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Abstract. We consider the group of di¤eomorphisms of a compact manifold M

which preserve a codimension one foliation F on M. For the C 2 case if F has

compact leaves with nontrivial holonomy then at least one of these leaves is periodic.

Our main result is proved in the context of di¤eomorphisms which preserve commutative

actions of finitely generated groups on ½0; 1�. Applying this result to foliations almost

without holonomy we prove the periodicity of all compact leaves with nontrivial

holonomy. We also study the codimension one foliation preserving di¤eomorphisms

that are C 2 close to the identity.

Introduction.

Let F be a C r ð1a rayÞ transversely orientable codimension one foliation

of a smooth compact manifold M possibly with boundary. By Di¤ r
þðM;FÞ

we denote the subgroup of Di¤ rðMÞ consisting of those di¤eomorphisms which

preserve both the foliation F (they carry leaves of F to leaves of F) and the

transverse orientation of F, endowed with the C r natural topology.

Let f A Di¤ r
þðM;FÞ. A leaf L of F is f -periodic with period kb 1 if

f kðLÞ ¼ L and f iðLÞ0L, 1a Eia k � 1. If f ðLÞ ¼ L the leaf L is also called

an f -invariant leaf.

In this paper we present some results concerning the existence of f -periodic

(or f -invariant) leaves. Our main interest is on the occurrence of such leaves

in the set of compact leaves of F which we denote by CðFÞ. Clearly the leaves

lying in the interior of CðFÞ need not be periodic. We denote the frontier

of CðFÞ (i.e. the union of the compact leaves with nontrivial holonomy) by

FrðCðFÞÞ.

Our plan is as follows.

First we show that in the C2 case (Theorem 2.1) provided that FrðCðFÞÞ0

q for any f A Di¤ 2
þðM;FÞ the foliation F always has an f -periodic leaf in

FrðCðFÞÞ.
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Having established the existence of periodic leaves in FrðCðFÞÞ, we wish to

know whether all the leaves in FrðCðFÞÞ are f -periodic. Using Theorem 2.1

and modifying f A Di¤ r
þðM;FÞ along the leaves of F we reduce this problem

to the following question which is actually the main question of this paper.

Question 3.3. Let G be a finitely generated group and let H : G !

Di¤ 2
þð½0; 1�Þ be a representation. If c A AutðGÞ and f A Di¤ 2

þð½0; 1�Þ satisfy the

relation HcðaÞ ¼ f �Ha � f
�1 for all a A G then Fixð f ÞIFrðFixðHÞÞ?

As already remarked by E. Ghys and V. Sergiescu [6] and T. Tsuboi [24]

an application of Kopell’s Lemma gives an a‰rmative answer to this question

for the case c1 IdG.

Our main result gives an a‰rmative response to Question 3.3 when the

image of H is a commutative group.

Theorem 5.3. Let G be a finitely generated group and let H : G !

Di¤ 2
þð½0; 1�Þ be a representation. Suppose there are c A AutðGÞ and f A

Di¤ 2
þð½0; 1�Þ such that HcðaÞ ¼ f �Ha � f

�1, Ea A G. If ImðHÞ is a commutative

subgroup of Di¤ 2
þð½0; 1�Þ then Fixð f ÞIFrðFixðHÞÞ.

The proof of this theorem requires a small generalization of Kopell’s Lemma

which we give in §4 (Lemma 4.1).

We recall from the theory of transversely orientable codimension one folia-

tions on compact manifolds that in foliations almost without holonomy the hol-

onomies of compact leaves are commutative. Then Theorem 5.3 implies the

following corollary.

Corollary. Let F A Fol2þðMÞ be a foliation almost without holonomy and

let f A Di¤ 2
þðM;FÞ. Then every leaf in FrðCðFÞÞ is f -periodic.

Here, Fol rþðMÞ denotes the space of all C r codimension one transversely

orientable and tangent to the boundary foliations on M endowed with the Epstein

C r topology [3]. The space Di¤ rðMÞ is endowed with the natural C r topology.

