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Abstract. If we have a finite number of sections of a complex vector bundle E over
a manifold M, certain Chern classes of E are localized at the singular set S, i.e., the set
of points where the sections fail to be linearly independent. When S is compact, the
localizations define the residues at each connected component of S by the Alexander
duality. If M itself is compact, the sum of the residues is equal to the Poincaré dual of
the corresponding Chern class. This type of theory is also developed for vector bundles
over a possibly singular subvariety in a complex manifold. Explicit formulas for the
residues at an isolated singular point are also given, which express the residues in terms
of Grothendieck residues relative to the subvariety.

Let E be a complex vector bundle of rank r over a manifold M. If we have
a section s of E, the top Chern class ¢’(E) of E is “localized” at the zero set, or
“the singular set”, S of s. More presicely, there is a canonical class ¢’(E,s) in
the relative cohomology H* (M, M\S) which lifts the class ¢"(E) in H*(M). If
S is compact, by the Alexander duality, ¢’(E,s) defines the “residue” in the
homology of each connected component of S. If M itself 1s compact, we have
the residue formula which says that the sum of the residues is equal to the
Poincaré dual of ¢’(E).

The residue at an isolated singular point is expressed as a Grothendieck
residue when M is a complex manifold of dimension » = r and when E and s are
holomorphic, see for example [Su2, Theorem 3.1]. Special cases of this include
the Poincaré-Hopf index of a holomorphic vector field as a section of the tangent
bundle and the multiplicity (or Milnor number) of a holomorphic function with
its differential considered as a section of the cotangent bundle. In the global
situation, the residue formula leads to the Poincaré-Hopf theorem, in the first
case, and to the “multiplicity formula” (or the “Milnor number formula™) [I],
see also [F, Example 14.1.5] and [HL, VI 3], in the second case.
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In this note, we consider the case where we are given an /-tuple s of sections
of the bundle E. In this case, if we denote by S the set of points where the
members of s fail to be linearly independent, there is a canonical localization
¢'(E,s) in H*(M,M\S) of the Chern class ¢/(E), for each i=r—/¢+1,...,r.
Again, if S is compact, by the Alexander duality, ¢'(E,s) defines the residue in
the homology of each connected component of S and, if M is compact, we have
the residue formula (Proposition 2.5 below). We give an explicit formula for the
residue at an isolated singular point when M is a complex manifold of dimension
n=r—/+1 and E and s are holomorphic. It is also expressed by a Gro-
thendieck residue (Theorem 5.2 and Section 6).

The definition of residues and the residue formula are readily generalized
to the case of vector bundles over singular subvarieties in complex manifolds
(Proposition 3.3). We also have a similar expression for the residue at an
isolated singular point of a variety as a Grothendieck residue relative to the
subvariety (Theorem 5.7 and Section 6).

The above localization theory fits nicely into the framework of the theory
of integration on the Cech-de Rham cohomology, which we recall in Section 1.
The computation of the residues is also done in this framework. We give, in
Section 4, some fundamental material necessary for this purpose.

For an application, we refer to [IS], where the multiplicity of a function
on a singular variety is defined and the aforementioned multiplicity formula is
generalized to the case of functions on singular varieties. The multiplicity at
an isolated singular point can be computed using the formulas in this note.

I would like to thank M. Oka, M. Saito and H. Yamada for helpful con-
versations.

1. Chern classes in the Cech-de Rham cohomology.
We refer to [BT|, [L1-2] and [Sul] for the material in this section.

(A) Cech-de Rham cohomology and dualities.

Let M be a (connected) oriented C* manifold of dimension m. For an
open set U in M, we denote by 49(U) the space of complex valued C* g-forms
on U. For an open covering % = {U,}, of M, we denote by A4*(%) the Cech-
de Rham complex associated to the covering % with differential D and by
HY(A*(%)) its cohomology [Sul, Chapter II, 3]. We have a canonical iso-
morphism

(1.1) HY(M,C) = HY(A*(W)),
where H4(M,C) denotes the de Rham cohomology of M. We also have the

cup product in 4*(%), which induces the cup product in H*(4*(%)) compatible,
via [1.1), with the usual one in the de Rham cohomology.
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If M is compact, taking a “‘system of honey-comb cells” {R,}, adapted to
U, we may define the integration

| s -c

which is compatible, via [1.1), with the usual integration on the de Rham coho-
mology. The composition of the cup product and the integration induces the
Poincaré duality

P:HY(M,C)~HY (A (%)) = H" 1(A*(U))" ~ Hy_o(M,C).

Now let S be a closed set in M. Letting Uy = M\S and U, a neighborhood
of § in M, we consider the covering % = {Uy, U;} of M. In this case, an
element o in A9(%) may be written as o = (09, 01,001) With gp and g; g-forms
on Uy and U, respectively, and go; a (¢ — 1)-form on Uy = UyNU;. If we
set

ANU,Uy) ={oce AYU)| oy = 0},
A*(U,Uy) forms a subcomplex of A*(%) and we have a canonical isomorphism
HYA (U, Up)) ~ HY(M, M\S; C).

