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Abstract. We characterize strong type and weak type inequalities with
two weights for positive operators on filtered measure spaces. These estimates

are probabilistic analogues of two-weight inequalities for positive operators
associated to the dyadic cubes in Rn due to Lacey, Sawyer and Uriarte-Tuero
[30]. Several mixed bounds for the Doob maximal operator on filtered measure

spaces are also obtained. In fact, Hytönen–Pérez type and Lerner–Moen type
norm estimates for Doob maximal operator are established. Our approaches
are mainly based on the construction of principal sets.

1. Introduction.

The theory of weighted inequalities in harmonic analysis is an old subject, which can

probably be traced back to the beginning of integration. The Ap condition first appeared

in a paper of Rosenblum [42], but systematic investigation was initiated by [36], [9] and

[37] etc. The Ap condition is geometric, meaning to only involve the weights and not

the operators. Later, Sawyer [43] introduced the test condition Sp and characterized the

two-weight estimates for the classical Hardy–Littlewood maximal operator. The testing

condition essentially amounts to testing the uniform estimates on characteristic functions

of dyadic cubes. In addition, Sawyer [44] proved that for operators such as fractional

integrals, Poisson kernels, and other nonnegative kernels, the two-weight estimate still

holds if one assumes the testing condition not only on the operator itself, but also on its

formal adjoint (see [14] and [15] for more information).

Dyadic harmonic analysis can be traced back to the early years of the 20th century,

and Haar’s basis of orthogonal functions has profound and still useful connections to

combinatorial and probabilistic reasoning. This subject has recently acquired a renewed

attention by Petermichl [41], that a notion of Haar shifts can be used to recover deep

results about the Hilbert transform (see [38] and [27] for more information). As is

well known, to get sharp one-weight estimates of usual operators in classical harmonic

analysis, a standard way is a dyadic discretization technique. Using it, Hytönen [16] gave

the solution of the A2 conjecture, which states that any Calderón–Zygmund operator
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satisfies the following bound on weighted Lebesgue spaces:

∥T∥Lp(w) ≲ [w]
max(1,1/(p−1))
Ap

. (1.1)

Its simpler proofs were found by several authors (see [19], [32]) and inequality (1.1)

has seen several improvements (see [18], [21], [28], [33]). These improvements come in

the form of the so-called mixed estimates. The idea behind the mixed estimates is that

one only needs the full strength of the Ap constant for part of the estimates, while the

other part only requires something weaker. The smaller quantities come in the form of

Ar constants for large r or A∞ constants. The dyadic discretization technique is also

valid for (linear) positive operators (see [24], [25], [29], [30], [50]) and the (fractional)

maximal operator (see [4], [17], [21], [29], [31], [43]).

With the development of weighted theory in harmonic analysis, its probabilistic

counterpart was also studied. This is weighted theory on martingale spaces. The his-

tory of martingale theory goes back to the early 1950s when Doob [13] pointed out the

connection between martingales and analytic functions. Standard introductions to mar-

tingale theory can be found in Dellacherie and Meyer [11], Doob [12], Kazamaki [26],

Long [34], Neveu [39], Weisz [52] and Williams [53]. Recently, Schilling [45] and Stroock

[46] developed martingale theory for σ-finite measure spaces rather than just for proba-

bility spaces, so that they are immediately applicable to analysis on the Euclidean space

Rn without the need of auxiliary truncations or decompositions into probability spaces.

Doob’s maximal operator, which is a generalization of the dyadic Hardy–Littlewood max-

imal operator, and a martingale transform, which is an analogue of a singular integral in

classical harmonic analysis, are important tools in stochastic analysis. For Doob’s max-

imal operator, assuming some regularity condition on Ap weights, one-weight inequality

was studied first by Izumisawa and Kazamaki [22]. The added property is superfluous

(see Jawerth [23] or Long [34]). Two-weight weak inequalities were studied by Uchiyama

[51] and Long [34], and two-weight strong inequalities were studied by Long and Peng

[35] and Chang [6]. Weighted inequalities involving Carleson measure for generalized

Doob’s maximal operator were obtained by Chen and Liu [8].

In martingale theory, as we see above, weighted inequalities first appeared in 1970s,

but they have been developing slowly. One reason is that some decomposition theorems

and covering theorems which depend on algebraic structure and topological structure are

invalid on probability space. Recently, there are two new approaches to weighted theory

in martingale spaces. One is very closely related to Burkholder’s method (see [5]). This

is the so-called Bellman’s method, which also rests on the construction of an appropriate

special function. The technique has been used very intensively mostly in analysis, in the

study of Carleson embedding theorems, BMO estimates, square function inequalities,

bounds for maximal operators, estimates for weights and many other related results. For

more complete references, we refer to the bibliographies of [49]. In martingale spaces,

this theory was further developed in a series of papers by Bañuelos and Osȩkowski (see,

e.g., [1], [2], [3]) and a monograph [40] by Osȩkowski. The other is the construction of

principal sets on filtered measure spaces which is a quadruplet (Ω,F , µ; (Fi)i∈Z). The

germ of principal sets appeared as the sparse family on Rn (see [10], [21] for more

information) and the principal sets were successfully constructed on filtered measure
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spaces in [47, p. 942–943]. Using the construction, Tanaka and Terasawa [48] obtained a

characterization for the boundedness of positive operators on filtered measure spaces. In

addition, the construction was reinvestigated by Chen and Jiao [7] and a new property

of the construction was found (see Section 3, P.3).

The purpose of this paper is to develop a theory of weights for positive operators

and Doob maximal operators on filtered measure spaces. To better explain our aim, we

first recall the main results of [30]. Let ν = {νQ : Q ∈ Q} be non-negative constants

associated to dyadic cubes, and define a positive linear operator by

Tνf =
∑
Q∈Q

νQEQf · χQ,

where EQf := |Q|−1
∫
Q
fdx. Let σ,w be non-negative locally integral weights on Rn.

