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Abstract. We consider the group of diffeomorphisms of a compact manifold M
which preserve a codimension one foliation # on M. For the C? case if # has
compact leaves with nontrivial holonomy then at least one of these leaves is periodic.
Our main result is proved in the context of diffeomorphisms which preserve commutative
actions of finitely generated groups on [0,1]. Applying this result to foliations almost
without holonomy we prove the periodicity of all compact leaves with nontrivial
holonomy. We also study the codimension one foliation preserving diffeomorphisms
that are C? close to the identity.

Introduction.

Let # be a C" (1 <r < o0) transversely orientable codimension one foliation
of a smooth compact manifold M possibly with boundary. By Diff’, (M;F)
we denote the subgroup of Diff’ (M) consisting of those diffeomorphisms which
preserve both the foliation & (they carry leaves of % to leaves of %) and the
transverse orientation of %, endowed with the C" natural topology.

Let feDiff' (M;7). A leaf L of # is f-periodic with period k >1 if
fYL)=Land fi(L)#L,1<Vi<k—1. If f(L) =L the leaf L is also called
an f-invariant leaf.

In this paper we present some results concerning the existence of f-periodic
(or f-invariant) leaves. Our main interest is on the occurrence of such leaves
in the set of compact leaves of # which we denote by (). Clearly the leaves
lying in the interior of (%) need not be periodic. We denote the frontier
of ¥(#) (i.e. the union of the compact leaves with nontrivial holonomy) by
Fr(¢(7)).

Our plan is as follows.

First we show that in the C? case (Theorem 2.1) provided that Fr(4(#)) #
& for any f e Diff JZF(M : 7 ) the foliation % always has an f-periodic leaf in
Fr(¢(7)).
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Having established the existence of periodic leaves in Fr(%(%)), we wish to
know whether all the leaves in Fr(%(%)) are f-periodic. Using
and modifying f € Diff’ (M; %) along the leaves of # we reduce this problem
to the following question which is actually the main question of this paper.

QuEesTION 3.3. Let & be a finitely generated group and let H:® —
Diﬂ“i([O, 1]) be a representation. If € Aut(®) and feDiffi([O, 1]) satisfy the
relation Hy(,y) = fo Hyof™" for all we ® then Fix(f) > Fr(Fix(H))?

As already remarked by E. Ghys and V. Sergiescu [6] and T. Tsuboi
an application of Kopell’s Lemma gives an affirmative answer to this question
for the case Y = Id.

Our main result gives an affirmative response to Question 3.3 when the
image of H is a commutative group.

THEOREM 5.3. Let & be a finitely generated group and let H:® —
Diff i([O, 1]) be a representation. Suppose there are e Aut(®) and fe€
Diffi([O, 1]) such that Hy,y = foH,of™', Yae®. If Im(H) is a commutative
subgroup of Diffi([O, 1]) then Fix(f) = Fr(Fix(H)).

The proof of this theorem requires a small generalization of Kopell’s Lemma
which we give in §4 (Cemma 4.1).

We recall from the theory of transversely orientable codimension one folia-
tions on compact manifolds that in foliations almost without holonomy the hol-
onomies of compact leaves are commutative. Then implies the
following corollary.

COROLLARY. Let ¥ € Foli(M ) be a foliation almost without holonomy and
let f € Diff>(M;F). Then every leaf in Ftr(6(F)) is f-periodic.

Here, Fol (M) denotes the space of all C" codimension one transversely
orientable and tangent to the boundary foliations on M endowed with the Epstein
C" topology [3]. The space Diff"(M) is endowed with the natural C” topology.

In §6 we give some results concerning the invariance of noncompact leaves
in foliations almost without holonomy which will be necessary in §7. These
results show that there is a strong rigidity on the transversal dynamics of dif-
feomorphisms preserving this type of foliations.

In §7 we study the invariance of leaves under diffeomorphisms f €
Diff’ (M; #) which are C" close to Idy. To deal with such diffeomorphisms
we introduce the notion of a strongly f-invariant leaf, that is, an f-invariant leaf
L of # such that for any x in L the points x and f(x) are close along L, in the
induced metric on L. The main results of this section are Theorems and
stated below.
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THEOREM 7.2. Let F eFoli(M). There exists a neighborhood V" of the
identity in Diff>(M) such that for all f € “VﬂDiffi(M; F) we have:
(i) the leaves with nontrivial holonomy are strongly f-invariant,
(i) if a connected component of M — €(F) has an f-invariant leaf (resp.
a strongly f-invariant leaf’) then all leaves lying in this component are
f-invariant (resp. strongly f-invariant).

At the end of the paper we apply Theorem 2.1 together with a result of
Duminy to the compact leaf persistence problem (Definition 7.7).

ToeOREM 7.8.  Let F € Fol' (M), r > 2 and let Q be a closed manifold. Let
Fo denote the foliation on Q x M obtained by multiplying by Q each leaf of
F. Suppose that & cannot be C" approximated by foliations defined by fibra-
tions over S'.  Then F has the compact leaf persistence property if and only if the
same is true for Fg.

We would like to thank E. Ghys for clarifying conversations and hospitality
at E.N.S. de Lyon where part of this work was developed. We also thank T.
Barbot and D. Gaboriau for their suggestions.

CoNVENTIONS. In this paper all manifolds are smooth connected, possibly
with boundary. We shall assume that all foliations and plane fields have codi-
mension one and are tangent to the boundary (if the boundary is non empty),
unless the context clearly indicates otherwise.

Throughout this paper M denotes a compact manifold.

1. Prelimaries.

This section reviews briefly the notion of equivalence class of compact leaves
and support of a class of a codimension one foliation introduced by Bonatti-
Firmo [1], which will be used in this paper.
They define the following equivalence relation on the set of compact leaves
of #: two compact leaves L and L of # are said to be equivalent if there exists
an immersion : L X [a,b] — M with a < b satisfying the following conditions:
1.1 for every te€[a,b] the restriction of the map 1 to L x {¢} is an
embedding of L in M,

1.2 (L x{a}) =L and (L x {b}) =L,

1.3 for each x € L the path 1, : (a,b) — M defined by 1,(¢) = 1(x, ?) is trans-
verse to 7.

In this case we say that the immersion 1 realizes the equivalence of the
compact leaves L and L. The equivalence class of L will be denoted by [L].

Observe that if the immersion 7 is not an embedding then M fibers over
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S! with fiber L, and each compact leaf of # is a fiber of the fibration.
Furthermore, there exists a vector field transverse to both the foliation & and
to the fibers.

The equivalence classes of compact leaves satisfy:

1.4 Z has finitely many equivalence classes of compact leaves,

1.5 if A consists of all immersions which realise some equivalence of com-
pact leaves equivalent to L then the subset of the manifold M given
by J,.,1(L x [a,b]) is a compact subset of M, saturated by # and
contains all the compact leaves equivalent to L. This compact set will
be referred as the support of L and will be denoted by supp[L],

1.6 there exists 7o € A such that supp[L] = 1o(L x [a, b)),

1.7 there exists a neighborhood U of supp[L] in M such that every leaf of
Z meeting U has a compact leaf equivalent to L in its adherence,

1.8 if L and L are non equivalent compact leaves of the foliation % then
supp([L] Nsupp|[L] = .