Suppose S is compact (M may not be). Let R; be a compact manifold of
dimension m with C* boundary JR; in Uj, containing S in its interior Int R,
and set Ry = M\IntR;. Then {Ry, R} is a system of honey-comb cells adapted
to %. In this situation, we have the integration on A™ (%, U,) defined by

(1.2) J J:J 01—|-J aol,
M Ry R

where Ry; = RyN Ry = —0R; (0R, with opposite orientation). This induces the
integration

JM L H™(A* (U, Uy)) — C.

The cup product in A*(%) induces a pairing A9(%, Uy) x A" 4(Uy) — A" (U, Uy)
given by ((0,41,001),71) — (0,01 A 11,001 A 71). This, followed by the integra-
tion, gives a pairing

AU, Uy) x A" 4(Uy) — C.

If we further assume that U; is a regular neighborhood of S, this induces the
Alexander duality

A:HYM,M\S;C) ~ HY(A* (%, Uy)) — H™1(U,,C)" ~ H,,_,(S,C).
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If M is compact, the following diagram is commutative:

"k

HY(M,M\S;C) —— HYM,C)

(1.3) zlA zlP

Hy o(S,C)  —“— H, ,(M,C),

where i and j denote, respectively, the inclusions S — M and (M,J) —
(M, M\S).

(B) Representatives of Chern classes.

Let M be a C* manifold of dimension m, as above, and let £ be a C*
complex vector bundle of (complex) rank r on M. For a connection V for
E and for i=1,...,r, we denote by ¢/(V) the i-th Chern form defined by V.
Recall that it is defined by ¢/(V) = (v/—1/(2n))s;(x), where o;(x’) denotes the i-th
symmetric form of the curvature matrix ¥ of V and is a closed 2i-form on M.
Its class [¢/(V)] in H*(M,C) is the i-th Chern class ¢’(E) of E.

If we have p+1 connections Vj,...,V, for E there is a (2i — p)-form
¢'(Vo,...,V,) alternating in the p+ 1 entries and satisfying

P
(1.4) Y (=1 Vo,. ., VoY) + (1) de' (Va, ..., V) =0,
v=0

cf. [Bo]. Here we use a different sign convention, see [Sul, Chapter II, (7.10)].

Let % = {U,}, be an open covering of M. For each «, we choose a con-
nection V, for E on U,, and for the collection V, = (V,),, we define the element
¢(V,) in A% (%) by

Vi) yo, =€ Vagy -, Vi)

0 +++0lp

Then we have Dc¢/(V,) =0 by [1.4). Moreover, it is shown that the class of
¢'(V,) in H*(A*(%)) does not depend on the choice of the collection of con-
nections V,. The class [¢/(V,)] corresponds to ¢(E) in H*(M,C) under the
isomorphism (1.1).

2. Localization of Chern classes.

Let £ be a C* complex vector bundle of rank r over an oriented C*
manifold M of dimension m as in the previous section. Let s = (si,...,8/),
1</<r bea C” /frame of E on some open set U, namely, a set of / C*
sections of E linearly independent at each point of U. In the sequel, an r-frame
is simply called a frame. We say that a connection V for FE is trivial with respect
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to s (simply, s-trivial), if V(s;) =0 for i=1,...,7. Note that if Vy,...,V, are
s-trivial connections, we have the vanishing (see, for example, [Sul, Chapter II,
Proposition 9.1])

(2.1) ¢'(Vo,...,V,) =0 fori>r—¢/+1.

Let S be a closed set in M and suppose we have a C* /-frame s of E on
M\S. Then, from the above fact, we will see that there is a “localization”
¢'(E,s) in H*(M,M\S;C) of the Chern class ¢/(E) in H*(M,C), for i>
r—7+1.

Letting Uy = M\S and U; a neighborhood of S, we consider the covering
U = {Uy, Ui} of M. Recall the Chern class ¢/(E) is represented by the cocycle
¢(V,) in A*(%) given by

(2.2) c'(V.) = (' (o), ¢'(V), ¢! (Vo, V1)),

where Vi and V| denote connections for £ on U, and U, respectively. If
we take as V, an s-trivial connection, then ¢’(Vy) =0 and the cocycle is in
A%(%U,Uy). Thus it defines a class in the relative cohomology H* (M, M\S; C),
which we denote by c¢/(E,s). It is sent to the class ¢’(E) by the canonical
homomorphism j* : H* (M, M\S; C) — H*(M,C). It does not depend on the
choice of the connection V| or on the choice of the s-trivial connection V; [Sul,
Chapter III, Lemma 3.1]. We call ¢'(E,s) the localization of ¢/(E) at S with
respect to s.

Suppose now that S is a compact set admitting a regular neighborhood
and let (S;), be the connected components of S. Then we have the Alexander
duality

A:H*(M,M\S;C) = Hy 5(S,C) = @D Hpn2(S;, C).

Thus, for each A, ¢'(E,s) defines a class in H, (S;,C), which we call the
residue of s at S; with respect to ¢’ and denote by Res,i(s, E;S;). It is also
called a residue of ¢’(E) for brevity.

