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Abstract. Let q be a positive integer (≥ 2), χ be a Dirichlet character
modulo q, L(s, χ) be the attached Dirichlet L-function, and let L′(s, χ) denote
its derivative with respect to the complex variable s. Let t0 be any fixed real

number. The main purpose of this paper is to give an asymptotic formula
for the 2k-th power mean value of |(L′/L)(1 + it0, χ)| when χ runs over all
Dirichlet characters modulo q (except the principal character when t0 = 0).

1. Introduction and statement of the results.

Let q be a positive integer, and s = σ+it be a complex variable. Let χ be a Dirichlet

character modulo q, L(s, χ) be the attached Dirichlet L-function, and let L′(s, χ) denote

its derivative with respect to s. The values at 1 of Dirichlet L-functions have received

considerable attention, due to their algebraical or geometrical interpretation. Assuming

the generalized Riemann hypothesis (GRH), Littlewood [9] proved that

|L(1, χ)| ≤ (2 + o(1))eγ log log q,

where γ is Euler’s constant. For infinitely many real characters χ, he also proved that

|L(1, χ)| ≥ (1 + o(1))eγ log log q.

In 1948, Chowla [2] showed that this latter holds unconditionally. The asymptotic prop-

erties for the 2k-th power mean value of L-functions at s = 1 have been studied by many

authors: when k = 1 and q = p is a prime number by Walum [16], Slavutskĭı [13],

[14] and Zhang [17], [18]. Walum’s proof is based on the Fourier series to evaluate∑
|L(1, χ)|2 where χ ranges the odd characters modulo p. The sharper asymptotic ex-

pansion has been obtained by Katsurada and the first author [8]. For general k, Zhang

and Wang [20] presented an exact calculating formula for the 2k-th power mean value

of L-functions with k ≥ 3.

Less is known about L′/L evaluated also at the point s = 1, although these values

are known to be fundamental in studying the distribution of primes since Dirichlet in
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1837. In this direction of research, using the estimates of the character sums and the

Bombieri–Vinogradov theorem, Zhang [19] gave an asymptotic formula for

∑
q≤A

q

φ(q)

∑
χ mod q
χ ̸=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣4

for the real number A > 3, where φ is the Euler totient function and χ0 denotes the

principal character. Ihara and the first author [6] (using the same argument as in [5])

gave a result related to the value-distributions of {(L′/L)(s, χ)}χ and of {(ζ ′/ζ)(s+iτ)}τ ,
where χ runs over Dirichlet characters with prime conductors and τ runs over R.

Ihara, Murty and Shimura [7] studied the maximal absolute value of the logarithmic

derivatives (L′/L)(1, χ). Assuming the GRH, they showed that

max
χ mod p
χ ̸=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣ ≤ (2 + o(1)) log log p,

where p is a prime. Unconditionally, they proved, for any ε > 0, that

1

|Xp|
∑

χ mod p
χ ̸=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣2k =
∑
m≥1

(∑
m=m1···mk

Λ(m1) · · ·Λ(mk)
)2

m2
+O

(
pε−1

)
, (1)

where Λ(.) denotes the von Mangoldt function, and Xp is the set of all non-principal

Dirichlet characters mod p, so |Xp| = p − 2. The proof of this result is based on the

study of distribution of zeros of L-functions.

In this paper, we give an asymptotic formula for the 2k-th power mean value of

|(L′/L)(1+ it0, χ)| for any fixed real number t0, when χ runs over all Dirichlet characters

modulo q. Denote by ε an arbitrarily small positive number, not necessarily the same at

each occurrence. Put Q = (log q)2/ log log q. Our result is precisely the following:

Theorem 1. Let χ be a Dirichlet character modulo q ≥ 2. For any fixed real

number t0 ̸= 0 and an arbitrary positive integer k, we have

1

φ(q)

∑
χ mod q

∣∣∣∣L′(1 + it0, χ)

L(1 + it0, χ)

∣∣∣∣2k =
∑
m≥1

(m,q)=1

(∑
m=m1···mk

Λ(m1) · · ·Λ(mk)
)2

m2

+O

(
1

q
(log q)4k+4 + (log(q(q + |t0|+ 2)))2k exp

(
− B1(log q)

2

log(q + |t0|+ 2)

)
+

1

φ(q)
Zk,t0(q)

)
,

(2)

where

Zk,t0(q) =


O
(
(log q)2k−2e−B2|t0|Q2k

)
(|t0| > 1),

O

((
(log q)2k−2 +

1

|t0|k−1

)
Qk

|t0|

(
Qk +

1

|t0|k

))
(0 < |t0| ≤ 1)

(3)
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with certain positive constants B1 and B2.

As we will see in the proof of the theorem, the exponential factor in the above error

term is≤ q−1 when q ≥ |t0|+2 (see Subsection 5.3). Therefore, noting φ(q) ≫ q/ log log q,

we see that the error term tends to 0 as q → ∞ while t0 is fixed.

Theorem 2. Let χ be a Dirichlet character modulo q ≥ 2. For an arbitrary positive

integer k, we have

1

φ(q)

∑
χ mod q
χ̸=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣2k =
∑
m≥1

(m,q)=1

(∑
m=m1···mk

Λ(m1) · · ·Λ(mk)
)2

m2
(4)

+O

(
(log q)4k+4

q
+

1

φ(q)
Zk,0(q)

)
,

with

Zk,0(q) = O
(
(log q)4kQ2k + δ1 exp

(
−B3(1− β1)(log q)

2
)
(1− β1)

−2k
)
,

where B3 is a certain positive constant, β1 denotes the Siegel zero (defined just after the

statement of Proposition 2), and δ1 = 1 if β1 exists, and = 0 otherwise.

It is worth mentioning that the condition (m, q) = 1 in the main term in Equa-

tions (2) and (4) is omitted in the case when q is a prime number (see Remark 1 at the

end of Section 5), and hence consistent with (1).

Siegel’s theorem (see [10, Corollary 11.15]) implies that 1 − β1 ≫ q−ε. Using this

estimate we have

δ1 exp
(
−B3(1− β1)(log q)

2
)
(1− β1)

−2k ≤ δ1(1− β1)
−2k ≪ q2kε,

which gives the same estimate as Equation (1). Theorem 2 provides an refinement (and

a generalization to the case of general modulus q) on Equation (1). In fact, when q = p

is a prime, it is shown in [7] that the factor pε in the error term in Equation (1) can be

replaced by a certain log-power under the assumption of the GRH. Our result gives a

same type of improvement under the much weaker assumption that the Siegel zero does

not exist. Another merit of our present method is that we can show the mean value

formula not only at the point s = 1, but at any point on the line ℜs = 1 (Theorem 1).

As a consequence of our main results, we show that the values |(L′/L)(1 + it0, χ)|2
behave according to a distribution law. It can be formulated as follows.

Theorem 3. There exists a unique probability measure µ = µ(t0) such that for

any positive integer k, we have

1

p− 1

′∑
χ mod p

∣∣∣∣L′(1 + it0, χ)

L(1 + it0, χ)

∣∣∣∣2k −−−−−→
p→+∞

+∞∫
0

vk dµ(v),
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where
∑′

χ mod p denotes the summation over all characters χ modulo p with p a prime

number (expect the principal character in the case t0 = 0).

This is an existence (and unicity) result, but getting an actual description of µ is still

a tantalizing problem. It is likely to have a geometrical or arithmetical interpretation,

on which our approach gives, so far, no information. If µ is absolutely continuous, then

there exists a Radon–Nikodým density function for µ, which may be regarded as a kind

of “M -function” in the sense of [4], [6].

A plot of the distribution function

Dq(v, t0) =
1

φ(q)
#′

{
χmod q ;

∣∣∣∣L′(1 + it0, χ)

L(1 + it0, χ)

∣∣∣∣2 ≤ v

}
, (5)

for q = 59, 101 and 257 and t0 = 0, is given in Figure 1. The symbol #′ denotes the

number of Dirichlet characters modulo q satisfying the condition |(L′/L)(1+ it0, χ)|2 ≤ v

except the principal character in the case t0 = 0.

0.2

0.4

0.6

0.8

1.0

Dq(v, 0)

0.5 1.0 1.5 2.0
v

q = 257

q = 101

q = 59

Figure 1. The distribution function Dq(v, 0).