The proofs of 1.4 to 1.8 can be found in [1] or in [4].

2. Periodic compact leaves.

If a foliation # is defined by a fibration L — M = S! (the leaves of F#
are the fibers of 7) then the transversal dynamic properties of f € Diff’, (M;F)
are completely determined by the induced diffeomorphism ¢ e Diff’ (S . In this
case the f-periodic leaves correspond to the g-periodic points. If » > 2 it is well
known that either all the orbits of g are dense or g has a periodic point and all
periodic points have the same period.

In this section we analyse the existence of compact periodic leaves for a
foliation # which is not defined by a fibration. The leaves lying in the interior
of €(#) need not be periodic, however we do not know if Fr(% (%)) can have
non periodic leaves. This question will be considered in §3 and §5.

For a compact leaf L we have f(supp[L]) = supp[f(L)] for f e Diff\ (M; 7).
Thus both the f-period of supp[L| and the f-period of [L] are well defined.
Hence in view of 1.4, if supp[L] is not a fibration over S' then its boundary
leaves are f-periodic. The following example shows that the f-period can
change from one class to another.

ExaMPLE. Let « and f8 be the generators of 7;(72) and consider the folia-
tion on [0,1] x T? defined by the suspension of a representation H : 7y(T?) —
Diff 7 ([0, 1]) satisfying:

Hg =1d, Fix(H,) = {0,1} and H, is C*-flat on Fix(H,).

On each boundary component of [0,1] x 7% we paste a solid torus foliated
by a C*-flat Reeb component in such way that « is null homotopic in both solid
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torus. This process gives a foliation & € Fol?(S? x ') with nontrivial hol-
onomies H, and Hpz. With small perturbations of « and f we construct closed
curves I} and I transverse to # such that:

— I generates m;(S? x S1),

— I is null homotopic in S? x S!.

For such an % the turbulization along the closed transversals I7 and I
produces a foliation ¥ on S? x S! with two Reeb components R([;); i = 1,2
lying in small neighborhoods of I7; i =1,2.

Let % and R(1}) be the lifts to the double cover of S2 x S' of ¥ and R(I7)
respectively. If ‘jil(F ») and iﬁz(F ») denote the two distinct lifts of R(/3) then
the nontrivial covering map f preserves % and the f-period of the class [0R(17)]
is 1 while the f-period of d%R;(I) is 2.

To assure the existence of periodic compact leaves we can restrict ourselves
to the group of diffeomorphisms which preserve both % (%) (instead of %) and
the transverse orientations of % in %(%), i.e. the group of diffeomorphisms of
M which carry leaves in 4(%) into leaves in %(%) preserving the transverse
orientations of % in %(%). For this we need the following extension of the
definition of equivalence classes of compact leaves.

Two compact leaves L and L’ are in the same extended equivalence class
if they satisfy 1.1, 1.2 and

1.3* for each x e L the path i, : (a,b) — M is transverse to the compact

leaves of 7.

The extended equivalence class of L which we will denote by [L], satisfies 1.4
and 1.5. Thus the support of the extended class, supp[L],, is well defined and
satisfies 1.6 and 1.8. Moreover, supp[L]|, is a finite union of:

— some supports of equivalence classes (not extended) of compact leaves

diffeomorphic to L, and

— foliated products L x [0,1] where L x {0} and L x {1} are the unique

compact leaves of # in Lx[0,1] and F|; o is not defined by a
suspension.

In each support (not extended) L x [a,b] the foliation is given by a suspen-
sion. Thus, its compact leaves are fibers of the trivial fibration L X |a,b] —
[a,b]. Moreover, we can extend these fibrations in order to obtain a locally
trivial fibration on supp[L],. This extension is a consequence of the following
remark: a C” foliation on L x [—¢,0]UL x [1,1 4 ¢] with trivial holonomy and
having L x {0} and L x {1} as compact leaves can be extended (by extending the
trivial holonomy to the interval [—¢, 1 +¢]) to a C” foliation by compact leaves
without holonomy on L X [0, 1].

Of course, if f € Dift"(M) preserves ¢(%) then for each compact leaf L

of # we have f(supp[L],) = supp[f(L)],.
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THEOREM 2.1. Let P/TeFoli(M) and let f e Diff>(M). Suppose that f
preserves both €(F ) and the transverse orientations of F in €(#). If Fr(¢(F))
is non empty then F has an f-periodic compact leaf in Fr(¢(F#)). Furthermore,
if L and L' are f-periodic compact leaves then

L and L' have the same period when [L], = [L’]
L and supp[L|, have the same period when supp|L]|, # M.

e’

PrOOF. Suppose Fr(%(#)) # . We have to consider two cases.

Case 1: supp(L], fibers over [a,b] with a <b, for every compact leaf L.

Let supp[Li],,...,supp[Ly], be the supports of the extended equivalence
classes of the compact leaves of # and denote by L and L: the leaves in the
frontier of supp[L;],; i=1,...,k. Since f preserves the extended supports,

e
f7(LF) and f(L;) lie in (J{,{L; UL; } and thus L} and L;; i=1,...,k are
f-periodic. If one of these leaves lies in Fr(%(#)) the proof is finished. If
not, M =supp[L], = L x [a,b] for some compact leaf L. In this case the con-
nected component of M — Fr(%4(%)) which contains L x {a} is f-invariant. In
particular the boundary leaves of this component are f-invariant and one of
them necessarily lies in Fr(%(%)).

Case 2: supp[L], fibers over S', for some compact leaf L.

Let L — M 5 S! be the fibration defined by supp[L],. Fix a section I" of
n which we identify with the base S!.

Since the compact leaves of % are fibers of = and since f preserves the
compact leaves of % there exist a finite number of disjoint compact arcs
Ay, ..., As in I’ satisfying

f|p is transverse to the fibers of 7 in I — ( J,_, Int(4;),
C(F)N (U 4) = 2.

Now, increasing the size of the segments A4; if necessary, we can modify f|,
on each A4; to produce a C? embedding ¢g: I" — M such that

flp=g on I'—]J_ Int(4)),
(UL 94} N%(7) = @,
g is transverse to the fibers of 7.

It follows that f =7mog is a C? orientation preserving diffeomorphism of
S!. The conclusion follows from Denjoy’s theorem and below tak-
ing into account that the compact subset K = ¢(%) NI of I is invariant under
f and Z is not a fibration.

The last two assertions follow from properties of orientation preserving dif-
feomorphisms of the circle and of the interval. ]

Given a representation H : ® — Diff” (S1) of a group ® we denote by Op(x)
the orbit of xe S' and by %(H) the set of points x e S' for which Oy(x) is
finite. If Oy (x) is finite and y ¢ Oy(x) then in each connected component of
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S' — Oy(x) we have at least one point of Oy (y). Thus, #(CUy(x)) < 4(Ox(y)).
Therefore §(On(x)) = 8(On(y)) when Uy(x) and O (y) are finite. In particular
%(H) is compact.