For each A, we choose a neighborhood U, of S; in Ui, so that the U,’s are
mutually disjoint, and let R, be an m-dimensional manifold with C* boundary
in U; containing S, in its interior. We set Ry, = —0dR;. Then the residue
Res.i(s, E; S;) is represented by an (m — 2i)-cycle C in S; such that

(2.3) L 7] = JRZ (Vi) AT+ JRM c'(Vo,Vi) AT

for every closed (m — 2i)-form 7 on U,. If 2i = m, the residue is a number given
by
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(2.4) Resci(s,E;Si):J ci(V1)+J ¢'(Vo,V1).

R; Ry,

From the commutativity of [1.3), we have the “residue formula’:

PropOSITION 2.5. If M is compact, for i=r—/{¢+1,...,r, we have

> (i2), Resi(s, E; S;) = ¢'(E) ~ [M] in Hy_5(M,C),

]
where i; denotes the inclusion S; — M and the sum is taken over the connected
components of S.

REMARKS 2.6. 1. From the fact that ¢’(E,s) does not depend on Vj, we
see that, for i=r—/+2,...,r, we have ¢'(E,s) = c¢(E,s’), where s’ denotes
an (r—i+ 1)-frame made of r —i+ 1 arbitrary members of s. Thus the case
i=r—/+1 will be of essential interest.

2. It 1s rather a strong hypothesis to assume the existence of an /-frame
on M\S, unless m =2(r — ¢+ 1). It is more reasonable to assume, taking some
triangulation or cellular decomposition of M compatible with S, the existence of
an /-frame on the 2(r — / 4 1)-skeleton of M\S, see [St]. We may still define a
canonical localization ¢’(E,s) in H*(M,M\S;C) and the residue Res,:(s, E;S;)
in H, 2(S;,C), for i =r — ¢+ 1, by modifying the above arguments, see
and [L3].

3. We may also define the localization ¢’(E,s) via obstruction theory. In
this case, ¢/(E,s) is in the integral cohomology H?(M,M\S;Z), which shows
that the above residue Res.i(s, E;S;) is in fact in the integral homology (and is
an integer, if 2i =m).

3. Chern classes on singular varieties.

We refer to [Sul, Chapter IV, 2, Chapter VI, 4] for details of the material
in this section.

Let V' be an analytic variety of pure dimension n in a complex manifold
W of dimension n+ k. We denote by Sing(V) the singular set of V' and set
V' = V\Sing(V). First, suppose V is compact and let U be a regular neigh-
borhood of ¥ in W. Let % ={U,}, be an open covering of U. Taking a
system {R,}, of honey-comb cells adapted to % such that V is transverse to each
Iéaou.ap = Rao n--.. ﬂf{ap, we may define the integration

J : H*(4* (%)) — C.
14

We have H*(A*(%)) ~ H*'(U, C) and the above integration is compatible with
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the integration [, : H (U, C) — C induced from the integration of 2n-forms on
U over the 2n-cycle V.

Also the bilinear pairing defined as the composition of the cup product in
A*(%) and the integration over V induces the ‘“Poincaré homomorphism”

P:HYV,C)~ HIA*(U)) — H" (A" (U))" ~ Hy_,(V,C),

which is not an isomorphism in general. Note that in the above homo-
morphism P, as well as the Alexander homomorphism defined below, 1s defined
by a combinatorial method in homology and cohomology with integral coeffi-
cients. The homomorphism P is given by the cap product with the fundamental
class [V].

Now suppose V' may not be compact. Let S be a compact set in V
admitting a regular neighborhood in W such that there is an open set U in V
with S ¢ U and U\S < V'. Let U, be a regular neighborhood of S in W with
U NV cU and U, a tubular neighborhood of U \S in W with C* projection
p: Uy — U\S. We consider the covering % = {Uo, Ul} of U = UyU U,, which
may be assumed to be a regular neighborhood of U. We also define the sub-
complex A*(%, Uy) of A*(%) as in Section 1 (A). Then we see that

HIY(A* (U, Ty)) ~ H(U, U\S; C).

Let R; be a compact real 2(n + k) dimensional manifold with C* boundary
in U; such that S is in its interior and that dR; is transverse to U. We set
Ri =R/ NU and Ry = —0R;. Then we have the integration on A* (U, Uo)
given as [1.2), with M replaced by U, for ¢ = (0,a1,001) in A*(%,Uy). This
again induces the integration on the cohomology

J cH>(A4* (U, Uy)) — C.
U

As in Section 1 (A), we have a bilinear pairing 49(%, Uy) x A*~4(U,) — C,
which induces the “Alexander homomorphism”

A:HYU,U\S;C) ~ HI(A* (U, Uy)) — H*4(Uy,C)" ~ Hyy (S, C).

Note that the above is not an isomorphism in general.