In §6 we give some results concerning the invariance of noncompact leaves

in foliations almost without holonomy which will be necessary in §7. These

results show that there is a strong rigidity on the transversal dynamics of dif-

feomorphisms preserving this type of foliations.

In §7 we study the invariance of leaves under di¤eomorphisms f A

Di¤ r
þðM;FÞ which are C r close to IdM . To deal with such di¤eomorphisms

we introduce the notion of a strongly f -invariant leaf, that is, an f -invariant leaf

L of F such that for any x in L the points x and f ðxÞ are close along L, in the

induced metric on L. The main results of this section are Theorems 7.2 and 7.8

stated below.
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Theorem 7.2. Let F A Fol2þðMÞ. There exists a neighborhood V of the

identity in Di¤ 2ðMÞ such that for all f A VVDi¤ 2
þðM;FÞ we have:

(i) the leaves with nontrivial holonomy are strongly f -invariant,

(ii) if a connected component of M � CðFÞ has an f -invariant leaf (resp.

a strongly f -invariant leaf ) then all leaves lying in this component are

f -invariant (resp. strongly f -invariant).

At the end of the paper we apply Theorem 2.1 together with a result of

Duminy [5] to the compact leaf persistence problem (Definition 7.7).

Theorem 7.8. Let F A Fol rþðMÞ, rb 2 and let Q be a closed manifold. Let

FQ denote the foliation on Q�M obtained by multiplying by Q each leaf of

F. Suppose that F cannot be C r approximated by foliations defined by fibra-

tions over S1. Then F has the compact leaf persistence property if and only if the

same is true for FQ.

We would like to thank E. Ghys for clarifying conversations and hospitality

at E.N.S. de Lyon where part of this work was developed. We also thank T.

Barbot and D. Gaboriau for their suggestions.

Conventions. In this paper all manifolds are smooth connected, possibly

with boundary. We shall assume that all foliations and plane fields have codi-

mension one and are tangent to the boundary (if the boundary is non empty),

unless the context clearly indicates otherwise.

Throughout this paper M denotes a compact manifold.

1. Prelimaries.

This section reviews briefly the notion of equivalence class of compact leaves

and support of a class of a codimension one foliation introduced by Bonatti-

Firmo [1], which will be used in this paper.

They define the following equivalence relation on the set of compact leaves

of F: two compact leaves L and ~LL of F are said to be equivalent if there exists

an immersion i : L� ½a; b� ! M with aa b satisfying the following conditions:

1.1 for every t A ½a; b� the restriction of the map i to L� ftg is an

embedding of L in M,

1.2 iðL� fagÞ ¼ L and iðL� fbgÞ ¼ ~LL,

1.3 for each x A L the path ix : ða; bÞ ! M defined by ixðtÞ ¼ iðx; tÞ is trans-

verse to F.

In this case we say that the immersion i realizes the equivalence of the

compact leaves L and ~LL. The equivalence class of L will be denoted by ½L�.

Observe that if the immersion i is not an embedding then M fibers over
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S1 with fiber L, and each compact leaf of F is a fiber of the fibration.

Furthermore, there exists a vector field transverse to both the foliation F and

to the fibers.

The equivalence classes of compact leaves satisfy:

1.4 F has finitely many equivalence classes of compact leaves,

1.5 if L consists of all immersions which realise some equivalence of com-

pact leaves equivalent to L then the subset of the manifold M given

by 6
i AL

iðL� ½a; b�Þ is a compact subset of M, saturated by F and

contains all the compact leaves equivalent to L. This compact set will

be referred as the support of L and will be denoted by supp½L�,

1.6 there exists i0 A L such that supp½L� ¼ i0ðL� ½a; b�Þ,

1.7 there exists a neighborhood U of supp½L� in M such that every leaf of

F meeting U has a compact leaf equivalent to L in its adherence,

1.8 if L and ~LL are non equivalent compact leaves of the foliation F then

supp½L�V supp½~LL� ¼ q.

