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Derived equivalence of Ito–Miura–Okawa–Ueda

Calabi–Yau 3-folds

By Alexander Kuznetsov
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Abstract. We prove derived equivalence of Calabi–Yau threefolds con-
structed by Ito–Miura–Okawa–Ueda as an example of non-birational Calabi–
Yau varieties whose difference in the Grothendieck ring of varieties is annihi-

lated by the affine line.

In a recent paper [IMOU] there was constructed a pair of Calabi–Yau threefolds

X and Y such that their classes [X] and [Y ] in the Grothendieck group of varieties are

different, but

([X]− [Y ])[A1] = 0.

The goal of this short note is to show that these threefolds are derived equivalent

D(X) ∼= D(Y ).

In course of proof we will construct an explicit equivalence of the categories.

We denote by k the base field. All the functors between triangulated categories are

implicitly derived.

As explained in [IMOU] the threefoldsX and Y are related by the following diagram
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Here

• F is the flag variety of the simple algebraic group of type G2,

• Q and G are the Grassmannians of this group:
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– Q is a 5-dimensional quadric in P(V ), where V is the 7-dimensional funda-

mental representation, and

– G = Gr(2, V ) ∩ P(W ), where W ⊂
∧2

V is the 14-dimensional adjoint repre-

sentation (this intersection is not dimensionally transverse!),

• π : F → Q and ρ : F → G are Zariski locally trivial P1-fibrations,

• M is a smooth half-anticanonical divisor in F,

• πM := π|M : M → Q is the blowup with center in the Calabi–Yau threefold X,

• ρM := ρ|M : M → G is the blowup with center in the Calabi–Yau threefold Y ,

• D and E are the exceptional divisors of the blowups,

• p := π|D : D → X and q := ρ|E : E → Y are the contractions.

We denote by h and H the hyperplane classes of Q and G, as well as their pullbacks

to F and M . Then h and H form a basis of Pic(F) in which the canonical classes can be

expressed as follows:

KQ = −5h, KG = −3H, KF = −2H − 2h, KM = −H − h. (1)

The classes h and H are relative hyperplane classes for the P1-fibrations ρ : F → G

and π : F → Q respectively. We define rank 2 vector bundles K and U on Q and G

respectively by

π∗OF (H) ∼= K ∨, ρ∗OF (h) ∼= U ∨. (2)

We also denote the pullbacks of K and U to F and M by the same symbols. Then

PQ(K ) ∼= F ∼= PG(U ).

It follows from (2) that X ⊂ Q is the zero locus of a section of the vector bundle

K ∨(h) on Q and Y ⊂ G is the zero locus of a section of the vector bundle U ∨(H) on G.

Since H and h are relative hyperplane classes for F = PQ(K ) and F = PG(U )

respectively, we have on F exact sequences

0 → ωF/Q → K ∨(−H) → OF → 0, 0 → ωF/G → U ∨(−h) → OF → 0.

By (1) we have ωF/Q
∼= OF(3h− 2H) and ωF/G

∼= OF(H − 2h). Taking the determinants

of the above sequences and dualizing, we deduce

det(K ) ∼= OQ(−3h), det(U ) ∼= OG(−H). (3)

Furthermore, twisting the sequences by OF(H) and OF(h) respectively, we obtain

0 → OF(3h−H) → K ∨ → OF(H) → 0, (4)

and
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0 → OF(H − h) → U ∨ → OF(h) → 0. (5)

Derived categories of both Q and G are known to be generated by exceptional

collections. In fact, for our purposes the most convenient collections are

D(Q) = ⟨OQ(−3h),OQ(−2h),OQ(−h),S ,OQ,OQ(h)⟩, (6)

where S is the spinor vector bundle of rank 4, see [Kap], and

D(G) = ⟨OG(−H),U ,OG,U
∨,OG(H),U ∨(H)⟩. (7)

This collection is obtained from the collection of [Kuz, Section 6.4] by a twist (note that

U ∼= U ∨(−H) by (3)). In fact, for the argument below one even does not need to know

that this exceptional collection is full; on a contrary, one can use the argument to prove

its fullness, see Remark 6.

Using two blowup representations of M and the corresponding semiorthogonal de-

compositions

⟨π∗
M (D(Q)), i∗p

∗(D(X))⟩ = D(M) = ⟨ρ∗M (D(G)), j∗q
∗(D(Y ))⟩ (8)

together with the above exceptional collections, we see that D(X) and D(Y ) are the

complements in D(M) of exceptional collections of length 6, so one can guess they are

equivalent. Below we show that this is the case by constructing a sequence of mutations

transforming one exceptional collection to the other.

We start with some cohomology computations:

Lemma 1. (i) Line bundles OF(th−H) and OF(tH−h) are acyclic for all t ∈ Z.

(ii) Line bundles OF(−2H) and OF(2h− 2H) are acyclic and

H•(F,OF(3h− 2H)) = k[−1].