Suppose V' is compact and let S be a compact set in ) which admits a
regular neighborhood in W and contains Sing(?). Then the following diagram
is commutative [Sul, Chapter VI, Proposition 4.4]:

-k

HYV,V\S;C) —L— H(V,C)

(3.1) JA lp

i

Hzn_q(S, C) — HZn—q(V7 C)7
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where i and j denote, respectively, the inclusions S <— V and (V,J) —
(V. V\S).

REMARK 3.2. In the above, the assumption that U\S is in the regular part
V' = V\Sing(V) is not necessary. However, with this condition, to define a
cochain ¢ = (g9, a1,001) in A4(%), we only need to define oy on U\S, since there
is a C* retraction p: Uy — U\S.

Again, let V' be a variety of dimension n in a complex manifold . First
suppose V is compact and let U and % be as above. For a complex vector
bundle E over U, we have the i-th Chern class ¢/(E) in H¥(A*(%)) ~ H*(V,C).
The corresponding class in H*(V, C) is denoted by c¢(E|,,). We also have the
class P(c'(E)) = ¢'(E) ~ [V] in Hy, 5 (V,C).

Next, let S be a compact set in V' (V' may not be compact) admitting a
regular neighborhood in W such that there is an open set U in V with S < U
and U\S < V. Let U, Uy, U = {170, Ul} and U = Uy,U U, be as above. For
a complex vector bundle E over U, the Chern class ¢/(E) is represented by the
cocycle ¢/(V,) in A%(%) given as with V, and V; connections for E on U,
and U, respectively. Note that it is sufficient if V}, is defined only on Uy = U\S
(see Remark 3.2). Suppose that we have a C* /-frame s = (s1,...,s,) on Uy
and let V) be s-trivial. Then we have the vanishing ¢/(Vy) =0, for i > r —/ + 1,
and the above cocycle ¢/(V,) is in A%(%, Uy). Thus it defines a class ¢/(E|,,s)
in H*(U, U\S;C). It does not depend on the choices of various connections.
We have the Alexander homomorphism

A: H*(U,U\S;C) = Hay2(S,C) = @ Ha-2(S;, C),
7

where (S;), are the connected components of S. Thus, for each 4, ¢/(E|},s)
defines a class in Ha,_»;(S;, C), which we call the residue of s at S; with respect
to ¢’ and denote by Res.(s,E|,;S;). It is also called a residue of ¢/(E|,).

For each 4, we choose a neighborhood U, of S; in Uj, so that the U,’s
are mutually disjoint. Let R; be a real 2(n + k)-dimensional manifold with C*
boundary in U, containing S; in its interior such that the boundary AR, is
transverse to V. We set Ryy = —0R; N V. Then the residue Res,(s, E |3S)) 18
represented by a 2(n — i)-cycle C in S, satisfying an identity similar to with
t an arbitrary closed 2(n — i)-form on U,. In particular, if i = n, the residue
is a number given by a formula as [2.4]. From the commutativity of [3.1}, we
have the residue formula:

PrOPOSITION 3.3. Let V be a compact variety of dimension n in a complex
manifold W and E a complex vector bundle over a neighborhood of V in W. Let
(S;), be a finite number of compact connected sets in V such that each S, admits a
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regular neighborhood disjoint one another and that | | ;S contains Sing(V').  Then,
for an {-frame s of E on V\UASX and for i>r—{+1,

Y (i2), Resi(s,E|3 ;) = ¢'(E) ~ [V] in Hy 5i(V,C).
A

Note that the residues Res,i(s, E|,;S;) are in fact in the integral homology
and the above formula holds in the integral homology (cf. Remark 2.6.3).

4. Some local analytic geometry and others.

(A) Lemmas.

We denote by 0, the ring of germs of holomorphic functions at the origin
0 in C""* and, for germs ay,...,a, in O,x, we denote by V(ay,...,a,) the germ
of variety defined by ay,...,a,. The following is proved similarly as [LS, Lemma
3] and [Sul, Chapter IV, Lemma 4.4]. Here we give a more detailed proof for
later use.

LEMMA 4.1.  Let V be a germ of variety of dimension n at 0 in C"™* and let
gi,--.,gn be germs in the ring O,.r. Suppose V(gi,...,gn)NV ={0}. Then
there exists an N x n matrix C = (c;) of complex numbers such that, for germs

]j-:zi]ilc,jgi, j=1,...,n, we have V(fi,..., fn) NV ={0}.

