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Abstract. Let p be an odd prime number, and N a positive integer

prime to p. We prove that µ-type subgroups of the modular Jacobian variety
J1(N) or J1(Np) of order a power of p and defined over some abelian extensions
of Q are trivial, under several hypotheses. For the proof, we use the method

of Vatsal. As application, we show that a conjecture of Sharifi is valid in some
cases.

Introduction.

Let J0(N) and J1(N) be the Jacobian varieties of the modular curves X0(N) and

X1(N), all defined over Q, attached to the congruence subgroups Γ0(N) and Γ1(N) of

SL2(Z), respectively. The purpose of this paper is to study the µ-type subgroups of

J1(N). In general, we say that a commutative group scheme over some scheme is a

µ-type group if it is finite, flat and Cartier dual to a constant group scheme, following

Mazur [Ma].

As for J0(N), when N ≥ 5 is a prime number, Mazur proved, among others, the

following two results which had been conjectured by Ogg, in his celebrated paper [Ma,

Chapter III, Section 1]:

• The rational torsion subgroup J0(N)(Q)tors is a cyclic group of order n := (N −
1)/(N − 1, 12), which is generated by the class of the cuspidal divisor (0)− (∞).

• The maximal µ-type subgroup of J0(N) over Q is the Shimura subgroup

Ker(J0(N)→ J1(N)), which is again of order n.

These two results were proved via the detailed study of the Eisenstein ideal in the

Hecke algebra acting on J0(N) or the space of cusp forms of weight two on Γ0(N). As

remarked by Mazur [Ma, loc. cit.], if one disregards the two-torsion part, the study

of J0(N)(Q)tors is much easier than that of the µ-type subgroups. Indeed, the latter

required a deep result on the Hecke algebra, the Gorenstein property.

It is possible to extend this method of the Eisenstein ideal to study the rational tor-

sion subgroups of other modular Jacobian varieties, in the “easier” case, i.e. disregarding

the two-torsion part (and sometimes the three-torsion part also), cf. [O6], [O7]. How-

ever, it seems rather difficult to extend it to study the µ-type subgroups of, for example,

J1(N). In addition, in view of the application we expect, we wish to obtain the result

not only over Q, but also over some (abelian) extensions of Q.
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On the other hand, in [V] (in which the terminology “multiplicative” is used instead

of “µ-type”), Vatsal has found a completely different approach to the study of the µ-

type subgroups of modular Jacobians. He proved the following result which considerably

generalizes Mazur’s result for non-two-torsion µ-type subgroups of J0(N) with N not

necessarily prime, cf. [V, Theorem 1.1]:

• Let p be an odd prime number, and W a µ-type subgroup of J0(N) over Q of

order a power of p. If J0(N) has semi-stable reduction at p (which is the case if p2 does

not divide N), then W is contained in the Shimura subgroup.

It is the method of Vatsal we are going to follow. To state the main result of this

paper, we use the following notation: We let Q(ζp) be the cyclotomic field of p-th roots

of unity, and identify the Galois group Gal(Q(ζp)/Q) with (Z/pZ)× in the usual manner.

Thus for a subgroup A of (Z/pZ)×, we can consider the fixed field Q(ζp)
A. We will prove

the following theorem (Part II, Theorem (5.1.4) in the text):

Theorem. Let p be an odd prime number, and assume that Nφ(N) is not divisible

by p, where φ denotes the Euler function. Let k0 be a fixed finite abelian extension of Q
such that [k0 : Q] is prime to p, and p is unramified in k0. For a subgroup A of (Z/pZ)×,
we set

kA := k0Q(ζp)
A.

Assume that A ̸= {1}. If G is a µ-type subgroup of J1(Np) over kA of order a power

of p on which the diamond action ⟨a⟩p of each a ∈ A ⊆ (Z/pZ)× is the identity, then G

is necessarily trivial.

Although this formulation of our main theorem is also convenient for our application

to cyclotomic fields, we actually prove it in a slightly different form. We consider the

quotient curve X1(Np;A) of X1(Np) by the action of A through ⟨ ⟩p, and its Jacobian

variety J1(Np;A) over Q. Then, under the same assumptions as above, our theorem can

be restated as follows: J1(Np;A) has no non-trivial µ-type subgroup of order a power of

p over kA (Part II, Theorem (5.1.7) in the text). An advantage of considering X1(Np;A)

is that it has semi-stable reduction over Q(ζp)
A at the prime above p, whose ramification

index is strictly smaller than p− 1 when A ̸= {1}; while this method in turn necessitates

our assumption on the A-invariance of G in the above theorem. On the other hand,

one easily obtains from this a result in the prime-to-p level case; i.e. for N , p and A as

above, J1(N) has no non-trivial µ-type subgroup of order a power of p over kA (Part II,

Corollary (5.1.5) in the text). We also remark that the same results as above obviously

hold for µ-type subgroups over any subfield of kA, notably over Q.

We next describe an application of our theorem to the theory of cyclotomic fields,

which in fact motivated our study of the µ-type subgroups. We let N and p be as in

the theorem above, and assume moreover that p ≥ 5 in the following application. Fix an

even Dirichlet character θ of conductor N or Np, for which we assume that θω(p) ̸= 1

when θ |(Z/pZ)×= ω−1, ω being the Teichmüller character modulo p. Let r be the ring

generated by the values of θ over Zp. To state our result, we need a rather lengthy list

of terminologies. We refer the reader to Part II, 6.1 in the text for more details, and
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mention here only the following:

− Λr := r[[1 + pZp]] is the completed group algebra of the multiplicative

group 1 + pZp, the Iwasawa algebra.

− X is the ordinary part of the projective limit of the étale cohomology

groups H1(X1(Npr)⊗QQ,Zp)⊗Zp r for r ≥ 1, localized at an appropriate

Eisenstein maximal ideal attached to θ.

− h∗ is Hida’s Hecke algebra acting on X, which is a finite and flat Λr-

algebra.

− I∗ is the Eisenstein ideal of h∗.

− A decomposition X = X− ⊕X+ as an h∗-module, where X+ is the fixed

subspace under the action of the inertia group at p (with respect to a fixed

embedding Q ↪→ Qp). Here, X+ is known to be a free h∗-module of rank

one, whereas X− is isomorphic to HomΛr
(h∗,Λr) as an h∗-module.

− F is the imaginary abelian extension of Q corresponding to θω.

− F∞ is the cyclotomic Zp-extension of F .

− L∞ is the maximal abelian unramified pro-p-extension of F∞.

− Gal(L∞/F∞)(θω)−1 is the (θω)−1-part of the Galois group.

We obtain from the natural action of Gal(Q/Q) on X the map

Gal(Q/Q)→ Homh∗(X+, X−) ∼= X−

where we have fixed an h∗-basis of X+ to obtain the isomorphism in the right hand side.

It is known that, when reduced modulo I∗, this gives rise to a representation:

Gal(L∞/F∞)(θω)−1 → X−/I
∗X−. (∗)

In [Sha], Sharifi conjectured that this is in fact an isomorphism, as a part of more precise

conjectures. We will prove (Part II, Theorem (6.2.2) in the text):

Theorem. Assume that the kernel of the restriction of θ to (Z/pZ)× is non-trivial.

Then the homomorphism (∗) is an isomorphism.

(One has to modify the Λr-module structure of X− (arising from the Λr-algebra structure

of h∗) by an involutive automorphism of Λr to make (∗) as an isomorphism of Λr-modules;

cf. Part II, 6.1 in the text.)

As we already said, we will prove our main theorem by following Vatsal’s article [V],

in which he used the following results:

(I) Hida’s non-vanishing modulo p result for the values of Hecke L-functions attached

to Hecke characters of imaginary quadratic fields; cf. [H1], [H2], [H3].

(II) Rubin’s proof of the Iwasawa main conjecture for imaginary quadratic fields;

cf. [Ru1], [Ru2].

(III) Surjectivity of the supersingular reduction of CM points on X0(M), due to

Vatsal and Cornut; cf. [C].

(IV) Ihara’s theorem on modular curves over finite fields; cf. [I].
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An important feature of the modular curves X0(M), X1(M) etc. is that they contain

many CM points, corresponding to elliptic curves with complex multiplication. The

method of Vatsal makes essential use of arithmetic properties of such points, as we will

see below.

We now explain how the proof of our main theorem proceeds: Let X1(Np;A) be, as

above, the quotient of the curve X1(Np) by the action via ⟨ ⟩p of A. Assume that there

is a non-trivial G as in our main theorem, equivalently a non-trivial µ-type subgroup of

J1(Np;A) of order a power of p over kA. Then there is a Z/pZ-torsor (= an étale Galois

covering with Galois group Z/pZ) Z over X1(Np;A) ⊗Q kA =: X1(Np;A)/kA
with Z

geometrically irreducible over kA. To rule out such possibility, we want to choose a good

prime number q, such that the primes of kA above q are of degree at most two, to obtain

a Z/pZ-torsor

Z/Fq2
→ X1(Np;A)/Fq2

over Fq2 by reduction. We assume that q ≡ ±1 mod Np in which case supersingular

points of X1(Np;A)/Fq2
are rational over Fq2 . In choosing q, we further require that all

points of Z/Fq2
above these points are rational over Fq2 . However, Ihara’s theorem (IV)

asserts that such an étale covering cannot exist. Our aim is thus to show that a prime q

having the above properties really exists (when non-trivial G exists).

It is therefore important to know what points of X1(Np;A) (or X1(Np)) are mapped

by reduction to supersingular points in positive characteristic fibres, and how the fibres

of such points via Z → X1(Np;A)/kA
behave. As in [V], we take an imaginary quadratic

field K (in which prime factors of Np all split) and a prime number l not dividing Np,

and consider points (corresponding to elliptic curves) having complex multiplication by

orders of l-power conductor of K. For X0(Np), these are the points called Heegner

points and rational over the ring class fields of l-power conductor of K. We will consider

the points of X1(Np;A) (or X1(Np)) lying above such points, which are rational over

the anticyclotomic Zl-extension of some abelian extension of K. If q is a prime number

(q ∤ Npl) which is inert in K, the result (III) of Vatsal and Cornut asserts that Heegner

points reduce surjectively onto the supersingular points of X0(Np)/Fq2
. It follows from

this that a similar result holds for X1(Np;A) (or X1(Np)) and the above mentioned CM

points on it by reduction to characteristic q for certain q(≡ ±1 mod Np); cf. Part II, 3.2.

The most important step for the proof of our main theorem is to show that the

“growth” of the inverse images of the CM points of X1(Np;A)/kA
in Z is moderate.

Precisely, we show that there is a finite extension of K such that all points of Z above

such CM points are rational over the composite of this field and the anticyclotomic Zl-

extension of K, which will enable us to choose “good” primes q. After the study of

ramifications in the fibres of Z → X1(Np;A)/kA
in Part II, Section 4, this reduces to

an analogue of Washington’s theorem [W] for anticyclotomic Zl-extensions of abelian

extensions of K. We will prove such a result under rather restrictive assumptions on the

abelian extensions of K (cf. Part II, 2.1), but it is sufficient for our purpose. (It has been

done by Vatsal for the tower of ring class fields of l-power conductor using (I) and (II).)

To do this, aside from (II), we need an improvement of (I) for Hecke characters of K

whose conductor is divisible by primes above p. This occupies Part I of this paper (and
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also a part of Part II, Section 1). The proof depends heavily on Hida’s ideas, especially

on his Zariski density result of CM points, but we first followed Katz’s article [Ka2] to

study the Hecke L-values of K, and tried to be as self-contained as possible. See the

Introduction to Part I for our result in this direction.

Part I. A result on the non-vanishing of Hecke L-values modulo p.

0. Introduction to Part I.

Let K be an imaginary quadratic field with its ring of integers o. Let

λ : K×
A /K× → C×

be a Hecke character of K, K×
A being the idele group of K. We assume that its infinity

component λ∞ satisfies

λ∞(x) = xk for x ∈ (K ⊗Q R)× = C×

with an integer k.

Let l be a prime number, and on := Z + lno the order of conductor ln of K for

n ≥ 0. Let Cln be the group of proper on-ideal classes, and set Cl∞ := lim←−n≥0
Cln.

Let Ĉl
lc

∞ = lim−→n≥0
Hom(Cln,Q

×
) be the set of Q×

-valued characters of Cl∞ that factor

through some Cln (n < ∞). We may consider each ε ∈ Ĉl
lc

∞ as a Hecke character of K

of finite order. Here and below, Q denotes the algebraic closure of Q in C.
Let p be an odd prime number different from l. We fix an embedding of Q into an

algebraic closure of Qp, and let P be the prime of Q corresponding to this embedding.

We assume that p splits as (p) = pp in K and assume that p is the prime lying below P.

Let c be the conductor of λ. We will assume the following conditions:
k ≥ 2,

c is prime to l,

c is a product of primes that split in K/Q.

Note that we do not assume that c is prime to p. Let e (resp. e) be the exponent of p

(resp. p) dividing c. Let χp : (o/pe)× = (Z/peZ)× → Q×
be the character induced from λ.

With these notation and assumptions, we will prove:

Theorem I. There is a non-zero complex number Ω∞ with which the following

assertion holds :

pe(k−1)(k − 1)!g(e2πi/p
e

, χp)L
(l)(0, λε)/Ωk

∞ ∈ Q

and moreover these values are P-integral for all ε ∈ Ĉl
lc

∞. Further, except for a finite

number of ε, these values are P-adic units.

Here, g(e2πi/p
e

, χp) is the Gauss sum, L(s, λε) is the Hecke L-function, and the

superscript “(l)” indicates the exclusion of the Euler factors at primes dividing l.
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When c is prime to p, this is a special case of Hida’s much more general result;

cf. [H1, Theorem 1.1], [H2, Theorem 4.3] and [H3, Theorems 8.17 and 8.31]. Actually,

we will prove this theorem under additional assumptions:{
e ≥ e,

c ̸= (1) when k = 2,

in this Part I. In the first section of Part II, we will remove these assumptions after

recalling p-adic properties of Hecke L-values. (The case where k = 2 and c = (1) is

already covered in Hida’s theorem; but we avoided the use of non-holomorphic Eisenstein

series in Part I for simplicity.)

The algebraicity of the special values of Hecke L-functions was first established

by Shimura [Shi2]. Katz [Ka2], [Ka3] then studied further the integrality and p-adic

properties of such L-values. As cited above, Hida obtained the non-vanishing modulo p

result for the L-values in [H1]–[H3]. All these results are proved for general CM fields

using Hilbert modular forms.

As noted in the introduction, we need the non-vanishing modulo p result for Hecke

L-values of imaginary quadratic fields when the conductor of the Hecke character is

divisible by primes above p, to prove our main result. The purpose of this Part I is

thus to supply such a result, and we will neither touch the general CM fields nor the

differential operators of Maass, Shimura and Katz. We basically follow the method of

Katz and Hida. The method of the proof of the above non-vanishing result is entirely

due to Hida [H1]–[H3].

1. Level structures on elliptic curves and test objects.

1.1. Basic level structures.

We first recall terminologies from Katz [Ka2, Chapter II]. Let M and T be positive

integers.

Definition (1.1.1). Let E be an elliptic curve over a base scheme S.

(i) A Γ(M)naive-structure on E/S is an isomorphism

αM : Z/MZ× Z/MZ ∼→ E[M ]

of group schemes over S, where E[M ] denotes the kernel of multiplication by M on E.

(ii) A Γ(M)arith-structure on E/S is an isomorphism

βM : µM × Z/MZ ∼→ E[M ]

of group schemes over S which satisfies

eM,E(βM (ζ1,m), βM (ζ2, n)) = ζn1 /ζ
m
2 .

Here, eM,E( , ) is the eM -pairing on E, and ζ1 and ζ2 (resp. m and n) are sections of

µM (resp. Z/MZ) over an S-scheme.
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(iii) A Γ0(T )-structure CT on E/S is a finite flat S-subgroup scheme of order T of

E which is cyclic.

(iv) When T is prime to M , a Γ(M)naive∩Γ0(T )-structure on E/S is a pair (αM , CT )

of Γ(M)naive- and Γ0(T )-structures. Similarly for a Γ(M)arith ∩ Γ0(T )-structure.

(v) A pair (E,αM ) as in (i) is called a Γ(M)naive-curve over S. Similarly for a

Γ(M)arith-curve, a Γ(M)naive ∩ Γ0(T )-curve and so on.

We remark that a Γ(M)naive-structure on E/S exists only when M is invertible in

S. As for a Γ0(T )-structure, we will consider it only when T is invertible in S, in which

case CT is étale over S and the meaning of cyclicity is the obvious one.

Let E be an elliptic curve over a Z[1/M ]-scheme S. If αM is a Γ(M)naive-structure

on E/S, we define its determinant by

det(αM ) := eM,E

(
αM

(
1

0

)
, αM

(
0

1

))
∈ µprim

M (S) (1.1.2)

where µprim
M is the scheme of primitive M -th roots of unity. There is a bijection [Ka2,

2.0.8]:

{Γ(M)naive-structures on E/S} ∼→ µprim
M (S)× {Γ(M)arith-structures on E/S} (1.1.3)

αM 7→ (det(αM ), βαM
)

where we define βαM
by:

βαM
(det(αM )m, n) := αM (m,n). (1.1.4)

There is a natural right action of GL2(Z/MZ) on the set of Γ(M)naive-structures on

E/S:

αM 7→ αM ◦ γ for γ ∈ GL2(Z/MZ). (1.1.5)

It is easy to see that

det(αM ◦ γ) = det(αM )det(γ); and (1.1.6)

βαM◦γ(ζ
m, n) = βαM

(ζdet(γ)
−1(am+bn), cm+ dn) (1.1.7)

if γ =
(
a b
c d

)
. Especially, βαM◦γ = βαM

if and only if γ is of the form
(
a 0
0 1

)
.

We can consider the relatively representable moduli problems [Γ(M)naive] and

[Γ(M)arith] in the sense of Katz and Mazur [KM, (4.2), (4.13)]. [Γ(M)naive] is finite

and étale over (Ell/Z[1/M ]), and [Γ(M)arith] is affine and étale over (Ell) in the sense

of [KM, (4.5)]. When M ≥ 3, they are rigid [KM, (4.4)], and these moduli problems

are represented by an affine and smooth curve M(Γ(M)naive) over Z[1/M ] and an affine

and smooth curve M(Γ(M)arith) over Z, respectively [KM, Corollary 4.7.1]. (1.1.3)

shows that M(Γ(M)naive) = M(Γ(M)arith) ⊗Z Z[1/M, ζM ], where ζM ∈ Q is a primi-

tive M -th root of unity. Also, it follows from (1.1.7) and the subsequent remark that

M(Γ(M)arith)⊗ZZ[1/M ] is the quotient ofM(Γ(M)naive) by the subgroup ofGL2(Z/MZ)
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consisting of matrices of the form
(
a 0
0 1

)
. Similarly for the “simultaneous moduli prob-

lems” (1.1.1), (iv). Especially, for M ≥ 3, M(Γ(M)arith ∩Γ0(T )) is an affine and smooth

curve over Z[1/T ], and another important property is that it is geometrically irreducible

over Z[1/T ].

Definition (1.1.8). A triple (E,ω, βM ) consisting of a Γ(M)arith-curve (E, βM )

over S and a nowhere-vanishing invariant differential ω on E/S is called a Γ(M)arith-test

object over S. Similarly for other moduli problems.

1.2. Relation with isogenies.

Let M be, as in 1.1, a positive integer. In this subsection, we assume that we are

given elliptic curves E and F over S, and an isogeny over S

π : E → F with its degree deg(π) prime to M . (1.2.1)

If αM is a Γ(M)naive-structure on E, then π ◦ αM : Z/MZ × Z/MZ ∼→ F [M ]

is obviously a Γ(M)naive-structure on F . We have eM,F

(
π ◦ αM

(
1
0

)
, π ◦ αM

(
0
1

))
=

eM,E

(
αM

(
1
0

)
, αM

(
0
1

))deg(π)
, i.e.

det(π ◦ αM ) = det(αM )deg(π). (1.2.2)

On the other hand, when βM is a Γ(M)arith-structure on E, π ◦ βM may not be

a Γ(M)arith-structure on F , since the second condition in (1.1.1), (ii) does not hold in

general.

Definition (1.2.3). With the notation as above, we define

(π ◦ βM )∼ : µM × Z/MZ ∼→ F [M ] by :

(π ◦ βM )∼(ζ, n) := π ◦ βM (ζdeg(π)
−1

, n).

(Here, of course, deg(π)−1 is the inverse of deg(π) ∈ (Z/MZ)×.)

It is easy to check that (π ◦ βM )∼ is in fact a Γ(M)arith-structure.

Lemma (1.2.4). Assume that S is a Z[1/M ]-scheme, and we are given a Γ(M)naive-

structure αM on E/S. Then, using the notation (1.1.4), we have

(π ◦ βαM
)∼ = βπ◦αM

.

Proof. We have π ◦ αM (m,n) = βπ◦αM
(det(π ◦ αM )m, n) by (1.1.4), and this

is equal to βπ◦αM (det(αM )mdeg(π), n) by (1.2.2). On the other hand the left hand

side is also equal to π ◦ βαM
(det(αM )m, n) by (1.1.4) again, and this is equal to

(π ◦ βαM
)∼(det(αM )mdeg(π), n) by the above definition. □

Corollary (1.2.5). Under the same situation, the following diagram commutes :
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E
π−−−−→ F

βαM

x xβπ◦αM

µM × Z/MZ −−−−−−→
deg(π)×id

µM × Z/MZ. □

Next suppose that the degree of the isogeny π : E → F is prime to T . Then π

induces an isomorphism E[T ]
∼→ F [T ] of group schemes over S. Thus if CT is a Γ0(T )-

structure on E, we can consider its image π(CT ) by this isomorphism, which defines a

Γ0(T )-structure on F .

1.3. Γ(l∞)naive-structures and Γ(l∞)arith-structures.

For our purpose, it is convenient to consider also the following variants of Γ(M)naive-

and Γ(M)arith-structures. We fix a prime number l.

Definition (1.3.1). Let E be an elliptic curve over S. By definition, a Γ(l∞)naive-

structure αl∞ = (αln)n≥1 on E/S is a system of Γ(ln)naive-structures αln on E/S for

which the following diagram commutes for all m ≥ n:

Z/lmZ× Z/lmZ αlm−−−−→
∼

E[lm]

canon.

y ylm−n

Z/lnZ× Z/lnZ ∼−−−−→
αln

E[ln].

We define a Γ(l∞)arith-structure βl∞ = (βln)n≥1 similarly as a compatible system of

Γ(ln)arith-structures.

Thus if we define the projective systems of finite flat group schemes by
Zl := (Z/lnZ)n≥1,

Zl(1) := (µln)n≥1,

T l(E) := (E[ln])n≥1

(1.3.2)

(with obvious transition morphisms), a Γ(l∞)naive-structure (resp. a Γ(l∞)arith-structure)

on E/S is an isomorphism αl∞ : Zl × Zl
∼→ T l(E) (resp. βl∞ : Zl(1) × Zl

∼→ T l(E)) of

projective systems over S. (When l is invertible in S, it may be also considered as an

isomorphism of smooth Zl-sheaves on the étale site of S.)

From now on, we assume that l is invertible in S. The pairings eln,E on E[ln] induce

a pairing

el∞,E : T l(E)× T l(E)→ Zl(1). (1.3.3)

If αl∞ is a Γ(l∞)naive-structure on E/S, its determinant is defined by

det(αl∞) := (det(αln))n≥1. (1.3.4)

Also, if αl∞ = (αln)n≥1 is a Γ(l∞)naive-structure on E/S, we can define a Γ(l∞)arith-
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structure βαl∞ by

βαl∞ := (βαln
)n≥1 (1.3.5)

cf. (1.1.4). It is obtained from αl∞ and the isomorphism Zl
∼→ Zl(1) determined by the

projective system det(αl∞) of primitive ln-th roots of unity.

Lemma (1.3.6). Let π : E → E′ be an isogeny of elliptic curves (whose degree

need not be prime to l ) over a Z[1/l]-scheme S. Suppose that we are given Γ(l∞)naive-

structures αl∞ and α′
l∞ on E and E′, respectively, and a matrix g ∈ GL2(Ql) ∩M2(Zl)

for which the following diagram commutes :

Zl × Zl
αl∞−−−−→
∼

T l(E)

g

y yT l(π)

Zl × Zl
∼−−−−→

α′
l∞

T l(E
′).

Then we have

det(αl∞)deg(π) = det(α′
l∞)det(g).

(Here we have used the multiplicative notation for Zl(1).)

Proof. The values det(αl∞) and det(α′
l∞) are constant on each connected com-

ponent of S. We are thus reduced to the case where S is the spectrum of an algebraically

closed field of characteristic different from l, and may replace Zl (resp. T l(E)) in the

above diagram by the “genuine” Zl (resp. the usual Tate module Tl(E)).

Write α and e (resp. α′ and e′) for αl∞ and el∞,E (resp. α′
l∞ and el∞,E′) for simplicity.

Then since e′(π(x), π(y)) = e(x, y)deg(π), we have

det(α)deg(π) = e′
(
π ◦ α

(
1

0

)
, π ◦ α

(
0

1

))
= e′

(
α′ ◦ g

(
1

0

)
, α′ ◦ g

(
0

1

))
= det(α′)det(g).

□

Corollary (1.3.7). Let the notation be as in (1.3.6). If deg(π) = det(g), we have

det(αl∞) = det(α′
l∞). □

Definition (1.3.8). Let M and T be relatively prime positive integers, and l a

prime number not dividing MT . A Γ(l∞M)arith ∩ Γ0(T )-curve (resp. a Γ(l∞M)arith ∩
Γ0(T )-test object) is a triple (E, βl∞M , CT ) (resp. a quadruple (E,ω, βl∞M , CT )). Here,

βl∞M = (βl∞ , βM ) is a pair of Γ(l∞)arith- and Γ(M)arith-structures on E, and other

symbols have the same meaning as in (1.1.8). Similarly for the Γ(l∞)naive-structure.
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2. Modular forms.

2.1. Algebraic theory.

We recall basic terminologies on the algebraic theory of modular forms from Katz

[Ka2, Chapter II]. As in Section 1, we fix positive integersM and T such that (M,T ) = 1,

and set

ΓM,T := Γ(M)arith ∩ Γ0(T ) (2.1.1)

for the simplicity of notation. Recall (1.1.8) that a ΓM,T -test object (E,ω, βM , CT ) over a

scheme S consists of an elliptic curve E over S, a nowhere-vanishing invariant differential

ω on E/S, and a Γ(M)arith-structure (resp. a Γ0(T )-structure) βM (resp. CT ) on E/S.