Lacey, Sawyer and Uriarte-Tuero [30, Theorem 1.11] characterize the two-weight strong

type inequalities

∥Tν(fσ)∥Lq(w) ≲ ∥f∥Lp(σ), 1 < p ≤ q < ∞, (1.2)

in term of Sawyer-type testing conditions. In the present paper, we consider the positive

operator Tα(·σ) (see Subsection 2.1 for the definition) on filtered measure spaces which

is the generalization of positive dyadic operator Tν(·σ).
The following theorem is our first main result, which characterizes two-weight strong

type inequality for positive operators on filtered measure spaces. Let p′ be the conjugate

exponent number of 1 < p < ∞. All other unexplained notations can be found in

Section 2 and Section 3.

Theorem 1.1. Let 1 < p ≤ q < ∞. Let ω ∈ A1 and σ ∈ A1. Then the following

statements are equivalent :

(1) There exists a positive constant C such that

∥Tα(fσ, gω)∥L1(dµ) ≤ C∥f∥Lp(σ)∥g∥Lq′ (ω); (1.3)

(2) There exist positive constants C1 and C2 such that for any E ∈ F0
i , i ∈ Z,(∫

E

(∑
j≥i

Ej(σ)αj

)q

ωdµ

)1/q

≤ C1σ(E)1/p, (1.4)

(∫
E

(∑
j≥i

Ej(ω)αj

)p′

σdµ

)1/p′

≤ C2ω(E)1/q
′
. (1.5)

Moreover, we denote the smallest constants C, C1 and C2 in (1.3), (1.4) and (1.5) by

∥Tα(·σ)∥, [ω, σ]α,q′,p′ and [σ, ω]α,p,q, respectively. Then it follows that [ω, σ]α,q′,p′ ≤
∥Tα(·σ)∥, [σ, ω]α,p,q ≤ ∥Tα(·σ)∥, and

∥Tα(·σ)∥ ≲ [ω, σ]α,q′,p′ [ω]A1 + [σ, ω]α,p,q[σ]A1 .
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Remark 1.2. It is clear that ∥Tα(fσ, gω)∥L1(dµ) =
∫
Ω

∑
i∈Z αiEi(fσ)Ei(gω)dµ.

Then∫
Ω

∑
i∈Z

αiEi(fσ)Ei(gω)dµ =
∑
i∈Z

∫
Ω

αiEi(fσ)Ei(gω)dµ =
∑
i∈Z

∫
Ω

αiEi(fσ)(gω)dµ.

It follows that ∑
i∈Z

∫
Ω

αiEi(fσ)(gω)dµ =

∫
Ω

∑
i∈Z

αiEi(fσ)(gω)dµ.

Thus ∥Tα(fσ, gω)∥L1(dµ) =
∫
Ω
Tα(fσ)(gω)dµ.

Since Remark 1.2 and Lq(ω) − Lq′(ω) duality, the first statement of Theorem 1.1

is equivalent to the fact that the positive operator Tα(·σ) is bounded from Lp(σ) to

Lq(ω), which extends the inequality (1.2). Moreover, in the very special case that σ = 1,

Theorem 1.1 partially improves Tanaka and Terasawa [47, Theorem 1.1]. Indeed, as

pointed out in [47, p. 923], the expected conditions are (1.4) and (1.5). However, for

some technical reasons, instead of the condition (1.4), they postulate a strong condition

(see [47, (1.5)] or Remark 1.3 below).

Recall that Lacey, Sawyer and Uriarte-Tuero [30, Theorem 1.11] studied two-weight

inequalities for positive operator associated to the dyadic cubes in Rn. As is well known,

they obtained two characterizations for the boundedness of the positive operator, which

were the local one and global one. Treil [50] reinvestigated strong type inequality and

obtained a short proof for the part involving the local one. For more information and

references, see Tanaka and Terasawa [48]. The arguments in [30] and [50] are related to

dyadic technique extensively, so they are invalid in filtered measure spaces. Instead of

dyadic technique, our method is mainly based on the construction of principal sets (see

Section 3).

Remark 1.3. Let αi, i ∈ Z, be a nonnegative bounded Fi-measurable function

and αi ∈ L+, where αi :=
∑

j≥i αj . Assuming that

Eiαi ≈ αi, (1.6)

holds, [47, Theorem 1.1] showed that (1.5) implies (1.3) in the special case σ = 1.

As a corollary of Theorem 1.1, we have the following one-weight estimate.

Corollary 1.4. Let 1 < p ≤ q < ∞. Then the following statements are equiva-

lent :

(1) There exists a positive constant C such that

∥Tα(fω, gω)∥L1(dµ) ≤ C∥f∥Lp(ω)∥g∥Lq′ (ω); (1.7)

(2) There exist positive constants C1 and C2 such that for any E ∈ F0
i , i ∈ Z,
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(∫
E

(∑
j≥i

Ej(ω)αj

)q

ωdµ

)1/q

≤ C1ω(E)1/p, (1.8)

(∫
E

(∑
j≥i

Ej(ω)αj

)p′

ωdµ

)1/p′

≤ C2ω(E)1/q
′
. (1.9)

Moreover, we denote the smallest constants C, C1 and C2 in (1.7), (1.8) and (1.9) by

∥Tα(·σ)∥, [ω, ω]α,q′,p′ and [ω, ω]α,p,q, respectively. Then it follows that [ω, ω]α,q′,p′ ≤
∥Tα(·σ)∥, [ω, ω]α,p,q ≤ ∥Tα(·σ)∥, and

∥Tα(·σ)∥ ≲ [ω, ω]α,q′,p′ + [ω, ω]α,p,q.

If ω = 1, then Corollary 1.4 reduces to the following, which is the main result of

[48, Theorem 1.2].

Corollary 1.5. Let 1 < p ≤ q < ∞. Then the following statements are equiva-

lent :

(1) There exists a positive constant C such that

∥Tα(f, g)∥L1(dµ) ≤ C∥f∥Lp(dµ)∥g∥Lq′ (dµ);

(2) There exists a positive constant C such that for any E ∈ F0
i , i ∈ Z,

(∫
E

(∑
j≥i

αi

)q

dµ

)1/q

≤ Cµ(E)1/p,(∫
E

(∑
j≥i

αi

)p′

dµ

)1/p′

≤ Cµ(E)1/q
′
.

Our second main result is two-weight weak type inequalities for positive operators

in a filtered measure space, which is corresponding to [30, Theorem 1.8].