PrOOF. Since dim V' = n, it suffices to show the following for 7/ =1,... n:
(*) If there exists an N x (/ — 1) matrix (c¢;) such that dim V' (fy,..., f,-1) NV =

n—7¢+1, for f; = lel ¢igi, j=1,...,4 =1, then there exist complex num-

bers ¢y, i=1,...,N, such that dim V(f,...,f;) NV =n—/, for f, =

Z,-Zl Cirgi-

In the above, when 7/ =1, V(f,...,f,_1) is understood to be (the germ at
0 of) C"™*. To show (¥), let V(fi,...,fr_)NV = UqVq be the irreducible
decomposition. Since V(gy,...,gn) NV = {0}, for each ¢, there exist a point
x, in ¥, and g; with g;(x,) #0. Let H, denote the hyperplane in C" =
{(&y,...,¢&y)} defined by Zfil gi(xg)&; =0. Let (ci,...,cns) be a point in
CN\Uq H, and set f; = SN cirgi. Then, ¥ & V(fy), for each i. We have

Since each ¥} is irreducible and V, & V(f;), dim V; N V(f;) =dim }, — 1. There-
fore, we have (*) and the lemma. O

Note that the above holds when k = 0, in which case V' is the germ of the
total space C”.
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Let r and / be integers with 1 </ < r and denote by M(r) the space of r x r
matrices with the standard topology homeomorphic with C ”. Let 4 be the

set of /-tuples of integers (ij,...,is) with 1 <ij<---<i,<r. Let N= <;>

Thus .# contains N elements. We endow .# with the lexicographic order. For a
matrix 4 in M(r), its /-th exterior power A4’ A is an N x N matrix whose entries
are given by det Ay, the / x / minor of A consisting of the rows corresponding
to I = (iy,...,iy) and of the columns corresponding to J = (ji,..., j/).

LemmA 4.2.  For a matrix A and a neighborhood of A, there exists a matrix
A’ in the neighborhood such that the matrix C consisting of the first n columns of
A’ A" satisfies the condition of Lemma 4.1.

Proor. Recall that, for each j=1,...,n, (cjj,...,cy;) is determined so
that it avoids a finite number of hyperplanes in C¥. Suppose the j-th column
(det Ayy), satisfies the equation Zl]i %¢; =0 for one of the hyperplanes, with
J=(ji,...,Jjs) the index corresponding to j. Suppose o;, # 0 and let [, be the
index corresponding to iy. If det A;; = 0, then there is a matrix A’ in the given
neighborhood of A such that det4; ; #0. We may choose 4" so that if some
column of 4’4 does not satisfy a linear equation, the corresponding column of
A’ A’ does not satisfy the equation either. So we may assume that det 4;,; # 0
from the beginning. We may write

dij, - djj,
o, -detAIOJ:ZdetB,-, B; = ) . . )
: X .

where the sum is taken over i which is not in /. In the above, we arrange the
Bj’s so that, if i <i', aj,,...,a; do not appear in By. Let i be the smallest i
such that detB; #0. By changing a;,,...,q; a little, we see that there is a
matrix A’ in the given neighborhood of A such that the above equation does not
hold for A’.  We may choose 4’ so that if some column of 4’4 does not satisfy
a linear equation, the corresponding column of A’ A’ does not satisfy the equation
either. Continuing this process, we prove the lemma. O

(B) Grothendieck residues relative to a subvariety.

Let U be a neighborhood of 0 in C" and let fi,...,f, be holomorphic
functions on U with V(f,...,f,) ={0}. Thus there exists a positive num-
ber & such that f~'(Ds;) is a compact set in U, where f denotes the map
(fi,- -y fn): U— C" and D; the closed polydisk of radius 6. For a holo-
morphic n-from w on U, the usual Grothendieck residue is defined by
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W 1 " W
RGS‘)lﬁ,...,fn] - <2n\/—) Lﬁ

where I' denotes the n-cycle in U given by

I'=rL={peUl|lfip)l =& i=1...,n}

for ¢; with 0 <& <d. It is oriented so that darg(fi) A --- A darg(f,) >0 (e.g.,
[GH, Chapter 5]). Note that, for various ¢ = (¢j,...,&,), the cycles I, are
homologous to one another and the above integral is well-defined. Moreover,
for almost all ¢, I, is a C* manifold. In the sequel, we set gy =--- =¢, = ¢ for
simplicity.

Now let U be a neighborhood of 0 in C"** and V a subvariety of dimen-
sion n in U which contains 0 as at most an isolated singular point. Also, let
fi.-.., fu be holomorphic functions on U with V(fi,...,f;,)NV ={0}. For a
holomorphic n-from @ on U, the Grothendieck residue relative to V is defined by

W 1 " W
Res()lfl,...,fn] <2n\/—) Jrfl

where I is the n-cycle expressed as above with U = UNV ([LS], [Sul, Chapter
Iv, §]).

If V' is a complete intersection defined by i =---=h; =0 in f], by an
iterated use of the projection formula, we see that

Resl W ] — Res [w/\dhl/\m/\dhk]
VA fuly VA ok |

(C) Determinants of matrices of forms.
Let 2 = (w;) be an r x r matrix with differential forms w; in its entries.
We define the determinant of Q, denoted by det(Q) or || as usual, by

detQ = Z SEN T - Wg(1)1 * ** Og(r)rs
oceY,
where %, denotes the symmetric group of degree r and the products of forms are
exterior products. Note that if the entries w; are forms of even degree, possibly
except for the ones in a single column, the products in the above are commutative
and we may treat det Q in the same way as a usual matrix of numbers. Also, for
n=1,...,r, we define g,(Q) to be the coefficient of " in det(/ + ¢t2). Let .o/

denote the set of n-tuples of integers (ay,...,a,) with 1 <a; <---<a, <r. For
an element 4 = (ay,...,a,) in o/, we denote by Q4 the n x n matrix whose (i, j)-
entry is the (a;,aq;)-entry of Q. Then we have

(43) Z det .QA
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5. Residue at an isolated singularity.