In order to prove our main results, we first prepare several necessary tools in Sec-

tions 2 and 3.

2. Some well-known results.

Proposition 1. Let m, n, q be positive integers, with (n, q) = 1. Then we have
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∑
χ mod q

χ(m)χ(n) =

{
φ(q) when m ≡ n(mod q)

0 otherwise,

where the sum is over all characters χ(mod q).

Proof. See [10, Theorem 4.8]. □

Proposition 2. Let q ≥ 1. There is an effectively computable absolute positive

constant c0 such that ∏
χ mod q

L(s, χ)

has at most one zero β1 in the region

σ ≥ 1− c0
log(q(|t|+ 2))

.

Such a zero, if it exists, is real, simple and corresponds to a non-principal real

character χ1.

Proof. A proof of this theorem can be found in [10, Theorem 11.3]. □

From now on, if β1 lies in the following (even smaller) region

σ ≥ 1− c0
2 log(q(|t|+ 2))

, (6)

we call β1 the exceptional zero (the Siegel zero) and χ1 the associated exceptional char-

acter.

Proposition 3. Let q ≥ 1. There is an effectively computable positive constant

c (< c0/2), which is independent of q, for which in the region

σ ≥ 1− c

log q(|t|+ 2)
≥ 3

4

the following estimates hold :

L′(s, χ)

L(s, χ)
= O(log q(|t|+ 2)), χ ̸= χ0, χ1, (7)

L′(s, χ0)

L(s, χ0)
= − 1

s− 1
+O(log q(|t|+ 2)), (8)

L′(s, χ1)

L(s, χ1)
=

1

s− β1
+O(log q(|t|+ 2)). (9)

Proof. A proof of this theorem can be found in [11, Kapitel IV, Satz 7.1]. □
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3. Auxiliary lemmas.

Lemma 1. For any integer m and k ≥ 1, we have∑
m1m2···mk=m

Λ(m1)Λ(m2) · · ·Λ(mk) ≤ (logm)k. (10)

Proof. We prove this lemma by induction on k. For k = 1, it is clear. In order

to show that Equation (10) is valid for k = 2, we write∑
m1m2=m

Λ(m1)Λ(m2) ≤ logm
∑
m2|m

Λ(m2) ≤ (logm)2.

Now, we assume that Equation (10) is valid for any fixed and non-negative integer ℓ such

that 1 ≤ ℓ ≤ k − 1. Then we have to prove that it is also valid for k. By induction

hypothesis, we have∑
m1m2···mk=m

Λ(m1)Λ(m2) · · ·Λ(mk) =
∑

m1n=m

Λ(m1)
∑

m2m3···mk=n

Λ(m2) · · ·Λ(mk)

≤
∑

m1n=m

Λ(m1) log
k−1 n ≤ (logm)k.

We conclude from the above that Equation (10) is valid for k. Then it is valid for all

k ≥ 1. The lemma is therefore proved. □

Lemma 2. For any real number t0 ̸= 0, the Taylor expansion of (ζ ′/ζ)(s) at s0 =

1 + 2it0 is given by

ζ
′
(s)

ζ(s)
=

∞∑
n=0

Cn,s0(s− s0)
n, (11)

where

Cn,s0 = O

(
1

|t0|n+1
+ (log(|t0|+ 2))n+1

)
. (12)

Proof. It is well known that ζ(1 + it0) ̸= 0 for every real t0 ̸= 0, see [1, Theo-

rem 13.6]. Then, the Taylor expansion of (ζ ′/ζ)(s) at s0 is given by

ζ ′(s)

ζ(s)
=
∑
n≥0

Cn,s0(s− s0)
n,

where the coefficients Cn,s0 are defined by the following residue:

Cn,s0 = Res

(
ζ ′(s)

ζ(s)

1

(s− s0)n+1
; s0

)
.

In order to calculate the residue above, we consider the contour C which is a positively

oriented circle of radius R and center s0. Proposition 2 for q = 1 gives the classical

zero-free region for the Riemann zeta-function
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σ ≥ 1− c0
log(|t|+ 2)

.

We choose R = c0/(2 log(|t0|+ 2)). Write s ∈ C as s = s0 +Reiθ, with 0 ≤ θ ≤ 2π. Here

we notice that, when |t0| is very small, the point s = 1 may be inside the circle C. If not,
we have

Cn,s0 =
1

2πi

∫
C

ζ ′(s)

ζ(s)

ds

(s− s0)n+1
.

Using Equation (8), the integral on the right-hand side is

=
1

2πi

∫
C

(
− 1

s− 1
+O(log(|t|+ 2))

)
ds

(s− s0)n+1

= O
(
(log(|t0|+ 2))n+1

)
.

On the other hand, if s = 1 is inside C, we have

Cn,s0 +Res

(
ζ ′(s)

ζ(s)

1

(s− s0)n+1
; 1

)
=

1

2πi

∫
C

ζ ′(s)

ζ(s)

ds

(s− s0)n+1
.

It is easy to check that

Res

(
ζ ′(s)

ζ(s)

1

(s− s0)n+1
; 1

)
= lim

s→1

[
(s− 1)

ζ ′(s)

ζ(s)

1

(s− s0)n+1

]
= O(|t0|−n−1),

while the integral term is O((log(|t0| + 2))n+1) (because |s − 1| = |s0 + Reiθ − 1| =

|2it0+Reiθ| ≍ R ≍ 1 when |t0| is small). Lastly, when s = 1 is on the circle C, we modify

C slightly to obtain the same result. This completes the proof. □

It is known that the Laurent expansion of the Riemann zeta-function at s = 1 is

given by

ζ(s) =
1

s− 1
+
∑
n≥0

γn(s− 1)n, (13)

where γn are called the Stieltjes constants.

Lemma 3. We have

(s− 1)
ζ ′(s)

ζ(s)
=
∑
n≥0

En(s− 1)n, (14)

where E0 = −1 and

En = (n− 1)γn−1 −
n∑

k=1

γk−1En−k (n ≥ 1). (15)
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Proof. Differentiating the both sides of (13), we have

ζ ′(s) =
−1

(s− 1)2
+
∑
n≥0

nγn(s− 1)n−1.

By making a change of variable and using properties of power series, we find that

(s− 1)
ζ ′(s)

ζ(s)
=

−1 +
∑

n≥0 nγn(s− 1)n+1

1 +
∑

n≥0 γn(s− 1)n+1

=

∑
n≥0(n− 1)γn−1(s− 1)n∑

n≥0 γn−1(s− 1)n

=
∑
n≥0

En(s− 1)n,

where γ−1 = 1, E0 = −1 and

En = (n− 1)γn−1 −
n∑

k=1

γk−1En−k (n ≥ 1).

This implies the desired result. □

Lemma 4. Let t0 be a fixed real number, p be a prime number, and let a ∈ C with

ℜa = 1. The Taylor expansion of the function
∑

p|q(log p)/(p
s+a − 1) at the origin is

∑
p|q

log p

ps+a − 1
=

∞∑
n=0

Fn,as
n, Fn,a = On(Q). (16)

Proof. The Taylor expansion of (log p)/(ps+a − 1) at the origin is given by

log p

ps+a − 1
=
∑
n≥0

Fn,a(p)s
n,

where

Fn,a(p) =
1

2πi

∫
C

log p

(ps+a − 1)

ds

sn+1
.

Here, the contour C is a positively oriented circle of radius R = 1/2 and centered at the

origin. Taking s = Reiθ, where 0 ≤ θ ≤ 2π, it is easily seen (because of the condition

ℜa = 1) that

Fn,a(p) ≪
2n log p

p1/2
.

Note that the implied constant here is independent of a. Therefore, we have∑
p|q

Fn,a(p) ≪n

∑
p|q

log p

p1/2
≪ log q

∑
p|q

1.
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Notice that the latter sum is ω(q), i.e., the number of distinct prime divisors of q. Using

the fact ω(q) ≪ log q/ log log q (see [10, Theorem 2.10]), we get

∑
p|q

Fn,a(p) = On

(
(log q)2

log log q

)
.