Theorem 1.6. Let 1 < p ≤ q < ∞. Then the following statements are equivalent :

(1) There exists a positive constant C such that

∥Tα(fσ)∥Lq,∞(ω) ≤ C∥f∥Lp(σ); (1.10)

(2) There exists a positive constant C such that for any E ∈ F0
i , i ∈ Z,(∫

E

(∑
j≥i

Ej(ω)αj

)p′

σdµ

)1/p′

≤ Cω(E)1/q
′
. (1.11)

Moreover, we denote the smallest constants C in (1.10) and (1.11) by ∥Tα(·σ)∥ and

[σ, ω]α,p,q, respectively. Then it follows that [σ, ω]α,p,q ≤ ∥Tα(·σ)∥ ≲ [σ, ω]α,p,q.
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We now turn to the Doob maximal operator. We prove several mixed Ap-A∞ bounds

on filtered measure spaces. They are Hytönen–Pérez type and Lerner–Moen type norm

estimates; see [21] and [33].

Theorem 1.7. Let 1 < p < ∞.

(1) If (v, ω) ∈ Bp, then ∥M∥Lp(v)→Lp(ω) ≲ [v, ω]
1/p
Bp

;

(2) If (v, ω) ∈ Ap and σ := ω−1/(p−1) ∈ A∗
∞, then ∥M∥Lp(v)→Lp(ω) ≲ [v, ω]

1/p
Ap

[σ]
1/p
A∗

∞
;

(3) If (ω) ∈ Ap and σ = ω−1/(p−1), then ∥M∥Lp(ω)→Lp(ω) ≲ [σ](Ap′ )
1/p′ (A∗

∞)1/p (1+

log2[ω]Ap

)1/p
.

Theorem 1.7 (1) and Theorem 1.7 (2) are probabilistic versions of [21, Theorem 4.3];

Theorem 1.7 (3) is closely corresponding to [33, Theorem 1.1]. We mention that the

probabilistic analogue of Hytönen–Pérez type estimate [21, Theorem 4.3] first appeared

in Tanaka and Terasawa [47, Theorem 5.1]. They gave one-weight norm estimates which

is similar to Theorem 1.7 (1). Their estimate has two suprema. In particular, if ω = v

in Theorem 1.7 (1), we obtain a better constant than [47, Theorem 5.1].

The article is organized as follows. In Section 2, we state some preliminaries. We

construct principal sets in Section 3. In Section 4, we provide the proofs of the above

theorems.

Throughout the paper, the letters C, C1 and C2 will be used for constants that may

change from one occurrence to another. We use the notation A ≲ B to indicate that

there is a constant C, independent of the weight constant, such that A ≤ CB. We write

A ≈ B when A ≲ B and B ≲ A.

2. Preliminaries.

This section consists of the preliminaries for this paper.

2.1. Filtered measure space.

In this subsection we introduce the filtered measure space, which is standard [20],

[47] (see also references therein). Let a triplet (Ω,F , µ) be a measure space. Denote

by F0 the collection of sets in F with finite measure. The measure space (Ω,F , µ) is

called σ-finite if there exist sets Ei ∈ F0 such that Ω =
∪∞

i=0 Ei. In this paper all

measure spaces are assumed to be σ-finite. Let A ⊂ F0 be an arbitrary subset of F0.

An F-measurable function f : Ω → R is called A-integrable if it is integrable on all sets

of A, i.e., χEf ∈ L1(F , µ) for all E ∈ A. Denote the collection of all such functions by

L1
A(F , µ).

If G ⊂ F is another σ-algebra, it is called a sub-σ-algebra of F . A function g ∈
L1
G0(G, µ) is called the conditional expectation of f ∈ L1

G0(F , µ) with respect to G if

there holds ∫
G

fdµ =

∫
G

gdµ, ∀G ∈ G0.
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The conditional expectation of f with respect to G will be denoted by E(f |G), which
exists uniquely in L1

G0(G, µ) due to σ-finiteness of (Ω,G, µ).
A family of sub-σ-algebras (Fi)i∈Z is called a filtration of F if Fi ⊂ Fj ⊂ F whenever

i, j ∈ Z and i < j. We call a quadruplet (Ω,F , µ; (Fi)i∈Z) a σ-finite filtered measure

space. It contains a filtered probability space with a filtration indexed by N, a Euclidean

space with a dyadic filtration and doubling metric space with dyadic lattice.

We write

L :=
∩
i∈Z

L1
F0

i
(F , µ).

Notice that

L1
F0

i
(F , µ) ⊃ L1

F0
j
(F , µ)

whenever i < j. For a function f ∈ L we will denote E(f |Fi) by Ei(f). By the tower

rule of conditional expectations, a family of functions Ei(f) ∈ L1
F0

i
(F , µ) becomes a

martingale.

Let (Ω,F , µ; (Fi)i∈Z) be a σ-finite filtered measure space. Then a function τ : Ω →
{−∞}∪Z∪ {+∞} is called a stopping time if for any i ∈ Z, we have {τ = i} ∈ Fi. The

family of all stopping times is denoted by T . Fixing i ∈ Z, we denote Ti = {τ ∈ T : τ ≥ i}.
Suppose that function f ∈ L, the Doob maximal operator is defined by

Mf = sup
i∈Z

|Ei(f)|.

Fix i ∈ Z, we define the tailed Doob maximal operator by

∗M if = sup
j≥i

|Ej(f)|.

Let αi, i ∈ Z, be a nonnegative bounded Fi-measurable function and set α = (αi). Let

f, g ∈ L. We define the positive operator Tα(f) and bilinear positive operator Tα(f, g)

by

Tαf :=
∑
i∈Z

αiEi(f) and Tα(f, g) :=
∑
i∈Z

αiEi(f)Ei(g),

respectively.

2.2. Definitions of weights.

By a weight we mean a nonnegative function which belongs to L and, by a conven-

tion, we will denote the set of all weights by L+. Let B ∈ F , ω ∈ L+, we always denote∫
Ω
χBdµ and

∫
Ω
χBωdµ by |B| and |B|ω, respectively. Then we define several kinds of

weights.

Definition 2.1. Let v be a weight. We say that the weight v satisfies the condition

A1, if there exists a positive constant C such that
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sup
j∈Z

Ej(v) ≤ Cv. (2.1)

We denote by [v]A1 the smallest constant C in (2.1).