LEMMA 2.2. Let H: ® — Diff}r(Sl) be a representation of a group ®. Let
K be a compact subset of S' such that Fr(K) # . Suppose that K is invariant
under H, i.e. Hy(K)=K, Yue®. If ¢(H)# J then ¢(H)NFr(K) # .

ProOF. Suppose that ¥(H) # J and let xe ¥(H). We have to consider
two cases: (1) xeInt(K) and (2) x¢ K. In the first case the connected
component of K which contains x is a compact interval whose extremities are in
%(H). In the second case the connected component of S' — K which contains
X is an open interval whose extremities are in % (H). ]

3. Periodic leaves and invariant fixed points.

In this section we describe a modification of the diffeomorphism f along
the leaves of % which allows us to reduce the study of periodic compact leaves
to the study of invariant fixed points of a group action on [0, 1].

First observe that we can assume that % is given by the suspension of a
representation of a group on Diff” ([0,1]). In fact, by Theorem 2.1 the folia-
tion Z has a compact f-periodic leaf L. Replacing f with f*, where k is the
period of L, the compact f-periodic leaves lying in supp[L] become f*-invariant
leaves. If supp[L] fibers over S! then by cutting M along L, we can assume
that supp[L] fibers over [0, 1].

Thus consider # € Fol ([0, 1] x F) transverse to [0,1] x {x} for all xe F,
where F is a closed (n — 1)-manifold. Under these conditions we have the fol-
lowing lemma.

LemMA 3.1, For each f e Dift’ ([0,1] x F;%) and p e F there is a diffeo-
morphism g € Diff’. ((0,1] x F;) satisfying:

(i) the maps flipp and gl .y are C'-isotopic in {0} x F,

(i) (0, p) € Fix(g),
(ii)) g¢([0,1] x {x}) =10,1] x {g(x)}, for all xeF,
(iv)  f(z) and g(z) lie in the same leaf of F for each z€|[0,1] X F.

Proor. Let peF ={0} x F be such that f(p)#p and let o be an
embedded path on F from p to f(p). The foliation # restricted to a convenient
small neighborhood of o (in [0,1] x F) is a product foliation. Thus, isotoping
f along the leaves of % by an isotopy supported on this neighborhood we can
obtain a diffeomorphism fixing the point p.

Thus, without loss of generality we may assume that f(p) = p.
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Without changing f| (0yxr We shall construct the required diffeomorphism,
as follows:

Let (¢,x) € [0,1] x F and denote by 7, the natural projection of [0, 1] X F on
F. Let o ) be the path on F defined as o, (s) = my 0 f((1 — s)¢,x) for all
se[0,1]. We define g(t,x) = & (1) where & ) is the lift of o ) starting
at f(¢,x) on the leaf passing through f(z,x).

’/’-_—‘\‘ \\ /’
( .
{1} x F
g(t, z)
A
D(t,:x:) . (t,le
S=~al==~ \
fha)
e
Pl R _-F*"F(D,x))
F(0,z)
AN (U 2 It
D(o,z) .
f(Do,zy) {0} x F

It is easy to verify that g is a C" map satisfying (i), (ii), (iii) and (iv). Now
it remains to show that g is a diffeomorphism.

First we prove that g is a local diffecomorphism in the leaf direction. For
this fix (z,x) € [0,1] x F and let Dy ) be a compact (n — 1)-disk on F centered
at (0,x). The leaf passing through (¢, x) of the restricted foliation & |[O,1]XD<07x)
is a (n—1)-disk diffeomorphic to Dy, under the projection 7. It will be
denoted by Dy, .

Now let @:f(D(, ) — f(D(,y) be the diffeomorphism defined by the
composite

/! ™ f
J(D(,x) = D5y — D(o,x) — f(D(0,x))-

Let L be the leaf of & passing through f(z,x) and ¢(z,x). The leaf of
Z 0. 11x F(Dioy) passing through g¢(z,x) is also a (n— 1)-disk diffeomorphic to
f(D(,x)) under the projection 7, whose inverse in this case will be denoted by
7Z_l.

Consequently, the map g: D, — L is given by the composite

f ] 7!
Dy,x) = f(Dyy) = f(De,n) — L

and we conclude that g is a local diffeomorphism in the leaf direction.
In a neighborhood of (z,x) in [0,1] x {x} the map g is given by the
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composite of f and the holonomy diffeomorphism of the path & . relative to
the transversals f([0,1] x {x}) and [0,1] x {f(0,x)}. Therefore, g is a local
diffeomorphism.

Since g|yoyr = flioyxr 1 @ diffeomorphism of F, we conclude that g is a
difffomorphism and the proof is finished. O

It follows from (iv) that f and g coincide on the quotient space
([0,1] x F)/%. Consequently, they have the same invariant leaves.

From now on we only consider diffeomorphisms f e Diff’, ([0, 1] x F; %)
satisfying:

32. f([0,1] x {p}) =1[0,1] x {p} for some point p € F.

In this situation we have the following property:

Given z € [0,1] x {p} and a loop « in F based at p, let a. be the lifting of
o to a leaf of # such that a.(0) =z. Since both f(a:) and [f{a)],,) depend
continuously on z, its projections on F are homotopic.

Consequently the holonomy maps H, and Hy,) of # associated to the loops
o and f(«) satisfy:

Hyy = foH,of "

Therefore the problem about the periodicity of compact leaves which are
contained in Fr(% (%)) can be reduced to the following question:

QuesTiION 3.3. Let & be a finitely generated group and let H:® —
Diffi([O, 1]) be a representation. If € Aut(®) and feDiffi([O, 1)) satisfy the
relation Hy(,y = foHyof™" for all we® then Fix(f) > Fr(Fix(H))?

The following remark will be used in §6.

ReMARK 3.4. Let F# eFol| (M), let feDiff’ (M;%) and let L be an
f-invariant compact leaf of #. It is easy to construct an isotopy { f,}te[m of f
along the leaves of # and such that the map f; preserves the fibers of a small
tubular neighborhood of L.

4. On Kopell’s Lemma.

In this section we prove a more general version of the famous Kopell’s
Lemma which we will use in the next section. The proof we give here is
essentially an extension of the proof of Lemma 1.a given by Kopell in [14, pp.
168-169].

LemMA 4.1. Let f be a C? contraction to 0 on [0,a), a > 0. Suppose there
is a sequence g, € Diﬂ“}r([f(a),a]); ne NU{0} such that the map g : (0,a] — (0,d]
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defined by g(x) = f"og,of"(x), Vxe [f"(a), f"(a)] is a C'-diffeomorphism.
Then g extends to a C'-diffeomorphism on [0,a] if and only if g, — 1d in the
C'-topology.