This completes the proof. □

Lemma 5. Let β1 be the Siegel zero corresponding to χ1. Then, we have

L′(s+ β1, χ1)

L(s+ β1, χ1)
=

1

s
+
∑
n≥0

Pns
n, Pn = O

(
(log q)n+1

)
.

Proof. The Laurent expansion of (L′/L)(s, χ1) at the point β1 is given by

L′(s, χ1)

L(s, χ1)
=

1

s− β1
+
∑
n≥0

Pn(s− β1)
n,

where the coefficients Pn are defined by

Pn =
1

2πi

∫
C

L′(s, χ1)

L(s, χ1)

ds

(s− β1)n+1
.

Here the contour C is a positively oriented circle of radius R = c2/ log(2q) and centered

at β1, where c2 < c0/2 is sufficiently small. We see that the function (L′/L)(s, χ1) has at

most one pole at s = β1 that lies inside the circle. Let s = β1 +Reiθ where 0 ≤ θ ≤ 2π.

Using Equation (9), we get

Pn =
1

2π

∫ 2π

0

(
1

Reiθ
+O(log 2q)

)
dθ

(Reiθ)n
= O

(
(log q)n+1

)
.

This completes the proof. □

Lemma 6. Let t0 be a non-zero real number and let β1 be the Siegel zero in the

region given by Equation (6) corresponding to a non-principal real character χ1. Then,

the Taylor expansion of the function (L′/L)(s+ it0, χ1) at the point s0 = β1+ it0 is given

by

L′(s, χ1)

L(s, χ1)
=
∑
n≥0

Qn(s− s0)
n,

where

Qn = O

(
(log q(|t0|+ 2))n+1 +

1

|t0|n+1

)
.

Proof. The Taylor expansion of (L′/L)(s, χ1) at the point s0 = β1 + it0 is given

by
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L′(s, χ1)

L(s, χ1)
=
∑
n≥0

Qn(s− s0)
n,

where the coefficients Qn are defined by

Qn = Res

(
L′(s, χ1)

L(s, χ1)

1

(s− s0)n+1
; s0

)
.

In order to calculate the residue above, we consider a positively oriented circle C of radius

R = c3/ log(q(|t0| + 2)) and centered at s0, where c3 ≤ c0/2 is sufficiently small. In the

case when |t0| is very small, we see that the inside of the contour C can contain at most

one pole of (L′/L)(s, χ1) at β1. Let s = s0 +Reiθ, where 0 ≤ θ ≤ 2π, we find that

Qn +Res

(
L′(s, χ1)

L(s, χ1)

1

(s− s0)n+1
;β1

)
=

1

2πi

∫
C

L′(s, χ1)

L(s, χ1)

ds

(s− s0)n+1
.

Using Equation (9), we get

Res

(
L′(s, χ1)

L(s, χ1)

1

(s− s0)n+1
;β1

)
= lim

s→β1

[
(s− β1)

L′(s, χ1)

L(s, χ1)

1

(s− s0)n+1

]
= O(|t0|−n−1)

and

1

2πi

∫
C

L′(s, χ1)

L(s, χ1)

ds

(s− s0)n+1
= O

(
(log q(|t0|+ 2))n+1

)
.

When s = β1 is not inside the circle, the residue term does not appear. This completes

the proof. □

4. An asymptotic formula.

To aid in formulating our next result, it is convenient to employ the notation m =

m1m2 · · ·mk, n = n1n2 · · ·nk, and R is a set of the pairs (m,n) with the conditions

m,n ≥ 1, (q,mn) = 1 and m ≡ n (mod q). When we have extra condition such as

m = n, m ̸= n or m < n, we write Rn=m, Rn ̸=m or Rm<n, respectively.

Proposition 4. Let mi, ni and k be positive integers for i ∈ {1, 2, . . . , k}. For

any real t0 and X > 1, we have

∑
R

∑
m=m1···mk

∏k
i=1 Λ(mi)

∑
n=n1···nk

∏k
i=1 Λ(ni)

m1+it0n1−it0
e−mn/X

=
∑
m≥1

(m,q)=1

(∑
m=m1···mk

Λ(m1) · · ·Λ(mk)
)2

m2
+Ok

(
(logX)2k+2

q
+

(logX)2k√
X

)
. (17)

Proof. Without loss of generality we can assume t0 ≥ 0. In order to prove our

proposition, we denote the left-hand side of Equation (17) by Fq(X). We split the set R
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An asymptotic formula for the 2k-th power mean value of |(L′/L)(1 + it0, χ)| 791

defined by the condition m ≡ n(mod q) and (q,mn) = 1 into two subsets.

• The first case is when (q,mn) = 1 and m ̸= n. We define

Aq(X) :=
∑

Rm̸=n

 ∑
m=

∏k
i=1 mi

Λ(m1) · · ·Λ(mk)
∑

n=
∏k

i=1 ni

Λ(n1) · · ·Λ(nk)

 e−mn/X

m1+it0n1−it0
.

Applying Lemma 1 to the above, we find that

Aq(X) ≪
∑

Rm<n

e−mn/X

mn
(logm)k(log n)k

≪
∑
m≥1

∑
ℓ≥1

n=m+ℓq

e−mn/X

mn
(logm)k(log n)k

=
∑
m≥1

∑
ℓ≥1

e−m(m+ℓq)/X

m(m+ ℓq)
(logm)k(log(m+ ℓq))k

=
∑
m≥1

e−m2/X(logm)k

m

∑
ℓ≥1

e−(mℓq)/X

(m+ ℓq)
(log(m+ ℓq))k.

We first estimate the inner sum above as follows:∑
ℓ≥1

e−(mℓq)/X

(m+ ℓq)
(log(m+ ℓq))k ≪

∫ ∞

1

e−(mtq)/X

(m+ tq)
(log(m+ tq))k dt

≪

(∫ X/mq

1

+

∫ ∞

X/mq

)
e−(mtq)/X

(m+ tq)
(log(m+ tq))k dt

:= I1 + I2,

say. We notice that I1 does not exist if m > X/q. Otherwise, it is estimated by

I1 ≤
∫ X/mq

1

(log(m+ tq))k

(m+ tq)
dt,

and putting m+ tq = u, we have

I1 ≤ 1

q

∫ m+X/m

m+q

(log u)k

u
du≪ 1

q

(
log

(
m+

X

m

))k+1

. (18)

After making the change of variable mtq/X = v, I2 becomes

I2 =
X

mq

∫ ∞

1

e−v

(m+Xv/m)

(
log

(
m+

Xv

m

))k

dv

≤ 1

q

∫ ∞

1

e−v

v

(
log

(
m+

Xv

m

))k

dv
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=
1

q

(∫ m2/X

1

+

∫ ∞

m2/X

)
e−v

v

(
log

(
m+

Xv

m

))k

dv

≤ (log 2m)k

q

∫ m2/X

1

e−v

v
dv +

1

q

∫ ∞

m2/X

e−v

v

(
log

2Xv

m

)k

dv,

which yields

I2 ≪ 1

q

(
(logm)k + (logX)k

)
. (19)

From Equations (18) and (19), we get

∑
ℓ≥1

e−(mℓq)/X

(m+ ℓq)
(log(m+ ℓq))k ≪ 1

q

(
(logm)k + (logX)k +

(
log

(
m+

X

m

))k+1
)
.

Therefore

qAq(X) ≪
∑
m≥1

e−m2/X

m
(logm)2k + (logX)k

∑
m≥1

e−m2/X

m
(logm)k

+
∑
m≥1

e−m2/X

m
(logm)k

(
log

(
m+

X

m

))k+1

. (20)

The first sum above is estimated by

≪
∫ √

X

1

(log t)2k

t
dt+

∫ ∞

√
X

e−t2/X

t
(log t)2k dt.

The first integral here is estimated by ≪ (logX)2k+1. After making the change of

variable t2/X = v, the second integral is ≪ (logX)2k. This gives us

∑
m≥1

e−m2/X

m
(logm)2k ≪ (logX)2k+1.

Similarly, we observe that the second term on the right-hand side of Equation (20)

is

≪ (logX)k(logX)k+1 = (logX)2k+1.