(A) Residue on a manifold.

Let py be a point in a complex manifold M of dimension n and let E be
a holomorphic vector bundle of rank r over a neighborhood U of py, in M,
with 1 <n<r. Let /=r—n+1 and suppose we have /7 holomorphic sec-
tions sy,...,s, of E on U which are linearly independent at each point of
Up=U\{po}. Thuss= (s1,...,s/) is a holomorphic /-frame on U, and, in this
situation, we have the residue Res. (s, E; po) in Hy({po},C) = C (in fact in Z,
cf. Remarks 2.6). In the following, we compute this residue.

We may assume that E is trivial over U and let e = (ej,...,¢,) be a
holomorphic frame of E on U. We write 5; =), fye;, i=1,...,/, with f;
holomorphic functions on U. Let F be the / x r matrix whose (i, j)-entry is fj;.

We set
I =A(,..., i) |1 <ip<--<iy<r}

as in Section 4 (A). For an element I = (ij,...,iy) in ., let F; denote the / x /
matrix consisting of the columns of F corresponding to / and set f; = detF;. If
we write e; =e;, A--- Ae;,, we have

SIA - ASp= E frer.

leyd

Noting that the set of common zeros of the f;’s consists only of py, we have,
from Lemmas and 4.2;

LemMa 5.1. We may choose a holomorphic frame e = (ey,...,e,) of E so
that there exist n elements IV, ... 1" in & with the property

{peUl|fin(p)=" = fin(p) =0} ={po}

Note that we may assume that (), ... 1™ are the first n elements in .#
with the lexicographic order. Let e = (ej,...,e,) be a frame of £ on U as in
Cemma 5.0. Let us write 7% = (il(“),...,iy)), «=1,....n, and let F® be the
r X r matrix obtained by replacing the zf“ -th row of the r x r identity matrix by
the j-th row of F, j=1,...,/. Note that detF (o) = frw. Let F® denote the
adjoint matrix of F* and set

O — o) . g

which is an r x r-matrix whose entries are holomorphic 1-forms.

Recall that (Section 4, (C)), for an n-tuple of integers 4 = (ay,...,a,) with
l<a <---<a, <r, we denote by @/(1“) the n x n matrix whose (i, j)-entry is
the (a;, a;)-entry of ®%. For a permutation p of degree n, we denote by @,(p)
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the n x n-matrix whose i-th column is that of @/(lp “)and, for the collection
0 ={0"},, we set

ne) :% ) sanp-det@4(p).

Aedd pes),

Note that ¢,(@) is a holomorphic n-form on U.

THEOREM 5.2. In the above situation, we have

a,(0) ]
fiv, oo fim |

Proor. This is done similarly as for [Su2, Theorem 3.1]. The main dif-
ferences are:

1) We cannot say that we have the vanishing as (3.5) in simply
because of the triviality of the connections involved. We need to look at this
form a little more closely to have this.

2) The computation of the n-form finally to be integrated is much more
complicated.

On U, we let V|, be an s-trivial connection for E and, on U;, we let V| be
the connection for E trivial with respect to the frame e. Since ¢"(V;) =0 and
Ry = —0R,, from we have

Res (s, E; po) = Res,, l

(5.3) Res. (s, E; p) = —J c"(Vo,V1).
oR

We consider the covering % = {U®}!_, of U, defined by

=1

U™ ={pe U fi(p) #0},

and work on the Cech-de Rham cohomology with respect to %. On U, we
may replace, in the frame e, (e,...,ewx) by (s1,...,5/) to obtain a frame el®
for E. We denote by V* the connection for E on U™ trivial with respect to the
frame e®. Then the connection matrix 6 of V* with respect to the frame e
is given by

1
e

Let % be the covering of U, as above and define a cochain t in 42"~2(%) by
Loy oy = Cn(VO; Vi, V(al), N ,V(aq)),

which is a (2n — ¢ — 1)-form on U™ = gy n...Nn U™, Since V and V¥
are all s-trivial, we have

(5.4) ¢"(Vo, VO . vy =0

1 -1

O — gp@ " L@ — @) gpe) — oW
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for ¢ > 1. Now we compute Dr. First for ¢ =1, we have, by [5.4],
(D1), = dc"(Vo, Vi, V) = —"(V,, V) — "(Vy, V).