The proofs of 1.4 to 1.8 can be found in [1] or in [4].

2. Periodic compact leaves.

If a foliation F is defined by a fibration L ! M !
p
S1 (the leaves of F

are the fibers of p) then the transversal dynamic properties of f A Di¤ r
þðM;FÞ

are completely determined by the induced di¤eomorphism g A Di¤ r
þðS

1Þ. In this

case the f -periodic leaves correspond to the g-periodic points. If rb 2 it is well

known that either all the orbits of g are dense or g has a periodic point and all

periodic points have the same period.

In this section we analyse the existence of compact periodic leaves for a

foliation F which is not defined by a fibration. The leaves lying in the interior

of CðFÞ need not be periodic, however we do not know if FrðCðFÞÞ can have

non periodic leaves. This question will be considered in §3 and §5.

For a compact leaf L we have f ðsupp½L�Þ ¼ supp½ f ðLÞ� for f A Di¤ r
þðM;FÞ.

Thus both the f -period of supp½L� and the f -period of ½L� are well defined.

Hence in view of 1.4, if supp½L� is not a fibration over S1 then its boundary

leaves are f -periodic. The following example shows that the f -period can

change from one class to another.

Example. Let a and b be the generators of p1ðT
2Þ and consider the folia-

tion on ½0; 1� � T 2 defined by the suspension of a representation H : p1ðT
2Þ !

Di¤y
þ ð½0; 1�Þ satisfying:

Hb ¼ Id, FixðHaÞ ¼ f0; 1g and Ha is Cy-flat on FixðHaÞ.

On each boundary component of ½0; 1� � T 2 we paste a solid torus foliated

by a Cy-flat Reeb component in such way that a is null homotopic in both solid
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torus. This process gives a foliation F A Folyþ ðS2 � S1Þ with nontrivial hol-

onomies Ha and Hb. With small perturbations of a and b we construct closed

curves G1 and G2 transverse to F such that:

– G1 generates p1ðS
2 � S1Þ,

– G2 is null homotopic in S2 � S1.

For such an F the turbulization along the closed transversals G1 and G2

produces a foliation G on S2 � S1 with two Reeb components RðGiÞ; i ¼ 1; 2

lying in small neighborhoods of Gi; i ¼ 1; 2.

Let ~GG and ~RRðG1Þ be the lifts to the double cover of S2 � S1 of G and RðG1Þ

respectively. If ~RR1ðG2Þ and ~RR2ðG2Þ denote the two distinct lifts of RðG2Þ then

the nontrivial covering map f preserves ~GG and the f -period of the class ½q ~RRðG1Þ�

is 1 while the f -period of q ~RRiðG2Þ is 2.

To assure the existence of periodic compact leaves we can restrict ourselves

to the group of di¤eomorphisms which preserve both CðFÞ (instead of F) and

the transverse orientations of F in CðFÞ, i.e. the group of di¤eomorphisms of

M which carry leaves in CðFÞ into leaves in CðFÞ preserving the transverse

orientations of F in CðFÞ. For this we need the following extension of the

definition of equivalence classes of compact leaves.

Two compact leaves L and L 0 are in the same extended equivalence class

if they satisfy 1.1, 1.2 and

1.3* for each x A L the path ix : ða; bÞ ! M is transverse to the compact

leaves of F.

The extended equivalence class of L which we will denote by ½L�e satisfies 1.4

and 1.5. Thus the support of the extended class, supp½L�e, is well defined and

satisfies 1.6 and 1.8. Moreover, supp½L�e is a finite union of:

– some supports of equivalence classes (not extended) of compact leaves

di¤eomorphic to L, and

– foliated products L� ½0; 1� where L� f0g and L� f1g are the unique

compact leaves of F in L� ½0; 1� and FjL�½0;1� is not defined by a

suspension.

In each support (not extended) L� ½a; b� the foliation is given by a suspen-

sion. Thus, its compact leaves are fibers of the trivial fibration L� ½a; b� !