As for the third sum on the right-hand side of Equation (20), it is estimated by

∑
m≥1

e−m2/X

m
(logm)k (log(m+X/m))

k+1

≪ (logX)k
∫ √

X

1

(logX/t)k+1

t
dt+

∫ ∞

√
X

e−t2/X

t
(log t)2k+1 dt.
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It is easy to see that the first integral on the right-hand side of the above is ≪
(logX)2k+2. By the change of variable t2/X = v, the second integral is estimated

by ≪ (logX)2k+1. Thus, we find that

∑
m≥1

e−m2/X

m
(logm)k

(
log

(
m+

X

m

))k+1

≪ (logX)2k+2.

Therefore, we get

Aq(X) ≪ (logX)2k+2

q
. (21)

• The second case is when (q,mn) = 1 and m = n. Then, define

Bq(X) :=
∑

Rm=n

 ∑
m=

∏k
i=1 mi

Λ(m1) · · ·Λ(mk)
∑

n=
∏k

i=1 ni

Λ(n1) · · ·Λ(nk)

 e−mn/X

m1+it0n1−it0
,

and put

Bq(X) = B♯
q(X) +B♭

q(X),

where

B♯
q(X) :=

∑
Rm=n

m≤X1/2

 ∑
m=

∏k
i=1 mi

Λ(m1) · · ·Λ(mk)

2

e−m2/X

m2
,

and

B♭
q(X) :=

∑
Rm=n

m>X1/2

 ∑
m=

∏k
i=1 mi

Λ(m1) · · ·Λ(mk)

2

e−m2/X

m2
.

For the function B♭
q(X), since m > X1/2, we see that e−m2/X ≤ 1 and

B♭
q(X) ≪

∑
Rm=n

m>X1/2

(∑
m=

∏k
i=1 mi

Λ(m1) · · ·Λ(mk)
)2

m2

≪
∑

m>X1/2

(logm)2k

m2
,

where we used Lemma 1. Thus

B♭
q(X) ≪ (logX)2k

X1/2
. (22)

793(123)



794 K. Matsumoto and S. Saad Eddin

For the function B♯
q(X), sincem2 is small enough, we can rely on the approximation

e−m2/X = 1 +O

(
m2

X

)
.

Then, the function B♯
q(X) is rewritten as

B♯
q(X) =

∑
Rm=n

m≤X1/2

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

+O

 1

X

∑
Rm=n

m≤X1/2

( ∑
m=m1···mk

k∏
i=1

Λ(mi)

)2

 .

Again using Lemma 1, we see that the error term is O(X−1/2(logX)2k). Fur-

ther, we remove the condition m ≤ X1/2 from the summation with the error

O(X−1/2(logX)2k). Thus, we have

B♯
q(X) =

∑
Rm=n

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

+O

(
(logX)2k√

X

)
. (23)

From Equations (22) and (23), we find that

Bq(X) =
∑
m≥1

(m,q)=1

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

+O

(
(logX)2k√

X

)
. (24)

From Equations (21) and (24), we obtain the assertion of the proposition. □

In the case when q = p is a prime number, Proposition 4 becomes

Proposition 5. Let mi, ni and k be positive integers for i ∈ {1, 2, . . . , k}. Let

q = p be a prime number. For any real t0 and X > 1, we have

∑
R

∑
m=m1···mk

∏k
i=1 Λ(mi)

∑
n=n1···nk

∏k
i=1 Λ(ni)

m1+it0n1−it0
e−mn/X

=
∑
m≥1

(∑
m=m1···mk

Λ(m1) · · ·Λ(mk)
)2

m2

+Ok

(
(logX)2k+2

p
+

(logX)2k√
X

+
(log p)2k

p2

)
. (25)
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Proof. This is clear from

∑
m≥1

(m,p)=1

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

=
∑
m≥1

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

−
∑
m≥1
p|m

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

=
∑
m≥1

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

+O

(
(log p)2k

p2

)
, (26)

where we used Lemma 1. □

5. Proof of Theorems 1 and 2.

Let q ≥ 2. We consider the function

Gq(s) =
∑

χ mod q

(
L′(s+ it0, χ)

L(s+ it0, χ)

)k (
L′(s− it0, χ)

L(s− it0, χ)

)k

where χ runs over all Dirichlet characters modulo q. When σ > 1, using the fact that

L′(s, χ)

L(s, χ)
=
∑
n≥1

χ(n)Λ(n)

ns
,

one can write the function Gq(s) as

Gq(s) =
∑

χ mod q

∑
m1···mk≥1
n1···nk≥1

∏k
i=1 Λ(mi)χ(mi)

∏k
i=1 Λ(ni)χ̄(ni)(∏k

i=1mini
)s(∏k

i=1mi

)it0(∏k
i=1 ni

)−it0
.

The proof of our theorems relies on two distinct evaluations of the quantity:

Sq(X) =
1

2πi

3+i∞∫
3−i∞

Gq(s)X
s−1Γ(s− 1) ds. (27)

We write the integrand of the right-hand side of the above as f(s).

5.1. The first evaluation of Sq(X).

It relies on the formula e−y = (1/2iπ)
∫ 2+i∞
2−i∞ y−sΓ(s) ds (valid for positive y) and

on the use of Proposition 1. We readily find that

Sq(X) =
1

2πi

∑
χ mod q

∑
m1···mk≥1
n1···nk≥1

∏k
i=1 Λ(mi)χ(mi)

∏k
i=1 Λ(ni)χ̄(ni)(∏k

i=1mi

)1+it0(∏k
i=1 ni

)1−it0
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∫ 2+i∞

2−i∞

(
X∏k

i=1mini

)s

Γ(s) ds

= φ(q)
∑

m,n≥1
m≡n mod q
(q,mn)=1

(∑
m=m1···mk

Λ(m1) · · ·Λ(mk)
∑

n=n1···nk
Λ(n1) · · ·Λ(nk)

)
m1+it0n1−it0

e−mn/X .

Thanks to Proposition 4, we get

Sq(X) = φ(q)
∑
m≥1

(m,q)=1

(∑
m=m1···mk

∏k
i=1 Λ(mi)

)2
m2

+ Y (28)

with

Y = O

(
φ(q)

q
(logX)2k+2 +

φ(q)(logX)2k√
X

)
. (29)

5.2. The second evaluation of Sq(X).

From Proposition 2, we note that the following regions

D1 =

{
σ ≥ 1− c

log(q(|t+ t0|+ 2))

}
and

D2 =

{
σ ≥ 1− c

log(q(|t− t0|+ 2))

}
are zero-free regions of the functions L(s + it0, χ) and L(s − it0, χ) respectively, except

for the possible Siegel zero β1. Then, for any Dirichlet character χ (mod q) and T ≥ 2,

we see that the region

D3 =

{
σ ≥ 1− c

log(q(T + |t0|+ 2))
, |t| ≤ T

}
is a zero-free region of the both functions L(s + it0, χ) and L(s − it0, χ), except for the

possible zeros β1 ± it0 (see Figure 2).

Now, let A(c1) = 1− c1/ log(q(T + |t0|+ 2)) with 0 < c1 < c (< c0/2), and shift the

part |t| ≤ T of the path of integration in Equation (27) to the line segment σ+ it defined

with σ = A(c1) and |t| ≤ T . We choose c1 so that β1 (if exists in the region (6)) satisfies

the inequality

|β1 −A(c1)| ≥
c1

10 log(q(T + |t0|+ 2))
. (30)

Put

fχ,t0(s) =

(
L′(s+ it0, χ)

L(s+ it0, χ)

)k (
L′(s− it0, χ)

L(s− it0, χ)

)k

Γ(s− 1)Xs−1,
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Figure 2. The regions D1 (black), D2 (grey) and D3 (dotted).

then f(s) =
∑

χ fχ,t0(s). Let CT denote the closed contour that consists of line segments

joining the points 3 − iT , 3 + iT , A(c1) + iT and A(c1) − iT shown Figure 3, that is

CT = L1 ∪ L2 ∪ L3 ∪ L4 with

• L1: The line segment from 3− iT to 3 + iT ,

• L2: The line segment from 3 + iT to A(c1) + iT ,

• L3: The line segment from A(c1) + iT to A(c1)− iT ,

• L4: The line segment from A(c1)− iT to 3− iT .