Definition (2.1.2). Let B be a Z[1/T ]-algebra, and k an integer. A ΓM,T -modular

form F of weight k over B is a rule which assigns an element F (E,ω, βM , CT ) ∈ B′ to

every ΓM,T -test object (E,ω, βM , CT ) over a B-algebra B′, which satisfies the following

two conditions:

(i) Let (E,ω, βM , CT ) over B′ be as above. If φ;B′ → B′′ is a homomorphism of

B-algebras, and (E,ω, βM , CT )⊗B′ B′′ ∼= (E′, ω′, β′
M , C ′

T ) over B
′′, then

F (E′, ω′, β′
M , C ′

T ) = φ(F (E,ω, βM , CT )).

(ii) For any λ ∈ B′×,

F (E, λ−1ω, βM , CT ) = λkF (E,ω, βM , CT ).

The B-module consisting of all such forms is denoted by Rk(B,ΓM,T ).

When B is also a Z[1/M ]-algebra, one can define the notion of Γ(M)naive ∩ Γ0(T )-

modular forms of weight k over B in the same way.

To consider the Tate curve and the q-expansions of modular forms, we prefer to use

q1/M instead q in [Ka2] to be consistent with the classical terminology. We thus let q1/M

be a variable and set q = (q1/M )M , and consider the Tate curve Tate(q) = “Gm/qZ” over

Z((q)). We remind of us that there is a canonical isomorphism T̂ate(q) ∼= Ĝm of formal

Lie groups over Z((q)). On the other hand, for any positive integer n, Tate(q)[n] “is”

Gm/qZ[n]. Precisely, Tate(q)[n] is isomorphic to the group scheme T [n] in [KM, (8.7)],

and T [n](R) = (R×/qZ)[n] for any Z((q))-algebra R. Thus for r ∈ R× with rn ∈ qZ, we

use the symbol r “mod qZ” to denote the corresponding element in Tate(q)[n](R). Over

Z((q1/M )), Tate(q) carries the following structures:

• canonical invariant differential ωcan = “dx/x”, where x is the standard

parameter on Gm,

• canonical Γ(M)arith-structure βM,can : µM × Z/MZ ∼→ Tate(q)[M ]

satisfying βM,can(ζ, n) = ζqn/M “mod qZ”,

• canonical Γ0(T )-structure CT,can = µT “mod qZ”.

(2.1.3)
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We can then define the q-expansion map

Rk(B,ΓM,T )→ B ⊗Z Z((q1/M )) ⊆ B((q1/M )) (2.1.4)

F 7→ F ((Tate(q), ωcan, βM,can, CT,can)B) =: Fq,

where the subscript “B” indicates the base extension from Z((q1/M )) to B ⊗Z
Z((q1/M )); but when there is no fear of confusion, we express Fq simply by

F (Tate(q), ωcan, βM,can, CT,can). The usual q-expansion principle (cf. [Ka2, 2.2]) holds

for this map thanks to the geometric irreducibility of M(ΓM,T ) over Z[1/T ]; cf. 1.1.

2.2. Situation over C.
As for classical modular forms over C, we follow the formulation of Katz [Ka2,

Chapter I], which we now recall.

Set

GL+ := {(ω1, ω2) ∈ C2 | Im(ω2/ω1) > 0}. (2.2.1)

Via the map (ω1, ω2) 7→ L = Zω1 + Zω2, GL+ corresponds bijectively with the set of

lattices in C with oriented bases.

The group SL2(Z) acts on GL+ from the right, and

L := GL+/SL2(Z) (2.2.2)

is the set of lattices in C. To L ∈ L corresponds a pair (C/L, dz) where z is a variable on

C, to which then corresponds a pair (E,ω) consisting of an elliptic curve E over C and a

nowhere-vanishing invariant differential ω on it. Precisely, the Weierstrass theory gives

an isomorphism C/L ∼→ E(C), through which dz and ω correspond. This establishes

a bijection between L and the set of isomorphism classes of (C/L, dz), and also that

of (E,ω) over C. In what follows, we will sometimes identify (C/L, dz) and (E,ω),

especially C/L and E(C), when their correspondence is obvious.

Set

a(L) :=
1

2i
(ω1ω2 − ω1ω2) with (ω1, ω2) an oriented basis of L (2.2.3)

where the bar indicates the complex conjugation. Then the eM -pairing on E[M ] =

(1/M)L/L is given by

eM

(
ℓ1
M

,
ℓ2
M

)
= exp

(
π

Ma(L)
(ℓ1ℓ2 − ℓ1ℓ2)

)
. (2.2.4)

C× acts on GL+ as λ : (ω1, ω2) 7→ (λω1, λω2), and we have an isomorphism

GL+/C× ∼→ H := {τ ∈ C | Im(τ) > 0} (2.2.5)

by (ω1, ω2) 7→ τ = ω2/ω1. The action of γ =
(
a b
c d

)
∈ SL2(Z) on the left hand side com-

mutes with the action τ 7→ (dτ + b)/(cτ +a) on the right hand side via this isomorphism.

A function F : GL+ → C is said to have weight k ∈ Z if it satisfies
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F (λω1, λω2) = λ−kF (ω1, ω2) for all λ ∈ C×. (2.2.6)

If a holomorphic function F : GL+ → C is invariant under the action of
(
1 M
0 1

)
, i.e.

F (ω1, ω2+Mω1) = F (ω1, ω2), then the function on H, τ 7→ F (2πi, 2πiτ) has the Fourier

expansion

F (2πi, 2πiτ) =
∑
n∈Z

anq
n/M with q1/M = e2πiτ/M . (2.2.7)

If moreover F has weight k, F is uniquely determined by this q-expansion:

F (ω1, ω2) =

(
2πi

ω1

)k∑
n∈Z

anexp

(
2πiω2

Mω1
· n
)
. (2.2.8)

Definition (2.2.9). Let Γ(M) and Γ0(T ) be the usual congruence subgroups of

SL2(Z). A holomorphic function F : GL+ → C is called a modular form of weight k on

Γ(M) ∩ Γ0(T ) if it satisfies:
• F is invariant under Γ(M) and Γ0(T ),

• F has weight k,

• Every transform of F by an element of SL2(Z) has the q-expansion (2.2.7)

in C((q1/M )).

Proposition (2.2.10) ([Ka2, 2.4]). For an element F of Rk(C,ΓM,T ), define the

function F an on GL+ by :

F an(ω1, ω2) := F

(
C

Zω1 + Zω2
, dz, β(e2πia/M , b) =

aω1 + bω2

M
,C =

⟨ω1

M

⟩)
.

Then the correspondence F 7→ F an gives an isomorphism of Rk(C,ΓM,T ) to the space of

modular forms of weight k on Γ(M) ∩ Γ0(T ) in the sense of (2.2.9).

This isomorphism preserves q-expansions : the q-expansion (2.2.7) of F an(2πi, 2πiτ)

coincides with F ((Tate(q), ωcan, βM,can, CT,can)C). □

2.3. Modular forms on Γ(l∞M)arith ∩ Γ0(T ).

We fix a prime number l not dividing MT .

From now on, we fix ln-th roots q1/l
nM of q1/M in such a way that (q1/l

mM )l
m−n

=

q1/l
nM for all m ≥ n. Then the Tate curve Tate(q) considered over Z((q1/lnM )) carries,

in addition to the data (2.1.3), the canonical Γ(ln)arith-structure (to be precise, with

respect to this choice)

βln,can : µln × Z/lnZ ∼→ Tate(q)[ln]; (η, b) 7→ ηqb/l
n

“mod qZ” (2.3.1)

and further over lim−→n
Z((q1/lnM )), the canonical Γ(l∞)arith-structure

βl∞,can := (βln,can)n≥1. (2.3.2)
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By means of (2.3.1), with βlnM,can = (βln,can, βM,can), we can define the injective q-

expansion map

Rk(B,ΓlnM,T )→ B ⊗Z Z((q1/l
nM )) (2.3.3)

as in (2.1.4).

When m ≥ n, there is an obvious correspondence (ΓlmM,T -test objects over S)→
(ΓlnM,T -test objects over S) for any Z[1/T ]-scheme S. Thus for any Z[1/T ]-algebra B,

we obtain a homomorphism

Rk(B,ΓlnM,T )→ Rk(B,ΓlmM,T ). (2.3.4)

The q-expansion maps clearly commute with this map

Rk(B,ΓlnM,T ) −−−−→ B ⊗Z Z((q1/lnM ))y yincl.

Rk(B,ΓlmM,T ) −−−−→ B ⊗Z Z((q1/lmM ))

(2.3.5)

and especially (2.3.4) is injective.

Definition (2.3.6). Let B be a Z[1/T ]-algebra. A modular form F over B of

weight k on

Γl∞M,T := Γ(l∞M)arith ∩ Γ0(T )

is a rule which assigns to each Γl∞M,T -test object (1.3.8), (E,ω, βl∞M , CT ) over a B-

algebra B′, an element F (E,ω, βl∞M , CT ) ∈ B′ satisfying the same properties as (2.1.2),

(i) and (ii). We denote by Rk(B,Γl∞M,T ) the B-module of all such forms.

We have a natural homomorphism

lim−→
n

Rk(B,ΓlnM,T )→ Rk(B,Γl∞M,T ) (2.3.7)

in a similar manner as (2.3.4).

Lemma (2.3.8). The above homomorphism (2.3.7) is an isomorphism.

Proof. Giving an element F ∈ Rk(B,ΓlnM,T ) is equivalent to giving a rule

f which assigns to each ΓlnM,T -curve (E, βlnM , CT ) over a B-scheme S an element

f(E, βlnM , CT ) ∈ H0(S, ω⊗k) compatibly with Cartesian squares, where ω is the direct

image of Ω1
E/S to S. The correspondence F ↔ f is given by

F (E,ω, βlnM , CT )ω
⊗k = f(E, βlnM , CT )

cf. [Ka1, 1.1, 1.2]. From this point of view, when lnM ≥ 3 so that the ΓlnM,T -moduli

problem is representable, the “evaluation at the universal object” gives a canonical iso-

morphism



347(15)

µ-type subgroups of J1(N) and application to cyclotomic fields 347

Rk(B,ΓlnM,T ) ∼= H0(M(ΓlnM,T )/B , ω
⊗k
n )

where ωn is defined as above for M(ΓlnM,T )/B and the universal elliptic curve over it.

On the other hand, for m ≥ n, the natural morphisms M(ΓlmM,T ) → M(ΓlnM,T )

are affine, and there is the projective limit

M(Γl∞M,T ) := lim←−
n

M(ΓlnM,T )

in the category of Z[1/T ]-schemes. (Explicitly it is Spec(lim−→n
An) if M(ΓlnM,T ) =

Spec(An).) This scheme represents the functor

(schemes/Z[1/T ])→ (isomorphism classes of Γl∞M,T -curves).

Therefore for the same reason as above, we have an isomorphism

Rk(B,Γl∞M,T ) ∼= H0(M(Γl∞M,T )/B , ω
⊗k
∞ )

with the obvious definition of ω∞. Our claim is then equivalent to the isomorphy of

lim−→
n

H0(M(ΓlnM,T )/B , ω
⊗k
n )→ H0(M(Γl∞M,T )/B , ω

⊗k
∞ )

which is clear. □

Corollary (2.3.9). We have the injective q-expansion map

Rk(B,Γl∞M,T )→ B ⊗Z lim−→
n

Z((q1/l
nM )). □

By (2.3.8), we may consider Rk(B,ΓlnM,T ) as a subspace of Rk(B,Γl∞M,T ). This

allows us to apply the operators “ | g” studied below (cf. (3.3.6)) for elements of

Rk(B,ΓlnM,T ) (though the image may not have the same level).

3. Some operators on test objects and modular forms.

3.1. Nebentypus.

Each element (a, b) ∈ (Z/MZ)× × (Z/MZ)× determines an automorphism of µM ×
Z/MZ by the rule (ζ, n) 7→ (ζa, bn). If βM is a Γ(M)arith-structure on an elliptic curve

E over S, βM ◦ (a, b) : µM ×Z/MZ ∼→ E[M ] is a Γ(M)arith-structure on E/S if and only

if b = a−1. We thus set

ha := (a, a−1) for a ∈ (Z/MZ)× (3.1.1)

and make the following:

Definition (3.1.2). When (E,ω, βM , CT ) is a ΓM,T -test object, we set

ha(E,ω, βM , CT ) := (E,ω, βM ◦ ha, CT ).
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When F ∈ Rk(B,ΓM,T ), we define F |ha ∈ Rk(B,ΓM,T ) by

(F |ha)(E,ω, βM , CT ) := F (ha(E,ω, βM , CT )).

If ρ : (Z/MZ)× → B× is a homomorphism, we say that F ∈ Rk(B,ΓM,T ) has the

character ρ if

F |ha = ρ(a)F for all a ∈ (Z/MZ)×.

3.2. Degeneracy operators.

Let d be a positive integer prime to MT . Consider a ΓM,dT -test object

(E,ω, βM , CdT ) over a Z[1/dT ]-scheme S. Here, CdT is a cyclic subgroup scheme of

order dT of E, and hence we have CdT = CT ×S Cd with CT = CdT [T ] and Cd = CdT [d].

Definition (3.2.1). With the notation as above, we define

[d]M,T = [d] : (ΓM,dT -test objects over S)→ (ΓM,T -test objects over S),

[d](E,ω, βM , CdT ) = (E′, ω′, β′
M , C ′

T )

as follows:

• E′ := E/Cd with π : E → E′ the quotient morphism,

• ω′ := π̌∗ω, where π̌ is the isogeny dual to π,

• β′
M := (π ◦ βM )∼, cf. (1.2.3),

• C ′
T := π(CT ).

When B is a Z[1/dT ]-algebra, we define

Rk(B,ΓM,T )→ Rk(B,ΓM,dT )

F 7→ F | [d]M,T = F | [d]

by (F | [d])(E,ω, βM , CdT ) := F ([d](E,ω, βM , CdT )).

Proposition (3.2.2). Let F be an element of Rk(B,ΓM,T ) with B a Z[1/dT ]-
algebra. Let

Fq = F ((Tate(q), ωcan, βM,can, CT,can)B) =
∑
n

anq
n/M

be the q-expansion (2.1.4) of F . Then we have

(F | [d])q =
∑
n

anq
dn/M .

Proof. We consider the effect of [d] on (Tate(q), ωcan, βM,can, CdT,can) over

Z[1/dT ]((q1/M )).

First, Tate(q)/Cd,can = Tate(q)/µd = Tate(qd), the isogeny π : Tate(q) → Tate(qd)

corresponds to the d-th power homomorphism on Gm, and π̌∗ωcan = ωcan on Tate(qd),

cf. [Ka1, pages Ka-22 and Ka-23].



349(17)

µ-type subgroups of J1(N) and application to cyclotomic fields 349

Then, since π ◦ βM,can(η, b) = ηdqdb/M “mod qdZ”, it follows from the definition

(1.2.3) that (π ◦ βM,can)
∼(η, b) = ηqbd/M “mod qdZ”, i.e. (π ◦ βM,can)

∼ = βM,can on

Tate(qd). It is clear that π(CT,can) = CT,can on Tate(qd).

Therefore, if φd : Z[1/dT ]((q1/M ))→ Z[1/dT ]((q1/M )) is the Z[1/dT ]-algebra homo-

morphism sending q1/M to qd/M , the quadruple computed above is the base extension of

(Tate(q), ωcan, βM,can, CT,can) by φd. Our claim follows from the property (2.1.2), (i). □

Corollary (3.2.3). Let d and d′ be positive integers prime to MT . Then, for any

Z[1/dd′T ]-algebra B, the following diagram commutes

Rk(B,ΓM,T )
|[d]−−−−→ Rk(B,ΓM,dT )

|[d′]

y y|[d′]

Rk(B,ΓM,d′T ) −−−−→
|[d]

Rk(B,ΓM,dd′T )

and the composites of the consecutive arrows in fact coincide with [dd′].

Proof. This follows from (3.2.2) and the q-expansion principle. □

3.3. Action of GL2(Ql) and its subgroup G(l).

We return to the situation considered in 1.3 and 2.3.

Lemma (3.3.1). Let (E,αl∞) be a Γ(l∞)naive-curve over a Z[1/l]-scheme S. For a

matrix g ∈ GL2(Ql)∩M2(Zl), there is an elliptic curve E′/S, a Γ(l∞)naive-structure α′
l∞

on it, and an S-isogeny π : E → E′ whose degree is a power of l, making the following

diagram commutative :

Zl × Zl
αl∞−−−−→
∼

T l(E)

g

y yT l(π)

Zl × Zl
∼−−−−→

α′
l∞

T l(E
′).

The triple (E′, α′
l∞ , π) is unique up to canonical isomorphisms over S.

Proof. Let Ql/Zl (resp. E(l)) be the constant l-divisible (Barsotti–Tate) group of

height one (resp. the l-divisible group attached to E). Then giving a Γ(l∞)naive-structure

αl∞ on E/S, defined as an isomorphism of projective systems in (1.3.1), is equivalent

to giving an isomorphism of l-divisible groups Ql/Zl × Ql/Zl
∼→ E(l) over S which we

denote by the same symbol αl∞ . Our claim is then equivalent to the existence of the

following commutative diagram for the l-divisible groups over S:

Ql/Zl ×Ql/Zl
αl∞−−−−→
∼

E(l)

g

y yπ

Ql/Zl ×Ql/Zl
∼−−−−→ E′(l).

(∗∗)
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Now given g, g−1(Zl×Zl)/(Zl×Zl) determines a finite subgroup scheme Fg of E/S

of order a power of l via αl∞ . If we set E′ := E/Fg and let π : E → E′ be the quotient

morphism, there is the unique isomorphism at the bottom horizontal arrow making the

diagram (∗∗) commutative, which gives α′
l∞ .

Conversely, if we have the commutative diagram in our claim, π, whose degree is

assumed to be a power of l, must be the quotient morphism by Fg, and the Γ(l∞)naive-

structure α′
l∞ is uniquely determined by π. □

With the above notation, we write g(E,αl∞) for (the isomorphism class of) (E′, α′
l∞).

Corollary (3.3.2). Let g and g′ be two elements of GL2(Ql)∩M2(Zl). Then we

have

g′(g(E,αl∞)) ∼= (g′g)(E,αl∞).

This action of the semigroup GL2(Ql)∩M2(Zl) uniquely extends to the action of GL2(Ql)

on the set of isomorphism classes of Γ(l∞)naive-curves over S.

Proof. Let us denote by F1(S) the set of isomorphism classes of Γ(l∞)naive-curves

over S. The uniqueness in (3.3.1) implies that (E,αl∞) 7→ g(E,αl∞) in fact gives the

action of GL2(Ql)∩M2(Zl) on F1(S). But l =
(
l 0
0 l

)
acts trivially on F1(S), and hence

the latter claim follows. □

Remark (3.3.3). Let F2(S) be the set of isomorphism classes of the pair consisting

of an elliptic curve up to isogeny of l-power degree, E ⊗ Z[1/l], and an isomorphism of

Ql-sheaves Ql
×Q

l

∼→ (the Ql-sheaf associated with T l(E)) on the étale site of S. Then

according to Deligne(’s argument) [D, Corollaire 3.5], the natural map F1(S) → F2(S)

is bijective. The action of GL2(Ql) on F1(S) we have just described is nothing but the

one corresponding to the obvious action on F2(S). We have preferred the above rather

elementary description.

We now choose and fix a system (ζln)n≥1 ⊂ Q×
of primitive ln-th roots of unity

satisfying ζlln+1 = ζln for all n ≥ 1. Let S be a Z[1/l, ζl∞ ] := Z[1/l, ζln (n ≥ 1)]-scheme.

The choice of (ζln)n≥1 determines isomorphisms µln
∼= Z/lnZ (ζln ↔ 1 mod ln) and

Zl(1)
∼= Zl over S. For an elliptic curve E/S, we identify a Γ(l∞)arith-structure βl∞ with

a Γ(l∞)naive-structure αl∞ of determinant (ζln)n≥1 by means of this latter isomorphism,

cf. (1.3.5), and similarly for Γ(ln)arith- and Γ(ln)naive-structures. Set

G(l) := {g ∈ GL2(Ql) | det(g) is a power of l}. (3.3.4)

Let g be an element of G(l) ∩ M2(Zl). If (E,αl∞) is a Γ(l∞)naive-curve over S and

g(E,αl∞) = (E′, α′
l∞), it follows from (1.3.7) that det(αl∞) = det(α′

l∞). We can therefore

consider the action of G(l) on the set of isomorphism classes of Γ(l∞)arith-curves over S

via the above identification which we write as (E, βl∞) 7→ g(E, βl∞).

Now let M and T be relatively prime positive integers, and assume that l does not

divide MT . Let S be a Z[1/lT, ζl∞ ]-scheme.
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Proposition (3.3.5). Let the notation and the assumption be as above. Then there

is the unique action of G(l) on the set of isomorphism classes of Γl∞M,T -test objects over

S (cf. (1.3.8)), described as follows : Let X = (E,ω, βl∞ , βM , CT ) be such an object. Let

g be an element of G(l)∩M2(Zl), and g(E, βl∞) = (E′, β′
l∞) with the quotient morphism

π : E → E′. Then we have

gX := (E′, π̌∗ω, β′
l∞ , (π ◦ βM )∼, π(CT )).

Proof. Take g, g′ ∈ G(l)∩M2(Zl). For (E, βl∞), let (E′, β′
l∞) and π : E → E′ be

as above, and define g′(E′, β′
l∞) = (E′′, β′′

l∞) and π′ : E′ → E′′ similarly. To show that

g′(gX) ∼= (g′g)X, the only non-obvious point is the relation

(π′ ◦ (π ◦ βM )∼)∼ = ((π′ ◦ π) ◦ βM )∼

which follows from the computation

(π′◦(π◦βM )∼)∼(η, b)
(1.2.3)
= π′◦(π◦βM )∼(ηdeg(π

′)−1

, b)
(1.2.3)
= (π′◦π)◦βM (ηdeg(π

′◦π)−1

, b).

When g =
(
la 0
0 la

)
(a ≥ 0), π : E → E′ = E is multiplication by la so that

(π ◦ βM )∼(η, b) = laβM (ηl
−2a

, b) = βM ◦ hl−a(η, b)

(cf. 3.1.1). We therefore have(
la 0

0 la

)
(E,ω, βl∞ , βM , CT ) = (E, laω, βl∞ , βM ◦ hl−a , CT ).

This action of
(
la 0
0 la

)
is bijective on the set of isomorphism classes of Γl∞M,T -test objects

over S (in which l is invertible). We can thus extend the action of G(l) ∩M2(Zl) to the

whole group G(l). □

Definition (3.3.6). Let B be a Z[1/lT, ζl∞ ]-algebra. For F ∈ Rk(B,Γl∞M,T )

(cf. (2.3.6)) and g ∈ G(l), we define F | g ∈ Rk(B,Γl∞M,T ) by

(F | g)(X) := F (gX)

for all Γl∞M,T -test objects X over B-algebras.

Actually, in our later applications, we only need the action of the following matrices

in G(l) with i, j ∈ Z:

(
la 0

0 la

)
which we have already described,

ar,i :=

(
1 −iM
0 lr

)
; and Ar,i := l−rar,i =

(
1/lr −iM/lr

0 1

)
,

br,j :=

(
lr −jM
0 lr

)
; and Br,j := l−rbr,j =

(
1 −jM/lr

0 1

)
.

(3.3.7)
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Proposition (3.3.8). Let F be an element of Rk(B,Γl∞M,T ) with its q-expansion

Fq =
∑

n anq
n/lcM for some positive integer c. With the same notation as in (3.3.6) and

(3.3.7), we have

(F |Ar,i)q =
∑
n

an(ζ
i
lc+rq1/l

c+rM )n,

(F |Br,j)q =
∑
n

an(ζ
j
lc+rq

1/lcM )n.

Proof (cf. [Ka1, 1.11]). We give the proof only for the second formula,

since the first one is similar. We consider the effect of Br,j on the Tate quintuple

(Tate(q), ωcan, βl∞,can, βM,can, CT,can) over lim−→m
Z[1/lT, ζl∞ ]((q1/l

mM )) =: R∞. Write

Br,j(Tate(q), ωcan, βl∞,can, βM,can, CT,can) = (E′, ω′, β′
l∞ , β′

M , C ′
T ).

Recall that βlm,can on Tate(q) is defined by (2.3.1), and we have identified µlm with

Z/lmZ by our chosen ζlm . Recall also that the action of l−r =
(
l−r 0

0 l−r

)
was described

in the proof of (3.3.5). Since b−1
r,j =

(
1/lr jM/l2r

0 1/lr

)
, we see from the proof of (3.3.1) that

E′ is the quotient by Hr,j := ⟨ζlr , ζjMl2r q1/l
r

“mod qZ”⟩.
The quotient of Tate(q) by ⟨ζlr “mod qZ”⟩ is isomorphic to Tate(ql

r

), and the quo-

tient homomorphism π1 : Tate(q)→ Tate(ql
r

) corresponds to the lr-th power homomor-

phism on Gm. The image of Hr,j by π1 is the subgroup ⟨ζjMlr q “mod ql
rZ”⟩, and the

quotient of Tate(ql
r

) by this subgroup is Tate(ζjMlr q). Let π2 : Tate(ql
r

) → Tate(ζjMlr q)

be the quotient homomorphism. We may therefore identify E′ = Tate(q)/Hr,j with

Tate(ζjMlr q), and the quotient morphism π with π2 ◦ π1. We have:

• π̌∗ωcan = π̌∗
2 ◦ π̌∗

1ωcan = π̌∗
2ωcan = lrωcan, so that ω′ = ωcan.

• β′
l∞ = (β′

lm)m≥1 is the unique compatible system of Γ(lm)arith-structures making

the following diagram commutative, for all m ≥ 1:

Z/lmZ× Z/lmZ ∼−−−−→ µlm × Z/lmZ
βlm,can−−−−−→

∼
Tate(q)[lm]

br,j

y y yπ

Z/lmZ× Z/lmZ ∼−−−−→ µlm × Z/lmZ ∼−−−−→
β′
lm

Tate(ζjMlr q)[lm].

The element (a, b) in the top left group is sent to ζal
r

lm qbl
r/lm “mod (ζjMlr q)Z” in the bottom

right group, if we go clockwise. So, one easily checks that β′
lm(η, b) := η(ζjMlm+rq

1/lm)b

“mod (ζjMlr q)Z” for m ≥ 1 give the desired system.

• Since

(π ◦ βM,can)
∼(η, b) = ηl

−r

ql
rb/M “mod (ζjMlr q)Z”

= ηl
−r

(ζjlrq
1/M )l

rb “mod (ζjMlr q)Z”,

we have
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β′
M (η, b) = η(ζjlrq

1/M )b “mod (ζjMlr q)Z”.

• We clearly have π(CT,can) = µT .