Definition 2.2. Let v and ω be weights and 1 < p < ∞. We say that the couple

of weights (v, ω) satisfies the condition Ap, if there exists a positive constant C such

that

sup
j∈Z

Ej(v)Ej(ω
1−p′

)p/p
′
≤ C, (2.2)

where 1/p+ 1/p′ = 1. We denote by [v, ω]Ap the smallest constant C in (2.2).

Definition 2.3. Let ω be a weight and 1 < p < ∞. We say that the weight ω

satisfies the condition Ap, if there exists a positive constant C such that

sup
j∈Z

Ej(ω)Ej(ω
1−p′

)p/p
′
≤ C, (2.3)

where 1/p+ 1/p′ = 1. We denote by [ω]Ap the smallest constant C in (2.3).

Definition 2.4. Let ω be a weight. We say that the weight ω satisfies the condition

Aexp
∞ , if there exists a positive constant C such that

sup
j∈Z

Ej(ω) expEj(logω
−1) ≤ C. (2.4)

We denote by [ω]Aexp
∞ the smallest constant C in (2.4).

Definition 2.5. Let v and ω be weights and 1 < p < ∞. Denote σ = ω−1/(p−1) ∈
L+. We say that the couple of weights (v, ω) satisfies the condition S∗

p , if

[v, ω]S∗
p
:= sup

i∈Z,E∈F0
i

(∫
E

∗Mi(σχE)
pvdµ

σ(E)

)1/p

< ∞. (2.5)

Definition 2.6. Let v and ω be weights and 1 < p < ∞. Denote that σ =

ω−1/(p−1) ∈ L+. We say that the couple of weights (v, ω) satisfies the condition Bp, if

there exists a positive constant C such that for all i ∈ Z we have

Ei(v)Ei(σ)
p ≤ C exp

(
Ei(log(σ))

)
. (2.6)

We denote by [v, ω]Bp the smallest constant C in (2.6).

Definition 2.7. Let ω be a weight. We say that the weight ω satisfies the condition

A∗
∞, if there exists a positive constant C such that for all i ∈ Z and E ∈ F0

i we have∫
E

∗M i(ωχE)dµ ≤ Cω(E). (2.7)

We denote by [ω]A∗
∞

the smallest constant C in (2.7).
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Remark 2.8. We summarize basic properties about the conditions. Let ω ∈ Ap

and σ = ω1−p′
. Then

1. σ ∈ Ap′ and [σ]
1/p′

Ap′
= [ω]

1/p
Ap

;

2. ω ∈ Aexp
∞ and [ω]Aexp

∞ ≤ [ω]Ap ;

3. ω ∈ A∗
∞ and [ω]A∗

∞
≲ [ω]Aexp

∞ .

Following from Remark 2.8, we give the mixed condition (Ap′)1/p
′
(A∗

∞)1/p by

[σ](Ap′ )
1/p′ (A∗

∞)1/p := sup
i∈Z,Q∈F0

i

(
esssup

Q
(E(ω|Fi)E(σ|Fi)

p−1)

∫
Q

∗M i(σχQ)dµ

|Q|

)1/p
. (2.8)

3. Construction of principal sets.

We mention that “the construction of principal sets” here first appeared in Tanaka

and Terasawa [47], and we find a new property P.3 of the construction. We repeat the

construction of principal sets here for the convenience of our checking the new property

P.3. We call this property P.3 conditional sparsity. Our results are mainly based on the

construction of principal sets and the conditional sparsity.

Let i ∈ Z, h ∈ L+. Fixing k ∈ Z, we define a stopping time

τ := inf{j ≥ i : E(h|Fj) > 2k+1}.

For Ω0 ∈ F0
i , we denote that

P0 := {2k−1 < E(h|Fi) ≤ 2k} ∩ Ω0, (3.1)

and assume µ(P0) > 0. It follows that P0 ∈ F0
i . We write K1(P0) := i and K2(P0) := k.

We let P1 := {P0} which we call the first generation of principal sets. To get the second

generation of principal sets we define a stopping time

τP0 := τχP0 +∞χP c
0
,

where P c
0 = Ω \ P0. We say that a set P ⊂ P0 is a principal set with respect to P0 if it

satisfies µ(P ) > 0 and there exist j > i and l > k + 1 such that

P = {2l−1 < E(h|Fj) ≤ 2l} ∩ {τP0
= j} ∩ P0

= {2l−1 < E(h|Fj) ≤ 2l} ∩ {τ = j} ∩ P0.

Noticing that such j and l are unique, we write K1(P ) := j and K2(P ) := l. We let

P(P0) be the set of all principal sets with respect to P0 and let P2 := P(P0) which we

call the second generalization of principal sets.

We now need to verify that

µ(P0) ≤ 2µ
(
E(P0)

)
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where

E(P0) := P0 ∩ {τP0 = ∞} = P0 ∩ {τ = ∞} = P0

\ ∪
P∈P(P0)

P.

Indeed, we have

µ
(
P0 ∩ {τP0 < ∞}

)
≤ 2−k−1

∫
P0∩{τP0

<∞}
E(h|FτP0

)dµ

= 2−k−1

∫
P0

E(h|FτP0
)χ{τP0

<∞}dµ

= 2−k−1

∫
P0

∑
j≥i

E(h|FτP0
)χ{τP0

=j}dµ

= 2−k−1

∫
P0

∑
j≥i

E(h|Fj)χ{τP0
=j}dµ.

It follows that

µ
(
P0 ∩ {τP0

< ∞}
)
≤ 2−k−1

∫
P0

Ei

(∑
j≥i

E(hχ{τP0
=j}|Fj)

)
dµ

= 2−k−1

∫
P0

∑
j≥i

Ei(hχ{τP0
=j})dµ

= 2−k−1

∫
P0

Ei(hχ{τP0
<∞})dµ

≤ 2−k−1

∫
P0

Ei(h)dµ ≤ 1

2
µ(P0).

This clearly implies

µ(P0) ≤ 2µ
(
E(P0)

)
.

For any P ′
0 ∈ (P0 ∩ F0

i ), there exists a set Ω′′
0 ∈ F0

i such that

P ′
0 = P0 ∩ Ω′′

0 = {2k−1 < E(h|Fi) ≤ 2k} ∩ Ω0 ∩ Ω′′
0 .