By Equation (27), we note that all the possibilities of the poles of the function fχ,t0(s)

occurring inside CT are as follows:

• s1: a pole at 1, for any t0 and for any χ,

• s2, s3: two poles at 1 + it0 and 1 − it0 respectively, of order k, when χ = χ0 and

t0 ̸= 0,

• s4, s5: two possible poles at β1 + it0 and β1 − it0 respectively, of order k, when

χ = χ1 and t0 ̸= 0,

• s6: a possible pole of order 2k at s = β1 when χ = χ1 and t0 = 0.
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-σ

6t

6
L1

�
L2

?

L3

-
L4

0 r
3

r
1

rT

r−T

r3 + iT

r
3− iT

r
A(c1)− iT

rA(c1) + iT

Figure 3. The contour CT in the complex plane.

5.2.1. The calculus of residues.

Pole s1: We distinguish two cases depending on t0. The first case is when t0 ̸= 0. We

observe that the function fχ,t0(s) has a pole at s = 1 of order 1. Then, one

finds that

Res(fχ,t0(s); 1) =

(
L′(1 + it0, χ)

L(1 + it0, χ)

)k
(
L′(1 + it0, χ)

L(1 + it0, χ)

)k

. (31)

The second case is when t0 = 0. For χ ̸= χ0, the function fχ,t0(s) has again a

pole at s = 1 of order 1. Then

Res(fχ,0(s); 1) =

(
L′(1, χ)

L(1, χ)

)k (
L′(1, χ)

L(1, χ)

)k

.

As for χ = χ0, the function fχ0,0(s) has a pole at s = 1 of order 2k+ 1 and the

residue of our function at this point is calculated as follows: Taking s′ = s− 1,

we find that

Xs′ =
∞∑

n=0

Mn,0(X)s′n (32)
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and that

s′Γ(s′) = Γ(s′ + 1) =
∞∑

n=0

Nn,0s
′n, (33)

where

Mn,0(X) = (logX)n/n!, Nn,0 = Γ(n)(1)/n!. (34)

Using the fact that L(s, χ0) = ζ(s)
∏

p|q(1− 1/ps), we write

s′
L′(s′ + 1, χ0)

L(s′ + 1, χ0)
= s′

ζ ′(s′ + 1)

ζ(s′ + 1)
+ s′

∑
p|q

log p

ps′+1 − 1
.

Thanks to Lemma 3 and Lemma 4 with a = 1, we get

s′
L′(s′ + 1, χ0)

L(s′ + 1, χ0)
=

∞∑
n=0

Ens
′n +

∞∑
n=0

Fn,1s
′n+1

=
∞∑

n=0

Ens
′n +

∞∑
n=1

Fn−1,1s
′n

=
∞∑

n=0

Hns
′n, (35)

where H0 = E0 and Hn = En +Fn−1,1 for n ≥ 1. Here the coefficients En, Fn,1

are defined by Equations (15) and (16) respectively. Using the properties of

power series, one finds that

(
s′
L′(s′ + 1, χ0)

L(s′ + 1, χ0)

)2k

=

( ∞∑
n=0

Hns
′n

)2k

=
∞∑

n=0

H̃ns
′n, (36)

where

H̃n =
∑

n=n1+n2+···+n2k

Hn1Hn2 · · ·Hn2k
= Ok

(
Q2k

)
. (37)

By Equations (32), (33) and (36), we infer

Res(fχ0,0(s); 1) =
1

(2k)!
lim
s→1

d2k

ds2k
[
(s− 1)2k+1fχ0,0(s)

]
=

1

(2k)!
lim
s′→0

d2k

(ds′)2k
[
s′2k+1fχ0,0(s

′ + 1)
]

=
1

(2k)!
lim
s′→0

d2k

(ds′)2k

[ ∞∑
n=0

Jn(X)s′n

]
,
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where the coefficients Jn(X) are determined by multiplying the above three

series together and via the properties of power series, namely

Jn(X) =
∑

n=n1+n2+n3

Mn1,0(X)Nn2,0H̃n3 , (38)

where Mn1,0(X), Nn2,0 and H̃n3 are defined by Equations (34) and (37) respec-

tively. Therefore, we get

Res(fχ0,0(s); 1) = J2k(X) = O
(
Q2k(logX)2k

)
. (39)

From Equations (31) and (39), we write

Res(f(s); 1) =



∑
χ mod q

∣∣∣∣L′(1 + it0, χ)

L(1 + it0, χ)

∣∣∣∣2k , t0 ̸= 0;

∑
χ mod q
χ ̸=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣2k + J2k(X), t0 = 0.
(40)

Pole s2: For χ = χ0 and t0 ̸= 0, the function fχ0,t0(s) has a pole at s = 1 + it0 of order

k. Taking s′ = s− 1− it0, we write each term of fχ0,t0(s) as follows

Xs−1 = Xit0es
′ logX =

∞∑
n=0

Mn,t0(X)s′n, (41)

Γ(s− 1) = Γ(s′ + it0) =

∞∑
n=0

Nn,t0s
′n, (42)

where

Mn,t0(X) = Xit0
(logX)n

n!
, Nn,t0 =

Γ(n)(it0)

n!
. (43)

Again using the fact that L(s, χ0) = ζ(s)
∏

p|q(1− 1/ps), we find that

L′(s+ it0, χ0)

L(s+ it0, χ0)
=
L′(s′ + 1 + 2it0, χ0)

L(s′ + 1 + 2it0, χ0)

=
ζ ′(s′ + 1 + 2it0)

ζ(s′ + 1 + 2it0)
+
∑
p|q

log p

ps′+1+2it0 − 1
.

Using Lemma 2 with s0 = 1 + 2it0 and Lemma 4 with a = 1 + 2it0, the above

function is written in the form

L′(s+ it0, χ0)

L(s+ it0, χ0)
=

∞∑
n=0

Kn,t0s
′n,
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where

Kn,t0 = Cn,1+2it0 + Fn,1+2it0 . (44)

Here Cn,1+2it0 and Fn,1+2it0 are defined in Equations (11) and (16) respectively.

Thus, we get

(
L′(s+ it0, χ0)

L(s+ it0, χ0)

)k

=

( ∞∑
n=0

Kn,t0s
′n

)k

=

∞∑
n=0

K̃n,t0s
′n, (45)

where

K̃n,t0 =
∑

n=n1+···+nk

Kn1,t0 · · ·Knk,t0 . (46)

From Equations (12) and (16) we have

Kn,t0 =

{
O(|t0|−n−1 +Q) if 0 < |t0| ≤ 1,

O
(
(log(|t0|+ 2))n+1 +Q

)
if |t0| > 1.

Therefore if 0 < |t0| ≤ 1,

K̃n,t0 ≪
∑

n=n1+···+nk

(
1

|t0|n1+1
+Q

)
· · ·
(

1

|t0|nk+1
+Q

)

≪ Qk +
k∑

l=1

∑
n≥n1+···+nl

Qk−l

|t0|n1+···+nl+l
.

Each term in the sum is

≪ Qk−l

|t0|n+l
≤ max

{
1

|t0|n+k
,
Qk−1

|t0|n+1

}
,

and hence

K̃n,t0 ≪n,k Q
k +

Qk−1

|t0|n+1
+

1

|t0|n+k
(|t0| ≤ 1). (47)

Similarly,

K̃n,t0 ≪n,k Q
k +Qk−1(log(|t0|+ 2))n+1 + (log(|t0|+ 2))n+k (|t0| > 1). (48)

Next, using Equation (35), we have(
(s− 1− it0)

L′(s− it0, χ0)

L(s− it0, χ0)

)k

=

(
s′
L′(s′ + 1, χ0)

L(s′ + 1, χ0)

)k

=

( ∞∑
n=0

Hns
′n

)k

=
∞∑

n=0

˜̃
Hns

′n, (49)
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where
˜̃
Hn is defined by Equation (37) with 2k replaced by k and hence

˜̃
Hn =

O(Qk). From Equations (41), (42), (45) and (49), we therefore get

Res(fχ0,t0(s); 1 + it0)

=
1

(k − 1)!
lim

s→1+it0

dk−1

dsk−1

[
(s− 1− it0)

kGq(s)Γ(s− 1)Xs−1
]

=
1

(k − 1)!
lim
s′→0

dk−1

(ds′)k−1

[
s′kGq(s

′ + 1 + it0)Γ(s
′ + it0)X

s′+it0
]