Now the Z[1/lT, ζl∞ ]-algebra automorphisms of Z[1/lT, ζl∞ ]((q1/l
mM )) sending

q1/l
mM to ζjlm+rq

1/lmM for m ≥ 1 give rise to an automorphism of the ring R∞. The

above argument shows that Br,j sends the Tate quintuple to the one obtained by the

base extension by this ring automorphism, and hence our conclusion follows. □

3.4. Hecke operator U(lr) on Rk(B,ΓM,lsT ).

Let M , T and l be as in the previous subsection. Let E be an elliptic curve over a

Z[1/lT ]-scheme S. If αls (resp. βls) is a Γ(ls)naive-(resp. a Γ(ls)arith-) structure on E/S,

we call Clm := αls(l
s−mZ/lsZ × {0}) (resp. βls(µlm)) the Γ0(l

m)-structure associated

with αls (resp. βls) for 1 ≤ m ≤ s. Via the correspondence βls 7→ Cls , we have a

q-expansion preserving injection

Rk(B,ΓM,lsT )→ Rk(B,ΓlsM,T ) (3.4.1)

as (2.3.4), for any Z[1/lT ]-algebra B. By means of this, we will consider Rk(B,ΓM,lsT )

as a subspace of Rk(B,ΓlsM,T ) or R
k(B,Γl∞M,T ).

We now consider the Hecke operators U(lr) for r ≥ 1 (which are well-known for

modular forms on Γ0(N) or Γ1(N)) on Rk(B,ΓM,lsT ) for s ≥ 1.

Let X = (E,ω, βM , ClsT ) be a ΓM,lsT -test object over a B-algebra B′. There is

a faithfully flat B′-algebra B′′ over which E admits a Γ(lr)naive-structure αlr whose

associated Γ0(l)-structure is ClsT [l]. The cyclic subgroups of Z/lrZ × Z/lrZ of order

lr which have trivial intersection with Z/lrZ× {0} (equivalently with lr−1Z/lrZ× {0})
are given by the subgroups

⟨(
iM
1

)⟩
, 0 ≤ i ≤ lr − 1; and note that these correspond

to subgroups a−1
r,i (Zl × Zl)/(Zl × Zl) of (1/lr)Z/Z × (1/lr)Z/Z in the notation (3.3.7).

Set Kr,i := αlr

(⟨(
iM
1

)⟩)
⊆ E[lr], Ei := E/Kr,i, and let πi : E → Ei be the quotient

homomorphism. We can then consider the ΓM,lsT -test object

Xi := (Ei, l
−rπ̌∗

i ω, (πi ◦ βM )∼ ◦ hlr , πi(ClsT )).

For F ∈ Rk(B,ΓM,lsT ), we define

(F |U(lr))(X) := l−r
lr−1∑
i=0

F (Xi). (3.4.2)

Proposition (3.4.3). Let the notation be as above. Then F |U(lr) belongs to

Rk(B,ΓM,lsT ). If F has the q-expansion Fq =
∑

n anq
n/M , we have

(F |U(lr))q =
∑
n

anlrq
n/M .

Proof. Set S := Spec(B′). The universal situation giving the above αlr is as

follows: Let [Γ0(l)] and [Γ(lr)naive] = [Γ(lr)] be as in [KM, (5.1)]. Then to the Γ0(l)-

structure ClsT [l] on E/S corresponds a section S → [Γ0(l)]E/S . Form the fibre product
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[Γ(lr)naive]E/S ×[Γ0(l)]E/S
S =: S̃ = Spec(B̃) with respect to the “associating the Γ0(l)-

structure” morphism [Γ(lr)naive]E/S → [Γ0(l)]E/S . There is the tautological Γ(lr)naive-

structure α̃lr on E/S̃, and the above αlr is the base extension of α̃lr by the unique

B-algebra homomorphism B̃ → B′′. We may thus take B̃ and α̃lr for B′′ and αlr .

Now S̃/S is a torsor under the group {g ∈ GL2(Z/lrZ) | g mod l is upper

triangular}. The value (3.4.2), a priori lying in B̃, is easily seen to be invariant under the

action of this group, and hence belongs to B′. It is straightforward to see that the rule

F |U(lr) thus obtained satisfies (2.1.2), (i) and (ii), so that it belongs to Rk(B,ΓM,lsT ).

On the other hand, we considered Rk(B,ΓM,lsT ) as embedded in Rk(B,Γl∞M,T ),

and it is further embedded into the bigger space Rk(B ⊗Z[1/lT ] Z[1/lT, ζl∞ ],Γl∞M,T ), in

the notation of the previous subsection. Being considered in this last space, we have

defined F |U(lr) as

F |U(lr) = l−r
lr−1∑
i=0

F |Ar,i

(cf. (3.3.5)–(3.3.7)), and hence our claim on the q-expansion follows from (3.3.8). □

4. CM test objects over C.

4.1. Preliminaries on imaginary quadratic fields.

In this section, we fix an imaginary quadratic field K, and denote by o its ring of

integers. We also fix a prime number l, and denote by

on := Z+ lno (4.1.1)

the order of conductor ln of K for n ≥ 0. Let In be the group of proper (fractional)

on-ideals, and Cln the group of proper on-ideal classes. If a is a proper on-ideal, we

denote by {a}n the class of a in Cln. We have the well-known formula

|Cln| = |Cl0| · ln| o× : o×n |−1

(
1−

(
K

l

)
l−1

)
for n ≥ 1. (4.1.2)

Here, (K/l) = +1,−1 or 0 according as l splits, remains prime or ramifies in K, respec-

tively.

Let K×
A be the idele group of K, and K×

∞ (resp. K×
A,0) its infinite (resp. finite) part.

For x ∈ K×
A and a prime number q, we denote by xq ∈ (K ⊗Q Qq)

× the q-component of

x. When a is a lattice in K and x ∈ K×
A , we let xa be the unique lattice in K such that

(xa)q = xqaq for all q, the subscript “q” for lattices meaning the completion at q. Thus,

if we let Ẑ be the profinite completion of Z and â := a⊗Z Ẑ, we have xa = xâ ∩K. We

have the canonical isomorphism

K×
A /K×

∞ô×n = K×
A,0/ô

×
n
∼= In by x 7→ xon (4.1.3)

which in turn induces

K×
A /K×

∞ô×nK
× ∼= Cln. (4.1.4)
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Denote by ∥ · ∥ the idele norm quasi-character of K×
A . For any n ≥ 0 and a = aon with

a ∈ K×
A,0, we can define its norm by

N(a) := ∥a∥−1. (4.1.5)

If n = 0, this is of course the usual norm, and N(a) = N(ao) in general.

When n and m are non-negative integers, we have the obvious commutative diagram

with exact horizontal lines

0 −−−−→ K×
∞ô×n+mK× −−−−→ K×

A −−−−→ Cln+m −−−−→ 0

incl.

y ∥∥∥ ypn+m
n

0 −−−−→ K×
∞ô×nK

× −−−−→ K×
A −−−−→ Cln −−−−→ 0.

(4.1.6)

It follows that the kernel of the natural homomorphism pn+m
n : Cln+m → Cln is canon-

ically isomorphic to K×
∞ô×nK

×/K×
∞ô×n+mK× ∼= o×n,l/o

×
n+m,lo

×
n , where as above the sub-

script “l” means the l-adic completion. When n ≥ 1, o×n = {±1}, and hence this group

is equal to o×n,l/o
×
n+m,l, and it has order lm.

It also follows from (4.1.3) that the kernel of the natural homomorphism In+m → In
is canonically isomorphic to o×n,l/o

×
n+m,l.

Proposition (4.1.7). Choose a complete set {e0, . . . , elm−1} of representatives of

o×n,l/o
×
n+m,l for fixed n ≥ 1 and m ≥ 0. Let a = aon be a proper on-ideal with a ∈ K×

A ,

and set ai := l−meiaon+m.

(1) (pn+m
n )−1({a}n) = {{a0}n+m, . . . , {alm−1}n+m}.

(2) ai contains a, and ai/a is a cyclic group of order lm for each i. Further, these

groups constitute all cyclic subgroups of K/a of order lm which have trivial intersection

with the cyclic subgroup aon−1/a of order l.

Proof. The first assertion is clear from (4.1.6).

It is easy to see that ai ⊇ a, and we further have

ai/a ∼= âi/â ∼= l−meiôn+m/ôn ∼= l−mon+m/on

which is cyclic of order lm. On the other hand,

aon−1/a ∼= aôn−1/aôn ∼= on−1/on ∼= Z/lZ.

Thus, if ai/a has non-trivial intersection with aon−1/a, we must have aon−1 ⊆ ai. This

implies that lmon−1 ⊆ on+m, which is impossible.

It is clear that ai/a ̸= ai′/a if i ̸= i′. Since there are exactly lm cyclic subgroups of

K/a of order lm that have trivial intersection with aon−1/a (cf. 3.4), the assertion (2)

follows. □

Let {w, 1} be a Z-basis of o so that on = Zlnw + Z. We consider {lnw, 1} also as a

Zl-basis of on,l = on ⊗Z Zl. In the following, we fix a positive integer M prime to l and

set
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en,i := 1 + ilnMw ∈ o×n,l for i ∈ Z. (4.1.8)

Proposition (4.1.9). Let the notation be as in (4.1.7).

(1) The elements en,i for 0 ≤ i ≤ lm − 1 form a complete set of representatives of

o×n,l/o
×
n+m,l. If we define ai from a = aon using ei = en,i as in (4.1.7), then ai,l is a free

Zl-module with basis {allnw, all−m(1 + ilnMw)}.
(2) en,i mod o×n+m,l depends only on i mod lm. When n ≥ m, we have an isomor-

phism of groups

o×n,l/o
×
n+m,l

∼→ Z/lmZ by en,i 7→ i.

Proof. (1) We first prove the second assertion. For this, it is enough to treat the

case al = 1. We thus want to show that

ai,l = l−men,ion+m,l = Zl(l
nw) + Zl(l

−m(1 + ilnMw)) =: bi,l.

The left hand side is a free Zl-module with a basis consisting of l−men,i and

l−men,i(l
n+mw) = lnw + il2nMw2. Since bi,l contains 1 and w2 = aw + b with a, b ∈ Z,

we see that ai,l ⊆ bi,l. But both ai,l and bi,l contain al as a submodule of index lm, and

hence ai,l = bi,l.

It follows from this that all ai,l (0 ≤ i ≤ lm − 1) are different, and hence en,i in the

same range are different mod o×n+m,l.

(2) Since

1 + ilnMw + ln+mc ≡ 1 + ilnMw mod o×n+m,l for any c ∈ ol,

en,i mod o×n+m,l depends only on i mod lm. If n ≥ m, it also follows that

(1 + ilnMw)(1 + i′lnMw) ≡ 1 + (i+ i′)lnMw mod o×n+m,l

for any i, i′ ∈ Z. □

4.2. CM test objects over C.
We let M and T be positive integers such that (M,T ) = 1 and (l,MT ) = 1, which

are subject to the following data on which our construction below depends.
• There is an integral ideal f of K such that (f, f) = 1 and M = N(f)

(so that all prime factors of M splits in K),

• There are prime ideals t1, . . . , tt of K and T = N(t1 · · · tt) is square free

(so that each ti splits or ramifies over Q).

(4.2.1)

Let a be a proper on-ideal for some n ≥ 0. In general, when b is an integral o-ideal

prime to l, we say that a is prime to b if ao is prime to b in the usual sense. We assume

that a is prime to M (i.e. prime to Mo) in the following. Thus aq = on,q = oq for all

prime numbers q dividing M , and we have a/Ma ∼= o/Mo canonically. Now to the lattice

a corresponds pairs
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(C/a, dz) and (E(a), ω∞(a)), (C/a = E(a)(C), dz ↔ ω∞(a)) (4.2.2)

as in 2.2, which we will often identify. Under the fixed data (4.2.1), we equip E(a) with

the following level structures:

We define the Γ(M)naive-structure

αM (a) : Z/MZ× Z/MZ ∼→ E(a)[M ] =
1

M
a/a (4.2.3)

as the inverse of the composite of canonical isomorphisms

1

M
a/a

∼→ a/Ma
∼→ o/Mo

∼→ o/f× o/f
∼→ Z/M × Z/M.

We define the Γ(M)arith-structure

βM (a) : µM × Z/MZ ∼→ E(a)[M ] by βM (a) := βαM (a), cf. (1.1.4). (4.2.4)

We define the Γ0(T )-structure by

CT (a) :=
t⊕

i=1

E(a)[ti,n] =
t⊕

i=1

t−1
i,na/a with ti,n := ti ∩ on. (4.2.5)

Finally, when n ≥ 1, we define the Γ0(l)-structure by

Cl(a) := aon−1/a, cf. (4.1.7). (4.2.6)

Definition (4.2.7). With the above notation, we define ΓM,T - or ΓM,lT -test ob-

jects over C respectively by{
X∞,M,T (a) := (E(a), ω∞(a), βM (a), CT (a)),

X∞,M,lT (a) := (E(a), ω∞(a), βM (a), CT (a), Cl(a)).

The tuples without differentials{
xM,T (a) := (E(a), βM (a), CT (a)),

xM,lT (a) := (E(a), βM (a), CT (a), Cl(a))

determine C-valued points of the modular curves M(ΓM,T ) and M(ΓM,lT ) (cf. 1.1).

Lemma (4.2.8). Let a be a proper on-ideal prime to M . Then we have

det(αM (o)) = det(αM (a))l
nN(a)

the norm N(a) being defined by (4.1.5).

Proof. We can express a as a = a1a
−1
2 with integral proper on-ideals a1 and a2

prime to M . From the inclusion of lattices
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o ⊇ on ⊆ a−1
2 ⊇ a

we have quotient homomorphisms

E(o)← E(on)→ E(a−1
2 )← E(a)

corresponding to the natural C/o← C/on etc. These homomorphisms commute with the

Γ(M)arith-structures αM (o), αM (on) etc. For example, if we denote by π the morphism

E(a)→ E(a−1
2 ), it has degree N(a1), and π ◦ αM (a) = αM (a−1

2 ) so that we have

det(αM (a−1
2 )) = det(αM (a))N(a1)

by (1.2.2); and similarly for other homomorphisms. Our result then follows. □

4.3. Effect of operators on CM test objects.

We keep the notation of 4.1 and 4.2. We study here the effect of operators considered

in Section 3. First we have

Lemma (4.3.1). Let a be a proper on-ideal prime to M with n ≥ 1.

i) For the ΓM,lT -test object X∞,M,lT (a) (cf. (4.2.7)) and the degeneracy operator [l]

(cf. (3.2.1)), we have

[l]X∞,M,lT (a) = (E(aon−1), lω∞(aon−1), βM (aon−1), CT (aon−1)),

the ΓM,T -test object X∞,M,T (aon−1) with the differential multiplied by l.

ii) Take a divisor s of t1 · · · tt and set S := N(s) and sn := s ∩ on. Then we have

[S]X∞,M,lT (a) = (E(s−1
n a), Sω∞(s−1

n a), βM (s−1
n a), ClT/S(s

−1
n a)),

the ΓM,lT/S-test object X∞,M,lT/S(s
−1
n a) with the differential multiplied by S.

Proof. We only give the proof for the first assertion, since the second can be

proved similarly.

Set [l]X∞,M,lT (a) = (E′, ω′, β′
M , C ′

T ). From the definition (4.2.6), we have E′ =

E(aon−1). Let π : E(a)→ E(aon−1) be the quotient homomorphism which has degree l.

Then we have

• ω′ = π̌∗ω∞(a) = lω∞(aon−1) since π∗ω∞(aon−1) = ω∞(a),

• β′
M = (π ◦ βM (a))∼

(1.2.4)
= βπ◦αM (a) = βM (aon−1),

and it is clear that C ′
T = CT (aon−1). □

We next consider Γ(l∞)naive- and Γ(l∞)arith-structures. In general let E = C/L be a

complex elliptic curve (not necessarily of CM type). Then we may consider a Γ(l∞)naive-

structure αl∞ on E (1.3.1) as an isomorphism of Zl×Zl to the l-adic Tate module Tl(E).

This is equivalent to fixing a Zl-basis {w1, w2} of Tl(E) = L⊗ZZl; αl∞(a, b) = aw1+bw2.

In the following, we take an oriented basis {w1, w2} of L itself and use it to define αl∞ .

The determinant of such αl∞ is (e2πi/l
u

)u≥1 (cf. (2.2.4)).
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By the action of the matrices given in (3.3.7), we obtain am,i(E,αl∞) =

Am,i(E,αl∞) =: (Em,i, αl∞,m,i) which can be described as follows: Em,i = C/Lm,i with

Lm,i the Z-lattice having basis {w1, l
−m(iMw1 + w2)}, and αl∞,m,i is defined by this

basis. Here, Lm,i and Em,i depend only on the residue class i of i mod lm, and hence we

write them Lm,i and Em,i. From the matrix relation Bm,jam,i = am,i+j , we obtain

Bm,j(Em,i, αl∞,m,i) = (Em,i+j , αl∞,m,i+j). (4.3.2)

We return to elliptic curves with CM. In what follows, we fix an integral basis {w, 1}
of o such that Im(w) < 0 (so that this basis is oriented), and take {lnw, 1} for the basis

of on. When n ≥ 1, non-zero principal on-ideals correspond bijectively with the set

K×/{±1} (c↔ con). We fix a set of representatives of K×/{±1}, which is stable under

multiplication by powers of l, and take the generator of each principal on-ideal (̸= (0))

from this set.

Now fix integers n ≥ 1 and m ≥ 0. We will consider elliptic curves attached to

proper on+m-ideals belonging to Ker(Cln+m → Cln). We first take a principal on-ideal

con ̸= (0) and equip with E(con) = C/con the Γ(l∞)naive-structure αl∞(con) defined by

the basis {clnw, c}. Starting with this, we can apply the above construction, and obtain

(E(am,i), αl∞(am,i)i) := am,i(E(con), αl∞(con)) (4.3.3)

for each i ∈ Z. Thus am,i has {clnw, cl−m(1 + iMlnw)} as its Z-basis, and αl∞(am,i)i is

the Γ(l∞)naive-structure given by this basis.

Lemma (4.3.4). Let en,i ∈ o×n,l be as in (4.1.8). Then we have

am,i = l−men,i(con+m) for all i ∈ Z.

Proof. We need to show that (am,i)q = (l−men,i(con+m))q for all prime numbers

q, the subscript “q” meaning, as before, the q-adic completion. For q ̸= l, the both sides

are equal to coq, while the l-adic completions agree by (4.1.9), (1). □

It follows that, since Ker(In+m → In) ∼= o×n,l/o
×
n+m,l (cf. 4.1), am,i for i ∈ Z/lmZ

constitute all proper on+m-ideals projecting to l−mcon ∈ In by (4.1.9). Then when c

moves over the fixed representatives of K×/{±1}, the ideals am,i range over all proper

on+m-ideals belonging to Ker(Cln+m → Cln). We have defined on each elliptic curve

E(am,i) the Γ(l∞)naive-structures αl∞(am,i)i for i ∈ i. (If i′ = i + alm ∈ i, we have

αl∞(am,i)i = αl∞(am,i)i′ ◦
(
1 −aM
0 1

)
.) All these Γ(l∞)naive-structures have the same

determinant (e2πi/l
u

)u≥1, and we may identify them with Γ(l∞)arith-structures, denoted

βl∞(am,i)i, via the basis (e2πi/l
u

)u≥1 of Zl(1). Similarly βl∞(con) on E(con) corresponds

to αl∞(con). Therefore, when c or am,i is prime to M , we can consider the Γl∞M,T -test

objects{
X∞,l∞M,T (con) := (E(con), ω∞(con), βl∞(con), βM (con), CT (con)),

X∞,l∞M,T (am,i)i := (E(am,i), ω∞(am,i), βl∞(am,i)i, βM (am,i), CT (am,i)).
(4.3.5)
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In Section 7, we will need the following rather technical result: Fix, aside from n

and m, an integer r such that 0 ≤ r ≤ m, and set{
i := jlm−r + k,

i′ := (j + d)lm−r + k

with integers j, d and k.

Lemma (4.3.6). Assume that r ≤ n. Then we have

en+m−r,dam,i = am,i′ .

When am,i is prime to M , we have

Br,dX∞,l∞M,T (am,i)i = X∞,l∞M,T (am,i′)i′ .

Proof. For the first assertion, in view of (4.3.4), we need to show that

en+m−r,den,i ≡ en,i′ mod o×n+m,l. But a simple computation shows that en+m−r,den,i =

en,i′ + l2n+m−rC with C ∈ ol. Since 2n+m− r ≥ n+m, our claim follows.

As for the second, if con and am,i are related as before, we see, as in the proof

of (4.3.1), that am,iX∞,l∞M,T (con) is equal to X∞,l∞M,T (am,i)i with the differential

ω∞(am,i) multiplied by lm, and similarly for am,i′X∞,l∞M,T (con). The conclusion follows

from the identity Br,dam,i = am,i′ . □

5. Eisenstein series and their special values.

5.1. Eisenstein series.

We first recall Katz’s description [Ka2, Chapter III] of the Eisenstein series on

Γ(M)arith.

Recall that lattices in C correspond bijectively with (isomorphism classes of) pairs

consisting of an elliptic curve and a nowhere-vanishing invariant differential over C
(cf. 2.2). In the following, we let the symbols L and (E,ω) correspond in this sense.

In general, for a function f : Z/MZ× Z/MZ→ C, we define

P−1f : µM × Z/MZ→ C (5.1.1)

by (P−1f)(ζ,m) :=
1

M

∑
a mod M

f(a,m)ζ−a

(the “inverse partial Fourier transform” of f , [Ka2, 3.2.2, 3.6.1]).

Define, for any function h : (1/M)L/L = E[M ]→ C, the k-th Epstein zeta function

ζk and its variant φk for k ∈ Z by
ζk(s;L, h) = ζk(s;E,ω, h) :=

∑
ℓ∈L

′ h(ℓ/M)

(ℓ/M)k|ℓ/M |2s−k
,

φk(s;L, h) = φk(s;E,ω, h) := Γ

(
s+

k

2

)(
a(L)

Mπ

)s−k/2

ζk(s;L, h)

(5.1.2)
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where the sum “
∑′

” is over ℓ ̸= 0 and a(L) is defined by (2.2.3). These functions converge

for Re(s) > 1, and extend to entire functions of s on C when k > 0.

Now if βM : µM × Z/MZ ∼→ E[M ] is a Γ(M)arith-structure on E, we can consider

the C-valued function P−1f ◦ β−1
M on E[M ] for any f : Z/MZ× Z/MZ→ C. Set

Gk,s,f (E,ω, βM ) :=
(−1)k

2
φk

(
s+

k

2
;E,ω, P−1f ◦ β−1

M

)
=

(−1)k

2
Γ(s+ k)

(
a(L)

Mπ

)s∑
ℓ∈L

′P−1f ◦ β−1
M (ℓ/M)

(ℓ/M)k|ℓ/M |2s
. (5.1.3)

It converges for Re(s) > 1− k/2, and extends to an entire function of s if k > 0.

Theorem (5.1.4) ([Ka2, Theorem 3.6.9]). Let f be a complex valued function on

Z/MZ×Z/MZ, and denote by Q[f ] the subring of C generated by the values of f over Q.

Let k be a positive integer, and assume that, when k = 2,
∑

j f(j, 0) =
∑

j f(0, j) = 0.

Then Gk,0,f := Gk,s,f |s=0 belongs to Rk(Q[f ],Γ(M)arith).

When k ≥ 2, its q-expansion Gk,0,f (Tate(q), ωcan, βM,can) is given by :

0 if f(−a,−b) = (−1)k−1f(a, b),

1

2
L(1− k, f(n, 0)) +

∑
n≥1

( ∑
n=dd′
d,d′≥1

dk−1f(d, d′)

)
qn/M

if f(−a,−b) = (−1)kf(a, b).

Here, L(s, f(n, 0)) is the L-function continuing
∑

n≥1 f(n, 0)/n
s (Re(s) > 1) analytically.

(Katz also computed the q-expansion when k = 1, but we will not need it.) □

We next specialize the above general result to the following situation: Let χ1 and

χ2 be primitive Dirichlet characters defined modulo M and M ′, respectively, and assume

that M ′ is a divisor of M . As usual, we consider χ1 and χ2 as functions on Z/MZ, and
Z/M ′Z, respectively, and also consider χ2 as a function on Z/MZ through the projection

to Z/M ′Z. We set

fχ1,χ2(a, b) := χ1(a)χ2(b). (5.1.5)

In general, if χ is a Dirichlet character modulo M and ζ is an M -th root of unity, we

define the Gauss sum by

g(ζ, χ) :=
∑

a mod M

χ(a)ζ−a. (5.1.6)

It follows from the definition (5.1.1) that

P−1fχ1,χ2(ζ, b) =
1

M
χ2(b)g(ζ, χ1). (5.1.7)

On the other hand, let αM be a Γ(M)naive-structure on E, and let βαM be the
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Γ(M)arith-structure associated with it, (1.1.4). Let ζαM
be the determinant of αM , and

write α−1
M (ℓ/M) = (aℓ, bℓ) for an element ℓ/M ∈ (1/M)L/L = E[M ]. We then have

(P−1fχ1,χ2) ◦ β−1
αM

(ℓ/M) =
1

M
χ1(aℓ)χ2(bℓ)g(ζαM , χ1). (5.1.8)

Corollary (5.1.9). Let the notation be as above. We assume that k ≥ 2, and

χ1(−1)χ2(−1) = (−1)k. When k = 2, we also assume that M > 1. Then Gk,0,fχ1,χ2

belongs to Rk(Q[χ1, χ2],Γ(M)arith) and we have

Gk,0,fχ1,χ2
(E,ω, βαM

) =
(−1)k

2
Mk−1(k − 1)!g(ζαM

, χ1)
∑
ℓ∈L

′χ1(aℓ)χ2(bℓ)

ℓk|ℓ|2s

∣∣∣∣∣
s=0

.

It has the following q-expansion

Gk,0,fχ1,χ2
(Tate(q), ωcan, βM,can)

=


1

2
L(1− k, χ1) when χ2 = 1

0 when χ2 ̸= 1

+
∑
n≥1

( ∑
n=dd′
d,d′≥1

χ1(d)χ2(d
′)dk−1

)
qn/M . □

We note that the sum “
∑′

ℓ∈L” in the above corollary converges for Re(s) > −1/2
when k ≥ 3. Hence that term is simply the (convergent) sum

∑′
ℓ∈L χ1(aℓ)χ2(bℓ)/ℓ

k in

this case.

Finally, with the notation (3.1.1), it follows from (5.1.7) that

(P−1fχ1,χ2) ◦ h−1
a (ζ, b) = P−1fχ1,χ2(ζ

a−1

, ab) =
1

M
χ1(a)χ2(ab)g(ζ, χ1).