(iii) Vector bundles U (−2H), U (−H), U (h−H), and U ⊗U (−H) on F are acyclic

and

H•(F,U (h)) = k, H•(F,U ⊗ U (h)) ∼= k[−1].

Proof. Part (i) is easy since π∗OF(−H) = 0 and ρ∗OF(−h) = 0. For part (ii) we

note that

π∗OF(−2H) ∼= (detK )[−1] ∼= OQ(−3h)[−1], (9)

so acyclicity of OF(−2H) and OF(2h − 2H) and the formula for the cohomology

of OF(3h − 2H) follow. For part (iii) we push forward the bundles U (−2H), U (−H),

U (h−H), and U ⊗ U (−H) to G and applying (2) we obtain

U (−2H), U (−H), U ⊗ U ∨(−H), U ⊗ U (−H).
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Their acyclicity follows from orthogonality of U ∨(H) to the collection (OG(−H),U ,

OQ,U ∨) in view of the exceptional collection (7). Analogously, pushing forward U (h)

to G we obtain U ⊗ U ∨, and its cohomology is k since U is exceptional. Finally,

using (5) we see that U ⊗ U (h) has a filtration with factors OF(−h), OF(h − H),

and OF(3h − 2H). The first two are acyclic by part (i) and the last one has cohomol-

ogy k[−1] by part (ii). It follows that the cohomology of U ⊗ U (h) is also k[−1]. □

Corollary 2. The following line and vector bundles are acyclic on M :

OM (h−H), OM (3h−H), U (h−H).

Moreover,

H•(M,U (h)) = k, H•(M,U ⊗ U (h)) = k[−1].

Proof. Since M ⊂ F is a divisor with class h+H we have a resolution

0 → OF(−h−H) → OF → OM → 0.

Tensoring it with the required bundles and using Lemma 1 we obtain the required results.

□

Proposition 3. We have an exact sequence on F and M :

0 → U → S ′ → U ∨(−h) → 0, (10)

where S ′ is (the pullback to F or M of ) a rank 4 vector bundle on Q.

Later we will identify the bundle S ′ constructed as extension (10) with the spinor

bundle S on Q.

Proof. We will construct this exact sequence on F, and then restrict it to M .

First, note that by Lemma 1 we have Ext•(U ∨(−h),U ) ∼= H•(F,U ⊗ U (h)) ∼= k[−1],

hence there is a canonical extension of U ∨(−h) by U . We denote by S ′ the extension,

so that we have an exact sequence (10). Obviously, S ′ is locally free of rank 4. We have

to check that it is a pullback from Q.

Using exact sequences

0 → OF(−h) → U → OF(h−H) → 0 and 0 → OF(H − 2h) → U ∨(−h) → OF → 0

(obtained from (5) by the dualization and a twist) and the cohomology computations of

Lemma 1, we see that extension (10) is induced by a class in

Ext1(OF(H − 2h),OF(h−H)) ∼= H•(F,OF(3h− 2H)) = k[−1].

By (4) the corresponding extension is K ∨(−2h). It follows that the sheaf S ′ has a

3-step filtration with factors being OF(−h), K ∨(−h), and OF. All these sheaves are

pullbacks from Q, and since the subcategory π∗(D(Q)) ⊂ D(F) is triangulated (because

the functor π∗ is fully faithful), it follows that S ′ is also a pullback from Q. □
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Now we are ready to explain the mutations. We start with a semiorthogonal decom-

position

D(M) = ⟨OM (−H),U ,OM ,U ∨,OM (H),U ∨(H),Φ0(D(Y ))⟩, (11)

Φ0 = j∗ ◦ q∗ : D(Y ) → D(M), (12)

obtained by plugging (7) into the right hand side of (8). Now we apply a sequence of

mutations, modifying the functor Φ0.

First, we mutate Φ0(D(Y )) two steps to the left:

D(M) = ⟨OM (−H),U ,OM ,U ∨,Φ1(D(Y )),OM (H),U ∨(H)⟩, (13)

Φ1 = L⟨OM (H),U ∨(H)⟩ ◦ Φ0. (14)

Here L denotes the left mutation functor.

Next, we mutate the last two terms to the far left (these objects got twisted

by KM = −h−H):

D(M) = ⟨OM (−h),U ∨(−h),OM (−H),U ,OM ,U ∨,Φ1(D(Y ))⟩.

Next, we mutate OM (−h) and U ∨(−h) one step to the right. As

Ext•(U ∨(−h),OM (−H)) ∼= H•(M,U (h−H)) = 0,

and

Ext•(OM (−h),OM (−H)) ∼= H•(M,OM (h−H)) = 0

by Corollary 2, we obtain

D(M) = ⟨OM (−H),OM (−h),U ∨(−h),U ,OM ,U ∨,Φ1(D(Y ))⟩.

Next, we mutate U one step to the left. As

Ext•(U ∨(−h),U ) ∼= H•(U ⊗ U (h)) ∼= k[−1]

by Corollary 2, the resulting mutation is an extension, which in view of (10) gives S ′.