½a; b�. Moreover, we can extend these fibrations in order to obtain a locally

trivial fibration on supp½L�e. This extension is a consequence of the following

remark: a C r foliation on L� ½�e; 0�UL� ½1; 1þ e� with trivial holonomy and

having L� f0g and L� f1g as compact leaves can be extended (by extending the

trivial holonomy to the interval ½�e; 1þ e�) to a C r foliation by compact leaves

without holonomy on L� ½0; 1�.

Of course, if f A Di¤ rðMÞ preserves CðFÞ then for each compact leaf L

of F we have f ðsupp½L�eÞ ¼ supp½ f ðLÞ�e.
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Theorem 2.1. Let F A Fol2þðMÞ and let f A Di¤ 2ðMÞ. Suppose that f

preserves both CðFÞ and the transverse orientations of F in CðFÞ. If FrðCðFÞÞ

is non empty then F has an f -periodic compact leaf in FrðCðFÞÞ. Furthermore,

if L and L 0 are f -periodic compact leaves then
. L and L 0 have the same period when ½L�e ¼ ½L 0�e,
. L and supp½L�e have the same period when supp½L�e 0M.

Proof. Suppose FrðCðFÞÞ0q. We have to consider two cases.

Case 1: supp½L�e fibers over ½a; b� with aa b, for every compact leaf L.

Let supp½L1�e; . . . ; supp½Lk�e be the supports of the extended equivalence

classes of the compact leaves of F and denote by Lþ
i and L�

i the leaves in the

frontier of supp½Li�e; i ¼ 1; . . . ; k. Since f preserves the extended supports,

f nðLþ
j Þ and f nðL�

j Þ lie in 6k

i¼1
fLþ

i UL�
i g and thus Lþ

i and L�
i ; i ¼ 1; . . . ; k are

f -periodic. If one of these leaves lies in FrðCðFÞÞ the proof is finished. If

not, M ¼ supp½L�e ¼ L� ½a; b� for some compact leaf L. In this case the con-

nected component of M � FrðCðFÞÞ which contains L� fag is f -invariant. In

particular the boundary leaves of this component are f -invariant and one of

them necessarily lies in FrðCðFÞÞ.

Case 2: supp½L�e fibers over S1, for some compact leaf L.

Let L ! M !
p

S1 be the fibration defined by supp½L�e. Fix a section G of

p which we identify with the base S1.

Since the compact leaves of F are fibers of p and since f preserves the

compact leaves of F, there exist a finite number of disjoint compact arcs

A1; . . . ;As in G satisfying
. f j

G
is transverse to the fibers of p in G �6s

i¼1
IntðAiÞ,

. CðFÞV ð6s

i¼1
AiÞ ¼ q.

Now, increasing the size of the segments Ai if necessary, we can modify f j
G

on each Ai to produce a C2 embedding g : G ! M such that
. f j

G
1 g on G �6 s

i¼1
IntðAiÞ,

. f6s

i¼1
gðAiÞgVCðFÞ ¼ q,

. g is transverse to the fibers of p.

It follows that ~ff ¼ p � g is a C2 orientation preserving di¤eomorphism of

S1. The conclusion follows from Denjoy’s theorem and Lemma 2.2 below tak-

ing into account that the compact subset K ¼ CðFÞVG of G is invariant under
~ff and F is not a fibration.

The last two assertions follow from properties of orientation preserving dif-

feomorphisms of the circle and of the interval. r

Given a representation H : G ! Di¤ r
þðS

1Þ of a group G we denote by OHðxÞ

the orbit of x A S1 and by CðHÞ the set of points x A S1 for which OHðxÞ is

finite. If OHðxÞ is finite and y B OHðxÞ then in each connected component of
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S1 � OHðxÞ we have at least one point of OHðyÞ. Thus, ]ðOHðxÞÞa ]ðOHðyÞÞ.

Therefore ]ðOHðxÞÞ ¼ ]ðOHðyÞÞ when OHðxÞ and OHðyÞ are finite. In particular

CðHÞ is compact.