For ¢ =2,...,n, we compute using [(5.4) as in [Su2|, to get
\\ /
(D7), ., = —c"(V,, v vy,

00ty

We set

Ri={peUl|lfi(p)) + - +|fim(p)|" <ne’}

for a small positive number &. Denoting by : the inclusion map dR; — U, we
let 1*% be the covering of 0R; by the open sets dR; N U®. Then, as a system
{RW}!_ | of honey-comb cells adapted to 1*%, we take

® = {pedRi||fr(p)l = |fyn(p)| for all B}

and, for a g-tuple (oq---0,) with 1 <o <-- <o, <n, we set R#%) =
R®)N...NR™) which is a (2n — ¢)-dimensional manifold with boundary ori-
ented as an intersection of honey-comb cells. Considering the integration

J AP () — C,
OR;

from the identity [,, Dt =0, we get, as in [Su2|,
R,

Res.« (s, E; po) Z Z JR( )Cn(vl,v(“l)7...,V(0€q)).
oy og

g=1 1< < <oy <1
Now we compute the (2n — ¢)-form "V, v vy For this, let V
denote the connection for the bundle E x R?Y over U™ %) X R given by V =
(1-— (Vi 1, V™). Then the connection matrix 6 of V with respect

to the frame e is glven by

where 0; is the connection matrix of V; with respect to the frame e and is equal
to zero. The curvature matrix ¥ of V with respect to the frame e is then given

~ - q q q
(5.5) K=d0—0nr0= Z A O™ > ", d0™) = 1,07 A 0%,
v=1

v, p=1

By definition,
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i V=1V
Cn(V1,V((xl),. .. ,V<%)) = R*CH(V) = ( 7 ) 7'5*0',1(7%),

where ¢,(x) denotes the n-th symmetric form of ¥ and =z, the integration along
the fibers of the projection 7 : U™ %) x A9 — U*~%) with A9 the standard
g-simplex in RY.

We claim that

WL,V vy =0, if 1l<g<n—1.

In fact, when we compute 7.deti, (cf. [4.3)), only the term involving
dty A -+ A dt, matters. Its coefficient is a holomorphic (2rn — g)-form on an open
set of M, which is zero if ¢ < n.

Thus we have

Rescn(s,E;po)=J (v, v, v,
R(1-n)

To compute c”(Vl,V(U,...,V(”)), fix 4 and let p be a permution of degree
n. Then, by (5.5), the term in detk, involving df; A --- A dt, is given by

(—1)”("_1)/225gnp ~dty A Adi, A detBy(p),
p

where 04(p) is defined similarly as for ©4(p). Therefore we obtain
VLV vy = Zngnp-c-detﬁA(p),
4 p

where

2 27 | n!

¢ = (1) (ﬁﬂ diy - dty = (=1)""" " <\/—_1>1
p

Noting that det0,(p) = (—1)"(1/(fy0) - fiw)) det O4(p) and that the n-cycle I’
appearing in the Grothendieck residue with respect to fyu),..., f;m 1s given by
I = (=1)"""Y2R(1=n e obtain the formula. |

(B) Residue on a singular variety.

Let V' be a subvariety of dimension # in a complex manifold W of dimen-
sion n+ k, as before. Let py be an isolated singular point in V" and let E be a
holomorphic vector bundle of rank r, 1 <n <r, over a neighborhood U of py
in W. Let/=r—n+1 and suppose we have / holomorphic sections si,...,s,
of E on U such that

{pe U|s1/\.--/\s/(p):O}ﬂV:{po}.
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Thus s = (s1,...,s,) is an /-frame of E on Uy = U\{po}, U=UNV, and we
have the residue Res. (s, E|}; po) in Hyo({po}, C) = C (in fact in Z, cf. Remarks
2.6). In the following, we compute this residue. We may assume that E is
trivial on U and let e = (ey,...,e,) be a holomorphic frame of E on U. We
write s; = > " fye;, i=1,...,/, with f; holomorphic functions on U. If we
let F and ¢ be as in (A), we have

SIA - ANSy = E frer.

lesg
From Lemmas 4.1 and 4.2, we have:
LEMMA 5.6. We may choose a holomorphic frame e = (ey,...,e,) of E so
that there exist n elements IV, ... 1" in & with the property
{peUlfu(p) == fiw(p) =0}NV = {po}.
Note that we may assume that IV, ... 1" are the first n elements in .# with
the lexicographic order. Once we choose a frame e = (ej,...,e,) of E on U as

in [Lemma 5.6, the rest goes exactly the same way as in (A). The only difference
is that, in (A), U is a neighborhood of py in a manifold M, while in this sub-
section, it is a neighborhood of py in a possibly singular variety V. In both
cases, Uy = U\{po} is non-singular, where everything is performed. Thus by
similar notation as in (A), we have:

THEOREM 5.7. In the above situation,

e
Res. (s, E|; po) = Respol 7(0) ] :
4

n
ﬁ(l), “ e ,f‘l(n)

6. Special cases.

We consider the situations of Section 5. Thus py will be either

(I) a point in a complex manifold M of dimension n, or

(I) an isolated singular point of a subvariety V' of dimension » in a
complex manifold.

Let U be a neighborhood of py in M or in V as in Section 5. In what
follows, in the case (II), we denote Res,, (s, E|}; po) simply by Res,, (s, E; py) and
omit the suffix V" in the residue symbol so that the residues are expressed in the
same way in the both cases.

(1) The case /=1 and r =n, with n arbitrary.