Before proving we recall the following two crucial results stated
by Kopell in [14, pp. 168-169].
If fis a C?-contraction to 0 on [0,a] then:
(1) A(x,y;n) = (/"' (3)/((f") (x)) converges uniformly on compact subsets
of (0,a] x (0,a] to a continuous strictly positive function A(x,y),
(IT) the differential equation

(4.1) y = x, y € (0,d]

Alx, y)’

has the following property: if g is a solution of 4.1 such that g(x,) = x,
for some x, € (0,a] then g = 1d.

PrOOF OF LEMMA 4.1. From the definition of g we have that

g(f"(x)) = f"(gn(x)), Vxe[f(a),a,neN.

Differentiation yields

(4.2) g'(f"(x))-(f")(x) = (") (gn(x)).gp (x)
for all xe€[f(a),a], ne N.
Then, we get
o gy U
(4.3) 0 =9 (") s s Veelf@dneN.
Hence g, 1s a solution of the differential equation
,_g'("(x)
(4.4) y = Alx, yin)’ x,y € [f(a),d]

satisfying the initial condition g,(a) = a.

We observe that ¢'(f"(x))/A(x,y;n) is a continuous map of (x,y)e€
[f(a),a]* and has continuous partial derivative with respect to y, which assures
the existence and uniqueness of the solutions of 4.4.

Suppose ¢ extends to a C!-diffeomorphism of [0,a]. Since f”(a) e Fix(g)
we have ¢’(0) =1 which implies that ¢'(f"(x)) — 1 uniformly on [f(a),d].
Thus, ¢'(f"(x))/A(x, y;n) converges to 1/A4(x,y) on [f(a),a] x [f(a),a]. We
will show that the differential equation
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5) Y = oy

also satisfies the property of existence and uniqueness of solutions.
Indeed, if g; and g, are solutions of 4.5 which coincide at a point x, then
g3 never vanishes and we have g5!o0gi(x,) =x,. On the other side, we have

(95" 091)'(x) = (85 1) (g1 (x)).g7 (x)

_ 1 /() = A(g5' 0 g1(x),91(x))
: A(x,91(x))

1 1

A(x,g1(x))-A(g1(x), 9, 0 g1(x))  A(x,95" 0 g1(x))

Thus g;'og; is a solution of 4.5 having x, as a fixed point. By (II) it
follows that g; = g, on a neighborhood of x, and hence g; = g, on their common
definition interval.

The equations 4.4 and 4.5 satisfy the existence and uniqueness property of
maximal solutions. Thus g, — Id uniformly on [f(a),a]. Returning to 4.3 we
see that g/ — 1 uniformly on [f(a),a] and consequently g, — Id in the C!-
topology.

Conversely, suppose that g, — Id in the C'-topology. From 4.2 we obtain

g'(f"(x)) = A(x,gu(x);n).g.(x), Vxe[f(a),a),neN.

Taking the limit when n — oo on both sides we have that ¢'(x) — 1 as
x — 0 and the proof is finished. O

x,y € (0,d]

5. Commutative holonomy and invariant fixed points.

In this section we prove [Theorem 5.3. The generalized version of Kopell’s
Lemma proved in §4 will play an important role in this proof.

If y = Idg then Question 3.3 has an affirmative answer without any assump-
tion on ©®.

LEMMA 5.1. Let & be a group and let H : ® —>Diffi([0, 1]) be a repre-
sentation. If feDifszr([O, 1]) is such that H,of = f o H, for all o in ® then
Fix(f) = Fr(Fix(H,)), Yo € 6.

Furthermore, in each connected component C of [0,1] — Fix(H) we have that
if f(z)=H,(z) # z for some ze C and ye® then H,=f on C. In particular

fle =1d or Fix(fl¢) = <.

The proof of this lemma is an application of Kopell’s Lemma. Moreover,
it has a similar version for C? diffeomorphism of S' by replacing Fix(H,) with



24 S. Druck and S. FiIrmo

periodic points of H,, Fix(H) with points with finite orbit by ®, and Fix(f) with
periodic points of f.
Here is the codimension one foliation version of [Lemma 3.1.

THEOREM 5.2. Let 7 € Foli(M), let f e Diffi(M; F) and let L be a com-
pact f-invariant leaf of F. If f.:m (L) — m(L) is the identity homomorphism
then every leaf in supp[L| with nontrivial holonomy is f-invariant. Furthermore, if
a connected component C of M — €(F) contained in supp[L]| has an f-invariant
leaf then all the leaves in C are also f-invariant.

We now prove the main result of this section.

THEOREM 5.3. Let & be a finitely generated group and let H:® —
Diff i([O, 1]) be a representation. Suppose there are e Aut(®) and f €
Diffi([O, 1)) such that Hy,y = foH,of ™', Yae ®. If Im(H) is a commutative
subgroup of Diff? ([0,1]) then Fix(f) > Fr(Fix(H)).

Proor. First note that ®/ker(H) is a commutative finitely generated tor-
sion free group. Then it is isomorphic to Z* for some k e N U{0}. On the
other hand, our hypothesis implies that y(ker(H)) = ker(H). So, it suffices to
show the lemma for & = Z*.

Let a,b e Fix(H) such that a <b and (a,b)NFix(H) = &. We need to
show that a,b € Fix(f).

Suppose f(b) # b. Since f(Fix(H)) = Fix(H), we can assume, without loss
of generality, that f(¢) <t 0 <Vt< 1. In particular, f(b) <a < b. From the
equality Hy ) = fo H, of1, Yoe Z¥ we have

H,=f"oHywyof ™", VaeZ'neZ.

Using one sees that Hy-,y — Id on [f(b),b] in the C'-topology,
as |n| — oo. In particular, the same is true on [a,b] < [f(b),b].

Now fix 7 elIm(H) with Al , #1d. From Szekeres there exists a
C' vector field X on [a,h) with flow (X,) such that X; =h. For each
g € Diff! ([a,b]) commuting with / let 7(g) € R be the unique real number given
by Kopell’s result such that g = Xy The relation g = X, defines a con-
tinuous homomorphism

g9)

T {Hy| |y 50 € Z5 - R
Hence, o =10 H : Z¥ — R is a non trivial homomorphism such that
o (@) — 0 as [n] — oo

for each o e Z*. According below this is a contradiction and the
proof of the theorem is complete. ]
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LEMMA 5.4. Let w: R — R be a linear form. Suppose that there exists an
isomorphism W : R* — R* such that o(y"(2)) — 0, Yo e Z* as |n| — 0. Then w
is trivial.

Proor. Complexifying @ and y it is easy to verify that w(y"(«)) — 0 as
In| — oo for every o in C*,

We use the Jordan form of y to prove that w is trivial. It suffices to show
the case when ¥ has Jordan form || = Al + E| ; in a basis {v,..., v}, where I,
is the identity matrix and (Ei); ;= 41, V1 <i,j<s and 0#41eC. Re-
placing ¥ by ! if necessary we can assume that 1] > 1.

For n>s—1 we have:

(L +Ep,)" = i <’?>in_i(El7s)i

i—o \!