Therefore Gk,0,fχ1,χ2
has the character χ1χ2 in the sense of 3.1:

Gk,0,fχ1,χ2
| ha = χ1(a)χ2(a)Gk,0,fχ1,χ2

for all a ∈ (Z/MZ)×. (5.1.10)

5.2. Eisenstein series Gk,λ attached to a Hecke character.

We let K be an imaginary quadratic field, and use the same terminology as in 4.1

for K. We start with a Hecke (quasi-)character

λ : K×
A /K× → C× such that λ(a) = ak for all a ∈ K×

∞ = C× (5.2.1)

for an integer k. We denote by c the conductor of λ, and set K×
A,0(c) := {x = (xv) ∈

K×
A,0 | xv ≡ 1 mod cov for all v | c}. Then we have an isomorphism

K×
A,0(c)/K

×
A,0(c) ∩ ô×

∼→ I(c) := (fractional o-ideals prime to c) (5.2.2)

by a 7→ ao in the sense of 4.1. The restriction of λ to K×
A,0(c) therefore induces a

(quasi-)character of I(c), the ideal character associated with λ, which we hereafter denote

by λid. Thus if a = (a) is a principal ideal with a ∈ K×
A,0(c) ∩ K×, we have λid(a) =

a−k. Moreover, λid also induces a character of K×
A,0(c)/K

×
A,0(c) ∩ ô×n (↪→ K×

A,0/ô
×
n
∼= In;
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cf. (4.1.3)). Therefore for any proper on-ideal a = aon with a ∈ K×
A,0(c), we can define

λid(a) := λ(a). In other words, this left hand side is defined as λid(ao) with the above

terminology.

From now on, we make the following:

Assumption (5.2.3). • k ≥ 2, and when k = 2 we assume that c ̸= (1);

• (l, c) = (1);

• c is a product of primes that split in K/Q.

We fix a decomposition c = ff′ as a product of integral ideals such that

(f, f) = (1), and f′ | f (5.2.4)

and set

M := N(f), and M ′ := N(f′) (so that M ′ |M). (5.2.5)

Writing of and of′ the f-adic and f′-adic completions of o, respectively, we have charactersλf := λ|o×
f
: o×f → (of/f)

× → Q×
,

λf′ := λ|o×
f′
: o×f′ → (of′/f

′)× → Q×
.

(5.2.6)

Definition (5.2.7). Via the canonical isomorphisms of/f ∼= Z/MZ and of′/f
′ ∼=

Z/M ′Z, we let χf and χf′ be the Dirichlet characters defined modulo M and M ′ corre-

sponding to λf and λf′ , respectively. Letting

f(a, b) := χf(a)χf′(b) for a, b ∈ Z/MZ

we define

Gk,λ := Gk,0,f ∈ Rk(Q[χf, χf′ ],Γ(M)arith).

(Though the subscript “k” in Gk,λ is superfluous, we keep it to emphasis the infinity type

of λ and the weight of this Eisenstein series.)

Since χf(−1)χf′(−1) = (−1)k, and M > 1 when k = 2, Gk,λ is in fact non-zero, and

its q-expansion is explicitly given by (5.1.9).

We next consider the special value of this Eisenstein series at CM test objects. To

do this, for a proper on-ideal class {a}n ∈ Cln, we consider the (partial) L-functions of

orders studied by Hida [H3, 8.1.5, 8.1.7] and Yoshida [Y, Chapter V, Section 3]

Ln
{a}n

(s, λ) :=
∑
b

λid(b)N(b)−s (5.2.8)

where the sum ranges over all integral proper on-ideals b ∈ {a}n prime to c (equivalently,

b is of the form bon with b ∈ K×
A,0(c)). This function converges for Re(s) > 1 − k/2,

extends to a meromorphic function on C, and holomorphic at s = 0 even when k = 2; cf.

the proof of the following proposition.
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Proposition (5.2.9). Let a be a proper on-ideal prime to M , and consider the

Γ(M)arith = ΓM,1-test object

X∞,M,1(a) = (E(a), ω∞(a), βM (a))

cf. (4.2.7). Then we have

Gk,λ(X∞,M,1(a)) = | o×n |
(−1)k

2
Mk−1(k − 1)!g(ζa, χf)λ

id(a)Ln
{a−1}n

(0, λ).

Here and henceforth, we set

ζa := det(αM (a)).

Proof. With the same terminology as in (5.1.9), we need to show that

∑
ℓ∈a

′ χf(aℓ)χf′(bℓ)

ℓk|ℓ|2s

∣∣∣∣∣
s=0

= | o×n |λid(a)Ln
{a−1}n

(0, λ).

By the definition of (4.2.3), we have αM (a)−1(ℓ/M) = (ℓ mod f, ℓ mod f), and hence

χf(aℓ)χf′(bℓ) is equal to λf(ℓ)λf′(ℓ) if ℓ ∈ o×f and ℓ ∈ o×f′ , and 0 otherwise. Therefore

letting oc := of × of′ and λc := λf × λf′ , the left hand side is equal to

∑
ℓ∈a, ℓ∈o×

c

λc(ℓ)
−1

ℓk|ℓ|2s

∣∣∣∣∣∣
s=0

=
∑

ℓ∈a, ℓ∈o×
c

λid((ℓ))

|ℓ|2s

∣∣∣∣∣∣
s=0

since λ(ℓ) = 1 = ℓkλid((ℓ))λc(ℓ). Here, ℓ ∈ a if and only if ℓa−1 =: b is an integral proper

on-ideal, and in this case, ℓ ∈ o×c if and only if b is prime to c. Thus this sum is equal to

the one over such b each with multiplicity | o×n |:

| o×n |
∑
b

λid(a)λid(b)

N(a)sN(b)s

∣∣∣∣∣
s=0

= | o×n | λid(a)
∑
b

λid(b)

N(b)s

∣∣∣∣∣
s=0

. □

5.3. Modified Eisenstein series Gk,λ and its special values.

We keep the notation in 5.1 and 5.2.

Definition (5.3.1). We set

Gk,λ := Gk,λ − χf′(l)Gk,λ | [l] ∈ Rk(Q[χf, χf′ ],ΓM,l)

where [l] is the degeneracy operator; cf. 3.2.

Proposition (5.3.2). The q-expansion Gk,λ(Tate(q), ωcan, βM,can, Cl,can) is given

by

∞∑
n=1

( ∑
n=dd′

l∤d′

χf(d)χf′(d
′)dk−1

)
qn/M
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and Gk,λ belongs to Rk(Z[χf, χf′ ],ΓM,l).

Proof. The q-expansion ofGk,λ is given by (5.1.9) with χ1 = χf and χ2 = χf′ , and

the q-expansion ofGk,λ | [l] is obtained from this by the change of variable q1/M 7→ ql/M by

(3.2.2). The first assertion then follows from a simple calculation. The second assertion

follows from this by the q-expansion principle. □

Corollary (5.3.3). Gk,λ is an eigenform of the Hecke operator U(l):

Gk,λ |U(l) = χf(l)l
k−1Gk,λ.

Proof. This follows from (3.4.3) and the above proposition by comparing the

q-expansions of both sides. □

We next consider the special values of Gk,λ.

Proposition (5.3.4). Let a be a proper on-ideal prime to M with n ≥ 2, and let

X∞,M,l(a) = (E(a), ω∞(a), βM (a), Cl(a))

be the ΓM,l-test object as in (4.2.7). Then we have

Gk,λ(X∞,M,l(a))

= (−1)kMk−1(k − 1)!g(ζa, χf)λ
id(a)

(
Ln
{a−1}n

(0, λ)− λid((l))Ln−1
{a−1on−1}n−1

(0, λ)
)
.

Proof. The left hand side is equal to Gk,λ(X∞,M,l(a))−χf′(l)Gk,λ([l]X∞,M,l(a)).

The first term is equal to Gk,λ(X∞,M,1(a)) since Gk,λ is of level M , and it is given by

(5.2.9). The second term is equal to χf′(l)l
−kGk,λ(X∞,M,1(aon−1)) by (4.3.1), i), and

this is also described by (5.2.9). Since λid(aon−1) = λid(a) and | o×n−1 | = | o×n | = 2, our

conclusion is equivalent to

χf′(l)l
−kg(ζaon−1 , χf) = λid((l))g(ζa, χf).

But it follows from (4.2.8) that ζaon−1 = ζla, and hence g(ζaon−1 , χf) = χf(l)g(ζa, χf).

Since χf′(l)l
−kχf(l) = l−kλc(l)

−1 = λid((l)), our conclusion follows. □

Definition and Proposition (5.3.5). For a proper on-ideal a prime to M with

n ≥ 2, we set

Gk,λ({a}n)∞ := λid(a)−1χf(N(a)−1)Gk,λ(X∞,M,l(a)).

This value depends only on the class {a}n ∈ Cln, and we have

Gk,λ({a}n)∞ = C(λ)χf(l
n)
(
Ln
{a−1}n

(0, λ)− λid((l))Ln−1
{a−1on−1}n−1

(0, λ)
)
.

Here C(λ) is a constant depending only on λ and the decomposition c = ff′ defined by

C(λ) := (−1)kMk−1(k − 1)!g(ζo, χf).
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Proof. Let α ∈ K× be prime to M . Then by (5.3.4), we have

Gk,λ({αa}n)∞ = Gk,λ({a}n)∞ ×
λid(a)χf(N(a))

λid(αa)χf(N(αa))

g(ζαa, χf)λ
id(αa)

g(ζa, χf)λid(a)
.

But by (4.2.8), we have {
g(ζa, χf) = χf(l

nN(a))g(ζo, χf),

g(ζαa, χf) = χf(l
nN(αa))g(ζo, χf).

Thus the value Gk,λ({a}n)∞ indeed depends only on {a}n. The remaining assertion is

also clear from the above discussion. □

Slightly more generally, we have

Corollary (5.3.6). Let s be a divisor of t1 · · · tt (cf. (4.2.1)) and set S = N(s).

Let a be a proper on-ideal prime to M with n ≥ 2. Then

(Gk,λ | [S])({a}n)∞ := λid(a)−1χf(N(a)−1)(Gk,λ | [S])(X∞,M,lS(a))

depends only on the class {a}n ∈ Cln.

Proof. By (4.3.1), ii), we in fact have that the above value is equal to

S−kGk,λ({s−1
n a}n)∞ × λid(s)−1χf(S)

−1. □

Proposition (5.3.7). Let ε : Clf → Q×
be a character for some f ≥ 0. For

n ≥ max{f, 1}+ 1, we have∑
{a}n∈Cln

ε(a)Gk,λ({a}n)∞ = C(λ)χf(l)
nL(l)(0, λε−1).

In the right hand side, we consider ε as a character of K×
A via (4.1.4), and L(l)(s, λε−1)

is the Hecke L-function with the Euler factor at (the primes dividing) l removed.

Proof. By (5.3.5), the left hand side is the difference of

(i) :=
∑

{a}∈Cln

ε(a)Ln
{a−1}n

(s, λ) and

(ii) :=
∑

{a}∈Cln

ε(a)λid((l))Ln−1
{a−1on−1}n−1

(s, λ),

multiplied by C(λ)χf(l)
n and evaluated at s = 0.

Since n > f , ε(b) = ε(a−1) for b ∈ {a−1}n, and we have

(i) =
∑
b

λid(b)ε−1(b)N(b)−s =
∑
b

(λε−1)(b)∥b∥s.
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Here, the first sum is over all integral proper on-ideals b prime to c, and the second is

over (K×
A,0(c) ∩ ôn)/(K

×
A,0(c) ∩ ô×n ). It has the Euler product

(i) = L(l)(s, λε−1)× Ln
l (s, λε

−1)

(cf. [Y, Chapter V, Section 3]), where

Ln
l (s, λε

−1) :=
∑

a∈(K×
l ∩on,l)/o

×
n,l

λlε
−1
l (a)∥a∥sl

the subscript “l” indicating the l-factor (i.e. the restriction to (K ⊗Q Ql)
×). Similarly,

we have

(ii) = lλid((l))L(l)(s, λε−1)× Ln−1
l (s, λε−1).

Therefore, since λid((l)) = λl(l) and εl(l) = 1, our conclusion is equivalent to the equality

Ln
l (0, λε

−1)− l(λlε
−1
l )(l)Ln−1

l (0, λε−1) = 1.

Since n > f , this follows from [H3, (8.1.29)] when f > 0; and from [H3, (8.1.28)] when

f = 0. □

6. CM test objects over ring of integers, integrality of special values and

the measure on Cl∞.

6.1. CM test objects over W0.

Let the notation be as in 4.1 and 4.2. We are going to modify the CM test objects

defined in 4.2, and consider them over some rings. For this, we fix a prime number p,

and also an embedding of Q into Qp. We will always assume the following:

Assumption (6.1.1). • p is an odd prime not dividing lT ,

• p splits completely in K; (p) = pp,

• the prime of K induced by the above embedding is p.

We let{
K0 := Q∩ (the maximal unramified subextension of Qp/Qp),

W0 := K0∩ (the ring of integers of Qp).
(6.1.2)

Thus W0 is the strict localization of Z(p), the localization of Z at (p).

Let a be a proper on-ideal. Then it known that E(a) has a model E(a)/K0
defined

over K0 which has good reduction, i.e. there is an elliptic curve E(a)/W0
over W0 whose

generic fibre is E(a)/K0
; cf. Serre and Tate [ST, Theorems 8 and 9]. The complex

multiplication by on on E(a)/K0
is also defined over K0, and, as usual, we normalize

the embedding on ↪→ End(E(a)/K0
) in such a way that the representation of on on

Lie(E(a)/K0
) ∼= K0 is the inclusion. Since W0 is strictly local, all points of E(a)/K0

[m]

are K0-rational, for any m prime to p. It follows that the above model E(a)/K0
, and
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hence E(a)/W0
also, is unique. In the following, we will always consider these models

over K0 and W0.

We have on,p = op = op ⊕ op for the p-adic completion. Thus for any on-module X,

Xp = X ⊗Z Zp is the direct sum of Xp := Xp ⊗on,p op and Xp := Xp ⊗on,p op. Similarly,

the finite flat group scheme E(a)/W0
[ pm] on which on/p

mon = o/pmo = o/pm ⊕ o/pm

acts, is the direct sum of E(a)/W0
[ pm]p and E(a)/W0

[ pm]p. E(a)/W0
[ pm]p is a group

scheme of µ-type over W0, while E(a)/W0
[ pm]p is constant.

Definition (6.1.3). We henceforth take and fix a nowhere vanishing invariant

differential ω(o) on E(o)/W0
. We define the complex number Ω∞ by

ω(o) = Ω∞ω∞(o),

and in general set

ω(a) := Ω∞ω∞(a).

When a and a′ are proper on-ideals such that a′ ⊇ a, the natural (quotient) morphism

E(a) → E(a′) induces E(a)/K0
→ E(a′)/K0

and E(a)/W0
→ E(a′)/W0

over K0 and W0,

respectively. When a and a′ are prime to p (i.e. ap = a′p = 0p), the latter morphism

is étale. Arguing as in the proof of (4.2.8), it follows that the above defined ω(a) is a

nowhere vanishing differential on E(a)/W0
whenever a is prime to p.

Recall that in 4.2, we started with the data (4.2.1), especiallyM0 = ff with (f, f) = 1,

and used it to define αM (a) and βM (a) etc. From now on we assume

Assumption (6.1.4). When M is divisible by p, p divides f.

Lemma (6.1.5). Let a be a proper on-ideal prime to M , and assume (6.1.4). Then

the Γ(M)arith-structure βM (a) and the Γ0(lT )-structure ClT (a) on E(a) are defined over

K0. Further, they extend uniquely to the same structures on E(a)/W0
. Similarly, any

Γ(l∞)naive-structure αl∞ and Γ(l∞)arith-structure βl∞ on E(a) are defined over K0, and

extend uniquely to those over W0.

Proof. Write M = pcM0 with M0 prime to p. Then we may consider βM (a) as

a pair (βpc(a), βM0(a)) consisting of Γ(pc)arith- and Γ(M0)
arith-structures.

As for βM0(a), it is an isomorphism of µM0
× Z/M0Z to E(a)[M0] both of which

are already constant groups over K0. Thus any such morphism is defined over K0. Also,

since µM0
× Z/M0Z and E(a)/W0

[M0] are constant over W0, any morphism between

them on the generic fibre uniquely extends to the one over W0. Similarly for αl∞ and

βl∞ , and the assertion for ClT (a) is also clear.

It thus remains to consider βpc(a) : µpc × Z/pcZ ∼→ E(a)[ pc]. By our definition of

βM (a) in 4.2 and our assumption (6.1.4), this is in fact given by the product of{
βpc(a)µ : µpc

∼→ E(a)[ pc]p,

βpc(a)ét : Z/pcZ
∼→ E(a)[ pc]p.

The latter is defined over K0, and extends uniquely to W0, for the same reason as above.
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Considering the Cartier dual, the same assertion holds for the former also. □

Let us use the same symbol βM (a) etc. as in the case over C for the level structures

obtained in the above lemma in the following:

Definition (6.1.6). With the notation as above, for a prime to M (resp. prime

to pM), we define the ΓM,lT -test objects XM,lT (a)/K0
over K0 (resp. XM,lT (a)/W0

over

W0) by {
XM,lT (a)/K0

:= (E(a)/K0
, ω(a), βM (a), ClT (a)),

XM,lT (a)/W0
:= (E(a)/W0

, ω(a), βM (a), ClT (a)).

Similarly for XM,T (a)/K0
and XM,T (a)/W0

.

6.2. Integrality of special values.

In 5.2 and 5.3, starting with a Hecke character λ satisfying (5.2.3), we studied

special values of Eisenstein series at CM test objects. In doing this, we decomposed the

conductor c of λ as c = ff′ as in (5.2.4) and defined the level by M = N(f). To apply

the result in the previous subsection in which we assumed (6.1.4), the condition (5.2.4)

forces us to assume the following:

Condition (6.2.1). Let e (resp. e) be the exponent of p (resp. p) dividing c. Then

e ≥ e.

Conversely, if this condition is satisfied, we can clearly choose f and f′ satisfying

(5.2.4) and (6.1.4). We thus henceforth assume that λ satisfies (6.2.1), and fix such a

choice. We then set
K : the field generated over K0 by the values of λf, λf′ and λid,

and |Cl1|-st roots of unity,
W := K∩ (the ring of integers of Qp), cf. (6.1.2).

(6.2.2)

Since |Clm|/|Cl1| is a power of l, W contains all |Clm|-th roots of unity, and hence any

Q×
-valued character of |Clm| takes values in W, for all m ≥ 1.

Proposition (6.2.3). (1) Let a be a proper on-ideal prime to M with n ≥ 2. Then

the following value belongs to W :

Gk,λ({a}n) := Ω−k
∞ Gk,λ({a}n)∞

= C(λ)χf(l
n)Ω−k

∞

(
Ln
{a−1}n

(0, λ)− λid((l))Ln−1
{a−1on−1}n−1

(0, λ)
)
.

(2) For any character ε : Clf → Q×
,

C(λ)Ω−k
∞ L(l)(0, λε−1)

also belongs to W.
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Proof. By (5.3.2), Gk,λ belongs to Rk(W,ΓM,l). To show (1), we may assume

that a is prime to p. Then by the very definition of the modular form (2.1.2), we have

Gk,λ(XM,l(a)/W) = Ω−k
∞ Gk,λ(X∞,M,l(a)) ∈ W

and also λid(a)χf(N(a)) ∈ W×. Our claim follows from (5.3.5).

The second assertion then follows from (5.3.7). □

Corollary (6.2.4). Let the notation and the assumption be as in of (5.3.6) and

(6.2.3), (1). Then the following value also belongs to W :

(Gk,λ | [S])({a}n) := Ω−k
∞ (Gk,λ | [S])({a}n)∞.

Proof. This follows from the same reason as above because Gk,λ|[S] ∈
Rk(W,ΓM,lS); cf. 3.2. □

6.3. W-valued measure on Cl∞ attached to Gk,λ.

We set

Cl∞ := lim←−
n≥0

Cln (6.3.1)

cf. (4.1.6). This group can be decomposed as

Cl∞ = ∆× Γ with ∆ a finite group and Γ ∼= Zl. (6.3.2)

Proposition (6.3.3). There is a unique W-valued measure φk,λ = φGk,λ
on Cl∞

enjoying the following property : For each locally constant function ϕ : Cl∞ →W factor-

ing through Cln (n ≥ 2), we have∫
Cl∞

ϕdφk,λ = χf(l)
−n

∑
{a}n∈Cln

ϕ({a−1}n)Gk,λ({a}n).

More generally we have

Proposition (6.3.4). Assume that f ∈ Rk(W,ΓM,lT ) satisfies the following four

conditions for all n ≥ n0 for a fixed n0 ≥ 0:

i) For each proper on-ideal a prime to M , there is an element γ(a) ∈ K× such that

f({a}n) := γ(a)f(XM,lT (a)/K) depends only on the class {a}n ∈ Cln. Further, γ(a) ∈ W
if a is prime to p.

ii) f |U(l) = δf with δ ∈ W×.

iii) f |hl = ϵf with ϵ ∈ W× (cf. 3.1).

iv) For a as in i), let a0, . . . , al−1 be as in (4.1.7) with m = 1. Then γ(ai) = ηγ(a)

with η ∈ W× which is independent of a and ai.

Then there is a unique W-valued measure φf on Cl∞ satisfying∫
Cl∞

ϕdφf = (lϵ−1ηδ)−n
∑

{a}n∈Cln

ϕ({a−1}n)f({a}n)
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for ϕ as in (6.3.3).

We first prove (6.3.4). First of all, f({a}n) ∈ W by i). The rule

ϕ 7→ b−n
∑

{a}n∈Cln

ϕ({a−1}n)f({a}n)

(b ∈ W×) gives a measure on Cl∞ if and only if

f({a}n) = b−1
∑

{A}n+1∈Cln+1
{A}n+1 7→{a}n

f({A}n+1)

holds for all n ≥ n0 and {a}n ∈ Cln (the distribution relation). If {a0, . . . , al−1} is as in
iv), the right hand side is equal to b−1

∑l−1
i=0 f({ai}n+1), by (4.1.7), (1).

On the other hand, it follows from i) and ii) that

δf({a}n) = γ(a)(f |U(l))(XM,lT (a)/K).

But by (4.1.7), (2) and the definition of U(l) (cf. 3.4), (f |U(l))(XM,lT (a)/K) =

l−1
∑l−1

i=0 f(Xi) can be described as follows: Let πi : E(a)/K → E(ai)/K be the quo-

tient morphism. Then

Xi = (E(ai)/K, l
−1π̌∗

i ω(a), (πi ◦ βM (a))∼ ◦ hl, πi(ClT (a))

= (E(ai)/K, ω(ai), βM (ai) ◦ hl, ClT (ai)).

Therefore iii) implies that

(f |U(l))(XM,lT (a)/K) = l−1ϵ
l−1∑
i=0

f(XM,lT (ai)/K).

We conclude that

f({a}n) = l−1ϵγ(a)δ−1
l−1∑
i=0

f(XM,lT (ai)/K) = l−1εη−1δ−1
l−1∑
i=0

f({ai}n+1)

by iv). This completes the proof of (6.3.4).

We next show (6.3.3). When f = Gk,λ and T = 1, we have:

i) holds with γ(a) = λid(a)−1χf(N(a))−1 by (5.3.5) and (6.2.3).

ii) holds with δ = χf(l)l
k−1 by (5.3.3).

iii) holds with ϵ = χf(l)χf′(l). Indeed, Gk,λ has the character χfχf′ by (5.1.10) and

(5.2.7), and it follows easily that the same holds for Gk,λ.

By the definition of ai given in (4.1.7), we have{
λid(ai) = λid(aio) = λid(l−1ao) = λid((l))−1λid(a),

N(ai) = N(aio) = N(l−1ao) = l−2N(a)
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whence iv) holds with η = λid((l))χf(l)
2.

(6.3.3) is therefore a consequence of (6.3.4), since λ(l) = lkλid((l))χf(l)χf′(l) = 1.

From (5.3.7) and (6.3.3), we immediately obtain the following:

Corollary (6.3.5). Let ε : Clf → Q×
be a character, and consider ε also as a

character of K×
A . Then we have∫

Cl∞

εdφk,λ = C(λ)L(l)(0, λε)/Ωk
∞ ∈ W. □

7. Non-vanishing modulo p of Hecke L-values.

7.1. Conjugation of CM test objects.

We keep the notation of previous sections. We begin with an easy

Lemma (7.1.1). Assume that we are given an open subgroup H of
∏

v∈P o×v where

P is a finite set of finite primes of K. Let n be a non-negative integer. Then for any

class in K×
A /K×K×

∞, we can take its representative a ∈ K×
A satisfying{

(av)v∈P ∈ H,

a ∈ K×
A ∩ (K×

∞ × ôn).

Proof. We may assume that P contains all primes above l. We may also assume

that, for c ∈ H and v dividing l, cv ∈ o×n,v.

Since K× is dense in
∏

v∈P K×
v , we can choose a representative a ∈ K×

A satisfying

the first condition. Write ao = ab−1 with mutually coprime integral ideals a and b.

There is a positive integer h such that bh = (b) is principal and b ∈ H. We can then

replace a by ab. □

For the moment, we fix a proper on-ideal a and σ ∈ Aut(C/K). We take an s ∈ K×
A

such that σ|Kab
= [s,K], the Artin symbol for K. Then the main theorem of complex

multiplication (Shimura [Shi1, Theorem 5.4]) asserts that

E(a)σ ∼= E(s−1a) (7.1.2)

and we moreover have the commutative diagram

K/a
ξ(a)−−−−→ E(a)(C)

s−1

y yσ

K/s−1a −−−−→
ξ′

E(a)σ(C).

(7.1.3)

Here, ξ(a) : C/a ∼→ E(a)(C) is the canonical isomorphism through which we have often

identified the both sides (cf. 2.2), and ξ′ : C/s−1a
∼→ E(a)σ(C) is the (necessarily unique)

complex uniformization which makes the diagram commutative. From now on, we assume

that s ∈ K×
A ∩(K×

∞×ôn) so that s−1a ⊇ a. Then there is an isogeny λs(a) : E(a)→ E(a)σ

which makes the following diagram commutative:
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C/a ξ(a)−−−−→ E(a)(C)

canon.

y yλs(a)

C/s−1a −−−−→
ξ′

E(a)σ(C).

(7.1.4)

The following is a slight generalization of de Shalit [dS, Chapter II, 1.5].

Proposition (7.1.5). Let the assumption be as above. Then λs(a) is the unique

isogeny E(a)→ E(a)σ having the following properties :

i) Ker(λs(a)) = E(a)[b] with b = son,

ii) Let c = con be an integral on-ideal with c ∈ K×
A such that sq ∈ o×n,q if

cq ̸∈ o×n,q (so that we can consider the action of s−1 on E(a)[c](C) = c−1a/a =⊕
q s.t. cq ̸∈o×

n,q
c−1
q aq/aq ). Then for any t ∈ E(a)[c](C), we have

tσ = λs(a)(s
−1t).

