

Dmitriy Rumynin, who was kind enough to share it with the author.

We observed above that HomDist(G(r))
(N,M) is a left E-module. While at first blush

the algebra E may appear strange, it turns out to be an algebra we know very well, as

the following lemma shows.

Lemma 7.1.5. Suppose assumption (R) holds. Let N ∈ Irr(Dist(Gr)) and E =

EndU [r](G)(U
[r](G)⊗Dist(Gr) N)op. Then E ∼= U(g).

Proof. As above, we can observe that the Dist(Gr)-module N can be extended to

a U [r](G)-module. Remark 3.8 in [18] then tells us that K ⊂ E is a trivial U(g)-crossed

product, and hence that E ∼= K#U(g) ∼= U(g). □

Remark. The exact nature of this isomorphism shall be explored more in the

sequel [22]. The results there will show, in particular, that the action of U(g) on

HomDist(G(r))
(N,M) through the quotient U [r](G)/U [r](G)Dist+(G(r)) and the action

of E on HomDist(G(r))
(N,M) described above are compatible with the isomorphism in

Lemma 7.1.5.

So we get another way of seeing that an irreducible U [r](G)-module can be decom-

posed into an irreducible Dist(G(r))-module and a U(g)-module.

What is the benefit of this latter method of proof? Essentially, the initial approach

uses the Hopf algebra structure of U [r](G) to give certain vector spaces a module struc-

ture, while the latter approach uses the Hopf algebra structure to get an isomorphism

U(g) ∼= E and then uses just the algebra structures to define the modules. Once one

knows such an isomorphism exists, it is often-times easier in practice to work with an

action which only depends on the algebra structure rather than an action which depends

on the whole Hopf algebra structure.

For example, the second approach means that given a left U(g)-module U and left
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Dist(G(r))-module N , the equation

N ⊗K U ∼= (U [r](G)⊗Dist(G(r))
N)⊗E U

allows us to write the U [r](G)-action down very easily. This will have particular use

when considering the action of central elements of U [r](G), such as elements of the form

δ⊗p−δp. Furthermore, the action on E on HomDist(G(r))
(N,M) is often easier to calculate

with than the action of U(g) on the same.

Let us now consider an application of the decomposition described above. Recall

that in the r = 0 case we have Premet’s theorem, under some weak conditions on p and

g (see [16] for details):

Theorem 7.1.6 (Premet’s theorem [16]). Let g and p be as above. Let χ ∈ g∗,

and let M be a Uχ(g)-module. Then pdim(G·χ)/2 divides dimM .

Observe that the natural extension of this theorem would be that p(r+1) dim(G·χ)/2

divides dimM for any U
[r]
χ (G)-module M . We know that this fails in G = SL2. Further-

more, since any Uχ(g)-module can be made into a U
[r]
χ (G)-module, this extension will

not hold for any G we are interested in.

Theorem 7.1.2 suggests a way to generalise Premet’s theorem for the higher universal

enveloping algebras U [r](G). We announce this proposition here, although defer a key

part of proof to the sequel [22], where some necessary infrastructure will be developed.

Proposition 7.1.7. Suppose that G is a connected reductive algebraic group

over an algebraically closed field K of positive characteristic p > 0 such that assump-

tion (R) holds. Suppose further that g and p are such that Premet’s theorem holds.

Let M be an irreducible U
[r]
χ (G)-module and N an irreducible Dist(G(r))-module such

that M ∼= N ⊗ HomDist(G(r))
(N,M) as Dist(G(r))-modules. Then pdim(G·χ)/2 divides

dimHomDist(G(r))
(N,M).

Whether one approaches this question through Theorem 7.1.2 and Premet’s theorem,

or through Theorem 7.1.4, Lemma 7.1.5 and Premet’s theorem, all that remains is to

show that for x ∈ g, xp − x[p] acts on HomD(N,M) as χ(x)p.

For the latter technique, given δ ∈ Dist+pr (G), we know that δ⊗p − δp is central in

U [r](G). Hence, the map ρ(δ) : U [r](G)⊗DN → U [r](G)⊗DN given by left multiplication

by δ⊗p − δp is a U [r](G)-module endomorphism of U [r](G) ⊗D N , and so lies inside E.

However, as we know that M is a U
[r]
χ (G)-module, ρ(δ) ∈ E acts on HomD(N,M) as

multiplication by χ(δ)p.

Hence, to show that HomD(N,M) is a Uχ(g)-module, we just need that, for α ∈ Φ,

epα maps to ρ(e
(pr)
α ) and, for 1 ≤ t ≤ d, hp

t − ht maps to ρ
(
ht

pr

)
under the isomorphism

U(g) ∼= E.

As a result, completing the proof of this proposition relies on a more detailed un-

derstanding of the isomorphism U(g) ∼= E. In fact, this is precisely the same question as

understanding how the elements epα ∈ U(g), for α ∈ Φ, and hp
t −ht, for 1 ≤ t ≤ d, act on

HomDist(G(r))
(N,M) under the original action. This shall be explored in the sequel [22].
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