:A,nls'l_ <T)in1El,S++ < n )inSﬁ»l(El’s)S—l.

s—1

Thus
W(v,-) = A" + <Y)inlvi—l RS <lf 1>ini+ll)1

forall n>s—1and 1 <i<s. We conclude that

(5.1 (" (1)) = oo(wy) + ( Y)i”lw(vi_l) -

n i
+ (i_1>z" o(u)

forall n>s—1and 1 <i<s.
As n — oo we obtain:

(" (v1)) = 0 =[] [|o(v))]| = 0 = (1) = 0.

Returning to 5.1 we conclude by finite induction on i that w(v;) =0,
1 <Vi<s. This completes the proof of the lemma. O

Here is the S! version of Theorem 3.3. Recall that %(H) denotes the set
of points x € S' for which Oy(x) is finite.

THEOREM 5.5. Let & be a finitely generated group and let H:® —
Diff i(Sl) be a representation. Suppose there are y € Aut(®) and f € Diffi(Sl)
such that Hy) = foH,of™', Vae®. If Im(H) is a commutative subgroup of
Diffi(S Y then every point in Fr(¢(H)) is f-periodic.
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Proor. If Fr(4(H)) # & then by Theorem 2.1 there is an f-periodic point
X, in Fr(¢(H)) with period k > 1.
Let I, = {x e ®; H,(x,) = x,} be the isotropy group of x,. The relation

Hwk(a) — fk O H(X Of_k, VO( € (5

assures that W*(I.)=1,. On the other hand, I, acts trivially on
%(#). Restricting the action to the subgroup I, and replacing f with f*,
Y with ¢* and Diff3(S") with Diff([0,1]), Theorem 5.3 gives that
Fr(Fix(H|, )) = Fix(f k), which implies that the set of periodic points of f
contains Fr(%(H)). O

To complete this section we give the foliation version of [Theorem 5.3.

THEOREM 5.6. Let F € Fol>(M), let f e DiffS(M;#) and let L be an
f-periodic compact leaf. Suppose the holonomy of [L] is commutative. Then
every leaf equivalent to L lying in Fr(€(F)) is also f-periodic.

COROLLARY. Let 7 € Foli(M ) be a foliation almost without holonomy and
let feDiﬁ“i(M;gf’). Then every leaf in Fr(¢(F)) is f-periodic.

Proor. The hypothesis implies that each equivalence class of compact
leaves has commutative holonomy. ]

6. Invariant non compact leaves.

In this section we analyse the invariance of leaves lying in a connected
component C of M — (%) without holonomy. This means that we will be
working with foliations almost without holonomy.

We begin by briefly recalling important well known results due to
Sacksteder, Hector, Moussu and Imanishi for a foliation 7 € Foli(M ) without
holonomy in N =1Int(M). For details see [8], [12], [13].

Let 7 € Foli(M ) be without holonomy in N = Int(M). By a Sacksteder
result there is a topological flow {¢,},.g on N transverse to % and preserving .
Furthermore, {¢,} acts transitively on the quotient space N/% of N by the leaves
of 7.

Fix a base point p in N. Let (N, p) = (N, p) be the universal covering of
N and denote by & and by {@,},.p the lifts to N of # and {p,},_p respectively.
We also denote by L, (resp. L;) the leaf of # (resp. &) passing through ¢

(resp. q).
ReMARK 6.1. The map :L; x R — N defined by y(x,7) =@,(x) is a

homeomorphism which carries leaves L; x {t} of the product foliation to leaves
of 7.
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REMARK 6.2. By Remark 6.1 each loop y € Q(N; p) is homotopic either to a
loop on L, or to a loop transverse to #. Loops which are transverse to # are
homotopic to the product of two paths y, and y, where y, = {g,(p);7€0,1]}
with ¢ (p) € L, (s #0) and y; is a path on L, from ¢, (p) to p.

Moreover, since 7 |, has no holonomy, the inclusion of L, in N induces an
injective homomorphism of n;(L,; p) in m;(N; p) whose image we shall identify
with 71(L,; p).

We identify the leaf space N/ with R via the map T =73 o Y~ where 7,
is the standard projection of f,,g x R on the second factor.

REMARK 6.3. The action of 7;(N;p) on N preserves % so it acts on
N/ ~R. By Remark 6.2, n;(N; p) acts on N/ by translations. This action
is described by the homomorphism ¢ : 7;(N; p) — R given by ¢(a) = T(x-p)
where o - X denotes the action of o e m;(N; p) on ¥ N. We have that ker(¢) =
T (LpQP)'

The quotient group m;(N; p)/mi1(Ly; p) is isomorphic with the subgroup

K={teR;p.(p)e Ly}
of R. The group K is called the group of periods of # and {¢,},.p-

REMARK 6.4. K = R if and only if all the leaves of % are dense in N. If
K # R then # is defined by a fibration over S!.

We continue to assume that if f e Homeo, (N;%) has f-invariant leaves
then f has at least a fixed point, say p, lying in one of those leaves. This is
true up to an isotopy along the leaves of % as already noted in §3. Hence
S« :m(N; p) — m(N; p) defines an isomorphism

f.o 1 m(N; p)/mi(Ly; p) — m(N; p) /mi(Lys p).
In what follows we keep the notation above.
PROPOSITION 6.5. Let F € Foli(M) and let f € Homeo, (M;F). Suppose
that F restricted to N = Int(M) has trivial holonomy and has dense leaves. Then
the following conditions are equivalent:

(1) all leaves in N are f-invariant,
(ii) there is an f-invariant leaf in N and

fo :m(N)/m(L) — m(N)/m (L)
is the identity homomorphism.

PrOOF. Let L be an f -inv%riant leaf of # and let p e L be a fixed point
of f. Fix pen'(p) and let f e Homeo,(N;%) be the lift of f to N with
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f(p)=p. We denote by fr : R — R the projection of f on R via T. By the
lifting properties of f we have that

f(oc-x) = fu(2) 'f(x), Vocenl(N;p),xeN

hence, on the quotient we obtain

frit+0)=f.(t) +fr(1), VieR,teKcR.

Since f(0) =0 we conclude that f(z) =f.(7), V€ K.

Suppose that f, =Id. Then, f;(t) =1, ¥r€ K and as K is dense in R we
have that f; = Idg. Thus every leaf of 7| & 18 f-invariant, hence every leaf of
F |y 1s f-invariant.

Conversely, suppose that every leaf in |, is f-invariant. In this case,
f+(T(F)) = T(F)eK for each leaf F of #. Since f7(0)=0, fr—1Id is con-
tinuous and K # R, we have f;(T(F))—T(F)=0 and so f;=Idg. Thus

f. =1d, which completes the proof. L]

We remark that the union of invariant leaves need not be closed in M. The
following example shows that the invariance of all leaves in 7|, does not
imply the invariance of the boundary leaves.