Taking Ω′
0 = Ω0 ∩ Ω′′

0 , we have P ′
0 = {2k−1 < E(h|Fi) ≤ 2k} ∩ Ω′

0. Using Ω′
0 instead of

Ω0 in (3.1), we deduce that

µ(P ′
0) ≤ 2µ

(
E(P ′

0)
)
.

Moreover, we obtain that∫
P ′

0

χP0dµ = µ(P ′
0 ∩ P0) = µ(P ′

0) ≤ 2µ
(
E(P ′

0)
)
= 2µ

(
P ′
0 ∩ {τ = ∞}

)
= 2µ

(
P ′
0 ∩ P0 ∩ {τ = ∞}

)
= 2

∫
P ′

0

χE(P0)dµ
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= 2

∫
P ′

0

Ei(χE(P0))dµ.

Since P ′
0 is arbitrary, we have χP0 ≤ 2Ei(χE(P0))χP0 .

The next generalizations are defined inductively,

Pn+1 :=
∪

P∈Pn

P(P ),

and we define the collection of principal sets P by

P :=

∞∪
n=1

Pn.

It is easy to see that the collection of principal sets P satisfies the following properties:

P.1 The sets E(P ) where P ∈ P, are disjoint and P0 =
∪

P∈P E(P );

P.2 P ∈ FK1(P );

P.3 χP ≤ 2E(χE(P )|FK1(P ))χP ;

P.4 2K2(P )−1 < E(h|FK1(P )) ≤ 2K2(P ) on P ;

P.5 supj≥i Ej(hχP ) ≤ 2K2(P )+1 on E(P );

P.6 χ{K1(P )≤j<τ(P )}Ej(h) ≤ 2K2(P )+1.

We use the principal sets to represent the tailed Doob maximal operator and obtain

the following lemma.

Lemma 3.1. Let i ∈ Z and h ∈ L+. Fixing k ∈ Z and Ω0 ∈ F0
i , we denote

P0 := {2k−1 < E(h|Fi) ≤ 2k} ∩ Ω0.

If µ(P0) > 0, then

∗Mi(h)χP0 = ∗Mi(hχP0)χP0

=
∑
P∈P

∗Mi(hχP0
)χE(P )

≤ 4
∑
P∈P

2K2(P )−1χE(P ).

The following lemma is a Carleson embedding theorem associated with the collection

of principal sets P, which is essentially [48, Lemma 2.2]. We provide a different proof.

Lemma 3.2. We have∑
P∈P

µ(P )2p(K2(P )−1) ≤ 2(p′)p∥hχP0∥
p
Lp(dµ).
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Proof of Lemma 3.2.∑
P∈P

µ(P )2p(K2(P )−1) ≤
∑
P∈P

∫
P

E(hχP0 |FK1(P ))
pdµ

=
∑
P∈P

∫
P

E(hχP0 |FK1(P ))
pχP dµ.

Combining it with P.3 of the construction of principal sets, we have∑
P∈P

µ(P )2p(K2(P )−1) ≤ 2
∑
P∈P

∫
P

E(hχP0 |FK1(P ))
pE(χE(P )|FK1(P ))dµ

≤ 2
∑
P∈P

∫
P

E(hχP0 |FK1(P ))
pχE(P )dµ

= 2
∑
P∈P

∫
E(P )

E(hχP0 |FK1(P ))
pdµ.

In the view of the definition of Doob’s maximal operator, we have∑
P∈P

µ(P )2p(K2(P )−1) ≤ 2
∑
P∈P

∫
E(P )

(M(hχP0))
pdµ ≤ 2

∫
Ω

(M(hχP0))
pdµ.

It follows from boundedness of Doob’s maximal operator that∑
P∈P

µ(P )2p(K2(P )−1) ≤ 2(p′)p∥hχP0∥
p
Lp(dµ). □

The following lemma can be found in [47, Theorem 4.1] or [8, Theorem 3.2].

Lemma 3.3. Let v, ω be weights, 1 < p < ∞ and σ = ω−1/(p−1). Then the following

statements are equivalent :

1. There exists a positive constant C1 such that

∥M(f)∥Lp(v) ≤ C1∥f∥Lp(ω), (3.2)

where f ∈ Lp(ω);

2. The couple of weights (v, ω) satisfies the condition S∗
p .

Moreover, we denote the smallest constant C1 in (3.2) by ∥M∥. Then ∥M∥ ∼ [v, ω]S∗
p
.

4. Proofs of main results.

We provide the proofs of our main results in this section. For simplicity we denote

operator Tα by T in the proofs of Theorem 1.1 and Theorem 1.6.

Before we give the proof of Theorem 1.1, we mention that our method is similar to

that of the proof of the main result in Tanaka and Terasawa [48]. Our new ingredient is

the definition of Fj := {Eω
j (g)

q′ω ≤ Eσ
j (f)

pσ}, which appears in (4.1). In general Fj is
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not a Fi-measurable set. This creates a difficulty in (4.4). To overcome the difficulty, we

assume that ω ∈ A1 and σ ∈ A1.

When we compare Theorem 1.1 to the local characterization of Lacey, Sawyer and

Uriarte-Tuero [30, Theorem 1.11], we do not know whether our assumptions ω ∈ A1

and σ ∈ A1 are superfluous on filtered measure spaces. We recall that the proof of [30,

Theorem 1.11] depends very much on the dyadic structure. It is clear that our testing

condition (1.4) and (1.5) are the generalization of the local characterization of Lacey,

Sawyer and Uriarte-Tuero [30, Theorem 1.11]. For the global characterization of [30,

Theorem 1.11], we still have no idea to generalize it on filtered measure spaces.

Proof of Theorem 1.1. (1) ⇒ (2) is trivial and we omit it. Note that we do

not use ω ∈ A1 and σ ∈ A1 in this part.

(2) ⇒ (1) Let i ∈ Z be arbitrarily taken and be fixed. By a standard limiting

argument, it suffices to prove that the inequality∑
j≥i

∫
Ω

αjEj(fσ)Ej(gω)dµ

≲ [ω, σ]α,q′,p′ [ω]A1∥f∥
pθ
Lp(σ) + [σ, ω]α,p,q[σ]A1∥g∥

q′θ

Lq′ (ω)
, θ :=

1

p
+

1

q′
,

holds (the rest follows from the homogeneity).