Thus, we obtain

D(M) = ⟨OM (−H),OM (−h),S ′,U ∨(−h),OM ,U ∨,Φ1(D(Y ))⟩.

Next, we mutate OM (−H) to the far right (this object got twisted by−KM = h+H):

D(M) = ⟨OM (−h),S ′,U ∨(−h),OM ,U ∨,Φ1(D(Y )),OM (h)⟩.

Next, we mutate Φ1(D(Y )) one step to the right:

D(M) = ⟨OM (−h),S ′,U ∨(−h),OM ,U ∨,OM (h),Φ2(D(Y ))⟩,
Φ2 = ROM (h) ◦ Φ1. (15)
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Here R denotes the right mutation functor.

Next, we mutate simultaneously U ∨(−h) and U ∨ one step to the right. As

Ext•(U ∨(−h),OM ) ∼= Ext•(U ∨,OM (h)) = H•(M,U (h)) = k by Corollary 2, the re-

sulting mutation is the cone of a morphism, which in view of (5) and its twist by OM (−h)

gives OM (H − 2h) and OM (H − h) respectively. Thus we obtain

D(M) = ⟨OM (−h),S ′,OM ,OM (H − 2h),OM (h),OM (H − h),Φ2(D(Y ))⟩.

Next, we mutate OM (h) one step to the left. As

Ext•(OM (H − 2h),OM (h)) ∼= H•(M,OM (3h−H)) = 0

by Corollary 2, we obtain

D(M) = ⟨OM (−h),S ′,OM ,OM (h),OM (H − 2h),OM (H − h),Φ2(D(Y ))⟩.

Next, we mutate Φ2(D(Y )) two steps to the left:

D(M) = ⟨OM (−h),S ′,OM ,OM (h),Φ3(D(Y )),OM (H − 2h),OM (H − h)⟩,
Φ3 = L⟨OM (H−2h),OM (H−h)⟩ ◦ Φ2. (16)

Finally, we mutate OM (H − 2h) and OM (H − h) to the far left:

D(M) = ⟨OM (−3h),OM (−2h),OM (−h),S ′,OM ,OM (h),Φ3(D(Y ))⟩. (17)

Now we finished with mutations, and it remains to check that the resulting

semiorthogonal decomposition provides an equivalence of categories. To do this, we

first observe the following

Lemma 4. The bundle S ′ is isomorphic to the spinor bundle S on Q.

Proof. The first six objects in (17) are pullbacks from Q by πM . Since π∗
M is

fully faithful, the corresponding objects on Q are also semiorthogonal. In particular, the

bundle S ′ on Q is right orthogonal to OQ and OQ(h) and left orthogonal to OQ(−3h),

OQ(−2h), and OQ(−h). By (6) the intersection of these orthogonals is generated by the

spinor bundle S . Therefore, S ′ is a multiple of the spinor bundle S . Since the ranks

of both S ′ and S are 4, the multiplicity is 1, so S ′ ∼= S . □

Thus the first six objects of (17) generate π∗
M (D(Q)). Comparing (17) with (6)

and (8), we conclude that the last component Φ3(D(Y )) coincides with i∗p
∗(D(X)).

Altogether, this proves the following

Theorem 5. The functor

Φ3 = L⟨O(H−2h),O(H−h)⟩ ◦RO(h) ◦ L⟨O(H),U ∨(H)⟩ ◦ j∗ ◦ q∗ : D(Y ) → D(M)

is an equivalence of D(Y ) onto the triangulated subcategory of D(M) equivalent to D(X)

via the embedding i∗ ◦ p∗ : D(X) → D(M). In particular, the functor



1013(135)

Derived equivalence of Ito–Miura–Okawa–Ueda 3-folds 1013

Ψ = p∗ ◦ i! ◦ L⟨O(H−2h),O(H−h)⟩ ◦RO(h) ◦ L⟨O(H),U ∨(H)⟩ ◦ j∗ ◦ q∗ : D(Y ) → D(X)

is an equivalence of categories.

Remark 6. Let us sketch how the arguments above can be also used to prove

fullness of (7). Denote by C the orthogonal to the collection (7) in D(G). Then we still

have a semiorthogonal decomposition (11), with Φ0(D(Y )) replaced by ⟨C ,Φ0(D(Y ))⟩.
We can perform the same sequence of mutations, keeping the subcategory C together

with D(Y ). For instance, in (13) we write ⟨L⟨OM (H),U ∨(H)⟩(C ),Φ1(D(Y ))⟩ instead of

just Φ1(D(Y )) and so on. In the end, we arrive at (17) with Φ3(D(Y )) replaced

by ⟨C ′,Φ3(D(Y ))⟩ with C ′ equivalent to C . Comparing it with (6) and (8), we de-

duce that D(X) has a semiorthogonal decomposition with two components equivalent

to C and D(Y ). But X is a Calabi–Yau variety, hence its derived category has no non-

trivial semiorthogonal decompositions by [Bri]. Therefore C = 0 and so exceptional

collection (7) is full.
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