ExampLE. Consider the foliation # on T2 x S! obtained by multiplying by
S! each leaf of a fixed foliation on the torus 72. Let (Id,p) be the double
covering of T2 x S! where ¢ : S' — S! is the double covering of S', and let &
be the (Id, p)-lift of #. Tt is easy to see that all leaves of & are invariant under
the nontrivial covering map f € Aut((Id, ¢)).

Now choose a closed curve I' in T? x {1} = T? x S! transverse to % and
apply the turbulization process to introduce a Reeb component in a small
tubular neighborhood of I'. Let #; be this new foliation and let Z, be its
(Id, p)-lift. ~ All leaves of # are f-invariant except the leaves on the solid torus
associated to the Reeb components. The desired example is obtained by taking
out the interior of the Reeb components of Z.

We close this section by treating the case where |y, has no dense
leaves. In this situation we must have oM # (.

PROPOSITION 6.6. Let F € Foli(M ) and let f € Diff i(M  F).  Suppose that
F restricted to N = Int(M) satisfies the following properties:
(i) without holonomy,
(i) without dense leaves,
(iil)  without compact leaves.
If # has an f-invariant leaf in N then all leaves in N are f-invariant.
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Proor. In the absence of holonomy and dense leaves the foliation 7|, is
defined by a fibration ¢ : N — S!. Fix a section I'~ S! of &, The projection of
f on I' along the leaves defines a C? preserving orientation diffeomorphism fr
of I' having a fixed point p € I' corresponding to the invariant leaf. We shall
see that the dynamics of % close to dM implies fr = 1d,.

Suppose there is a (compact) boundary leaf L such that f(L) =L. Fix a
collar neighborhood U = [0,1) x L of L in M. As already noted in §3 (Remark
3.4), we can assume up to an isotopy of f along the leaves of % that:

f has a fixed point ge L,
in a small neighborhood of L in U the map f preserves the foliation
defined by the fibers of U.

Consequently the relation

(6.1) Hyy = foH,of ', VueQ(Liq)

holds in a small neighborhood of the origin in [0,1).

Since |, has no dense leaves, the holonomy of L is cyclic and generated
by a C?-contraction Hpg defined in a neighborhood of the origin in [0, 1).

Let # be the normal subgroup of 7(L;q) consisting of the homotopy
classes whose holonomy is trivial. We have 7(L;q)/# ~ Z.

In view of 6.1 we can take the quotient of f, : 7 (L;q) — m1(L;q) by #
obtaining an isomorphism f, : 7;(L;q)/# — m(L;q)/# such that f,(B) =p,
where f is the class of § in mi(L;q)/#. Hence Hyp = Hg in a neighborhood
[0,¢) of the origin in [0,1) and then foHg= Hgof in [0,¢). Therefore, f
induces a diffecomorphism f on the quotient (0,¢)/Hg~ S' of (0,¢) by the action
of H B

According to Szekeres and Kopell there exists a C' vector field X on [0,e)
and 7, € R such that Hp and f are the time one and the time 7, maps of X
respectively. Therefore, f is represented by a rotation.

The restriction of ¢ to a fundamental domain of Hp is a k-sheeted covering
E:(0,e)/Hy — '~ S" of I' for some ke N.

Fix p e (0,¢)/Hp such that E(p) =p. Let fr be the lift of f having p as
a fixed point. Then f =Rof, where R e Aut(¢). Since f is a lift of the
orientation preserving diffeomorphism f, it follows that fr commutes with R
and we have:

(6.2) (f)k =R"o (fr)k = (fr)k-

Thus (f;)* is conjugated to a rotation. Since f, has a fixed point, it must
be the identity map.

In the general case there is an se€ N such that f*(L) =L and 6.2 gives
(fHF = f~15)k This finishes the proof. ]
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7. Invariant leaves under diffeomorphisms close to the identity.

We begin this section by giving a construction which will facilitate the study
of invariant leaves under diffeomorphisms close to identity. This construction
enables us to reduce this problem to that of existence of fixed points.

Let # e Fol’ (M). Fix a C* vector field X on M transverse to # and a
C® riemannian metric on M. Let A = {A4;} and B = {B;} be two finite cubic
covers of M bi-regular for # and X such that if 4;NA4; # & then 4;U A4; = By
for some By € B.

A cubic cover of M bi-reqular for # and X is a cover of M by open sets
diffeomorphic to (0,1)""" x (0,1) such that the foliations # and X are defined
by the first and the second factors of (0,1)" "' x (0,1) respectively.

Now let f e Diff’ (M;7) be close to the identity in Diff"(M) so that for
each x € M the points x and f(x) lie in the same bi-regular neighborhood A; of
A. Taking f sufficiently C” close to Idy, the projection of f(x) along the leaves

7|, on the orbit of X[, passing through x defines a C" diffeomorphism fy of
M which is C” close to Id;; and preserves the leaves of #. Furthermore, all the
orbits of X are invariant under fy.

The construction above holds also for foliations close to the foliation %#. In
fact, the following result is well known.

7.1. Let ¢ >0 and let 77 be a neighborhood of 1dy, in Dift"(M). There
exist neighborhoods ¥~ of 1dy in Diff"(M) and % of F in Fol' (M) satisfying
the following properties at any F €U and f € NDiff r( M, ):

(7.1.1)  the projection fX of f along the leaves of F is well defined,

(7.1.2) erVlﬂlef’ (M, F),

(7.1.3)  dy(x; fy(x)), J(f( x); fy (X)) <& Vxe M, where dy and dz denote

the induced distance on the X-orbits and on the leaves of F
respectively.

We observe that for convenient choices of ¢ > 0 and of 7] the map fX does
not depend on the covers A and B, moreover fX 1s the end point of a C" isotopy
of f along the leaves of Z. To see this, consider the codimension one plane field
tangent to & and approximate it by a C* plane field . The restriction of the
exponential map to the sub-bundle ¢ of TM gives small embedded (n — 1)-disks
D.(#) in M centered at x. These disks are not contained in the leaf L (%)
of # passing through x, but they can be projected on Lx(g} ) along the X-
orbits. Thus we can assume that f(x) is in the disk centered at fy(x). Now
the isotopy is natural. The compactness of M is fundamental to control the
minimum ray of the embedded disks D.(%).

More generally:
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Choosing the neighborhoods V" and % in 7.1 sufficiently small, we can guar-
antee that
(7.1.4) there exists a C" isotopy from f to fX along the leaves of F and
lying in 7.

From now on given % € Fol (M) and a vector field X on M transverse
to # we consider only perturbations # of Z and f of Idy for which X is
transverse to # and the projection fX of f along the leaves of # is well
defined. We also assume that the holonomy of % and of its perturbated are
defined in segments contained in the X-orbits.

Let f e Diff (M . 7) be such that f, has a fixed point p e M. In this case
the leaf I:p of Z passing through p is contained in Fix( fX) and the points p and
f (p) are close along Zp. The leaves of % passing through fixed points of fX will

be called strongly f-invariant leaves.