We set

Fj :=
{
Eω
j (g)

q′ω ≤ Eσ
j (f)

pσ
}

and Gj := Ω \ Fj . (4.1)

We shall prove that∑
j≥i

∫
Ω

χFjαjEj(fσ)Ej(gω)dµ ≲ [ω, σ]α,q′,p′ [ω]A1∥f∥
pθ
Lp(σ) (4.2)

and ∑
j≥i

∫
Ω

χGjαjEj(fσ)Ej(gω)dµ ≲ [σ, ω]α,p,q[σ]A1∥g∥
q′θ

Lq′ (ω)
. (4.3)

Since the proofs of (4.2) and (4.3) can be done in a completely symmetric way, we

only prove (4.2) in the following.

We estimate
∑

j≥i

∫
E
χFjαjEj(fσ)Ej(gω)dµ for E = P0 ∈ F0

i , where σ(P0) > 0

and, for some k ∈ Z, P0 := {2k−1 < Eσ
i (f) ≤ 2k}. For the above i, P0, σdµ and f , we

apply the construction of principal sets. Using the principal sets P, we can decompose

the left-hand side of (4.2) as follows:∑
j≥i

∫
E

χFjαjEj(fσ)Ej(gω)dµ =
∑
j≥i

∫
E

χFjαjEσ
j (f)Eω

j (g)Ej(σ)Ej(ω)dµ

=
∑
P∈P

∑
j≥K1(P )

∫
P∩{j<τP }

χFjαjEσ
j (f)Eω

j (g)Ej(σ)Ej(ω)dµ.



808(136)

808 W. Chen, C. X. Zhu, Y. H. Zuo and Y. Jiao

Because of ω ∈ A1, we have∑
j≥K1(P )

∫
P∩{j<τP }

χFjαjEσ
j (f)Eω

j (g)Ej(σ)Ej(ω)dµ

≤ 2K2(P )+1[ω]A1

∑
j≥K1(P )

∫
P∩{j<τP }

αjEj(σ)χFjEω
j (g)ωdµ (4.4)

≤ 2K2(P )+1[ω]A1

∑
j≥K1(P )

∫
P

αjEj(σ) sup
K1(P )≤j<τ(P )

(
χFjEω

j (g)
)
ωdµ

= 2K2(P )+1[ω]A1

∫
P

∑
j≥K1(P )

αjEj(σ) sup
K1(P )≤j<τ(P )

(
χFjEω

j (g)
)
ωdµ.

Combining it with Hölder’s inequality, we have∑
j≥K1(P )

∫
P∩{j<τP }

χFjαjEσ
j (f)Eω

j (g)Ej(σ)Ej(ω)dµ

≤ 2K2(P )+1[ω]A1

(∫
P

( ∑
j≥K1(P )

αjEj(σ)

)q
ωdµ

)1/q
(∫

P

(
sup

K1(P )≤j<τ(P )

(
χFjEω

j (g)
))q′

ωdµ

)1/q′
.

In view of the definition of Fj , we obtain∑
j≥K1(P )

∫
P∩{j<τP }

χFjαjEσ
j (f)Eω

j (g)Ej(σ)Ej(ω)dµ

≤ [ω, σ]α,q′,p′ [ω]A1

(
2p(K2(P )+1)σ(P )

)1/p(∫
P

(
sup

K1(P )≤j<τ(P )

(
Eσ
j (f)

))p

σdµ

)1/q′

≤ [ω, σ]α,q′,p′ [ω]A1

(
2p(K2(P )+1)σ(P )

)1/p(
2p(K2(P )+1)σ(P )

)1/q′
.

It follows from θ = 1/p+ 1/q′ ≥ 1 that∑
j≥i

∫
E

χFjαjEj(fσ)Ej(gω)dµ ≤ [ω, σ]α,q′,p′ [ω]A1

∑
P∈P

(
2p(K2(P )+1)σ(P )

)θ

≤ [ω, σ]α,q′,p′ [ω]A1

(∑
P∈P

2p(K2(P )+1)σ(P )

)θ

≲ [ω, σ]α,q′,p′ [ω]A1

(∑
P∈P

2p(K2(P )−1)σ(P )

)θ

.

Using Lemma 3.2, we have
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∑
j≥i

∫
E

χFjαjEj(fσ)Ej(gω)dµ ≲ [ω, σ]α,q′,p′ [ω]A1∥fχP0∥
pθ
Lp(σ). (4.5)

Note that∑
j≥i

∫
Ω

χFjαjEj(fσ)Ej(gω)dµ =
∑
j≥i

∑
k∈Z

∫
{2k−1<Eσ

i (f)≤2k}
χFjαjEj(fσ)Ej(gω)dµ

=
∑
k∈Z

∑
j≥i

∫
{2k−1<Eσ

i (f)≤2k}
χFjαjEj(fσ)Ej(gω)dµ.

Combining this with (4.5), we have∑
j≥i

∫
Ω

χFjαjEj(fσ)Ej(gω)dµ

≲ [ω, σ]α,q′,p′ [ω]A1

∑
k∈Z

(∫
{2k−1<Eσ

i (f)≤2k}
fpσdµ

)θ

≤ [ω, σ]α,q′,p′ [ω]A1

(∑
k∈Z

∫
{2k−1<Eσ

i (f)≤2k}
fpσdµ

)θ

= [ω, σ]α,q′,p′ [ω]A1∥f∥
pθ
Lp(σ).

Similarly, we obtain∑
j≥i

∫
Ω

χGjαjEj(fσ)Ej(gω)dµ ≲ [σ, ω]α,p,q[σ]A1∥g∥
q′θ

Lq′ (ω)
.

This completes the proof of Theorem 1.1. □

Proof of Corollary 1.4. We change (4.1) to

Fj := {Eω
j (g)

q′ ≤ Eω
j (f)

p} and Gj := Ω \ Fj . (4.6)

The proof of Corollary 1.4 is similar to that of Theorem 1.1, and we omit the details. □

Now we intend to prove two-weight weak type inequality.

Proof of Theorem 1.6. (1) ⇒ (2) Note that ω ∈ L1
F0 . It follows from duality

for Lorentz spaces that

∥T (fω)∥Lp′ (σ) ≤ ∥T∥∥f∥Lq′,1(ω).