Let e = (ey,...,e,) be an arbitrary frame of E in a neighborhood of py and
write 51 = .., fie,. Then we have

dfi A - A df,
Res,, (s, E; po) = Respol fineeon df ]

Sy
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In fact, in Theorem 3.2 or 5.7, we have f;» = f;, i = 1,...,n, and we readily
see that ¢,(@) =dfi A --- Adf, (see also [Su2, Theorem 3.1]).

(2) The case n=1 and 7/ =r, with r arbitrary.

Let e =(ey,...,e,) be an arbitrary frame of E in a neighborhood of p
and write s; = er:l fiei, i=1,...,r. Let F=(f;) and set f =detF. Then
we have

Res, i (s, E; py) = Res,, ldf] :

f

In fact, in or 5.7, we have f;n) = f and we easily see that
a,(0) =df .

Note that Res.i (s, E; py) coincides with the residue Res.i(s,det E; pg) of the
section s =51 A - A s, of the line bundle detE = A"E at py.

(3) The case / =2 and r=n+ 1 with n arbitrary.

Let s = (s1,5,) be a 2-frame on Uy = U\{po} and e = (ey,...,e,.1) a frame
on U or U satisfying the condition of Cemma 5.1 or [Lemma 5.6, respectively.
We write s; = Z}Zl fijej, i=1,2, as in Section 5. We may suppose that / () =
(l,a+1), a=1,...,n, so that

f[(i) =

Ji fla41
f21 fZ,oH—l

and that
{plfin(p) == fin(p) =0} = {po},

in the case (I) or

{plfiv(p) == fiwn(p) =00V = {po},

in the case (II). In the sequel, we introduce the following notation:
fli flj fli df] j
fai Sy fai dfy
Thus fi» = ¢ ,.. With these notation, we claim that

a,(0) ]
Srvs oo fim

Py

Res.« (s, E; pg) = Res,, l

with

1 n+1
O'n(@) = ; (ZHQ A A 917,'_1 A\ dﬁ(f—l) AN 91’,'_,_1 VANV 91,n+1
i=2

+ Z (1)i+j911/\d(ﬂlj/\elz/\”‘/\5\1,‘/\---/\51\]'/\”-/\01.,14_1).

2<i<j<n+1
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To show this, we compute and see that the rows of the matrix ©® are

zero except for the first and the («+ 1)-st, where we have —(0ys1.1,. .., 0ps1 n+1)
and (011,...,01 ,41), respectively. For i=1,...,n+ 1, let 4; denote the n-tuple
obtained from (1,...,n+ 1) by removing i. Then we have
1 n+1
o,(0) = a;p; sgnp - det© 4,(p).

Denoting by (@/(lf))ab the (a,b) entry of the matrix 6\, we compute

i

1 n
(6.1) Z; sgnp - det@4,(p) = Zy Sgnao -sgnp - (@Igli))o(l)p(l) o (@/(1->)J(n)p(n)'
pPESy a,pESy

First we compute the right hand side of (6.1) for i =1. The rows of @f{f) are

zero except for the a-th, where we have (02,...,0; ,11). Hence we have
(6.2) Z sgnp-det@y, (p) =nl-Oix A+ A 01 pp1.
pESy

Next we compute the right hand side of (6.1) for i=2,...,n+1. For
a=1,...,i—2, the rows of @/(f;) are zero except for the first and the (o + 1)-st,
where we have —(9a+171, .. ,90(4_1,,', cay 6'05_,_17,1_;_1) and (911, .. ,011', cey 917,14_1),
respectively. Here “"” means that the symbol under it is to be removed. The
rows of the matrix @/(;4_1) are zero except for the first, where we have

~ 1
—(0n,...,04,...,0;yt1). For a=i, ... ,n, the rows of @/(f) are zero except

for the first and the o-th, where we have —(0,1.1,...,00s11r-- - Osi1ne1) and
(O11,...,61,...,01 n11), respectively. Thus the terms in (6.1) are zero except
for o =(1,...,i—1), the cyclic permutation of order i — 1, whose signature is

(=1)". Then we compute and see that, for i=2,...,n+1,

> senp-det@4(p) = (~1)(n - 1)

pPES,

i—1
'(2911/\"'/\0171'1/\9ij/\017j+1/\"'/\Hli/\"'/\glﬂﬁl
j=1

+2911/\---/\01,‘/\---/\6)17j1/\0,7/\(917]-_,_1/\---/\917”4_1).

Finally, using and the above, we get the formula.

The formula in (2) or (3) can be used to compute the multiplicity of a
holomorphic function on a possibly singular curve of arbitrary codimension or
on a possibly singular hypersurface of arbitrary dimension, respectively, see [IS].
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ExampLE 6.3. In the situation of (3), let » =2 and suppose that pg is a
non-singular point. Let (zj,z;) be a coordinate system around pg. If s; =
zie1 — zpe3 and s, = zye) + zjep, we have

3 d d 3d d
Res (s, E: po) — Respol 2122 221 2/\ 221 ~Res, l Z1 A Zz] _3

21,2y 21,22
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