Proof. The first assertion is obvious, and for t = ξ(a)(u) ∈ E(a)[c](C) (u ∈
c−1a/a), we have

tσ = ξ(a)(u)σ = ξ′(s−1u) = λs(a)(ξ(a)(s
−1u)) = λs(a)(s

−1t)

which shows ii). Since the points t as above are Zariski dense, the uniqueness of λs(a)

also follows. □

With the above notation, we define Λa(s) ∈ Q×
by

λs(a)
∗ω(a)σ = Λa(s)ω(a). (7.1.6)

Lemma (7.1.7). For fixed σ, s and n, Λa(s) does not depend on the proper on-ideal

a. We thus henceforth write it Λn(s).

Proof. Let a and a′ be proper on-ideals. To show that Λa(s) = Λa′(s), we easily

reduce to the case where a ⊆ a′, which we now assume. Let q : E(a) → E(a′) be the

quotient morphism. We claim that qσ ◦ λs(a) = λs(a
′) ◦ q.

Indeed, for any c and t ∈ E(a)[c](C) as in (7.1.5),{
qσ ◦ λs(a)(s

−1t) = qσ(tσ) = q(t)σ,

λs(a
′) ◦ q(s−1t) = λs(a

′)(s−1q(t)) = q(t)σ.

Zariski density of the points s−1t implies our claim.

From this, we obtain

(qσ ◦ λs(a))
∗ω(a′)σ = λs(a)

∗ω(a)σ = Λa(s)ω(a)

= (λs(a
′) ◦ q)∗ω(a′)σ = q∗(Λa′(s)ω(a′)) = Λa′(s)ω(a). □

Proposition (7.1.8). Consider the ΓM,lT -test object
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XM,lT (a)/C = (E(a), ω(a), βM (a), CT (a), Cl(a))

obtained by base extension to C of the one defined in (6.1.6), for a proper on-ideal a. For

σ ∈ Aut(C/K), take s ∈ K×
A such that σ|Kab

= [s,K] and{
sv ≡ 1 mod ln+1MTov for all finite v | lMT,

s ∈ K×
A ∩ (K×

∞ × ôn).

Then we have

(XM,lT (a)/C)
σ ∼= (E(s−1a),Λn(s)ω(s

−1a), βM (s−1a), CT (s
−1a), Cl(s

−1a)).

Proof. Let ι : E(a)σ
∼→ E(s−1a) be the isomorphism such that ι ◦ λs(a) is the

quotient homomorphism π : E(a)→ E(s−1a). Then ι ◦ ξ′ : C/s−1a→ E(s−1a)(C) is the
canonical isomorphism ξ(s−1a).

The relation (ι ◦ λs(a))
∗ω(s−1a) = π∗ω(s−1a) = ω(a) and (7.1.6) imply that

Λn(s)ι
∗ω(s−1a) = ω(a)σ, i.e. via ι, (E(a)σ, ω(a)σ)

∼→ (E(s−1a),Λn(s)ω(s
−1a)).

Further viewing the map labeled ξ(a) : K/a → E(a)(C) above as giving an embed-

ding of the ind-finite constant group scheme K/a to E(a) over C, which we call ξ̃(a), we

obtain from (7.1.3) the commutative diagram:

(1/lMT )a/a
incl.−−−−→ K/a

ξ̃(a)σ−−−−→ E(a)σ∥∥∥ ys−1

yι

(1/lMT )s−1a/s−1a −−−−→
incl.

K/s−1a −−−−−→
ξ̃(s−1a)

E(s−1(a)).

It follows that ι ◦ αM (a)σ = αM (s−1a), ιCT (a)
σ = CT (s

−1a) and ιCl(a)
σ = Cl(s

−1a).

Finally, recall that βM (α) was defined as the Γ(M)arith-structure associated with αM (α),

cf. (4.2.4). It is easy to see that βM (α)σ is associated with αM (α)σ, from which we

conclude that ι ◦ βM (a)σ = βM (s−1a). □

We now return to the situation considered in 6.3.

Corollary (7.1.9). Let F be the extension of K generated by the values of χf,

χf′ and λid together with |Cl1|-st roots of unity. Let ε : Cln → Q×
be a character. If σ

is an automorphism of K(= FK0, cf. (6.2.2)) over F which induces an automorphism of

W, ∫
Cl∞

εdφk,λ ∈ W× if and only if

∫
Cl∞

εσdφk,λ ∈ W×.

Proof. We may assume that n ≥ 2. The left hand side is equal to

χf(l)
−n

∑
{a}n∈Cln

ε({a−1}n)λid(a)−1χf(N(a))−1Gk,λ(XM,l(a)/K)

by (5.3.5), (6.2.3) and (6.3.3), where we take a to be prime to pM .
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Extend σ to an automorphism of C and take s ∈ K×
A as in (7.1.8). If we set b := son,

we see that (λid(a)−1χf(N(a))−1Gk,λ(XM,l(a)/K))
σ is equal to

Λn(s)
−kλid(b)−1χf(N(b))−1 × λid(b−1a)−1χf(N(b−1a))−1Gk,λ(XM,l(b

−1a)/K)

by (7.1.8). By (7.1.1), we can assume here that b, and hence deg(λs(a)) also, is prime

to p. Then λid(b), as well as the root of unity χf(N(b)), belongs to W×. Further, since

ω(a)σ is a nowhere vanishing differential on E(a)σ/W , we see that Λn(s) ∈ W×; cf. (7.1.6).

Thus (
∫
Cl∞

εdφk,λ)
σ and

∫
Cl∞

εσdφk,λ differ only by a multiple of an element ofW×. □

7.2. Decomposition of Cl∞.

So far we have already relied on ideas of Hida, in constructing the measures on Cl∞
through the special values of the Eisenstein series, in previous sections. We follow his

method more closely in the following.

Recall that Cl∞ = lim←−n≥0
Cln (6.3.1), and Cl∞ = ∆× Γ (6.3.2). We set

Γn:= (the image of Γ in Cln via Cl∞ → Cln). (7.2.1)

It is easy to see that the composite of ∆ ↪→ Cl∞ → Cln is injective for n large, and

Cln = ∆× Γn for n≫ 0. (7.2.2)

Definition (7.2.3). For an idele x ∈ K×
A whose l-component xl is one, the system

(xon)n≥0 of ideals determines an element of Cl∞. This depends only on the ideal x = xo,

and hereafter denoted by {x}∞. We denote by Clalg the subgroup of Cl∞ formed of such

elements.

We set ∆alg := ∆ ∩ Clalg.

Thus if x is an integral ideal of o prime to l, {x}∞ = ({xn}n)n≥0 where xn = x ∩ on.

We recall

Proposition (7.2.4) (Hida [H3, Lemma 8.23]). i) Complex conjugation acts as

the inverse on Cl∞.

ii) Each element of ∆alg is represented by a square free product of primes ramified

in K/Q and prime to l. ∆alg is an elementary abelian group of type (2, . . . , 2).

iii) Each element of Cl∞/∆algΓ is represented by (the class in Clalg of ) a prime

ideal split in K/Q and prime to l.

iv) When x is a fractional o-ideal prime to l, we denote by {x}Γ (resp. {x}∆ ) the

projection of {x}∞ to Γ (resp. ∆).

When x′ is also prime to l, if {x}∆ ̸∈ {x′}∆∆alg, then {x}Γ {x′}−1
Γ ̸∈ Clalg. □

We then take and fix a complete set of representatives R of ∆alg as in (7.2.4), ii),

and also a complete set of representatives Q of Cl∞/∆algΓ as in (7.2.4), iii). We will

always assume that each q ∈ Q is prime to plM , and N(q) (q ∈ Q) are all different

(which is of course possible).

We therefore have
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Cl∞ =

⨿
q∈Q
r∈R

Γ{qr}∞ =
⨿
q∈Q
r∈R

Γ{qr}−1
∞ , and

Cln =
⨿
q∈Q
r∈R

Γn{qnrn}n =
⨿
q∈Q
r∈R

Γn{qnrn}−1
n for n≫ 0.

(7.2.5)

Definition (7.2.6). Fix a character ν : ∆→ Q×
, and consider it also a character

of Cl∞ through the projection to ∆. For an o-ideal x prime to lM , we set ck,λ,ν(x) :=

ν({x}∞)N(x)kλid(x)χf(N(x)), and define

Hk,λ,ν :=
∑
r∈R

ck,λ,ν(r)Gk,λ | [N(r)].

Hk,λ,ν is an element of Rk(W,ΓM,lR), where R is the product of norms of all primes

inR. Indeed, ck,λ,ν(r) ∈ W by the definition (6.2.2), andGk,λ | [N(r)] ∈ Rk(W,ΓM,lN(r)),

cf. (3.2.1).

In the following argument, we take the set of ideals {t1, . . . , tt} in (4.2.1) to be the

set of all prime ideals dividing some element of Q ∪ R. We will use it to define ΓM,lT -

test objects (6.1.6), and the special values Gk,λ | [S]({a}n) (6.2.4), and also the values

(Hk,λ,ν | [N(q)])({g}n) figuring below.

Lemma (7.2.7). Let ϕ = ν × ϕΓ : ∆ × Γ → Q be a function on Cl∞ factoring

through Cln = ∆× Γn for an n large. We have∫
Cl∞

ϕdφk,λ = χf(l)
−n
∑
q∈Q

ck,λ,ν(q)

( ∑
{g}n∈Γn

ϕΓ ({q}Γn{g}−1
n )(Hk,λ,ν | [N(q)])({g}n)

)
.

Here and below, {q}Γn is the projection of {q}∞ ∈ Cl∞ to Γn.

Proof. The left hand side is equal to

χf(l)
−n

∑
r,q,{gn}

ν({rq}∞)ϕΓ ({q}Γn{g}−1
n )Gk,λ({rnqn}−1

n {g}n)

where the sum is over r ∈ R, q ∈ Q and {g}n ∈ Γn. But (5.3.6) and its proof show that,

with the same notation as loc. cit.,

Gk,λ({s−1
n a}n) = ν({s}∞)−1ck,λ,ν(s)(Gk,λ | [N(s)])({a}n)

from which our claim follows. □

7.3. Main theorem of Part I.

Let m be the maximal ideal of W. The following is the main result of Part I:

Theorem (7.3.1). Assume (5.2.3), (6.1.1) and (6.2.1). Consider locally constant

characters ε : Cl∞ → W×, i.e. characters that factor through some Cln with finite n.

Then except for a finite number of exceptions, we have
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Cl∞

εdφk,λ ̸≡ 0 mod m.

In view of (6.3.5), this theorem implies Theorem I in the Introduction to Part I

under (5.2.3) and (6.2.1).

In this subsection, we give preliminary calculations toward this theorem. We write

Fp for the residue field W/m, an algebraic closure of Fp = Z/pZ. By reduction modulo

m, we obtain from φk,λ an Fp-valued measure on Cl∞, which we denote by the same

symbol, and we will work in characteristic p.

To prove the theorem, we may restrict ourselves only to characters ε : Cl∞ → F×
p of

the form ν×εΓ , where a character ν of ∆ is fixed and characters εΓ of Γ vary. From now

on, we assume that there is an infinite set Eν of locally constant characters ε = ν × εΓ
such that

∫
Cl∞

εdφk,λ = 0 (until we arrive at a contradiction at the end of the next

subsection). Let F be the field generated by the values of ν and all l-th roots of unity

in Fp over the residue field of F (7.1.9) at the prime defined by F ⊆ Qp. When l = 2,

we also add all fourth roots of unity to define F. F contains the values ck,λ,ν(q) (reduced

modulo m).

Now take ε = ν × εΓ ∈ Eν and let F(εΓ ) be the field generated by the values of εΓ
over F. If ε factors through Cln = ∆× Γn, we have by (7.2.7),∑

q∈Q
ck,λ,ν(q)

( ∑
{g}n∈Γn

εΓ ({q}Γn{g}−1
n )(Hk,λ,ν |[N(q)])({g}n{a}n)

)
= 0

for any fixed {a}n ∈ Γn, because εΓ is a character. By (7.1.9), we may replace εΓ above

by εσΓ for any Gal(F(εΓ )/F), and consequently εΓ by TrF(εΓ )/F(εΓ ) which satisfies

TrF(εΓ )/F(εΓ )(x) =

{
0 if εΓ (x) ̸∈ F,
[F(εΓ ) : F]εΓ (x) if εΓ (x) ∈ F.

Here, [F(εΓ ) : F] is a power of l, and hence non-zero (in characteristic p).

Let lr be the number of elements of l-power order in F×, and denote by µlr the

subgroup of such elements; µlr = F×[l∞]. We obtain

∑
q∈Q

ck,λ,ν(q)

( ∑
{g}n∈Γn

εΓ ({g}n)∈µlr

εΓ ({g}n)−1(Hk,λ,ν |[N(q)])({q}Γn{g}n{a}n)

)
= 0.

If Cln0 = ∆ × Γn0 with Γn0 = Γ/Γ ls0 for one n0, then Cln0+m = ∆ × Γn0+m with

Γn0+m = Γ/Γ ls0+m

for all m ≥ 0. Therefore if Ker(εΓ ) = Γ lt with t > s0 + r, we have

that

i) εΓ induces an injection Γn(ε) ↪→ F×
p with n(ε) = n0 + t− s0; and moreover

ii) {g}n(ε) ∈ Γn(ε) satisfies εΓ ({g}n(ε)) ∈ µlr if and only if {g}n(ε) ∈ Ker(Γn(ε) →
Γn(ε)−r) = Ker(Cln(ε) → Cln(ε)−r) =: Gn(ε),r.

Thus replacing Eν by a smaller infinite subset if necessary, we henceforth assume

that every ε = ν × εΓ ∈ Eν satisfies i), ii) and also

iii) n(ε) ≥ 2r.
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By this condition, the correspondence i 7→ {en(ε)−r,ion(ε)}n(ε) gives an isomorphism

of groups Z/lrZ ∼= Gn(ε),r, where en(ε)−r,i = 1+ iln(ε)−rMw ∈ o×n(ε)−r,l, by (4.1.9). Thus

replacing Eν again, we may also assume that

iv) the primitive lr-th root of unity εΓ ({en(ε)−r,1on(ε)}n(ε)) is independent of ε ∈ Eν .
Call this value ζ.

Thus, for any {a}n(ε) ∈ Γn(ε), we have

∑
q∈Q

ck,λ,ν(q)

(
lr−1∑
i=0

ζ−i(Hk,λ,ν |[N(q)])({q}Γn(ε)
{en(ε)−r,ia}n(ε))

)
= 0.

Next, for each q ∈ Q, take and fix proper on-ideals d(q)n such that {q}Γ =

({d(q)n}n)n≥0. We further assume that each d(q)n is prime to pMT , and that

d(q)n+1on = d(q)n for all n ≥ 0. Such a choice of d(q)n is of course possible.

Recall that in general,

(Hk,λ,ν |[N(q)])({b}n) = λid(b)−1χf(N(b))−1(Hk,λ,ν |[N(q)])(XM,lT (b)/Fp
)

for any proper on-ideal b prime to pMT . In the above situation, we have{
λid(d(q)n(ε)en(ε)−r,ia) = λid(d(q)0)λ

id(a),

χf(N(d(q)n(ε)en(ε)−r,ia)) = χf(N(d(q)0))χf(N(a)).

Setting

c′k,λ,ν(d(q)0) := λid(d(q)0)
−1χf(N(d(q)0))

−1ck,λ,ν(q) (7.3.2)

we have

lr−1∑
i=0

∑
q∈Q

c′k,λ,ν(d(q)0)ζ
−i(Hk,λ,ν |[N(q)])(XM,lT (en(ε)−r,i(d(q)n(ε)a))/Fp

) = 0

for any a prime to pMT such that {a}n(ε) ∈ Γn(ε).

From now on, we set n1 := min{n(ε) − r | ε ∈ Eν}, and consider only a such

that {a}n(ε) ∈ Ker(Γn(ε) → Γn1) = Ker(Cln(ε) → Cln1). On the other hand, from

the outset we could choose each q in such a way that {q}Γ ∈ Ker(Γ → Γn1) so that

{d(q)n(ε)}n(ε) ∈ Ker(Γn(ε) → Γn1) also. In Section 4, we have defined for such d(q)n(ε)a

a collection of Γ(l∞)arith-structures βl∞(d(q)n(ε)a)I on E(d(q)n(ε)a) for I in a congruence

class I ∈ Z/ln(ε)−n1Z. (The indices n, m and i in 4.3 are now replaced by n1, n(ε)−n1 and

I, respectively.) These Γ(l∞)arith-structures extend toW (6.1.5), and we can consider the

Γl∞M,T -test objectsXl∞M,T (d(q)n(ε)a)I/Fp
in a similar manner as (4.3.5). The ΓM,lT -test

object associated to them (cf. 3.4) is XM,lT (d(q)n(ε)a)/Fp
, which is independent of I.

Lemma (7.3.3). With the same notation and assumptions as above, set

H̃k,λ,ν,q :=
lr−1∑
i=0

ζ−iHk,λ,ν |[N(q)]|Br,i ∈ Rk(Fp,Γl2rM,T ).
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Then we have ∑
q∈Q

c′k,λ,ν(d(q)0)H̃k,λ,ν,q(Xl∞M,T (d(q)n(ε)a)I/Fp
) = 0 (∗∗∗)

for all ε ∈ Eν . Here a is any proper on(ε)-ideal prime to pMT such that {a}n(ε) ∈
Ker(Cln(ε) → Cln1).

Proof. It is easy to see that H̃k,λ,ν,q in fact belongs to Rk(Fp,Γl2rM,T ). From

(4.3.6), we have

Br,iXl∞M,T (d(q)n(ε)a)I/Fp
= Xl∞M,T (en(ε)−r,i(d(q)n(ε)a))I′/Fp

for 0 ≤ i ≤ lr−1 (I ′ = I + iln(ε)−n1−r). Since Hk,λ,ν |[N(q)] ∈ Rk(Fp,ΓM,lT ), the value

Hk,λ,ν |[N(q)](Br,iXl∞M,T (d(q)n(ε)a)I/Fp
) is equal to

Hk,λ,ν |[N(q)](XM,lT (en(ε)−r,i(d(q)n(ε)a))/Fp
). □

7.4. Application of Hida’s Zariski density theorem.

In general, let E be an ordinary elliptic curve over an Fp-scheme S, equipped with

an Igusa structure of level p

γp : µp ↪→ E; a closed immersion of S-group schemes. (7.4.1)

Then there is the unique nowhere-vanishing invariant differential ωp-can on E such that

γ∗
pωp-can = dx/x (7.4.2)

where x is the standard parameter on µp or Gm. For example, when E = Tate(q) over

Fp((q)) with the canonical Igusa structure of level p, ωp-can is the reduction modulo p of

ωcan.

Especially, if we set

a′(E, βp) := (ωp-can on E with respect to βp |µp
) (7.4.3)

for each Γ(p)arith-curve (E, βp) over an Fp-scheme, the formation of this association is

compatible with Cartesian squares, and hence gives a modular form of weight one belong-

ing to R1(Fp,Γ(p)
arith) in the sense recalled in the proof of (2.3.8). The corresponding

element a ∈ R1(Fp,Γ(p)
arith) in the sense of (2.1.2) is thus given by

a(E,ω, βp) = c−1 if ω = cωp-can (7.4.4)

for Γ(p)arith-test objects (E,ω, βp) over Fp-algebras. We set

M ′ =

{
M when M is divisible by p,

Mp when M is not divisible by p
(7.4.5)

and consider a also as an element of R1(Fp,Γ(M
′)arith) or R1(Fp,ΓM ′,T ).
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In what follows, as in the previous subsection, we continue to work in characteristic

p.

Lemma (7.4.6). Choose ω(o) on E(o)/Fp
(= E(o)/W0

⊗ Fp) in such a way that

ω(o) = ω(o)p-can. Then for a proper on-ideal a prime to p, we have

ω(a) = lnN(a)ω(a)p-can on E(a)/Fp
.

Proof. In (6.1.3), we have fixed our choice of ω(o) over W0 which is unique only

up to W×
0 -multiples. It is thus possible to choose it in such a way that ω(o) = ω(o)p-can

in characteristic p.

In general, let a and a′ be proper on-ideals prime to p such that a ⊆ a′. We have,

from (1.2.5), the commutative diagram:

E(a)/Fp

π−−−−→ E(a′)/Fp

γp(a)

x xγp(a
′)

µp −−−−→
deg(π)

µp

where π is the natural quotient morphism of degree |a′ : a|, and γp(a) and γp(a
′) are

induced from βp(a) and βp(a
′), respectively. (Indeed, (1.2.5) gives us a similar diagram

over K0, which extends to W0.) It then follows that

π∗ω(a′)p-can = deg(π)ω(a)p-can

(and similarly when a and a′ are respectively replaced by on and o). Our conclusion

follows from the argument similar to that of (4.2.8). □

We now return to the equation (∗∗∗) in (7.3.3). Let us denote by XlsM ′,T (b)I/Fp

the ΓlsM ′,T -test object attached to Xl∞M ′,T (b)I/Fp
for s < ∞. We then denote by

XlsM ′,T (b)
p-can

I/Fp
the test object obtained from it by replacing ω(b) by ω(b)p-can. Also let

xlsM ′,T (b)I/Fp
be the geometric point of the modular scheme M(ΓlsM ′,T )/Fp

(cf. 1.1; it

exists because M ′ ≥ 3) corresponding to XlsM ′,T (b)I/Fp
with the differential removed.

Now if we set

c′′k,λ,ν(d(q)0) := N(d(q)0)
−kc′k,λ,ν(d(q)0) (7.4.7)

we obtain from (∗∗∗) that∑
q∈Q

c′′k,λ,ν(d(q)0)H̃k,λ,ν,q(Xl2rM ′,T (d(q)n(ε)a)
p-can

I/Fp
) = 0.

Since

a(Xl2rM ′,T (d(q)n(ε)a)
p-can

I/Fp
) = 1

by (7,4,4), (∗∗∗) now becomes a relation of modular functions on M(Γl2rM ′,T )/Fp
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∑
q∈Q

c′′k,λ,ν(d(q)0)
H̃k,λ,ν,q

ak
(xl2rM ′,T (d(q)n(ε)a)I/Fp

) = 0. (∗∗∗∗)

Consider the set

X := {(xl2rM ′,T (d(q)n(ε)a)I/Fp
)q∈Q | ε ∈ Eν , {a}n(ε) ∈ Ker(Cln(ε) → Cln1)}

(here, we consider only those a prime to M ′T ) of geometric points on the product of #Q
copies ofM(Γl2rM ′,T )/Fp

. It is a deep result of Hida that this subset is Zariski dense; [H3,

Proposition 8.28] or [H1, Proposition 2.8]. Indeed, if we denote by V0 the coarse mod-

uli scheme classifying ordinary elliptic curves over Fp (i.e. V0 = (affine j-line over Fp)−
(supersingular points)), there is a natural morphism f : M(Γl2rM ′,T )/Fp

→ V0, “for-

getting the level structure”, and the resulting f#Q : M(Γl2rM ′,T )
#Q
/Fp
→ V #Q

0 for the

#Q-fold self-products. Since M(Γl2rM ′,T )
#Q
/Fp

is irreducible and f#Q is finite, our claim

is equivalent to the Zariski density of f#Q(X ) in V #Q
0 , which is certainly guaranteed by

Hida’s result mentioned above.

Since c′′k,λ,ν(d(q)0) ∈ F×
p , it follows form this property that (∗∗∗∗) contradicts the

following lemma, and hence completes the proof of Theorem (7.3.1).

Lemma (7.4.8). For each q ∈ Q, H̃k,λ,ν,q/a
k is a non-constant function on

M(Γl2rM ′,T )/Fp
.

Proof. Since the q-expansion of a is one by (7.4.4) and the remark after (7.4.2),

it is enough to show that the q-expansion of H̃k,λ,ν,q is non-constant. For this, recall that

H̃k,λ,ν,q was defined by (7.3.3) using Hk,λ,ν , Hk,λ,ν was defined by (7.2.6) using Gk,λ, and

the q-expansion of Gk,λ was given by (5.3.2).

Let

(Hk,λ,ν)q =
∑
n

anq
n/M

be the q-expansion of Hk,λ,ν . We obtain from (3.2.2) and (3.3.8) that

(Hk,λ,ν |[N(q)]|Br,i)q =
∑
n

anζ
iN(q)n
lr qN(q)n/M

with ζlr = e2πi/l
r

(reduced modulo m). Thus if we write ζ = ζulr ((u, l) = 1), we have

(H̃k,λ,ν,q)q =
∑
n

(
lr−1∑
i=0

ζ
(N(q)n−u)i
lr

)
anq

N(q)n/M .

But by(7.2.6), Hk,λ,ν =
∑

r∈R ck,λ,ν(r)Gk,λ|[N(r)] with ck,λ,ν(r) ∈ F×
p . Therefore if

N(q)n ≡ umod lr and n ̸≡ 0 mod N(r) for r ̸= o, the coefficient of qN(q)n/M in (H̃k,λ,ν,q)q
is a non-zero multiple of

∑
n=dd′ χf(d)χf′(d

′)dk−1 ∈ Fp by (5.3.2). Consequently, further

assuming that n is a prime number congruent to one mod M ′, it is a non-zero multiple

of 1 + 1. Since p is odd, our claim follows. □
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Part II. µ-type subgroups of J1(N).

1. Preliminaries on Iwasawa theory for imaginary quadratic fields.

1.1. p-adic L-functions.

We will use the same notation as in Part I, Section 0: We let K be an imaginary

quadratic field with its ring of integers o. We fix an odd prime number p which splits as

(p) = pp in K. We fix an embedding of Q into Qp such that the prime p corresponds to

this embedding.

We also use the following notation: If a is an integral ideal of K, we set

K(a) :=(the ray class field modulo a of K). (1.1.1)

We take and fix an integral ideal f of K prime to p and set
Fn := K(fpn), for n ≥ 0,

F∞ :=
∞∪

n=0

Fn,

G(f) := Gal(F∞/K).

(1.1.2)

On the other hand, let
K∞ := (the unique Zp-extension of K unramified outside p),

Kn := (the subextension of K∞/K of degree pn over K),

Γ := Gal(K∞/K),

H(f) := Gal(F∞/K∞).

(1.1.3)

The extension 0→ H(f)→ G(f)→ Γ→ 0 splits, and we fix an identification isomorphism

G(f) ∼= H(f)× Γ. (1.1.4)

H(f) is isomorphic to Gal(F1/F1∩K∞), and we identify it with a quotient of Gal(F1/K)

by this isomorphism.