THEOREM 7.2. Let F eFoli(M). There exists a neighborhood V" of the
identity in Diff*(M) such that for all f € ”//ﬂDiﬁﬁ(M; F) we have:
(i) the leaves of F with nontrivial holonomy are strongly f-invariant,
(i) if a connected component of M — €(F) has an f-invariant leaf (resp.
strongly f-invariant leaf’) then all leaves lying in this component are f-
invariant (resp. strongly f-invariant).

This theorem together with (7.1.4) implies that for r > 2 if # € Fol' (M) has
nontrivial holonomy in all connected components of M — %(%#) then every
f e Diff’ (M; 7) sufficiently close to the identity is C” isotopic to the identity
map under an isotopy along the leaves of #. In fact, on the connected com-
ponents of M — %(F) this isotopy is given by and by (7.1.4). It
is easy to extend it to Int(%(%)). This extension is essentially the isotopy to the
identity of a diffeomorphism of [0,1] close to the identity.

In J. Leslie proves that for # € Fol? (M) and 0M # ¢ the connected
component D(M;F) of Diff *(M;7) < Diff"(M) containing the identity map
admits a structure of an infinite dimensional manifold. Clearly the leaves
with nontrivial holonomy are f-invariant for all f e D(M;%). In particular
this holds for f close to Id), in the topology of the manifold D(M;F). As
remarked in the previous paragraph, if % has nontrivial holonomy in all con-
nected components of M — %(F) then every f e Diff | (M;%) sufficiently C*
close to Idy, is contained in D(M; ). In this case the group D(M;F) is a
closed subgroup of Diff™(M).

Before giving its proof we will use to prove the following
result.

THEOREM 7.3. Let # € Fol' (M), r>2, let X be a vector field transverse
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to F and let V1 be a neighborhood of 1dy in Diff"(M). There exists a
neighborhood v~ of 1dy, in Diff (M) such that for all f e NDift"(M;F) we
have:
(i) fx is well defined and fy e v1 NDiff’ (M;F),
(i) if gev NDIff' (M;F) then fyogyx =gxofy on each connected
component of M — € (F),
(iii)  there exists a C" isotopy {Fi},cp ) of fx = Fo supported on Int(%(F))
such that Fy =1d on Int(4(%)) and F, e v1NDift"(M; F), Yt e [0, 1].

Proor. The item (i) was already shown. In order to prove (ii) fix a con-
nected component C of M — %(#). By we have only to consider
the case where % has no holonomy in C. There are two possibilities.

Case 1: C is a boundaryless manifold.

In this case all leaves are dense. Let 7~ be a neighborhood of Id,, where (i)
holds. Fix an X-orbit I' (R or S') and let $ be the subgroup of Diff’ (I)
generated by the set {fy|,;f €7’ }. We claim that § is a commutative group.
Indeed, let g € $ and suppose that g has a fixed point x e I'. All the X-orbits
are invariant by the diffeomorphism g considered as an element of Diff’ (M; 7).
Thus, g = Id on a neighborhood of x in L,, so we must have g =1d on L,.
Since L, is dense, we have g = Id on M. In particular, g = Id;. Therefore the
action of § is free of fixed points on I

Case 2: C is a manifold with non empty boundary.

Let L be a boundary leaf of C. Since #|. is without holonomy the com-
pact leaf L has nontrivial commutative holonomy. Fix a holonomy map H, of
L given by a contraction defined in a segment X < C starting at p € L and lying
on an X-orbit. Let f,ge v NDiff’ (M; %), where 7" is the neighborhood given
in Theorem 7.2 From [Theorem 7.2l we have fy =1d; =gy on L. Thus, fy
and gy commute with H, in a neighborhood of p in 2. By Kopell’s lemma, the
commutator [fy,gy] has a fixed point in C. Again by we have
[fx,9x] = Idc.

In order to prove (iii) fix a connected component C of Int(4(%)). We
know that C is the interior of [0, 1] x L where L is a compact leaf of % and 7|,
is the product foliation defined by the second factor. Since the boundary leaves
Ly={0} x L and L; = {1} x L of Int(¢(%#)) have nontrivial holonomy, by
we have fy|, =1d;, i=0,1.

We first prove that fy is C’'-flat at L;, The only nontrivial situation is
when L; lies in the boundary of a connected component of M — (%) without
holonomy. Since fy commutes with the holonomies of L; which are C’-flat,
Kopell’s result implies that fy is also C"-flat at L;.

Each segment {x} x [0,1] is invariant under fy. This allows us to isotope
fx|c to Idc.  As remarked before this isotopy is essentially the isotopy to the
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identity of a diffeomorphism of [0, 1] close to the identity. This finishes the proof
of the theorem. ]

The proof of requires the following two lemmas.

LemMa 7.4. Let F € Foli(M ). There exist neighborhoods V" of the identity
in Diff*(M) and U of F in Foli(M) such that the following holds. For all
F el and feVﬂDiffi(j\/[; F) we have that if a connected component of

M — (6(9'; ) has a strongly f-invariant leaf then all leaves lying in this component
are also strongly f-invariant.

Proor. Consider neighborhoods 7~ and % of 1dy, and & respectively given
by 7.1. Let % €U, let feVﬂDiffi(M; %) and let C be a connected com-
ponent of M — %(%). It suffices to show that CNFix(fy) is an open subset
of C.

Let ze CNFix(fy). The leaf L. of & passing through z is contained in
Fix(fy) and consequently CI(L.) = Fix(fy). If L. is not dense in C then CI(L.)
contains a leaf L with nontrivial holonomy (a compact boundary leaf or a leaf
in an exceptional minimal set).

Fix peL and let X < CI(C’) be a small segment on an X-orbit, starting at
p. There exist a loop o€ Q(L; p) and a point ¢ € L.N X sufficiently close to p
such that H,(q) lies between p and ¢ on X. Hence H'(q) is defined for all n e N
and H'(q) — ¢’ as n — oo. Thus ¢’ € Fix(fy) NFix(H,). Since fy =1Id on L,
it commutes with the holonomies of L in small neighborhoods of p in ~. By
Kopell’s result, fX = Id on a neighborhood of ¢ in 2. Consequently, fX =1Id on
a neighborhood of z in C. [

LemmA 7.5. Let 7 eFoli(M). There exists a neighborhood V" of the
identity in Diff*(M) such that every connected component of M — 6 (F) with

nontrivial holonomy contains a strongly f-invariant leaf for all fe v N
Diff? (M; 7).

PrOOF. Suppose that %(Z) is non empty and let [Ly],...,[Ls], s >1 be
the equivalence classes of compact leaves of % Fix a vector field X on M
transverse to # and transverse to the fibers of the fibrations defined by the
supports of the classes [L;]; 1 <i <s. Choose a neighborhood 7~ of the identity
in Diff*(M) such that for f e “/ﬂDiffi(M; F) we have:
supp[L;]; 1 <i<s are f-invariant,
fx 1s defined,
fie i (L) — 7 (L;) is the identity homomorphism for i =1,...,s.
By [Theorem 5.2 the leaves in ( J;_, supp[L;] with nontrivial holonomy are f-
invariant, which means that they are strongly f-invariant leaves. So, the lemma
is proved for connected components of M — %(%) contained in ()., supp[L;].
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Let now C = M — | J;_, supp[L;] be a connected component of M — %(F)
having a leaf L with nontrivial holonomy. Thus there is a loop « on L whose
associated holonomy H, has a one side isolated fixed point p. Choosing ¥~ even
smaller if necessary, we have that fy(p) = p for all f € v N Diff i(M ;. # ) and the
leaf passing through p is strongly f-invariant.