Fix E ∈ F0
i , i ∈ Z. For f = χE , we have(∫

E

(∑
j≥i

αjEj(ω)

)p′

σdµ

)1/p′

≤ ∥T (fω)∥Lp′ (σ) ≤ ∥T∥∥f∥Lq′,1(ω) = ∥T∥ω(E)1/q
′
.

Thus [σ, ω]α,p,q ≤ ∥T∥.
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(2) ⇒ (1) Fix f ∈ Lp(σ) and λ > 0. We bound the set {T (fσ) > 2λ}. For n ∈ Z,
we denote Tn(fσ) =

∑j=n
−∞ αjEj(fσ) and Tn(fσ) =

∑∞
j=n αjEj(fσ). Let

τ = inf{n : Tn(fσ) > λ}

and Qλ = {{τ = n} : n ∈ Z}. For n ∈ Z, we have

λχ{τ=n} ≥ Tn−1(fσ)χ{τ=n}.

Then,

λχ{τ=n}∩{T (fσ)>2λ} ≤ Tn(fσ)χ{τ=n}∩{T (fσ)>2λ}.

For η ∈ (0, 1) to be determined later, we denote

E =
{
{τ = n} : ω({τ = n} ∩ {T (fσ) > 2λ}) < ηω({τ = n})

}
and F = Qλ\E . It follows that

(2λ)qω({T (fσ) > 2λ})

≤ η(2λ)q
∑
E

ω({τ = n}) + 2qλqη−q
∑
F

ω({τ = n})

(
ω({τ = n} ∩ {T (fσ) > 2λ})

ω({τ = n})

)q

≤ η(2λ)q
∑
E

ω({τ = n}) + 2qη−q
∑
F

ω({τ = n})

(∫
{τ=n} T

n(fσ)ωdµ

ω({τ = n})

)q

.

Note that

∑
n∈Z

ω({τ = n})

(∫
{τ=n} T

n(fσ)ωdµ

ω({τ = n})

)q

=
∑
n∈Z

(∫
{τ=n}

Tn(fσ)ωdµ

)q

ω({τ = n})1−q

=
∑
n∈Z

(∫
{τ=n}

Tn(ωχ{τ=n})fσdµ

)q

ω({τ = n})1−q.

Using Hölder’s inequality, we obtain

∑
n∈Z

ω({τ = n})

(∫
{τ=n} T

n(fσ)ωdµ

ω({τ = n})

)q

≤
∑
n∈Z

(∫
{τ=n}

Tn(ωχ{τ=n})
p′
σdµ

)q/p′(∫
{τ=n}

|f |pσdµ

)q/p

ω({τ = n})1−q

=
∑
n∈Z

((∫
{τ=n}

Tn(ωχ{τ=n})
p′
σdµ

)1/p′

(ω{τ = n})−1/q′

)q(∫
{τ=n}

|f |pσdµ

)q/p

.
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In view of the condition (1.11), we have

∑
n∈Z

ω({τ = n})

(∫
{τ=n} T

n(fσ)ωdµ

ω({τ = n})

)q

≤ [σ, ω]qα,p,q

(∑
n∈Z

∫
{τ=n}

|f |pσdµ

)q/p

= [σ, ω]qα,p,q

(∫
Ω

|f |pσdµ

)q/p

.

Thus

∥Tα(fσ)∥Lq,∞(ω) ≤ C(η)[σ, ω]α,p,q∥f∥Lp(σ),

where C(η) = 2/((1− 2qη)1/qη). The function C(η) attains its minimum for η = (q/(1+

q))(1/2q) and the minimum is equal to 2q+1((1 + q)/q)(1 + q)1/q. It follows that ∥T∥ ≲
[σ, ω]α,p,q. □

Proof of Theorem 1.7. Let i ∈ Z be arbitrarily chosen and fixed. By

Lemma 3.3, we estimate
∫
E

∗Mi(σχE)
pvdµ for any E ∈ F0

i .

Since ∫
E

∗Mi(σ)
pvdµ =

∫
E

∗Mi(σχE)
pvdµ,

it suffices to estimate
∫
E

∗Mi(σχE)
pvdµ for E = P0 ∈ F0

i , where µ(P0) > 0 and, for

some k ∈ Z, P0 := {2k−1 < E(σ|Fi) ≤ 2k}.
For the above i, P0 and σ, we apply the construction of principal sets. We have∫

P0

∗Mi(σ)
pvdµ ≤

∑
P∈P

∫
E(P )

∗Mi(σ)
pvdµ

≲
∑
P∈P

∫
E(P )

2p(K2(P )−1)vdµ

≤
∑
P∈P

∫
P

2p(K2(P )−1)vdµ.

Proof of (1). It follows from the definition of Bp that∫
P

2p(K2(P )−1)vdµ =

∫
P

2p(K2(P )−1)E(v|FK1(P ))dµ

≤
∫
P

E(σ|FK1(P ))
pE(v|FK1(P ))dµ

≤ [v, ω]Bp

∫
P

exp(E(log σ|FK1(P )))dµ.

Note that ∫
P

exp(E(log σ|FK1(P )))dµ =

∫
P

exp(E(log(σχP0)|FK1(P )))dµ
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=

∫
P

exp(E(log(σχP0)|FK1(P )))χP dµ.

In view of P.3 of the construction of principal sets, it follows that∫
P

2p(K2(P )−1)vdµ ≤ 2[v, ω]Bp

∫
P

exp(E(log(σχP0)|FK1(P )))E(χE(P )|FK1(P ))dµ

= 2[v, ω]Bp

∫
P

exp(E(log(σχP0
)|FK1(P )))χE(P )dµ

= 2[v, ω]Bp

∫
E(P )

exp(E(log(σχP0)|FK1(P )))dµ.

Using Jensen’s inequality for conditional expectation, for any q > 1, we have

exp
(
E(log(σχP0)|FK1(P ))

)
≤ E

(
(σχP0)

1/q|FK1(P )

)q ≤ M((σχP0)
1/q)q.

Then ∫
P0

∗Mi(σ)
pvdµ ≲ [v, ω]Bp

∑
P∈P

∫
E(P )

M((σχP0)
1/q)qdµ

≤ [v, ω]Bp

∫
P0

M((σχP0)
1/q)qdµ.