In what follows, we will consider a grossencharacter η of (the infinity) type (k, 0)

(k ∈ Z) of K in the terminology of de Shalit [dS, Chapter II, 1.1]. To be consistent

with the notation of Part I, we mean by this that η is a continuous homomorphism

K×
A /K× → C× such that η(x) = x−k for x ∈ K×

∞, and denote by ηid the associated

(quasi-)character of the group of fractional ideals of K prime to the conductor cond(η) of

η. When cond(η) is a divisor of fp∞, we denote by ηp : G(f)→ Q×
p the associated p-adic

Galois (quasi-)character satisfying ηp(Frobq) = ηid(q) for a prime ideal q of K prime to

cond(η)p and a Frobenius element Frobq ∈ G(f) at q.
We now quote the following theorem due to de Shalit. For references to works

preceding it, see the introduction to [dS, Chapter II].

Theorem (1.1.5) ([dS, Chapter II, Theorem 4.12]). Let Ω∞ ∈ C× be defined by

Part I, (6.1.3), and f a non-trivial integral ideal of K prime to p. Then there is a p-adic

unit Ωp ∈ C×
p , and a p-adic integral measure µ(f) on G(f) having the following property :
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For any grossencharacter η of K of type (k, 0) with k ∈ Z and k ≥ 1, and of conductor

dividing fp∞, we have

Ω−k
p

∫
G(f)

ηp(σ)dµ(f;σ) = Ω−k
∞ G(η)

(
1− ηid(p)

p

)
(k − 1)!L(f)(0, η−1). □

In this theorem, G(η) is the “like Gauss sum” defined in [dS, Chapter II, 4.11], and

will be recalled in the next subsection. We have used the usual convention that ηid(p) = 0

when the conductor of η is divisible by p, and L(f)(s, η−1) is the Hecke L-function with

the Euler factors at the primes dividing f removed. The measure µ(f) takes values in

the ring of integers of Cp, and the theorem especially claims that the right hand side of

the above equation is algebraic and belongs to this ring. (See also the remark by Vatsal

[V, Remark 3.8] for the right hand side.) We note that de Shalit’s theorem also gives

a pseudo-measure satisfying the same property as above when f = o. For our purpose,

the case where f is non-trivial suffices, and hence for simplicity, we do not touch the case

f = o here and below.

If we denote by R the ring generated by all |H(f)|-th roots of unity over the ring of

integers of the completion of the maximal unramified extension of Qp, the measure µ(f)

actually takes values in R; µ(f) ∈ R[[G(f)]] = R[H(f)][[Γ]]. Take an R-valued character

χ of H(f), which defines a ring homomorphism R[[G(f)]] ↠ R[[Γ]]. We fix a topological

generator γ0 of Γ, and by means of this, identify R[[Γ]] with the formal power series ring

R[[T ]] by γ0 ↔ 1 + T . Let

ff,χ(T ) ∈ R[[T ]] (1.1.6)

be the power series corresponding to the image of µ(f) to R[[Γ]].

Corollary (1.1.7). Let η be a grossencharacter of K as in (1.1.5) and assume

that ηp is of the form χ× ηpΓ according to the decomposition (1.1.4). Then we have

ff,χ(η
p
Γ(γ0)− 1) = Ωk

p · Ω−k
∞ G(η)

(
1− ηid(p)

p

)
(k − 1)!L(f)(0, η−1). □

The method of the construction of the measure µ(f) given in [dS], originally due to

Iwasawa, Coates and Wiles, has the following additional information on it: Let U(Fn)

be the group of principal units of Fn ⊗K Kp, and let U(F∞) := lim←−n
U(Fn). There is

the subgroup of elliptic units C(F∞) of U(F∞), [dS, Chapter III, 1.6].

Theorem (1.1.8) ([dS, Chapter III, Lemma 1.10]). Let χ be a character of H(f)
such that cond(χ) = g or gp with g prime to p and non-trivial. Then the characteristic

ideal of the R[[Γ]] ∼= R[[T ]]-module

(U(F∞)/C(F∞))χ := (U(F∞)/C(F∞)⊗̂ZpR)⊗R[[G(f)]],χ R[[Γ]]

= (U(F∞)/C(F∞))⊗Zp[[G(f)]],χ R[[Γ]]

is generated by fg,χ. □

Since the power series fg,χ depends only on χ, we will henceforth denote it by fχ.
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1.2. Comparison of special values and application.

In general, if a and b are elements of C×
p , we write a ∼ b if a/b is a p-adic unit.

Lemma (1.2.1). Let η be a grossencharacter of K of type (k, 0) with an integer

k ≥ 1, and let e be the exact power of p dividing cond(η). Let ηp be the restriction of

η to o×p , and denote by the same symbol ηp the induced Dirichlet character (Z/peZ)× =

(o/pe)× → Q×
. Then we have

G(η) ∼ pe(k−1)g(e2πi/p
e

, η−1
p )

where g(e2πi/p
e

, η−1
p ) =

∑
a∈(Z/peZ)× η−1

p (a)e−2πia/pe

is the Gauss sum (Part I, (5.1.6)).

Proof. We first recall the definition of G(η) [dS, Chapter II, 4.11]: We take

an integral ideal f of K prime to p such that cond(η) is a divisor of fp∞, and

wf := (the number of units of K congruent to one modulo f) = 1. Take a grossenchar-

acter φ of type (1, 0) of conductor dividing f, and write η = φkξ. ξ is thus of type

(0, 0) and may be considered as a Galois character. Then we have the expression

G(η) = (φid)k(pe)ξ(q)τ(ξ), where ξ(q) is a (harmless) root of unity, and

τ(ξ) =
1

pe

∑
γ∈Gal(Fe/F0)

ξ(γ)ζ
−κ(γ)
pe .

Here, Fn is defined by (1.1.2), ζpe is a primitive pe-th root of unity, and κ : Gal(Fe/F0)→
(Z/peZ)× is a Galois character giving the action on pe-th division points of certain

elliptic curve or a Lubin–Tate formal group. The extension Fe/F0 is totally ramified

at the primes dividing p, and via the Artin map o×p ↠ Gal(Fe/F0), κ is given by

o×p ∋ u 7→ u−1 mod pe, cf. [dS, Chapter I, 1.8]. Since φ is unramified at p, this shows

that peτ(ξ) ∼ g(e2πi/p
e

, η−1
p ), and it is clear that (φid)k(pe)p−e ∼ pe(k−1). □

In Part I, we considered the following situation: Let λ be a Hecke character of K

such that λ(x) = xk for x ∈ K×
∞ with an integer k ≥ 2. Let e be the exponent of p

dividing the conductor c of λ, and χp : (Z/peZ)× → Q×
the Dirichlet character obtained

from the restriction of λ to o×p . We then studied the following value for the twist λε by

a character ε of Cln = K×
A /K×

∞ô×nK
× (on = Z + lno) whose conductor divides a power

of a prime number l prime to pc:

pe(k−1)(k − 1)!g(e2πi/p
e

, χp)L
(l)(0, λε)/Ωk

∞ =: L1(λε). (1.2.2)

Proposition (1.2.3). Let the notation and the assumption be as above. Then the

value L1(λε) is algebraic and we have

L1(λε) ∼ Ω−k
∞ G(η)

(
1− ηid(p)

p

)
(k − 1)!L(f)(0, η−1) =: L2(λε)

with η = (λε)−1 and f = (the non-p-part of c)× lc with c > 0 such that cond(λε) | fp∞.

Proof. We already know that L2(λε) is algebraic.
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It is clear that L(l)(0, λε)/Ωk
∞ = Ω−k

∞ L(f)(0, η−1). Since we assumed that k ≥ 2, it

is also clear that (1− ηid(p)/p) ∼ 1. Our claim therefore follows from (1.2.1). □

Especially, if we denote by P the prime of Q corresponding to Q ↪→ Qp, L1(λε)

and L2(λε) are both P-integral elements of Q and L1(λε) ≡ 0 mod P if and only if

L2(λε) ≡ 0 mod P.

We can now complete the proof of Theorem I in Part I, Section 0, which we proved

under additional assumptions on λ:

(i) e ≥ e (= the exponent of p dividing c),

(ii) c ̸= (1) when k = 2.

Now assume that λ as in that theorem is given. We can take a Hecke character µ of K of

type (0, 0) and of conductor pC , which, considered as a Galois character, factors through

Γ, with C so large that λµ satisfies (i) and (ii). Then for any ε as above, it follows from

(1.1.7) that L2(λε) ≡ L2(λµε) mod P. We conclude that Theorem I holds for λ if and

only if it holds for λµ, which completes the proof.

1.3. The main conjecture proved by Rubin.

Let K and p be as in 1.1. We fix a finite abelian extension E of K, and assume:{
p ∤ | o× |,
p ∤ [E : K].

(1.3.1)

Let K∞ be the Zp-extension of K as in (1.1.3), and set
En := EKn for 1 ≤ n ≤ ∞,

∆ := Gal(E/K),

G := Gal(E∞/K),

(1.3.2)

so that G ∼= ∆ × Γ with Γ = Gal(K∞/K). Let M∞ be the maximal pro-p abelian

extension of E∞ unramified outside the primes above p, and set

X := Gal(M∞/E∞). (1.3.3)

It is a module over Zp[[G]] ∼= Zp[∆][[Γ]]. On the other hand, let U(E∞) := lim←−n
U(En)

be defined as in 1.1, and C(E∞) its subgroup of elliptic units as defined in Rubin [Ru1,

Section 1, Section 4].

For a Zp[∆]-module Y and an irreducible Zp-representation χ0 of ∆, we denote by

Y χ0 the χ0-isotypic component of Y . Since |∆ | is prime to p, it is a direct summand

of Y . The following is the “main conjecture” proved by Rubin in the case under our

consideration:

Theorem (1.3.4) ([Ru2, Theorem 2, (i)]). For any irreducible Zp-representation

χ0 of ∆, Xχ0 and (U(E∞)/C(E∞))χ0 are finitely generated torsion Zp[∆]χ0 [[Γ]]-modules,

and they have the same characteristic ideal. □
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Let f be the non-p-part of the conductor of the extension E/K. By our assumption

(1.3.1), E ⊆ F1 = K(fp), E∞ ⊆ F∞ = K(fp∞), and ∆ is a quotient of H(f) in the

notation of 1.1. Let χ be an R-valued character of ∆, R being as in 1.1. We can then

consider (U(F∞)/C(F∞))χ and (U(E∞)/C(E∞))χ as in (1.1.8). It is straightforward to

see that these R[[Γ]]-modules are pseudo-isomorphic, and we obtain from (1.3.4) and

(1.1.8) the following:

Theorem (1.3.5). Let the notation be as above and assume that the non-p-part of

cond(χ) is not o. Then the characteristic ideal of the R[[Γ]]-module Xχ is generated by

fχ. □

2. An anticyclotomic analogue of a theorem of Washington.

2.1. Statement of the result.

As is well-known, Washington [W] proved the following theorem: Let k be an abelian

number field, and K the cyclotomic Zl-extension of k. Let p be a prime number different

from l. Then for any finite subextension k′ of K/k, the order of the p-Sylow subgroup

of the ideal class group of k′ is bounded independently of k′. Washington deduced this

theorem from a result on the non-vanishing modulo p of the Dirichlet L-values under

twists by l-cyclotomic characters. Later, Sinnott [Si] gave a more transparent proof of

this latter result, and it was a prototype of the far-reaching theorem of Hida which we

have to some extent generalized in Part I. Although the original theorem of Washington

is an easy consequence of the non-vanishing modulo p result by virtue of the analytic

class number formula, its analogue for the anticyclotomic situation is not. It is an idea

of Vatsal to use the main conjecture to deduce an analogue of Washington’s theorem

from the non-vanishing result, cf. [V, Section 3]. We thus follow his idea to prove

Theorem (2.1.6) below; and further use it to obtain results on the µ-type subgroups of

J1(N) in the subsequent sections always following Vatsal’s method.

Throughout this section, we use the following notation: K is an imaginary quadratic

field, and o is its ring of integers. We assume that

o× = {±1}. (2.1.1)

We fix an odd prime number p which splits in K, and an embedding Q ↪→ Qp as

in 1.1.

We also fix an odd prime number l different from p and unramified in K. We assume

that {
(l − 1, p) = 1 if l splits in K,

(l + 1, p) = 1 if l remains prime in K.
(2.1.2)

We set 
Hn := (the ring class field of K of conductor ln), n ≥ 0,

H∞ :=

∞∪
n=0

Hn.
(2.1.3)
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Especially H0 is the Hilbert class field of K. The Galois group Gal(Hn/K) is canonically

isomorphic to the group of proper on-ideal classes Cln, and the p-part of its order is

independent of n, under (2.1.1) and (2.1.2); cf. Part I, (4.1.2).

Now take an extension H̃0 of H0 satisfying
H̃0 is finite and abelian over K,

H̃0/K is unramified at the primes above l,

primes that ramify in H̃0/K are split primes for K/Q,

[H̃0 : H0] is prime to p,

(2.1.4)

and set

H̃n := HnH̃0 for 0 ≤ n ≤ ∞. (2.1.5)

The purpose of this section is to prove the following theorem. When H̃0 = H0, it has

been proved by Vatsal [V, Proposition 3.19]:

Theorem (2.1.6). Let the notation and the assumption be as above. We especially

assume (2.1.4) for H̃0. Let H̃ur
n be the maximal unramified abelian (pro-)p-extension of

H̃n for 0 ≤ n ≤ ∞. Then there is a non-negative integer n0 such that H̃ur
n = H̃ur

n0
H̃n for

all n ≥ n0. Especially H̃ur
∞ is a finite extension of H̃∞.

The following corollaries are consequences of this theorem:

Corollary (2.1.7). Let Σ be a finite set of primes of K satisfying :{
each prime in Σ is a split prime for K/Q,

Σ does not contain primes above p.

Let MΣ
∞ be the maximal abelian pro-p extension of H̃∞ unramified outside Σ. Then

Gal(MΣ
∞/H̃∞) is a finitely generated Zp-module.

Proof. See [V, Theorem 3.20]. The points are:

(i) primes in Σ are finitely decomposed in H∞ and hence in H̃∞,

(ii) for each prime q̃ of H̃∞ lying over a prime in Σ, the inertia group of q̃ in

Gal(MΣ
∞/H̃∞) is pro-cyclic. □

Corollary (2.1.8). Fix an integer r ≥ 1. Let L̃n be the composite of all abelian

extensions of H̃n which are unramified outside Σ and of degree dividing pr. Then each

L̃n is finite over H̃n, and there is a non-negative integer n1 such that L̃n = L̃n1H̃n for

all n ≥ n1. □

2.2. Reduction of the proof.

We follow the argument of [V, Section 3].

Lemma (2.2.1). In general, let K be a finite extension of Q, and let F and F ′ be
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finite abelian extensions of K such that F ′ ⊇ F . Let ∆ (resp. ∆′ ) be the Galois group

of F/K (resp. F ′/K ). Let p be a prime number, and assume that p ∤ [F ′ : K]. Take an

irreducible Zp-representation χ0 of ∆, and consider it also as a representation of ∆′.

(1) Let A (resp. A′ ) be the p-Sylow subgroup of the ideal class group of F (resp. F ′ ).

Then the norm map induces an isomorphism

A′χ0
∼→ Aχ0 .

(2) Let K∞ be a Zp-extension of K with Γ = Gal(K∞/K), and set F∞ := FK∞ and

F ′
∞ := F ′K∞. Fix a set P consisting of primes of K dividing p. Let N (resp. N ′ ) be the

maximal abelian pro-p extension of F∞ (resp. F ′
∞ ) unramified outside the primes lying

above P . Thus X := Gal(N/F∞) (resp. X′ := Gal(N ′/F ′
∞)) is a module over Zp[∆][[Γ]]

(resp. Zp[∆
′][[Γ]]). The restriction map induces an isomorphism

X′χ0
∼→ Xχ0

of Zp[∆]χ0 [[Γ]]-modules.

Proof. This must be more or less well-known. We outline the proof of (1) for

completeness.

Let L0 be the maximal abelian subextension of L′/F . We first claim that L0 = LF ′.

Let L′′ be the maximal sub-p-extension of L0/F . Then it is everywhere unramified since

the ramification index of any prime in L′/F is prime to p. It follows that L′′ = L and

L0 = LF ′.

We can identify Gal(L′/F ′) with A′ as Gal(F ′/F )-modules by class field theory. The

exact sequence

0→ Gal(L′/F ′)→ Gal(L′/F )→ Gal(F ′/F )→ 0

splits, and hence we can identify the commutator subgroup of Gal(L′/F ) with the sub-

module D of A′ generated by all (δ − 1)x (δ ∈ Gal(F ′/F ), x ∈ A′). Consequently, the

first claim implies that A′/D
∼→ A, from which our assertion follows. □

We now return to the situation considered in 2.1, and set{
G̃n := Gal(H̃n/K),

Gn := Gal(Hn/K),
(2.2.2)

for non-negative integers n. Since the extension H∞/H0 ramifies totally at the primes

dividing l, it follows from the second condition in (2.1.4) that

H∞ ∩ H̃0 = H0 (2.2.3)

so that

| G̃n | = |Gn | · [H̃0 : H0] = |Cln | · [H̃0 : H0]. (2.2.4)
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Therefore, under (2.1.4), the p-Sylow subgroups of G̃n and Gn have the same order which

is independent of n. The natural surjections G̃m ↠ G̃n, Gm ↠ Gn and G̃n ↠ Gn induce

isomorphisms on their p-Sylow subgroups for all m ≥ n. We identify these p-Sylow

subgroups and denote it simply by d. Set{
Fn := H̃d

n : the fixed field of d < G̃n,

gn := Gal(Fn/K).
(2.2.5)

Thus the order of gn is prime to p, and we have the canonical isomorphism

G̃n
∼= d× gn (2.2.6)

through which we identify the both sides.

Let An (resp. Bn) be the p-Sylow subgroup of the ideal class group of Fn (resp. H̃n).

It is a module over Zp[gn] (resp. Zp[G̃n]). When χ0 is an irreducible Zp-representation

of gn, we may consider it also as representations of gm and G̃m for all m ≥ n.

Lemma (2.2.7). Let χ0 be an irreducible Zp-representation of gn as above. Then

the norm maps induce the following isomorphisms{
Aχ0

m
∼→ Aχ0

n ,

Bχ0
m

∼→ Bχ0
n

for all m ≥ n.

Proof. Apply (2.2.1) to the situations Fm/Fn/K and H̃m/H̃n/H̃
gn
n . □

Proposition (2.2.8). Let χ0 be an irreducible Zp-representation of gn. Then for

any m ≥ n, if Bχ0
m is non-trivial, Aχ0

m is also non-trivial.

Proof. It is enough to treat the case m = n by the previous lemma.

Assume that Bχ0
n ̸= {0}. By class field theory, there corresponds an unramified

extension H ′ of H̃n such that Gal(H ′/H̃n) is isomorphic to Bχ0
n as a module over G̃n =

d×gn. Since d is a p-group, the maximal quotient of Gal(H ′/H̃n) on which d acts trivially

is non-trivial. Let L′ be the extension of H̃n corresponding to this quotient.

Take a cyclic subgroup P of d, and let H ′
n be its fixed subfield; H̃n ⊇ H ′

n ⊇ Fn.

Then since Gal(L′/H̃n) is central in Gal(L′/Fn), L
′/H ′

n is an abelian extension. On the

other hand, we claim that H̃n/Fn is unramified. Indeed, since [Hn : H0] is prime to p, the

ramification index of any prime in the extension Hn/K is prime to p. Thus Hn/H
d
n, and

hence H̃n = FnHn/Fn also, is unramified. Consequently, L′/H ′
n is also unramified. It

follows that the χ0-isotypic component of the p-Sylow subgroup of the ideal class group

of H ′
n is non-trivial.

Starting from thisH ′
n and repeating the above argument, we arrive at our conclusion.

□
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2.3. End of the proof of (2.1.6).

First set

F∞ :=
∪
n≥0

Fn, g∞ := Gal(F∞/K),

ĝn := Hom(gn,Q
×
p ), the set of Q×

p -valued characters of gn,

ĝ∞ := lim−→n
ĝn,

ĝ0n := (the set of irreducible Zp-representations of gn),

ĝ0∞ := lim−→n
ĝ0n.

(2.3.1)

Thus each element of ĝ0∞ may be identified with the Gal(Qp/Qp)-orbit of an element of

ĝ∞. For an element χ (resp. χ0) of ĝ∞ (resp. ĝ0∞), we write n(χ) (resp. n(χ0)) for the

minimal integer n such that χ (resp. χ0) belongs to ĝn (resp. ĝ0n).

By virtue of (2.2.7) and (2.2.8), (2.1.6) is now a consequence of the following:

Theorem (2.3.2). We have

Aχ0
n = {0} for n ≥ n(χ0)

for all but finitely many χ0 ∈ ĝ0∞.

Now let K∞/K be as in (1.1.3), and let
Fn,∞ := FnK∞,

Mn,∞ := (the maximal abelian pro-p extension of Fn,∞,

unramified outside the primes above p),

Xn := Gal(Mn,∞/Fn,∞).

(2.3.3)

Thus Xn is a module over Zp[gn][[Γ]].

Lemma (2.3.4). Let ĝ0∞ ∋ χ0 be non-trivial. For n ≥ n(χ0), if the characteristic

ideal of the Zp[gn]
χ0 [[Γ]]-module Xχ0

n is trivial, then Aχ0
n vanishes.

Proof. First note that Xχ0
n is independent of n ≥ n(χ0) by (2.2.1), (2).

Since Xχ0
n has no non-zero finite submodule by Greenberg [Gre, Section 4], the as-

sumption implies that Xχ0
n = {0}. But if Aχ0

n ̸= {0}, there is a non-trivial abelian unram-

ified p-extension Ln of Fn such that gn acts via χ0 on Gal(Ln/Fn). Since Fn,∞ is abelian

over K, the action of gn on Gal(Fn,∞/Fn) is trivial. This implies that LnFn,∞/Fn,∞ is

non-trivial and hence Xχ0
n ̸= {0}. □

For each non-negative integer n, we can apply the consideration in 1.3 for Fn in

place of E there. Take χ0 ∈ ĝ0n and let χ ∈ ĝn be one of its absolutely irreducible

component. Then the main conjecture proved by Rubin, in the form (1.3.5), asserts that

the characteristic ideal of Xn,χ, the base extension of Xχ0
n by Zp[gn]

χ0 [[Γ]]
χ→ R[[Γ]], is

generated by the power series fχ giving the p-adic L-function whenever cond(χ) ̸= o, p.

Thus finally (2.3.2) follows from the following:
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Theorem (2.3.5). fχ is a unit power series for all but finitely many χ ∈ ĝ∞ with

cond(χ) ̸= o, p.

Proof. Recall that d is the (common) p-Sylow subgroup of G̃n and Gn, and

Fn ⊇ Hd
n. The quotient homomorphism gn → g0 induces an isomorphism Gal(Fn/H

d
n)→

Gal(F0/H
d
0 ) for each n ≥ 0. Indicating by “̂” the group of Q×

p -valued characters again,

we have the commutative diagram:

0 ←−−−− Gal(Fn/H
d
n)̂←−−−− ĝn ←−−−− Gal(Hd

n/K)̂←−−−− 0

≀
x x x

0 ←−−−− Gal(F0/H
d
0 )̂←−−−− ĝ0 ←−−−− Gal(Hd

0 /K)̂←−−−− 0

with injective vertical maps. Let φ1, . . . , φh ∈ ĝ0 be the complete set of representatives

of Gal(F0/H
d
0 )̂, and consider them also as elements of ĝn. We have

ĝn = {φiε | 1 ≤ i ≤ h, ε ∈ Gal(Hd
n/K)̂}.

Each element of ĝn takes values in Q and hence may be considered as a Hecke character

of K of finite order by class field theory. Note that, under (2.1.4), the conductor of each

φi is prime to l, and the primes dividing it are split primes for K/Q.

Under (2.1.1), there exists a grossencharacter of type (2, 0) and of conductor o of

K. We take and fix its positive power ξ such that the associated Galois representation

ξp factors through Γ = Gal(K∞/K). Let (k, 0) be its type.

Now fix φi and consider χ = φiε ∈ ĝ∞. To prove the theorem, we may exclude finite

number of ε of conductor o, and hence we assume that cond(ε) ̸= o. Then we have

fχ(ξ
p(γ0)− 1) = Ωk

pL2(λε
−1)

with λ := (ξφi)
−1 by (1.1.7), where we used the notation as in (1.2.3). The same

proposition (1.2.3) asserts that this value is a p-adic unit if and only if so is the value

L1(λε
−1). But for the fixed λ, the main result Theorem I of Part I, Section 0 asserts

that, when ε moves over the characters of Gal(Hd
n/K) (↞ Gal(Hn/K)) for all n ≥ 0,

this value is a p-adic unit except for a finite number of ε. This completes the proof. □

3. Supersingular reduction of CM points.

3.1. Review of the case of X0(M).

In the argument of Vatsal, one of the important points is the surjectivity of the

supersingular reduction of certain CM points (or Heegner points) on X0(M), cf. [V, 4.6].

This is due to Vatsal and Cornut, and we first recall this result following Cornut [C].

For a positive integer M , we denote by X0(M) the usual modular curve over Q
attached to Γ0(M). It has the natural model X0(M)/Z[1/M ] proper and smooth over

Z[1/M ], and for any Z[1/M ]-algebra R, we denote by X0(M)/R its base extension to R.

As in previous sections, we take and fix an imaginary quadratic field K with its ring

of integers o. We again assume that
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o× = {±1}. (3.1.1)

We fix a positive integer M whose prime factors are all split primes for K/Q, and also

an integral ideal m of K satisfying

o/m ∼= Z/MZ. (3.1.2)

We start with a fixed elliptic curve E over C having complex multiplication by o;

End(E) ∼= o, the isomorphism being normalized so that the associated representation

of o on Lie(E) gives the inclusion o ↪→ C. Let

C := E(C)[m] (3.1.3)

be a cyclic subgroup of E(C) of order M .

On the other hand, fix a prime number l prime to M . As in (2.1.3) we denote by

Hn the ring class field of K of conductor ln, and set H∞ :=
∪∞

n=0 Hn. Let

Ll := (the set of cyclic subgroups of E(C) of order some power of l) (3.1.4)

and define

H : Ll → X0(M)(H∞) by H(X) := [E/X → E/(X + C)]. (3.1.5)

Here the brackets indicate the isomorphism class of the cyclic M -isogeny in it. It is

well-known that this indeed defines a point of X0(M) with values in some Hn, a CM

point (or a Heegner point), for which we use the same symbol H(X).