=
1

(k − 1)!
lim
s′→0

dk−1

(ds′)k−1

[ ∞∑
n=0

Ln,t0(X)s′n

]
= Lk−1,t0(X),

where

Ln,t0(X) =
∑

n=n1+n2+n3+n4

Mn1,t0(X)Nn2,t0K̃n3,t0
˜̃
Hn4 , (50)

where Mn1,t0(X) and Nn2,t0 , K̃n3,t0 and
˜̃
Hn4 are given by Equations (43), (46)

and (37) respectively. Recall the Stirling formula

Γ(σ + it) =
√
2π (1 + |t|)σ−1/2e−π|t|/2(1 +O(1/|t|)). (51)

Then we see that Γ(n)(it0) = On(exp(−C1|t0|)) (with a certain absolute C1 > 0)

for |t0| > 1, while it is = On(|t0|−n−1) for 0 < |t0| ≤ 1. Therefore we find the

following evaluation of Lk−1,t0(X). First, if |t0| > 1, from (43) and (48) we have

Lk−1,t0(X) ≪k (logX)k−1e−C2|t0|Q2k,

where 0 < C2 < C1. Secondly, if 0 < |t0| ≤ 1, then

Lk−1,t0(X) ≪
∑

k−1=n1+n2+n3+n4

(logX)n1
1

|t0|n2+1

(
Qk +

Qk−1

|t0|n3+1
+

1

|t0|n3+k

)
Qk,

but the factors (logX)n1 |t0|−n2 , (logX)n1 |t0|−n2−n3 are estimated by ≤
(logX)k−1 + |t0|−k+1, hence

Lk−1,t0(X) ≪k

(
(logX)k−1 +

1

|t0|k−1

)
Qk

|t0|

(
Qk +

Qk−1

|t0|
+

1

|t0|k

)
≪
(
(logX)k−1 +

1

|t0|k−1

)
Qk

|t0|

(
Qk +

1

|t0|k

)
.

Therefore, we now conclude that

Res(fχ0,t0(s); 1 + it0) = Lk−1,t0(X)
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=


O
(
(logX)k−1e−C2|t0|Q2k

)
if |t0| > 1,

O

((
(logX)k−1 +

1

|t0|k−1

)
Qk

|t0|

(
Qk +

1

|t0|k

))
if 0 < |t0| ≤ 1.

(52)

Pole s3: For χ = χ0 and t0 ̸= 0, the function fχ0,t0(s) has a pole at s = 1− it0 of order

k. We calculate the residue of f(s) at the point 1 − it0 similar to that in the

previous case. We get

Res(fχ0,t0(s); 1− it0) = Lk−1,−t0(X), (53)

where Ln,−t0(X) is defined by Equation (50) and satisfies the same estimate as

(52).

Pole s4: For χ = χ1 and t0 ̸= 0, the function fχ1,t0(s) has a (possible) pole at s = β1+it0
of order k. Putting s′ = s− β1 − it0, we write each term of fχ1,t0(s) as follows

Xs−1 = Xβ1−1+it0es
′ logX =

∞∑
n=0

M̃n,t0(X)s′n, (54)

Γ(s− 1) = Γ(s3 + β1 − 1 + it0) =

∞∑
n=0

Ñn,t0s
′n, (55)

where

M̃n,t0(X) = Xβ1−1+it0
(logX)n

n!
, Ñn,t0 =

Γ(n)(β1 − 1 + it0)

n!
. (56)

Using Lemma 5, we find that

s′
L′(s′ + β1, χ1)

L(s′ + β1, χ1)
= s′

 1

s′
+
∑
n≥0

Pns
′n

 =
∑
n≥0

Pn−1s
′n, (57)

where P−1 = 1 and Pn is defined in Lemma 5. Hence, we get(
s′
L′(s′ + β1, χ1)

L(s′ + β1, χ1)

)k

=
∞∑

n=0

P̃ns
′n, (58)

where

P̃n =
∑

n=n1+···+nk

Pn1−1 · · ·Pnk−1 = O((log q)n). (59)

On the other hand, we use Lemma 6 to write

L′(s+ it0, χ1)

L(s+ it0, χ1)
=
L′(s′ + β1 + 2it0, χ1)

L(s′ + β1 + 2it0, χ1)
=

∞∑
n=0

Qns
′n.

This leads at once to
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L′(s+ it0, χ1)

L(s+ it0, χ1)

)k

=

∞∑
n=0

Q̃ns
′n, (60)

where

Q̃n =
∑

n=n1+···+nk

Qn1 · · ·Qnk
= O

(
(log(q(|t0|+ 2)))n+k +

1

|t0|n+k

)
. (61)

From Equations (54), (55), (58) and (60), we therefore get

Res(fχ1,t0(s); s4) =
1

(k − 1)!
lim

s→β+it0

dk−1

dsk−1

[
(s− β1 − it0)

kfχ1,t0(s)
]

=
1

(k − 1)!
lim
s′→0

dk−1

(ds′)k−1

[
s′kfχ1,t0(s

′ + β1 + it0)
]

=
1

(k − 1)!
lim
s′→0

dk−1

(ds′)k−1

∞∑
n=0

Rn,t0(q,X)s′n

= Rk−1,t0(q,X),

where

Rn,t0(q,X) =
∑

n=n1+n2+n3+n4

M̃n1,t0(X)Ñn2,t0 P̃n3Q̃n4 , (62)

with M̃n1,t0(X) and Ñn2,t0 , P̃n3 and Q̃n4 defined by Equations (56), (59)

and (61) respectively. If |t0| > 1, then Γ(n)(β1 − 1 + it0) = On(exp(−C3|t0|))
(with a certain absolute C3 > 0), and hence

Rk−1,t0(q,X) ≪ Xβ1−1e−C4|t0|
∑

k−1=n1+n2+n3+n4

(logX)n1(log q)n3+n4+k

≪ Xβ1−1e−C4|t0|
(
(logX)2k−1 + (log q)2k−1

)
(where 0 < C4 < C3). If 0 < |t0| ≤ 1, then Γ(n)(β1 − 1 + it0) ≪n |β1 − 1 +

it0|−n−1 ≤ |t0|−n−1. Therefore

Rk−1,t0(q,X) ≪ Xβ1−1
∑

k−1=n1+n2+n3+n4

(logX)n1
1

|t0|n2+1
(log q)n3

1

|t0|n4+k

≪ Xβ1−1

|t0|k+1

(
(logX)k−1 +

1

|t0|k−1
+ (log q)k−1

)
.

Therefore we now obtain

Res(fχ1,t0(s);β1 + it0) = Rk−1,t0(q,X)

=


O
(
Xβ1−1e−C4|t0|

(
(logX)2k−1 + (log q)2k−1

))
if |t0| > 1,

O

(
Xβ1−1

|t0|k+1
((logX)k−1 +

1

|t0|k−1
+ (log q)k−1)

)
if 0 < |t0| ≤ 1.

(63)
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Pole s5: Similarly, we get

Res(fχ1,t0(s);β1 − it0) = Rk−1,−t0(q,X), (64)

where Rk−1,−t0(q, x) is defined by Equation (62) and satisfies the same estimate

as (63).