Combining it with the boundedness of Doob’s maximal operator, we deduce that∫
P0

∗Mi(σ)
pvdµ ≲ [v, ω]Bp(q

′)q
∫
P0

σdµ.

Letting q → ∞, we obtain (q′)q → e. Thus∫
P0

∗Mi(σ)
pvdµ ≲ [v, ω]Bpσ(P0).

Proof of (2). It follows from the definition of Ap that∫
P

2p(K2(P )−1)vdµ =

∫
P

2p(K2(P )−1)E(v|FK1(P ))dµ

≤
∫
P

E(σ|FK1(P ))
pE(v|FK1(P ))dµ

≤ [v, ω]Ap

∫
P

E(σ|FK1(P ))dµ.

Note that
∫
P
E(σ|FK1(P ))dµ =

∫
P
E(σχP0 |FK1(P ))χP dµ. In view of P.3 of the construc-

tion of principal sets, it follows that∫
P

E(σχP0 |FK1(P ))χP dµ ≤ 2

∫
P

E(σχP0 |FK1(P ))E(χE(P )|FK1(P ))dµ

= 2

∫
E(P )

E(σχP0 |FK1(P ))dµ
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≤ 2

∫
E(P )

∗MK1(P0)(σχP0)dµ.

Then ∫
P0

∗Mi(σ)
pvdµ ≲ [v, ω]Ap

∑
P∈P

∫
E(P )

∗MK1(P0)(σχP0)dµ

≤ [v, ω]Ap

∫
P0

∗MK1(P0)(σχP0)dµ.

Because of σ ∈ A∗
∞, we have∫

P0

∗Mi(σ)
pvdµ ≲ [v, ω]Ap [σ]A∗

∞
σ(P0).

Proof of (3). For a ∈ Z, define

Qa =
{
P ∈ P : 2a−1 < esssup

P
(E(ω|FK1(P ))E(σ|FK1(P ))

p−1) ≤ 2a
}
.

It follows from Hölder’s inequality that 1 = Ej(ω
1/pω−1/p)p ≤ Ej(ω)Ej(σ)

p−1 ≤ [ω]Ap ,

for any j ∈ Z. Set K = [log2[ω]Ap ] + 1, we have

P =
K∪

a=0

Qa.

Then ∑
P∈P

∫
P

2p(K2(P )−1)ωdµ =
∑
P∈P

∫
P

2p(K2(P )−1)E(ω|FK1(P ))dµ

≤
∑
P∈P

∫
P

E(σ|FK1(P ))
pE(ω|FK1(P ))dµ.

Note that(
E(σ|FK1(P ))

pE(ω|FK1(P ))
)
χP

≤ esssup
P

(E(σ|FK1(P ))
p−1E(ω|FK1(P ))χP ) esssup

P
E(σ|FK1(P )χP ).

It follows that

∑
P∈P

∫
P

2p(K2(P )−1)ωdµ ≤
K∑

a=0

2a
∑

P∈Qa

∫
P

esssup
P

E(σ|FK1(P ))dµ

≤ 2

K∑
a=0

2a
∑

P∈Qa

∫
P

E(σ|FK1(P ))dµ

= 2

K∑
a=0

2a
∑

P∈Qa

∫
P

σdµ.
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Let Qa
max be the collection of maximal sets1 in Qa, we obtain∑

P∈Qa

∫
P

σdµ =
∑

Q∈Qa
max

∑
P∈Qa,P⊆Q

∫
P

σdµ =
∑

Q∈Qa
max

∑
P∈Qa,P⊆Q

∫
P

σχP dµ.

In view of P.3 of the construction of principal sets, it follows that∑
P∈Qa

∫
P

σdµ ≤ 2
∑

Q∈Qa
max

∑
P∈Qa,P⊆Q

∫
P

σE(χE(P )|FK1(P ))dµ

= 2
∑

Q∈Qa
max

∑
P∈Qa,P⊆Q

∫
P

E(σ|FK1(P ))χE(P )dµ.

Because of
∫
P
E(σ|FK1(P ))χE(P )dµ =

∫
E(P )

E(σχQ|FK1(P ))dµ, we have

∑
P∈Qa

∫
P

σdµ ≤ 2
∑

Q∈Qa
max

∑
P∈Qa,P⊆Q

∫
E(P )

∗MK1(Q)(σχQ)dµ

≤ 2
∑

Q∈Qa
max

∫
Q

∗MK1(Q)(σχQ)dµ.

Then∫
P0

∗Mi(σ)
pωdµ ≲

K∑
a=0

2a
∑

Q∈Qa
max

∫
Q

∗MK1(Q)(σχQ)dµ

≲
K∑

a=0

∑
Q∈Qa

max

esssup
Q

(
E(ω|FK1(Q))E(σ|FK1(Q))

p−1
)∫

Q

∗MK1(Q)(σχQ)dµ.

By (2.8) the definition of (Ap′)1/p
′
(A∗

∞)1/p, we have∫
P0

∗Mi(σ)
pωdµ ≲ [σ]p

(Ap′ )
1/p′ (A∗

∞)1/p

K∑
a=0

∑
Q∈Qa

max

∫
Q

σdµ

≤ [σ]p
(Ap′ )

1/p′ (A∗
∞)1/p

K∑
a=0

∫
P0

σdµ

= [σ]p
(Ap′ )

1/p′ (A∗
∞)1/p

(K + 1)

∫
P0

σdµ.

Thus ∫
P0

∗Mi(σ)
pωdµ ≲ [σ]p

(Ap′ )
1/p′ (A∗

∞)1/p
(3 + log2[ω]Ap)

∫
P0

σdµ

1Let Q ⊂ P. In view of Zorn’s Lemma, for Q ordered by containment, we have that Q contains at
least one maximal element. Then, we denote the collection of maximal elements in Q by Qmax.
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≲ [σ]p
(Ap′ )

1/p′ (A∗
∞)1/p

(1 + log2[ω]Ap)

∫
P0

σdµ.

The proof of Theorem 1.7 is complete. □
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[21] T. Hytönen and C. Pérez, Sharp weighted bounds involving A∞, Anal. PDE, 6 (2013), 777–818.

[22] M. Izumisawa and N. Kazamaki, Weighted norm inequalities for martingales, Tôhoku Math. J.
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