Since there are only finitely many connected components in
M — | J;_, supp[L;], the proof is finished for %(F) # .

The proof for the case ¢(#) = J is the same as above for a component
lying in M — | J;_, supp[Li]. O

ProoF OF THEOREM 7.2. Recall that M — (). supp[L;] is a finite disjoint
union of connected components {C,-};‘:1 of M —€(F).

In order to prove (i) choose f € Diffi(M ;. 7) sufficiently C? close to the
identity so that Theorem 5.2 applies to each supp[L;]; i =1,...,s and Lemmas
7.4 and apply to each Cj; j=1,... k.

The item (ii) for the case of strongly invariant leaves follows from
7.4. Tt remains to prove (ii) for f-invariant leaves which are not strongly
f-invariant. By (i) these leaves lie in connected components of M — (%)
without holonomy. In this case the theorem follows from Propositions and
6.6. ]

below is an application of the following result of G. Duminy
5]

THEOREM 7.6. Let F eFoli(M). There exist neighborhoods v~ of 1d in
Diff>(M) and U of F in Foli(M) such that if & €U has a compact leaf then
either & is a fibration or F has a compact leaf with nontrivial holonomy whose
orbit by the action of the group generated by %ﬂDiﬂ"i(M; 9';) is a finite union
of compact leaves.

THEOREM (G. Duminy). There exists a neighborhood V" of the identity in
Diff i(Sl) such that the group generated by any family of elements of V" either
has a finite orbit or has all orbits dense.

PrOOF OF THEOREM 7.6. Fix a vector field X transverse to # having a
closed orbit I. Choose neighborhoods 7" of the identity in Diff*(M) and %
of # in Fol?(M) such that:

fy is defined for all # e % and fe”/ﬂDiffi(M;g}),
the restriction of fX to I' lies in the neighborhood of the identity
VAN Diffi(]“ ) given by Duminy’s theorem.

Let # €% and suppose ¢(F) # (J. We have two possibilities:

(i) ¢F)NI=g.
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In this case the connected component C of M — %(%) which contains I is
invariant under f € 7" N Diff i(M . ). Consequently its boundary leaves satisfy
the theorem.

(i) 6(F)NTI #Z.

If the action of the group #, generated by

{fx|ps f e V' NDIff2 (M; 7))}

has all orbits dense then % is a fibration. If not, there is x, € I” whose orbit
by the action of # is finite. In this case the proof follows from
2.2. O

It would seem that the proof of should not require a result as
strong as the result of Duminy. More precisely, we would like to answer the
following question.

QUESTION. Let 7 € Foli(M ) and ® be a finitely generated subgroup of
Diff i(M ;#). Suppose Z has a compact leaf L with nontrivial holonomy such
that supp[L] is a fibration over S!. Then does # have a compact leaf with
nontrivial holonomy whose orbit by the action of ® is a finite union of compact
leaves? The same question with ® < Diﬂ”i(M ;. Z) not finitely generated.

In particular, consider f € Diff i(S 1) such that & # Fix(f) # S'. We know
that if geDiffi(Sl) commutes with f then all points in Fr(Fix(f)) are g-
periodic with the same period. Is it true that there exists x, € Fr(Fix(f)) whose
orbit by the centralizer of f is finite?

To conclude this section we give an application of to the per-
sistence of compact leaves.

DerINITION 7.7. A foliation % € Fol" (M) has the compact leaf persistence
property if every foliation C" close to & has at least a compact leaf.

We shall denote by F the foliation in Fol"(Q x M) obtained by multiplying
each leaf of # € Fol'(M) by Q.

If # has the compact leaf persistence property then the same holds for the
foliation Zg1 of S' x M, unless & can be approximated by foliations given by
fibrations over S'. This follows from [Theorem 2.1 and from the following fact:
the foliations close to g are given by suspending foliations % close to # by
diffeomorphisms f € Diff L (M ) close to the identity.

THeOREM 7.8. Let F e Fol| (M), r>2 and let Q be a closed manifold.
Suppose that F cannot be C" approximated by foliations defined by fibrations over
SY. Then F has the compact leaf persistence property if and only if the same
property holds for Fy.
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Proor. If #p has the compact leaf persistence property it is easy to see that
Z has the same property.

For the converse, assume that .# has the compact leaf persistence prop-
erty. Let X be a vector field transverse to the foliation Z.

If 4¢ Fol’ (0 x M) is sufficiently C" close to %y we can define the per-
turbed holonomies f, € Diff (M .9 {qhxm) associated to the homotopy class of
each loop o€ Q(Q;q) as follows:

Let x € M and let & denote the path in a leaf of % starting at (¢, x) obtained
by lifting the loop (a(z), x); t € [0, 1] along the orbits of the vector field (0, X)
in Qx M. We define f,(x) = m(&(1)) where 7, is the standard projection
of O x M on M.

Fix loops ay,. .., € Q(Q;¢) whose homotopy classes generate 7;(Q;¢) and
let 7" and % be as in [Theorem 7.6 Choose ¥ sufficiently C” close to Zp so

that:
,‘%|{q}xM lies in %,
Sy 1 <i<k lie in 77,
%| {gtxy has a compact leaf with nontrivial holonomy.

It follows that % | (ghxM has a compact leaf L whose orbit by the action of
the subgroup generated by { fa,» 1 <i<k} is a finite union of compact leaves
Li,... L,

Let F be the leaf of 4 containing L. We claim that F is compact. For
this, let / be a leaf of ¥| (g}xm contained in F. Consider a path f in F from L
to [ transverse to the second factor of O x M. The path ﬁ projects to a closed
loop f# on Q such that fﬁ( [)=1. Since nl(Q, q) is generated by the homotopy
classes of oy,...,a we have that [ < U Lj. Hence FN{q} x M = U
Since F is a fibration over Q with fiber L, and F intersects {¢} x M finitely many
times, we conclude that F is compact and the proof is finished. ]

Let #: E — M be a fibration with fibre Q. Suppose that % has the com-
pact leaf persistence property and it cannot be C” approximated by foliations
defined by fibrations (over S!). In general, we do not know if n*(%) has
the compact leaf persistence property. If H;(Q;R) = {0} then n*(%) has this
property. This is a consequence of the following D. HenC’s result [10]: if
Hi(Q;R) = {0} then, up to isomorphisms C” close to the identity map, all the
small C”" perturbations of 7n*(%#) are obtained as a pull-back of small C”
perturbations of Z.
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