Pole s6: For χ = χ1 and t0 = 0, the function fχ1,t0(s) has a (possible) pole of order 2k

at s = β1. Putting s
′ = s− β1, we find that

(s− β1)
L′(s, χ1)

L(s, χ1)
= s′

L′(s′ + β1, χ1)

L(s′ + β1, χ1)
,

where the right-hand side is equal to
∑

n≥0 Pn−1s
′n by Equation (57). Hence,

we get (
(s− β1)

L′(s, χ1)

L(s, χ1)

)2k

=
∞∑

n=0

˜̃
Pns

′n, (65)

where
˜̃
Pn is given by Equation (59) with k replaced by 2k. From Equation (54),

(55) and (65), we therefore get

Res(fχ1,t0(s);β1) =
1

(2k − 1)!
lim
s→β1

d2k−1

ds2k−1

[
(s− β1)

2kGq(s)Γ(s− 1)Xs−1
]

=
1

(2k − 1)!
lim
s′→0

d2k−1

(ds′)2k−1

[
s′2kGq(s

′ + β1)Γ(s
′ + β1 − 1)Xs′+β1−1

]
=

1

(2k − 1)!
lim
s′→0

d2k−1

(ds′)2k−1

[ ∞∑
n=0

Yn(q,X)s′n

]
,

where

Yn(q,X) =
∑

n=n1+n2+n3

M̃n1,0(X)Ñn2,0
˜̃
Pn3 , (66)

with M̃n1,0(X) and Ñn2,0 and
˜̃
Pn3 being defined by Equations (56) and (59)

respectively. Since Γ(n)(β1 − 1) = O((1− β1)
−n−1), we have

Res(fχ1,t0(s);β1) = Y2k−1(q,X)

= O
(
Xβ1−1

(
(logX)2k−1 + (1− β1)

−2k + (log q)2k−1
))
. (67)

Consequently, we find from Equations (39), (40), (52), (53), (63), (64) and (67) that
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6∑
i=1

Res(f(s); si) =



∑
χ mod q

∣∣∣∣L′(1 + it0, χ)

L(1 + it0, χ)

∣∣∣∣2k + Zk,t0(q,X), t0 ̸= 0;

∑
χ mod q
χ ̸=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣2k + Zk,0(q,X), t0 = 0,
(68)

where

Zk,t0(q,X) = Lk−1,t0(q,X) + Lk−1,−t0(q,X) + δ1Rk−1,t0(q,X) + δ1Rk−1,−t0(q,X)

=


O
(
(logX)k−1e−C2|t0|Q2k + δ1X

β1−1e−C4|t0|
(
(logX)2k−1 + (log q)2k−1

))
(|t0| > 1),

O

((
(logX)k−1 +

1

|t0|k−1

)
Qk

|t0|

(
Qk +

1

|t0|k

))
(0 < |t0| ≤ 1)

(69)

(note that when 0 < |t0| ≤ 1 the right-hand side of (63) is absorbed into the right-hand

side of (52)) and

Zk,0(q,X) = J2k(X) + δ1Y2k−1(q,X) = O
(
(logX)2kQ2k + δ1X

β1−1(1− β1)
−2k
)
. (70)

5.2.2. The evaluation of the integration on Li.

Now, we are going to estimate the integration on Li where i ∈ {2, 3, 4}. Denote

Ji =
1

2πi

∫
Li

Gq(s)X
s−1Γ(s− 1) ds.

On these paths, in view of Equations (7)–(9), we have

L′(s± it0, χ)

L(s± it0, χ)
≪ log(q(T + |t0|+ 2))

on Li, for any χ modulo q (in the case χ = χ1, we use (30)). First consider the integral

on L3. Then |Xs−1| ≤ XA(c1)−1, and hence

J3 ≪ φ(q)(log(q(T + |t0|+ 2)))2kXA(c1)−1

A(c1)+iT∫
A(c1)−iT

|Γ(s− 1)| |ds|

≪ φ(q)(log(q(T + |t0|+ 2)))2kXA(c1)−1

T∫
−T

|Γ(A(c1)− 1 + it)| dt.

From (51) we obtain

|Γ(A(c1)− 1 + it)| ≪ (1 + |t|)A(c1)−3/2 e−π|t|/2,

and so

J3 ≪ φ(q)(log(q(T + |t0|+ 2)))2kXA(c1)−1. (71)
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Now we calculate the integrals along the horizontal segments. Since the integrand has the

same absolute value at conjugate points, it suffices to consider only the upper segment

t = T . On this segment we have the estimate

J2 ≪ φ(q)(log(q(T + |t0|+ 2)))2k
3∫

A(c1)

|Γ(σ − 1 + iT )|Xσ−1 dσ.

Again, using Equation (51), we get

J2 ≪ φ(q)(log(q(T + |t0|+ 2)))2kX−1(1 + T )−3/2 e−πT/2

3∫
A(c1)

((1 + T )X)σ dσ

≪ φ(q)(log(q(T + |t0|+ 2)))2k
X2(1 + T )3/2 e−πT/2

log((1 + T )X)
, (72)

and J4 can be estimated similarly.

5.3. The conclusion.

On the half-lines σ = 3 and |t| ≥ T , we have∫
σ=3
|t|≥T

Gq(s)X
s−1Γ(s− 1) ds≪ φ(q)X2

∫
t≥T

|Γ(2 + it)| dt.

Again applying (51), we get∫
σ=3
|t|≥T

Gq(s)X
s−1Γ(s− 1) ds≪ φ(q)X2(1 + T )3/2 e−πT/2. (73)

Therefore, by combining Equations (68), (71), (72) and (73), we obtain

Sq(X) =



∑
χ mod q

∣∣∣∣L′(1 + it0, χ)

L(1 + it0, χ)

∣∣∣∣2k + Zk,t0(q,X) +W, t0 ̸= 0;

∑
χ mod q
χ ̸=χ0

∣∣∣∣L′(1, χ)

L(1, χ)

∣∣∣∣2k + Zk,0(q,X) +W, t0 = 0,

where W is estimated by

O

(
φ(q)(log(q(T + |t0|+ 2)))2k

{
XA(c1)−1 +

X2(1 + T )3/2e−πT/2

log((1 + T )X)

}
+ φ(q)X2(1 + T )3/2e−πT/2

)
. (74)
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Now we combine Equation (28) and the above formula. The remaining task is to evaluate

Zk,t0(q,X) +W + Y , under some suitable choices of parameters T and X. Our choices

are T = q and X = exp
(
λ(log q)2

)
(where λ is a large positive number).

First consider W . Under the above choices, we have

XA(c1)−1 = exp

(
− c1λ(log q)

2

log(q(q + |t0|+ 2))

)
≤ exp

(
− c1λ(log q)

2

2 log(q + |t0|+ 2)

)
, (75)

which is, when q ≥ |t0|+ 2,

≤ exp

(
−c1λ(log q)

2

2 log(2q)

)
≤ exp

(
−c1λ(log q)

2

4 log q

)
= exp

(
−c1λ

4
log q

)
.

We choose λ sufficiently large: λ ≥ max{4/c1, 2/ log 2}. Then from the above we see

that XA(c1)−1 ≤ exp(− log q) = q−1. Since the factor e−πT/2 = e−πq/2 is very small with

respect to q, from (74) and (75) we obtain

W = O

(
φ(q)(log(q(q + |t0|+ 2)))2k exp

(
− B1(log q)

2

log(q + |t0|+ 2)

))
(76)

with B1 = c1λ/2 ≥ 2. In particular, when t0 = 0, we have

W = O

(
φ(q)

q
(log q)2k

)
. (77)

Next, we have

Y ≪ φ(q)

q
(log q)4k+4 +

φ(q)(log q)4k

exp((λ/2)(log q)2)
.

By the assumption λ ≥ 2/ log 2 we have

exp((λ/2)(log q)2) ≥ exp((λ/2) log 2 log q) ≥ exp(log q) = q,

so

Y = O

(
φ(q)

q
(log q)4k+4

)
. (78)

Lastly, we find

Zk,t0(q) := Zk,t0

(
q, exp(λ(log q)2)

)
=


O
(
(log q)2k−2e−B2|t0|Q2k

)
(|t0| > 1),

O

((
(log q)2k−2 +

1

|t0|k−1

)
Qk

|t0|

(
Qk +

1

|t0|k

))
(0 < |t0| ≤ 1)

(79)

where B2 = min{C2, C4}, and

Zk,0(q) := Zk,0

(
q, exp(λ(log q)2)

)
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= O
(
(log q)4kQ2k + δ1 exp

(
−(1− β1)λ(log q)

2
)
(1− β1)

−2k
)
. (80)

Collecting all of the above estimates, we arrive at the assertions of Theorems 1 and 2.

Remark 1. Using Proposition 5 instead of Proposition 4, the same proof works

for q = p a prime number and then one can show that the condition (m, q) = 1 in the

main term in Theorems 1 and 2 is omitted.

6. Proof of Theorem 3.

Now we proceed to the proof of Theorem 3. We deduce the existence of µ by the

general solution to the Stieltjes moment problem and the unicity by the criterion of

Carleman. First, we define the “problem of moments” which was showed up in the work

of Stieltjes.