Take a prime number q which is prime to lM and remains prime in K, and a prime

Q of H∞ above q. The residue field of Q is Fq2 , the finite field with q2 elements. We

have the “reduction modulo Q map”

redq : X0(M)(H∞)→ X0(M)/Fq2
(Fq2). (3.1.6)

More generally, let V be a discrete valuation ring of mixed characteristic (0, q) with the

quotient field K (resp. the residue field k). Then through the bijection X0(M)(K) ∼=
X0(M)/Z[1/M ](V ) (the valuative criterion of properness), we obtain the reduction map

X0(M)(K)→ X0(M)/Z[1/M ](k). If a cyclic M -isogeny C between elliptic curves over K is

given and if it extends to CV over V , this reduction map sends the point of X0(M)(K)

corresponding to C to the point of X0(M)/Z[1/M ](k) corresponding to CV ⊗V k. Thus,

by our assumption on q, the image of H(X) under redq is a point of the supersingular

locus Xss
0 (M)/Fq2

of X0(N)/Fq2
. The result of Vatsal and Cornut referred to above can

now be stated as follows:

Theorem (3.1.7). The composite map

redq ◦ H : Ll → Xss
0 (M)/Fq2

(Fq2) = Xss
0 (M)/Fq2

(Fq)

is surjective.
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As is well-known, points of Xss
0 (M)/Fq2

are all rational over Fq2 , and hence the last

equality holds. Actually in [C], much more general results are proven, and the above

statement is a very particular case of Theorem 3.1 or Corollary 3.2 in [C]. Although

the proof of these results requires a theorem of Ratner in ergodic theory, only the com-

mutativity of the diagram in [C, 3.4] (with R = {1} and S = {one prime}) suffices for

(3.1.7).

3.2. The case of X1(M).

We keep the notation of 3.1.

We henceforth denote by X1(M) the modular curve over Q attached to Γ1(M),

of which the cusp at infinity is rational over Q. It is the generic fibre of the curve

X1(M)/Z[1/M ] proper and smooth over Z[1/M ], which is the smooth compactification

of the moduli scheme classifying pairs (E,α) consisting of an elliptic curve E and a

closed immersion α : µM ↪→ E[M ] (rather than Z/MZ ↪→ E[M ]) of group schemes over

Z[1/M ]-schemes. We use the notation X1(M)/R in the same sense as X0(M)/R.

Let X be an element of Ll, and consider the elliptic curve E/X. End(E/X) is

isomorphic to the order on = Z+ lno of conductor ln for some n. m′ := m ∩ on is then a

proper on-ideal, and (X + C)/X = (E/X)[m′](C) is cyclic of order M . Giving the data

E/X → E/(X+C) considered in the previous subsection is equivalent to giving the pair

(E/X, (E/X)[m′]).

Lemma (3.2.1). Let the notation be as above. The residue field of the point H(X)

of X0(M) generates Hn over K. Let H1(X) be any one of the point of X1(M) lying over

H(X). Then the residue field of H1(N) generates over K the field HnK(m), K(m) being

the ray class field of K modulo m ; (1.1.1).

Proof. We only prove the assertion for H1(X), because that for H(X) is well-

known and simpler. From the above remark, H1(X) corresponds to a pair (E/X,α :

µM
∼→ (E/X)[m′]), and the residue field of H1(X) is the field of moduli of this pair.

But it is also the field of moduli of (E/X,Z/MZ ∼→ (E/X)[m′]) obtained from it by

the Cartier duality, and hence that of the pair (E/X,P ) where P is a generator of the

cyclic group (E/X)[m′](C). As we assumed (3.1.1), it is given by Q(j(E/X), h
1
(E/X)(P ))

in the notation of [Shi1, 4.5], and our conclusion follows from [Shi1, Theorem 5.5]. (One

can also deduce this directly from the main theorem of complex multiplication [Shi1,

Theorem 5.4].) □

Now set

H ′
n := HnK(m) for 0 ≤ n ≤ ∞. (3.2.2)

Let X0(M)(H∞)CM be the image of Ll under (3.1.5). Each point of X1(M) lying above

a point in this set is rational over H ′
∞ by the previous lemma, and we set

X1(M)(H ′
∞)CM := (the inverse image of X0(M)(H∞)CM in X1(M)). (3.2.3)

Take a rational prime q not dividing lM which remains prime in K and splits

completely in K(m)/K. (Let K ′/Q be the Galois closure of K(m)/Q. There are infinitely
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many prime numbers q unramified in K ′/Q such that the Frobenius element of some

extension of q for K ′/Q is the complex conjugation, by Čebotarev density theorem. Any

such q ∤ lM works.) Thus q also splits completely in H ′
∞/K. Let Q′ be a prime of H ′

∞
above Q. We obtain the reduction modulo Q′ map

red′q : X1(M)(H ′
∞)→ X1(M)/Fq2

(Fq2) (3.2.4)

as in the previous subsection.

Proposition (3.2.5). Take q as above. Then we have Xss
1 (M)/Fq2

(Fq2) =

Xss
1 (M)/Fq2

(Fq), the superscript “ss” meaning the supersingular locus again. The re-

duction map (3.2.4) induces a surjection

X1(M)(H ′
∞)CM ↠ Xss

1 (M)/Fq2
(Fq2).

Proof. Take a point x ∈ Xss
1 (M)/Fq2

(Fq). By (3.1.7), its image to

Xss
0 (M)/Fq2

(Fq) = Xss
0 (M)/Fq2

(Fq2) is of the form redq(H(X)). There is a finite ex-

tension K of K such that the M -isogeny giving H(X) is defined over K. Take a prime of

KH ′
∞ above Q′, and let V be the valuation ring of its restriction to K. Taking K large

enough, we may assume that the above M -isogeny extends to (E/X)V → (E/(X+C))V
over V , and further that (E/X)V [m′] is a constant group scheme over V , since q is prime

to M . Then it follows from the argument of the proof of (3.2.1) that the given point x

lifts to H1(X) ∈ X1(M)(K) = X1(M)/Z[1/M ](V ) above H(X), which actually belongs to

X1(M)(H ′
∞) by (3.2.1). We thus have x = red′q(H1(X)). □

Remark (3.2.6). We have seen that all supersingular points of X1(M)/Fq2
are

rational over Fq2 under our choice of q. This is in fact an instance of the common feature

of Ihara’s model of modular curves over finite fields [I].

In general, let q be a prime number and n a positive integer not divisible by q. Let

X(n)/Z[1/n] be the compactification of the modular curve classifying pairs consisting of

an elliptic curve E together with an isomorphism Z/nZ × Z/nZ ∼→ E[n] (i.e. Γ(n)naive-

curves in the terminology of Part I, (1.1.1)) over Z[1/n]-schemes. There is a natural

morphism X(n)/Z[1/n] → µprim
n to the scheme of primitive n-th roots of unity. Consider

the base extension from Z to Fq:

X(n)/Fq
→ µprim

n /Fq
→ Spec(Fq).

Fix a primitive n-th root of unity ζn ∈ Fq. This defines a morphism Spec(Fq(ζn))→
µprim

n /Fq
, and we let X(n)(ζn) → Spec(Fq(ζn)) be the base change of the above situation

by this morphism. Let f be the minimal positive integer such that qf ≡ 1 mod n, so

that Fq(ζn) = Fqf .

There is a natural action of GL2(Z/nZ)/{±1} on X(n)/Z[1/n]. Its subgroup

G := {g ∈ GL2(Z/nZ)/{±1} | det(g) is a power of q} leaves X(n)(ζn) stable. A :=(
±
(
q 0
0 q

))
⊗ σq2 , where ±

(
q 0
0 q

)
∈ G and σq2 is the q2-th power automorphism of

Fq, gives an automorphism of X(n)(ζn) ⊗F
qf

Fq2f of order f . The quotient curve
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X(n)(ζn) ⊗F
qf

Fq2f /⟨A⟩ is Ihara’s model X(n)Ihara/Fq2
of X(n)(ζn) over Fq2 . An impor-

tant property of this model is that its supersingular points are all rational over Fq2 ; cf.

[I, Proposition 1.3.1].

Let us take and fix a primitive n-th root of unity ζn for each n prime to q compatibly

(i.e. ζ
m/n
m = ζn whenever n divides m). The above construction then gives us a projective

system {X(n)Ihara/Fq2
}q∤n of proper, smooth and geometrically irreducible curves over Fq2 .

Set X(∞)Ihara/Fq2
:= lim←−q∤n X(n)Ihara/Fq2

.

In [I], the main theorem is stated in several equivalent ways. In the form [MT 3],

it gives the following beautiful characterization of the tower {X(n)Ihara/Fq2
}q∤n: For each

integer r > 1 prime to q, a covering Y → X(r)Ihara/Fq2
over Fq2 , with an irreducible curve

Y proper and smooth over Fq2 , factors through X(∞)Ihara/Fq2
→ X(r)Ihara/Fq2

if and only

if it enjoys the following properties: (1) the supersingular points of X(r)Ihara/Fq2
all split

completely in Y ; (2) it is étale over the non-cuspidal points of X(r)Ihara/Fq2
; and (3) it is

tamely ramified over the cusps of X(r)Ihara/Fq2
.

Now let us return to the situation considered before this remark. In our discussion,

we assumed that q is inert in K and also that it splits completely in K(m)/K. Since

we are assuming (3.1.1), this implies that q ≡ ±1 mod M . When this is the case, it

is clear from the construction that X(M)Ihara/Fq2
coincides with X(M)

(ζM )
/Fq2

. Therefore we

have the canonical surjective morphism X(M)Ihara/Fq2
= X(M)

(ζM )
/Fq2

→ X1(M)/Fq2
. In this

paper, we will ultimately reduce our main theorem (5.1.4) (i.e. the first theorem in the

Introduction), or its equivalent form (5.1.7), to a variant of Ihara’s theorem using this

covering. See 5.3 below for this.

4. Étale coverings of curves and Jacobians.

4.1. Good reduction case.

We use the following notation in this subsection:

L: a finite extension of Q,

oL: the ring of integers of L,

S = Spec(r): a non-empty open subscheme of Spec(oL),

X: a proper, smooth and geometrically irreducible curve over L,

X : a proper and smooth curve over S such that X ⊗r L = X,

J : the Jacobian variety of X over L,

J : the Néron model of J over S.

(4.1.1)

Note that, for any point s of S, the fibre of X at s is geometrically irreducible by Zariski

connectedness theorem [Groth1, (4.3.12)]. J is an abelian scheme over S.

In the following, we assume that the genus of X is not zero, and that we are given a

closed immersion of L-group schemes µn ↪→ J for a positive integer n. Set J ′ := J/µn.

We have an exact sequence of group schemes over L
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0→ µn → J → J ′ → 0 (exact). (4.1.2)

Indicating by “∨” the dual abelian variety, we have

0← J∨ ← J ′∨ ← Z/nZ← 0 (exact) (4.1.3)

over L. Here, J∨ may be identified with J , and hence if we let J ′ be the Néron model

of J ′∨ over S, we have a complex of group schemes over S

0← J ← J ′ ← Z/nZ← 0. (4.1.4)

Lemma (4.1.5). Assume either one of the following conditions :

(i) n is invertible in S ;

(ii) n is a power of a prime number l, and the absolute ramification index of each

prime ideal l of r above l is strictly less than l − 1.

Then the sequence (4.1.4) is exact.

Proof. More generally, suppose that abelian schemes A and A′ and a complex

0→ Z/nZ→ A′ → A→ 0

over S are given. Then if the generic fibre of this sequence is exact, it is also exact under

(i) or (ii).

Indeed, A′ → A is an isogeny of abelian schemes, and hence it is faithfully flat and

its kernel K is a finite flat group scheme over S of rank n whose generic fibre is isomorphic

to Z/nZ.
In the case (i), K is an étale group over S and hence K ∼= Z/nZ.
In the case (ii), we obtain the same conclusion by Raynaud [Ra, Théorème 3.3.3]. □

Now assume that X(L) is non-empty. We take and fix P ∈ X(L) and let i : X ↪→ J

be the canonical closed immersion sending P to the origin.

Proposition (4.1.6). Let the notation be as above. We continue to assume that

there is a closed immersion µn ↪→ J over L, and assume either (i) or (ii) in (4.1.5).

Then there is a Z/nZ-torsor

Z → X over S

such that each fibre of Z → S is geometrically irreducible (whose construction we describe

in the course of the proof ).

Proof. i : X → J extends uniquely to an S-morphism X → J by the Néron

property. By the previous lemma, J ′ → J makes J ′ a Z/nZ-torsor over J , and hence

Z := X ×J J ′

is a Z/nZ-torsor over X . The geometric irreducibility of Z ⊗r L is well-known; cf. Milne

[Mi, Proposition 9.1]. It follows that all fibres of Z/S are geometrically irreducible as

well. □
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We let Z := Z ⊗r L be the generic fibre of Z, and Spec(oL)− S := {v1, . . . , vt} the
set of finite primes of L outside S.

Corollary (4.1.7). Let L′ be a finite extension of L, and assume we are given a

point x ∈ X(L′). Then the fibre product obtained by using this x : Spec(L′) → X and

Z → X is of the form

Spec(L′)×X Z =
m⨿
i=1

Spec(Li)

with fields Li. Each Li is an abelian extension of L′ of degree dividing n, which is

unramified outside the primes above vj (j = 1, . . . , t).

Proof. Let w be a prime of L corresponding to a closed point of S. Take a prime

w′ of L′ above w, and let r′w′ ⊂ L′ be its valuation ring. Since X is proper over S, the

morphism Spec(L′)
x→ X → X uniquely extends to an S-morphism Spec(r′w′)→ X . The

base extension Spec(r′w′)×X Z → Spec(r′w′) of Z → X by this morphism is a Z/nZ-torsor
by the previous proposition, of which Spec(L′)×X Z → Spec(L′) is the generic fibre. □

4.2. Semi-stable reduction case.

In this subsection, we let p be an odd prime, and F a finite extension of Qp whose

ring of integers we denote by rF .

Proposition (4.2.1). Let A and A′ be abelian varieties over F . Let A and A′ be

their Néron models over rF , respectively, and assume that they have semi-stable reduction.

Assume that the ramification index of F/Qp is strictly less than p−1. Let f : A′ → A

be an F -isogeny such that Ker(f) ∼= Z/prZ for some r ≥ 0.

Denote by the same letter f the associated homomorphism A′ → A. Then its kernel

is isomorphic to Z/prZ over rF , and we have the exact sequence

0→ Z/prZ→ A′ f→ A→ 0

of group schemes over rF .

Proof. f : A′ → A is an isogeny of Néron models having semi-stable reduction,

and hence Ker(f) is a quasi-finite, separated and flat group scheme over rF . Since rF is

complete, we have the decomposition

Ker(f) = X f
⨿

X ′

where X f is finite and flat over rF , and the closed fibre of X ′ is empty. Since we have

the complex Z/prZ → A′ → A, the first morphism factors through Ker(f), which in

fact factors as Z/prZ → X f ↪→ Ker(f). Looking at the generic fibre, we conclude that

Z/prZ ∼→ X f = Ker(f) by [Ra, Théorème 3.3.3].

It remains to show the surjectivity of f : A′ → A. For this, we may replace rF by

its strict localization rstrF . Let s be the closed point of Spec(rstrF ) and κ(s) the residue

field of s, so that κ(s) is algebraically closed. We need to show that fs : A′
s → As,
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the fibre of f at s, is surjective. For this let A0
s be the identity component of As, and

Φ(As) := As/A0
s the group of connected components of As; and similarly for A′

s. Since

fs induces surjective morphism on the identity components, our problem is reduced to

showing that the homomorphism Φ(fs) : Φ(A′
s)→ Φ(As) induced by fs is surjective.

To see this, we recall Grothendieck’s description of Φ(As), [Groth2, (11.5.3)]; cf.

also Ribet [Ri2, Section 3]. Let X(A) be the character group of the maximal torus T of

As; X(A) = Homκ(s)(T,Gm). Grothendieck’s monodromy pairing induces a homomor-

phism X(A∨) → X(A)∗ := Hom(X(A),Z), and Φ(As) is canonically isomorphic to its

cokernel; and similarly for A′. We have the commutative diagram, cf. [Ri2, loc. cit.]

0 −−−−→ X(A′∨) −−−−→ X(A′)∗ −−−−→ Φ(A′
s) −−−−→ 0y y yΦ(fs)

0 −−−−→ X(A∨) −−−−→ X(A)∗ −−−−→ Φ(As) −−−−→ 0.

Here, fs : A′
s → As induces the homomorphism T ′ → T of their maximal tori, and the

middle vertical homomorphism is obtained from this by functoriality. Therefore, it is

enough to show that this T ′ → T is an isomorphism. By our assumption, there is an

F -isogeny g : A→ A′ such that g ◦ f = pr. It follows that Ker(T ′ → T ) is a subscheme

of T ′[ pr] so that Ker(T ′ → T )(κ(s)) consists of only one point. On the other hand, it

follows from the first step of the proof that Ker(T ′ → T ) is a subscheme of the constant

group scheme Z/prZ. We conclude that Ker(T ′ → T ) is trivial, and hence T ′ → T is an

isomorphism, as desired. □

We keep the notation and the assumption of (4.2.1). Let X be a proper, smooth

and geometrically irreducible curve over F , and suppose that a non-constant F -morphism

g : X → A is given. The base change

f ′ : Z := X ×A A′ → X (4.2.2)

of f : A′ → A by g is a Z/prZ-torsor.

Corollary (4.2.3). Under the same assumption as above, let F ′ be a finite ex-

tension of F , and suppose that a point x ∈ X(F ′) is given. Form the fibre product

Spec(F ′)×X Z =

m⨿
i=1

Spec(Fi)

using x, with field extensions Fi of F
′.

Assume that the composite of Spec(F ′)
x→ X

g→ A→ A extends to an rF -morphism

Spec(rF ′)→ A for the ring of integers rF ′ of F ′. Then each Fi is an unramified extension

of F ′.

Proof. This follows from the same reasoning as in the proof of (4.1.7) using

(4.2.1). □
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For example, when F ′ is an unramified extension of F , the Néron property of A
assures us that the extension Spec(rF ′)→ A always exists. In the general case, we have

the following:

Corollary (4.2.4). Let the situation be as in (4.2.3), and assume that a proper

and flat curve X → Spec(rF ) whose generic fibre is X is given. Denote by X smooth the

smooth locus of X over Spec(rF ). If x ∈ X(F ′) extends to an rF -morphism Spec(rF ′)→
X smooth, we have the same conclusion as (4.2.3).

Proof. By the Néron property, g : X → A extends uniquely to an rF -morphism

X smooth → A. Thus our claim follows from (4.2.3). □

5. µ-type subgroups of J1(Np).

5.1. Our main result.

As in 3.2, we denote by X1(M)/Z[1/M ] the smooth compactification of the modular

curve classifying pairs (E,α) consisting of an elliptic curve E and α : µM ↪→ E[M ] over

Z[1/M ]-schemes. We write X1(M) for X1(M)/Q and let J1(M) be its Jacobian variety

over Q.

In what follows, we fix a positive integer N and an odd prime number p not dividing

N . There is a natural (diamond) action of the group (Z/NpZ)× on X1(Np)/Z[1/Np] given

by

⟨a⟩(E,α) = (E, aα) (5.1.1)

for a ∈ (Z/NpZ)× and pairs (E,α) as above. We may consider α as a pair (αN , αp)

consisting of closed immersions αN : µN ↪→ E[N ] and αp : µp ↪→ E[ p]. The diamond

action ⟨ ⟩ of (Z/NpZ)× accordingly decomposes as actions ⟨ ⟩N of (Z/NZ)× and ⟨ ⟩p
of (Z/pZ)×:

(⟨b⟩N , ⟨c⟩p)(E,αN , αp) = (E, bαN , cαp). (5.1.2)

The automorphisms ⟨a⟩, ⟨b⟩N and ⟨c⟩p of X1(Np) induce automorphisms of J1(Np) (or

its Néron model) covariantly (i.e. via Albanese functoriality), which we express by the

same symbols.

Definition (5.1.3). In what follows, we fix a finite abelian extension k0 of Q such

that [k0 : Q] is prime to p, and p is unramified in k0. Let A be a subgroup of (Z/pZ)×.
We denote by Q(ζp)

A the fixed field under A of Q(ζp), the field of p-th roots of unity,

via the canonical isomorphism (Z/pZ)× ∼→ Gal(Q(ζp)/Q), and set

kA := k0Q(ζp)
A.

The following is the main result of this paper:

Theorem (5.1.4). Let the notation and the assumption be as above. Assume that

p does not divide φ(N), where φ denotes the Euler function, and that A ⊋ {1}. Let G
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be a finite kA-subgroup scheme of J1(Np)/kA
= J1(Np) ⊗Q kA of µ-type whose order is

a power of p. If ⟨a⟩p acts as the identity on G for all a ∈ A, then G is trivial.

We will complete the proof of this theorem in 5.3 below. Although the proof of the

following corollary is similar and simpler, we derive it here directly from (5.1.4):

Corollary (5.1.5). With the same assumption on N , p and A, let G′ be a finite

kA-subgroup scheme of J1(N)/kA
of µ-type and of order a power of p. Then G′ is trivial.

Proof. The degree of the covering X1(Np)→ X1(N) is (either p2−1 or (p2−1)/2
and hence) prime to p. Thus the order of the kernel of the corresponding homomorphism

J1(N) → J1(Np) is also prime to p. Since the image of G′ to J1(Np)/kA
is invariant

under ⟨a⟩p for all a ∈ A, our claim follows from (5.1.4). □

Definition (5.1.6). We let X1(Np;A) be the quotient of X1(Np) by the action

of A through ⟨ ⟩p. We denote by J1(Np;A) its Jacobian variety over Q.

Let us denote by J1(Np)A the maximal abelian (especially connected) subvariety of

J1(Np) invariant under A:

J1(Np)A := Ker

( ∏
a∈A

(1− ⟨a⟩p) : J1(Np)→
∏
a∈A

J1(Np)

)0

.

The endomorphism
∑

a∈A⟨a⟩p of J1(Np) gives a (surjective) homomorphism J1(Np)→
J1(Np)A. Since |A | is prime to p, it follows that the group G satisfying the condition

in (5.1.4) must be contained in J1(Np)A/kA
. On the other hand, it is easy to see that the

quotient morphism X1(Np) → X1(Np;A) induces an isogeny J1(Np;A) → J1(Np)A of

degree prime to p. Therefore (5.1.4) is equivalent to the following:

Theorem (5.1.7). Let N , p and A be as in (5.1.4). Then there is no non-trivial

finite kA-subgroup scheme of J1(Np;A)/kA
of µ-type and of order a power of p.

Let A and A′ be subgroups of (Z/pZ)× such that A′ ⊇ A ⊋ {1}. Then kA′ ⊆ kA
and the statement of (5.1.4) or (5.1.7) for A clearly implies that for A′. Thus only the

case where |A | is a prime number is essential for (5.1.4) or (5.1.7).

We will prove our main result in the form (5.1.7) below. To do this, we may make

the simplifying assumption that N ≥ 5 so that X1(N)/Z[1/N ] is the fine moduli scheme

(of generalized elliptic curves). Indeed, when p = 3 and N ≤ 4, dim J1(Np) = 0, and

hence there is nothing to prove. When p ≥ 5, we can take a prime satisfying l ̸≡ 0,±1
(mod p) and l ∤ N so that the degree of the covering X1(Nlp)→ X1(Np) is prime to p.

Hence we may replace N by Nl to prove (5.1.4) or (5.1.7).

We thus assume that N ≥ 5 in the rest of this section.

5.2. A model of X1(Np;A) over Z[1/N, ζp]
A.

In this subsection, we describe a natural model of X1(Np;A) over the ring

Z[1/N, ζp]
A following Deligne and Rapoport [DR] and Gross [Gro].
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Let X(Np)/Z[1/Np] be the modular curve proper and smooth over Z[1/Np] corre-

sponding to the Γ(Np)naive-moduli problem as in (3.2.6). We denote by X(Np)/Z[1/N ]

the normalization of X(1)/Z[1/N ] (= the projective j-line over Z[1/N ]) in X(Np)/Z[1/Np].

This is a scheme over Z[1/N, ζNp] in a natural manner, ζNp being a primitive Np-th

root of unity. The group GL2(Z/NZ) × GL2(Z/pZ) acts on this scheme, and this ac-

tion is compatible with the action on Z[1/N, ζNp] through the canonical homomorphism:

GL2(Z/NZ)×GL2(Z/pZ)
det→ (Z/NpZ)× ∼→ Gal(Q(ζNp)/Q).

Consider the following subgroups of GL2(Z/NZ) and GL2(Z/pZ):

HN :=

{(
a b

0 1

)
∈ GL2(Z/NZ)

}
,

Hp :=

{(
a b

0 1

)
∈ GL2(Z/pZ)

}
,

H ′
p :=

{(
1 b

0 1

)
∈ GL2(Z/pZ)

}
,

Hp(A) :=

{(
a b

0 d

)
∈ GL2(Z/pZ) | d ∈ A

}
,

H ′
p(A) :=

{(
a b

0 d

)
∈ GL2(Z/pZ) | a, d ∈ A

}
.

(5.2.1)

The groupH ′
p (resp.H

′
p(A)) is the image inGL2(Z/pZ) of Γ′

oo(p) (resp. Γ
′
oo(A)) in the no-

tation of [DR, IV, 4.1] (resp. [DR, V, 2.14].) The quotient schemeX(Np)/Z[1/Np]/(HN×
Hp) is the model X1(Np)/Z[1/Np] we have been considering (cf. [Gro, Proposition 2.1]),

and X(Np)/Z[1/N ]/(HN×H ′
p) is the model of X1(Np) over Z[1/N, ζp] considered in [Gro,

Proposition 7.1]. Thus

X1(Np;A)/Z[1/Np] := X(Np)/Z[1/Np]/(HN ×Hp(A)) (5.2.2)

is a proper and smooth model of X1(Np;A) over Z[1/Np]. We are interested in

X1(Np;A)/Z[1/N,ζp]A := X(Np)/Z[1/N ]/(HN ×H ′
p(A)) (5.2.3)

which is a model of X1(Np;A)⊗Q Q(ζp)
A over Z[1/N, ζp]

A.

Theorem (5.2.4). (1) X1(Np;A)/Z[1/N,ζp]A is a regular two-dimensional scheme

proper and flat over Z[1/N, ζp]
A.

(2) X1(Np;A)/Z[1/N,ζp]A → Spec(Z[1/N, ζp]
A) is smooth over Spec(Z[1/Np, ζp]

A).

(3) Its characteristic p fibre X1(Np;A)/Fp
has two irreducible components smooth

over Fp. X1(Np;A)/Fp
is smooth over Fp except for a finite number of ordinary double

points where two irreducible components intersect at supersingular points (i.e. the points

above the supersingular locus of X1(N)/Fp
).