6.1. Problem of moments.

The problem of moments is to find a bounded non-decreasing function ψ(x) in the

interval [0,∞) such that its “moments”
∫∞
0
xk dψ(x), k = 0, 1, 2, . . . , have a prescribed

set of values ∫ ∞

0

xk dψ(x) = µk, k = 1, 2, . . . . (81)

This problem was first raised and solved by Stieltjes for non-negative measures. He

proved in [15] that Equation (81) has a solution if and only if the following determinants

are non-negative:

∆k =

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µk

µ1 µ2 µ3 · · · µk+1

µ2 µ3 µ4 · · · µk+2

...
...

...
. . .

...

µk µk+1 µk+2 · · · µ2k

∣∣∣∣∣∣∣∣∣∣∣
= |µi+j |ki,j=0 , k = 0, 1, 2, . . . ,

∆∗
k =

∣∣∣∣∣∣∣∣∣∣∣

µ1 µ2 µ3 · · · µk+1

µ2 µ3 µ4 · · · µk+2

µ3 µ4 µ5 · · · µk+3

...
...

...
. . .

...

µk+1 µk+2 µk+3 · · · µ2k+1

∣∣∣∣∣∣∣∣∣∣∣
= |µi+j+1|ki,j=0 , k = 0, 1, 2, . . . .

The following proposition provides the necessary and sufficient condition for the existence

of a solution of the Stieltjes moment problem.

Proposition 6. A necessary and sufficient condition that the Stieltjes moment

problem defined by the sequence of moments {µk}∞k=0 shall have a solution is that the

functional µ(P ) is non-negative, that is
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µ(P ) =
k∑

j=0

µjxj ≥ 0,

for any polynomial

P (u) = x0 + x1u+ · · ·+ xku
k, (x0, x1, . . . , xk ∈ R)

which is non-negative for all u ≥ 0.

Proof. A proof of this result can be found in [12, Theorem 1.1]. □

Now, consider the following two polynomials

Qk(u) = (x0 + x1u+ · · ·+ xku
k)2,

Rk(u) = u(x0 + x1u+ · · ·+ xku
k)2.

We note that Qk(u) ≥ 0 and Rk(u) ≥ 0 for u ∈ [0,∞) and k = 0, 1, 2, . . . . Using the

fact that any polynomial P (u) ≥ 0 for u ≥ 0 can be written in the form p1(u)
2+up2(u)

2

with certain polynomials p1(u) and p2(u) (see the footnote in [12, p.6]), we translate the

condition in Proposition 6 into the following condition

µ(P ) ≥ 0 if and only if µ(Qk) ≥ 0 and µ(Rk) ≥ 0, (82)

for all k = 0, 1, 2, . . . . On the other hand, Qk(u) and Rk(u) are of the form

Qk(u) =
k∑

i,j=0

xixju
i+j ,

Rk(u) =
k∑

i,j=0

xixju
i+j+1,

so, it follows that

µ(Qk) =

k∑
i,j=0

xixjµi+j ,

µ(Rk) =
k∑

i,j=0

xixjµi+j+1.

From the theory of quadratic forms it is well known that

µ(Qk) ≥ 0 and µ(Rk) ≥ 0 if and only if

∆k = |µi+j |ki,j=0 ≥ 0 and ∆∗
k = |µi+j+1|ki,j=0 ≥ 0.

From the above, we deduce the following result:
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Corollary 1. A necessary and sufficient condition that the Stieltjes moment

problem defined by the sequence of moments {µk}∞k=0 shall have a solution is that

∆k = |µi+j |ki,j=0 ≥ 0 and ∆∗
k = |µi+j+1|ki,j=0 ≥ 0,

for all k = 0, 1, 2, . . . .

6.2. Proof of Theorem 3.

Existence of µ.

We define the measure µq, depending on t0, by µq([0, v]) := Dq(v, t0) where Dq(v, t0)

is given by Equation (5). Then, we have µq is non-negative and µq([0,∞)) = 1. Set

mk(q, t0) :=

∫ ∞

0

vk dµq(v)

=
1

φ(q)

′∑
χ mod q

∣∣∣∣L′(1 + it0)

L(1 + it0)

∣∣∣∣2k ,
where

∑′
runs over all Dirichlet characters χ modulo q except the principal character in

the case t0 = 0. By Corollary 1, we get

∆k(q, t0) := |mi+j(q, t0)|ki,j=0 ≥ 0 and ∆∗
k(q, t0) := |mi+j+1(q, t0)|ki,j=0 ≥ 0.

On the other hand, from Theorems 1 and 2, mk(q, t0) can be written as follows

mk(q, t0) =Mk(q, t0) +Nk(q, t0),

where

Mk(q, t0) =
∑
m≥1

(m,q)=1

(∑
m=m1m2···mk

Λ(m1) · · ·Λ(mk)
)2

m2

and Nk(q, t0) is the error term which tends to 0 as q → ∞. Therefore, we get

∆k(q, t0) = |Mi+j(q, t0)|ki,j=0 + Ek(q, t0) ≥ 0

and

∆∗
k(q, t0) = |Mi+j+1(q, t0)|ki,j=0 + E∗

k(q, t0) ≥ 0,

where Ek(q, t0) and E∗
k(q, t0) are error terms which tend to 0 as q −→ ∞. Now, we

assume that q = p is a prime number. By Remark 1, mk(p, t0) is rewritten as

mk(p, t0) =Mk(t0) +Nk(p, t0),

where

Mk(t0) =
∑
m≥1

(∑
m=m1m2···mk

Λ(m1) · · ·Λ(mk)
)2

m2
,
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which is independent of p. By letting p tend to infinity it follows that

|Mi+j(t0)|ki,j=0 ≥ 0 and |Mi+j+1(t0)|ki,j=0 ≥ 0. (83)

We again apply Corollary 1 to find a measure µ = µ(t0) such that

lim
p−→∞

1

p− 1

′∑
χ mod p

∣∣∣∣L′(1 + it0)

L(1 + it0)

∣∣∣∣2k =

∫ ∞

0

vk dµ(v),

because the left-hand side is equal to Mk(t0).

Uniqueness of µ.

In order to complete our proof, it remains to show that µ is unique. There are several

sufficient conditions for uniqueness. In our proof we shall use Carleman’s condition [3],

which states that the solution is unique if∑
k≥1

1

M
1/2k
k

= ∞.

We use Lemma 1 to get

Mk ≤
∑
m≥1

(logm)2k

m2
≪ (2k)!, (84)

because ∑
m≥1

(logm)2k

m2
≪
∫ ∞

1

(log t)2k

t2
dt

=

∫ ∞

0

u2k e−u du≪ Γ(2k + 1) = (2k)!.

Therefore, we get

∑
k≥1

1

M
1/2k
k

≫
∑
k≥1

(
1

(2k)!

)1/2k

= ∞.

It follows that the condition of Carleman is checked and thus the function µ is unique.

This completes the proof. □

7. Scripts.

We present here an easier GP script for computing the values |(L′/L)(1, χ)|. In

this loop, we use the Pari package “ComputeL” written by Tim Dokchitser to com-

pute values of L-functions and its derivative. This package is available on-line at

www.maths.bris.ac.uk/˜matyd/.

On this base we write the next script. The authors would like to thank Professor

Olivier Ramaré for helping us in writing it. We simply plot Figure 1 via
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read("computeL"); /* by Tim Dokchitser */

default(realprecision,28);

{run(p=37)=

local(results, prim, avec);

prim = znprimroot(p);

results = vector(p-2, i, 0);

for(b = 1, p-2,

avec = vector(p,k,0);

for (k = 0, p-1, avec[lift(prim^k)+1]=exp(2*b*Pi*I*k/(p-1)));

conductor = p;

gammaV = [1];

weight = b%2;

sgn = X;

initLdata("avec[k%p+1]",,"conj(avec[k%p+1])");

sgneq = Vec(checkfeq());

sgn = -sgneq[2]/sgneq[1];

results[b] = abs(L(1,,1)/L(1));

\\print(results[b]);

);

return(results);

}

{goodrun(borneinf, bornesup)=

forprime(p = borneinf, bornesup,

print("------------------------");

print("p = ",p);

print(vecsort(run(p))));}
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