Proof. Deligne and Rapoport proved similar result for groups of type “Γ(n) ∩
Γ′
oo(H)” for p ∤ n ≥ 3 in [DR, V, 2.19]. Since we are assuming that N ≥ 5, the same

result holds with Γ(n) replaced by the inverse image of HN in GL2(Ẑ). □
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The curve X1(Np;A)/Z[1/N,ζp]A thus has semi-stable reduction at the unique prime

of Z[1/N, ζp]
A above p. We obtain from this the following result (cf. [DR, V, Proposi-

tion 3.3]):

Corollary (5.2.5). J1(Np;A)⊗QQ(ζp)
A has semi-stable reduction at the unique

prime of Q(ζp)
A above p. □

5.3. Proof of (5.1.7).

We let N(≥ 5), p and A be as in (5.1.4) and (5.1.7). We now assume that there is a

non-trivial finite kA-subgroup scheme G of J1(Np;A)/kA
of µ-type and of order a power

of p for kA defined in (5.1.3). G[ p] is isomorphic to a product of several copies of µp. We

thus assume that there is a closed immersion µp ↪→ J1(Np;A)/kA
of kA-group schemes

until we arrive at a contradiction at the end of this section. We have an exact sequence

of kA-group schemes

0→ µp → J1(Np;A)/kA
→ J ′ → 0 (5.3.1)

with J ′ := J1(Np;A)/kA
/µp.

Let okA
be the ring of integers of kA, and set S := Spec(okA

[1/Np]). Denote by

J1(Np;A) (resp. J ′) the Néron model of J1(Np;A)/kA
(resp. J ′∨) over S. By (4.1.5),

we have an exact sequence over S

0→ Z/pZ→ J ′ → J1(Np;A)→ 0. (5.3.2)

On the other hand, the cusp at infinity is a Q-rational point of X1(Np;A), and hence

there is the canonical closed immersion i : X1(Np;A) ↪→ J1(Np;A) over Q sending that

cusp to the origin. Since X1(Np;A)/S :=(the base extension of X1(Np;A)/Z[1/Np] to S)

is smooth over S, this uniquely extends to an S-morphism X1(Np;A)/S → J1(Np;A).

From this and (5.3.2), we obtain a Z/pZ-torsor

Z := X1(Np;A)/S ×J1(Np;A) J ′ (5.3.3)

over X1(Np;A)/S . We already know that all fibres of Z/S are geometrically irreducible

by (4.1.6). We are going to show that a suitably chosen fibre of Z/X1(Np;A)/S over S

contradicts a theorem of Ihara [I].

To do this, we first take and fix an imaginary quadratic field K satisfying
primes dividing Np all split in K/Q,

primes that ramify in kA/Q also all split in K/Q,

±1 are the only units of K.

(5.3.4)

We next take and fix a prime number l satisfying
l does not divide 2Np,

l is unramified in kA/Q,

l is unramified in K/Q and satisfies (2.1.2).

(5.3.5)
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The choice of such K and l is of course possible.

Now set

M := Np. (5.3.6)

Under (5.3.4), there is an integral ideal m of K such that o/m ∼= Z/MZ for the ring o of

integers of K. Using this m, we can consider the set of CM points

X0(M)(H∞)CM =(the image of Ll under (3.1.5))

as in 3.1 and 3.2, where H∞ is defined by (2.1.3). We set

H̃0 := kAK(m) (5.3.7)

K(m) being, as before, the ray class field modulo m of K, and define H̃n = HnH̃0 as

in (2.1.5). By our choice of K and l, this H̃0 satisfies (2.1.4). Indeed, [K(m) : H0] =

φ(Np)/2 is prime to p since p does not divide φ(N), and [kA : Q] is prime to p by the

definition (5.1.3). Consequently, [H̃0 : H0] is also prime to p, and other conditions in

(2.1.4) are clear.

Since H̃0 contains K(m), all points of X1(M) or X1(M ;A) lying above points in

X0(M)(H∞)CM are rational over H̃∞ by (3.2.1). We let

X1(M)(H̃∞)CM and X1(M ;A)(H̃∞)CM

be the inverse images of X0(M)(H∞)CM in X1(M) and X1(M ;A), respectively.

Lemma (5.3.8). Let L̃n be the composite of all abelian extensions of H̃n of degree

one or p and unramified outside the primes dividing N , for 0 ≤ n ≤ ∞ (cf. (2.1.8)). For

any x ∈ X1(M ;A)(H̃∞)CM, all points of Z ⊗okA
[1/Np] kA =: Z above x are rational over

L̃∞.

Proof. The given point x is rational over H̃n for some n <∞. Let Spec(H̃n)→
X1(M ;A)/kA

correspond to x, and form the fibre product Spec(H̃n)×X1(M ;A)/kA
Z. It is

of the form
⨿

Spec(ki) with abelian extensions ki of H̃n of degree one or p. By (4.1.7),

each extension ki/H̃n is unramified outside the primes dividing Np. It thus remains to

show that each such extension is unramified at the primes above p.

Take a prime p (resp. p′) of kA (resp. H̃n) above p (resp. above p). Let F (resp.

F ′) be the completion of kA (resp. H̃n) at p (resp. at p′), with its ring of integers

rF (resp. rF ′). We know by (5.2.5) that J1(M ;A)/F has semi-stable reduction. Let

X1(M ;A)/rF be the base change to rF of the model X1(M ;A)/Z[1/N,ζp]A considered in

(5.2.4). The F -morphism Spec(F ′)→ X1(M ;A)/F corresponding to x uniquely extends

to an rF -morphism x̃ : Spec(rF ′) → X1(M ;A)/rF . Composing this with the canonical

rF -morphism X1(M ;A)/rF → X1(N)/rF , we obtain an rF ′-valued point of X1(N)/rF .

But on the generic fibre, this point corresponds to a pair (E′, α) over F ′ with an elliptic

curve E′ having complex multiplication by an order of K of l-power conductor. Since

p splits in K, this elliptic curve over F ′ has ordinary reduction. The description of
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X1(M ;A)/rF given in (5.2.4), (3) then implies that x̃ must be an rF ′ -valued point of the

smooth locus of X1(M ;A)/rF over rF . Therefore, since A ⊋ {1}, (4.2.4) assures us that
the extensions ki/H̃n are unramified at p′. □

Let L̃n be the extension of H̃n as in the previous lemma. Then we know by (2.1.8)

that there is an integer n1 ≥ 0 such that L̃n = L̃n1H̃n for all n ≥ n1, including n =∞.

We now take a prime number q satisfying
q is prime to Npl,

q is inert in K,

q splits completely in L̃n1/K.

(5.3.9)

For the same reason as in 3.2, Čebotarev density theorem guarantees the existence of

such q. Since q splits completely in H∞/K, it also splits completely in L̃∞/K. Take and

fix a prime Q̃ of H̃∞ above q. As in 3.2, this allows us to consider the reduction modulo

Q̃ map

X1(M)(H̃∞)CM → Xss
1 (M)/Fq2

(Fq2) = Xss
1 (M)/Fq2

(Fq)

which is surjective, by (3.2.5). We therefore obtain the surjective reduction modulo Q̃

map

X1(M ;A)(H̃∞)CM → Xss
1 (M ;A)/Fq2

(Fq2) = Xss
1 (M ;A)/Fq2

(Fq)

for the supersingular locus Xss
1 (M ;A)/Fq2

of X1(M ;A)/Fq2
.

Now let Zq
f→ X1(M ;A)/Fq2

be the base change of Z → X1(M ;A)/S from S to

the residue field Fq2 of Q̃. It is a Z/pZ-torsor with Zq geometrically irreducible over

Fq2 . We moreover have that all supersingular points of X1(M ;A)/Fq2
split completely

in Zq. Indeed, take an x ∈ Xss
1 (M ;A)/Fq2

(Fq2). We can lift it to a CM point x̃ ∈
X1(M ;A)(H̃∞)CM. There is an integer n such that this point is the generic fibre of an

rn-valued point of X1(M ;A)/S , where rn is the valuation ring of the restriction of Q̃ to

H̃n. The fibre product Spec(rn) ×X1(M ;A)/S Z obtained from this is a Z/pZ-torsor over
Spec(rn) so that it is of the form Spec(Rn) with Rn finite and étale over rn. It follows

from (5.3.8) and our choice of q that Spec(Rn ⊗rn Fq2) = f−1(x) is a sum of several

copies of Spec(Fq2).

Under (5.3.9), q splits completely in K(m), and in this case we have a canonical

morphism X(M)Ihara/Fq2

g→ X1(M)/Fq2
from Ihara’s model, cf. (3.2.6). In general, for any

positive integer n prime to q, the main result of [I], in the form [MT 2]n, asserts that

there is no non-trivial étale covering Y → X(n)Ihara/Fq2
with Y a geometrically irreducible

curve over Fq2 in which all supersingular points split completely. Since the morphism

g ramifies totally at the cusp infinity (cf. e.g. [I, 1.2] or [DR, VII, 2.4]), and the de-

gree of the morphism X1(M)/Fq2
→ X1(M ;A)/Fq2

is prime to p, the base change of

f by X(M)Ihara/Fq2
→ X1(M ;A)/Fq2

gives such a forbidden covering of X(M)Ihara/Fq2
. This

completes the proof of (5.1.7).
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6. Application to the theory of cyclotomic fields.

6.1. Review of known results.

Throughout this final section, we let p be a prime number such that p ≥ 5, and N

a positive integer prime to p.

We first recall the connection between the modular Galois representation and the

theory of cyclotomic fields. Such connection was first studied by Ribet [Ri1], and then

by Mazur and Wiles [MW], who proved the Iwasawa main conjecture for Q, and subse-

quently by Harder and Pink [HP], Kurihara [Ku] and the author, among others.

We use the same terminology as in [O4, 1.2]. Let r be the ring of integers of a finite

extension of Qp. We considerESp(N)r := (lim←−r≥1
H1(X1(Npr)⊗Q Q,Zp))⊗Zp r,

GESp(N)r := (lim←−r≥1
H1(Y1(Npr)⊗Q Q,Zp))⊗Zp r,

(6.1.1)

where we take the projective limits of the étale cohomology groups of the modular curves

X1(Npr) (cf. 3.2) and their open subschemes Y1(Npr) := X1(Npr)− (cusps) relative to

the trace maps. The covariant action of the usual Hecke correspondences on these curves

defines the Hecke operators T ∗(n) for positive integers n and T ∗(q, q) for positive integers

q prime to Np, on the spaces ESp(N)r and GESp(N)r. We can especially consider Hida’s

idempotent

e∗ := lim
n→∞

T ∗(p)n! (6.1.2)

and the resulting ordinary parts e∗ESp(N)r and e∗GESp(N)r. We consider{
r[[ lim←−r≥1

(Z/NprZ)×]] = r[(Z/NpZ)×][[1 + pZp]] and its subring

Λr := r[[1 + pZp]].
(6.1.3)

We let

ι : lim←−
r≥1

(Z/NprZ)× ↪→ r[[ lim←−
r≥1

(Z/NprZ)×]]× (6.1.4)

be the natural inclusion. We can then let the algebras in (6.1.3) act on ESp(N)r and

GESp(N)r in such a way that ι(q) for a positive integer q prime to Np acts as T ∗(q, q).

Hida’s universal ordinary p-adic Hecke algebras{
e∗h∗(N ; r) ⊂ End(e∗ESp(N)r),

e∗H∗(N ; r) ⊂ End(e∗GESp(N)r)
(6.1.5)

are defined as the subalgebras generated by all T ∗(n) and T ∗(q, q) over Λr. It is a

fundamental fact proved by Hida that these algebras are finite and flat over Λr. There

is a natural surjection

e∗H∗(N ; r) ↠ e∗h∗(N ; r) (6.1.6)
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sending T ∗(n) and T ∗(q, q) to T ∗(n) and T ∗(q, q), respectively.

We next consider the Eisenstein components of the above objects, cf. [O4, 1.4, 1.5].

For this, we take and fix an even Dirichlet character θ of conductor N or Np. It can

thus be expressed as

θ = χωi (6.1.7)

with χ a primitive Dirichlet character modulo N , and ω : (Z/pZ)× → Q×
↪→ Q×

p the

Teichmüller character. We henceforth assume that:
p ∤ φ(N),

χ(p) ̸= 1 when i ≡ −1 mod p− 1,

θ ̸= ω−2.

(6.1.8)

We set

r :=(the ring generated by the values of θ over Zp) (6.1.9)

which is an étale Zp-algebra by our assumption. We define the Eisenstein ideal I∗ =

I∗(θ) of e∗H∗(N ; r) as the ideal generated by all T ∗(n) −
∑

0<t|n,p∤t θ(t)tι(⟨t⟩), where
⟨t⟩ := tω(t)−1 denotes the principal part of t ∈ Z×

p . It is also the ideal generated by

T ∗(l)− (1 + θ(l)lι(⟨l⟩)) for all prime numbers l ̸= p, T ∗(p)− 1 and T ∗(q, q)− θ(q)ι(⟨q⟩)
with q prime to Np. We define the Eisenstein ideal I∗ = I∗(θ) of e∗h∗(N ; r) as the ideal

generated by the elements of the same name as above; i.e. as the image of I∗ by the

surjection (6.1.6).

As usual, we fix a topological generator u0 of 1+ pZp, and use it to identify Λr with

the formal power series ring r[[T ]] by letting ι(u0) correspond to 1 + T . We set{
m∗ = m∗(θ) := (I∗, p, T ) ⊆ e∗h∗(N ; r),

M∗ = M∗(θ) := (I∗, p, T ) ⊆ e∗H∗(N ; r).
(6.1.10)

M∗ is always a proper, and hence a maximal ideal of e∗H∗(N ; r), whereas it can happen

that m∗ = e∗h∗(N ; r). We set 
X := e∗ESp(N)r,M∗ ,

h∗ := e∗h(N ; r)M∗ ,

I∗ := I∗M∗ ,

(6.1.11)

the localizations at the maximal ideal M∗ via (6.1.6). On the other hand, let G(T, θω2) ∈
Λr be the Iwasawa power series satisfying

G(us
0 − 1, θω2) = Lp(−1− s, θω2), (6.1.12)

the right hand side being the Kubota–Leopoldt p-adic L-function. We then know, by

[O4, Case (II) of (1.5.5), 3.2] that
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h∗/I∗ ∼= Λr/(G(T, θω2)). (6.1.13)

Thus m∗ is a maximal ideal if and only if G(T, θω2) is not a unit power series, in which

case the modules in (6.1.11) are the same if we consider the localizations at m∗ instead of

M∗. Otherwise, X and h∗, as well as the Iwasawa module Gal(L∞/F∞)(θω)−1 vanish, and

the assertions (6.2.1) and (6.2.2) below will be trivial. We thus assume that G(T, θω2)

is not a unit power series, in the rest of this subsection.

The Galois group Gal(Q/Q) acts on X h∗-linearly, and we are going to review the

nature of this Galois representation in connection with the Iwasawa theory, cf. [O4, 3.4,

Appendix]. This method is originally due to [HP] and [Ku].

Let Ip be the inertia subgroup of Gal(Q/Q) at the prime corresponding to our fixed

embedding Q ↪→ Qp, and set

X+ := XIp . (6.1.14)

We know that it is a free h∗-module of rank one, and also that X/X+⊗Λr
Q(Λr) is a free

h∗⊗Λr
Q(Λr)-module of rank one where Q(Λr) is the quotient field of Λr. Further, there

is a natural way to choose a splitting image X− of X ↠ X/X+ as in [O4, 3.4]; it is so

chosen to satisfy (6.1.19) below. We fix a h∗ ⊗Λr
Q(Λr)-basis e− of X− ⊗Λr

Q(Λr) and

an h∗-basis e+ of X+ to define the representation

ρ : Gal(Q/Q)→ GL2(h
∗ ⊗Λr

Q(Λr)); σ 7→
(
a(σ) b(σ)

c(σ) d(σ)

)
(6.1.15)

by the rule

Gal(Q/Q) ∋ σ :

{
e− 7→ a(σ)e− + c(σ)e+,

e+ 7→ b(σ)e− + d(σ)e+.
(6.1.16)

Elements a(σ), d(σ) and b(σ)c(τ) do not depend on the particular choice of bases of X+

and X− ⊗Λr
Q(Λr).

Let

κ : Gal(Q/Q)→ Z×
p (6.1.17)

be the p-cyclotomic character. We know that

det ρ(σ) = (θω)−1(σ)⟨κ(σ)⟩−1ι(⟨κ(σ)⟩−1) ∈ Λ×
r for all σ ∈ Gal(Q/Q). (6.1.18)

We recall that, there is an element σ0 ∈ Ip such that ⟨κ(σ0)⟩ = 1 and ω−i−1(σ0) ̸= 1

when i ̸≡ −1 mod p− 1, and a geometric Frobenius Φp ∈ Gal(Qp/Qp) ⊂ Gal(Q/Q) such

that κ(Φp) = 1, and the splitting image X− was so chosen that
ρ(σ0) =

(
ω−i−1(σ0) 0

0 1

)
when i ̸≡ −1 mod p− 1,

ρ(Φp) =

(
χ(p)T ∗(p)−1 0

0 T ∗(p)

)
when i ≡ −1 mod p− 1.

(6.1.19)
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Using this and [O5, (4.1.12)], we have the following lemma; cf. [O5, 4.2]:

Lemma (6.1.20). Elements a(σ), d(σ) and b(σ)c(τ) belong to h∗, and each of the

following sets generates the Eisenstein ideal I∗ :
{a(σ)− det ρ(σ) | σ ∈ Gal(Q/Q)},
{d(σ)− 1 | σ ∈ Gal(Q/Q)},
{b(σ)c(τ) | σ, τ ∈ Gal(Q/Q)}. □

Now let F be the extension of Q corresponding to θω. F/Q is an imaginary abelian

extension of degree prime to p. We let F∞ be the cyclotomic Zp-extension of F , set{
∆ := Gal(F/Q),

Γ := Gal(F∞/F ),
(6.1.21)

and identify Gal(F∞/Q) with ∆× Γ. Set

B := (the h∗-submodule of h∗ ⊗Λr
Q(Λr) generated by all b(σ), σ ∈ Gal(Q/Q)).

(6.1.22)

It follows from (6.1.20) that we have a representation

φ : Gal(Q/Q)→
{(

(h∗/I∗)× B/I∗B

0 1

)}
by φ(σ) :=

(
det ρ(σ) b(σ)

0 1

)
(6.1.23)

the bar indicating reduction modulo I∗. The field corresponding to Ker(det ρ) is F∞, cf.

[O3, (3.3.8)], and if we denote by L the field corresponding to Ker(φ), the correspondence

σ 7→ b(σ) gives an isomorphism

Gal(L/F∞)
∼→ B/I∗B, (6.1.24)

cf. [O4, (A.1.11)].

Let L∞ be the maximal unramified abelian pro-p-extension of F∞, and consider the

“(θω)−1-part” of the associated Galois group

Gal(L∞/F∞)(θω)−1 := Gal(L∞/F∞)⊗Zp[∆] r, (6.1.25)

the tensor product being induced by (θω)−1 : Zp[∆] → r. The p-cyclotomic char-

acter κ gives an isomorphism Γ
∼→ 1 + pZp, and hence r[[Γ]]

∼→ Λr. We consider

Gal(L∞/F∞)(θω)−1 as a Λr-module through this isomorphism. On the other hand, for a

Λr-module M , we denote by M† the same group M on which the action of ι(u0) ∈ Λr

is newly defined by that of u−1
0 ι(u−1

0 ). The Galois group Gal(L/F∞) coincides with the

group (6.1.25), cf. [O2, (5.3.20)], and we obtain:

Proposition (6.1.26). Under the above notation and the assumptions, the corre-

spondence σ 7→ b(σ) gives an isomorphism of Λr-modules

Gal(L∞/F∞)(θω)−1
∼→ (B/I∗B)†. □
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6.2. Application to a conjecture of Sharifi.

We have thus described the Iwasawa module Gal(L∞/F∞)(θω)−1 in terms of the

module B ∼= Be− ⊆ X−. In [Sha], Sharifi made the conjecture below about the nature

of this module. It is in fact a consequence of his much more precise conjectures (cf. Con-

jectures 4.12, 5.2 and 5.4, and the remark at the end of Section 5 in [Sha]). See the work

of Fukaya and Kato [FK] for results in this direction. Our application is concerned with

the conjecture of the following form:

Conjecture of Sharifi (6.2.1). Be− coincides with X−. In other words, via

the map σ 7→ σe+ − e+ mod I∗X, one has an isomorphism of Λr-modules

Gal(L∞/F∞)(θω)−1
∼→ (X−/I

∗X−)
†.

Sharifi proved this conjecture under the assumption that e∗H∗(N ; r)M∗ is a Goren-

stein ring, cf. [Sha, Proposition 4.10].

Since X− is known to be isomorphic to HomΛr
(h∗,Λr), [O3, (2.3.6)], or a local

component of the space of ordinary Λr-adic cusp forms of level N , [O1, (2.5.3)], this con-

jecture describes Gal(L∞/F∞)(θω)−1 concretely in terms of such objects. As application

of our study of µ-type subgroups of J1(M), we have

Theorem (6.2.2). In addition to the assumptions in the previous subsection, as-

sume that (i, p − 1) > 1, i.e. the kernel of ωi is non-trivial, in the expression (6.1.7) of

θ. Then Sharifi’s conjecture (6.2.1) is valid for the character θ.

As noted in the previous subsection, we may and do assume that G(T, θω2) is not a

unit in Λr in proving this theorem. We first note

Lemma (6.2.3). LetM be the minimal submodule of X containing X+ and stable

under the action of h∗ and Gal(Q/Q). Then we have

(1)M = X+ ⊕Be−.

(2) X/M is annihilated by I∗, and Gal(Q/Q) ∋ σ acts as multiplication by det ρ(σ)

on this module.

Proof. (1) By the definition (6.1.22) of B, X+ ⊕Be− is an h∗-submodule of X.

It follows from the definitions (6.1.15) and (6.1.16) thatM⊇ X+ ⊕Be−, and also that

the right hand side is Gal(Q/Q)-stable.

(2) Again by (6.1.16), σ ∈ Gal(Q/Q) acts as a(σ) on X/M. Since a(στ) =

a(σ)a(τ) + b(σ)c(τ), (6.1.20) shows that this module is annihilated by I∗, and hence

the action of σ on it is given by a(σ) ≡ det ρ(σ) mod I∗. □

The projection gives an isomorphism

e∗ESp(N)r/T
∼→ e∗H1(X1(Np)⊗Q Q, r) (6.2.4)

by [O1, (1.4.3)] (with T = ω1,0 ∈ Λr in the notation loc. cit.), which commutes with the

action of Gal(Q/Q) and the Hecke operators T ∗(n) and T ∗(q, q). Let h∗
2(Γ1(Np); r) be

the r-subalgebra of End(H1(X1(Np)⊗Q Q, r)) generated by all T ∗(n) and T ∗(q, q), and



410(78)

410 M. Ohta

let e∗h∗
2(Γ1(Np); r) ⊆ End(e∗H1(X1(Np) ⊗Q Q, r)) be its ordinary part. Let m∗

0 be the

image of m∗ by the canonical surjection e∗h∗(N ; r) ↠ e∗h∗
2(Γ1(Np); r). It is a maximal

ideal, and we have an isomorphism

X/(p, T )
∼→ e∗H1(X1(Np)⊗Q Q, r)m∗

0
/p. (6.2.5)

On the other hand, we have a canonical isomorphism

H1(X1(Np)⊗Q Q, r) ∼= Hom(Tp(J1(Np)), r) (6.2.6)

which is an isomorphism of h∗
2(Γ1(Np); r)-modules if we let T ∗(n) and T ∗(q, q) act on

the right hand side via the contravariant action of Hecke correspondences of the same

kind on J1(Np). In the following, we denote by the same symbol m∗
0 the maximal ideal

of h∗
2(Γ1(Np); r) corresponding to the above m∗

0 in its direct factor e∗h∗
2(Γ1(Np); r).

Lemma (6.2.7). Assume that M ̸= X. Then there is a non-trivial submodule of

(J1(Np)[ p](Q) ⊗Fp
k)[m∗

0] on which Gal(Q/Q) acts via θω. Here k denotes the residue

field of r.

Proof. Since det ρ(σ) ≡ (θω)−1(σ) mod (p, T ) by (6.1.18), Nakayama’s lemma

and (6.2.3) imply that each module in (6.2.5) admits a non-trivial quotient as an

e∗h∗
2(Γ1(Np); r)-module on which Gal(Q/Q) acts via the character (θω)−1.

On the other hand, we obtain from (6.2.6) that

H1(X1(Np)⊗Q Q, r)/m∗
0
∼= Homk((J1(Np)[ p](Q)⊗Fp k)[m∗

0], k).

Therefore, again by Nakayama’s lemma, the right hand side admits a non-trivial quotient

as a k-vector space on which Gal(Q/Q) acts via (θω)−1. □

We can now complete the proof of (6.2.2): Set A := Ker(ωi). Assume that Be− ⊊
X−, equivalently that M ⊊ X. We first note that the (“dual”) diamond action ⟨a⟩∗ =

⟨a⟩−1 of a ∈ (Z/NpZ)×, which is T ∗(q, q) for a = q mod Np, is given by θ(a) on

(J1(Np)[ p](Q)⊗Fp k)[m∗
0]. Hence ⟨a⟩p = 1 for all a ∈ A on this group.

Let (θω)0 denote the irreducible Zp-representation of Gal(Q/Q) containing θω.

It then follows from (6.2.7) and the above remark that the (θω)0-isotypic component

((
∑

a∈A⟨a⟩p)J1(Np)[ p](Q))(θω)0 is non-trivial. Let H be the finite subgroup scheme

of J1(Np) corresponding to this Gal(Q/Q)-module. Then, if we let kA be the field

Q(ζN )Q(ζp)
A, the action of Gal(Q/kA) on H(Q) is given by ω, that is, H ⊗Q kA is a

subgroup scheme of µ-type of J1(Np)/kA
[ p] on which we have ⟨a⟩p = 1 for all a ∈ A.

This contradicts our main theorem (5.1.4), and finishes the proof.

In (6.2.2) and the main result (5.1.4) on which it depends, we needed the assumption

“A ⊋ {1}”. It was essential in order to apply Raynaud’s result in Section 4 (cf. (4.2.1)

and its corollaries), which enabled us to show the unramifiedness of the primes above p

in (5.3.8). We thus do not know at present whether or not it is possible to modify this

assumption in our argument.

Finally, as an example, consider the case where χ in (6.1.7) is even. Then, since we

are assuming that θ is even, the kernel of ωi must be non-trivial. When N = 1, this is



411(79)

µ-type subgroups of J1(N) and application to cyclotomic fields 411

automatically the case. In the excluded case where θ = ω−2, both Λr-modules figuring

in (6.2.1) vanish, and therefore Sharifi’s conjecture (6.2.1) is valid when N = 1.
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