Lemma 2.2. Let H : G ! Di¤ 1
þðS

1Þ be a representation of a group G. Let

K be a compact subset of S1 such that FrðKÞ0q. Suppose that K is invariant

under H, i.e. HaðKÞ ¼ K , Ea A G. If CðHÞ0q then CðHÞVFrðKÞ0q.

Proof. Suppose that CðHÞ0q and let x A CðHÞ. We have to consider

two cases: (1) x A IntðKÞ and (2) x B K . In the first case the connected

component of K which contains x is a compact interval whose extremities are in

CðHÞ. In the second case the connected component of S1 � K which contains

x is an open interval whose extremities are in CðHÞ. r

3. Periodic leaves and invariant fixed points.

In this section we describe a modification of the di¤eomorphism f along

the leaves of F which allows us to reduce the study of periodic compact leaves

to the study of invariant fixed points of a group action on ½0; 1�.

First observe that we can assume that F is given by the suspension of a

representation of a group on Di¤ r
þð½0; 1�Þ. In fact, by Theorem 2.1 the folia-

tion F has a compact f -periodic leaf L. Replacing f with f k, where k is the

period of L, the compact f -periodic leaves lying in supp½L� become f k-invariant

leaves. If supp½L� fibers over S1 then by cutting M along L, we can assume

that supp½L� fibers over ½0; 1�.

Thus consider F A Folrþð½0; 1� � FÞ transverse to ½0; 1� � fxg for all x A F ,

where F is a closed ðn� 1Þ-manifold. Under these conditions we have the fol-

lowing lemma.

Lemma 3.1. For each f A Di¤ r
þð½0; 1� � F ;FÞ and p A F there is a di¤eo-

morphism g A Di¤ r
þð½0; 1� � F ;FÞ satisfying:

(i) the maps f jf0g�F and gjf0g�F are C r-isotopic in f0g � F ,

(ii) ð0; pÞ A FixðgÞ,

(iii) gð½0; 1� � fxgÞ ¼ ½0; 1� � fgðxÞg, for all x A F ,

(iv) f ðzÞ and gðzÞ lie in the same leaf of F for each z A ½0; 1� � F .

Proof. Let p A F 1 f0g � F be such that f ðpÞ0 p and let a be an

embedded path on F from p to f ðpÞ. The foliation F restricted to a convenient

small neighborhood of a (in ½0; 1� � F ) is a product foliation. Thus, isotoping

f along the leaves of F by an isotopy supported on this neighborhood we can

obtain a di¤eomorphism fixing the point p.

Thus, without loss of generality we may assume that f ðpÞ ¼ p.
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Without changing f jf0g�F we shall construct the required di¤eomorphism,

as follows:

Let ðt; xÞ A ½0; 1� � F and denote by p2 the natural projection of ½0; 1� � F on

F . Let aðt;xÞ be the path on F defined as aðt;xÞðsÞ ¼ p2 � f ðð1� sÞt; xÞ for all

s A ½0; 1�. We define gðt; xÞ ¼ ~aaðt;xÞð1Þ where ~aaðt;xÞ is the lift of aðt;xÞ starting

at f ðt; xÞ on the leaf passing through f ðt; xÞ.

It is easy to verify that g is a C r map satisfying (i), (ii), (iii) and (iv). Now

it remains to show that g is a di¤eomorphism.

First we prove that g is a local di¤eomorphism in the leaf direction. For

this fix ðt; xÞ A ½0; 1� � F and let Dð0;xÞ be a compact ðn� 1Þ-disk on F centered

at ð0; xÞ. The leaf passing through ðt; xÞ of the restricted foliation Fj½0;1��Dð0; xÞ

is a ðn� 1Þ-disk di¤eomorphic to Dð0;xÞ under the projection p2. It will be

denoted by Dðt;xÞ.

Now let Y : f ðDðt;xÞÞ ! f ðDð0;xÞÞ be the di¤eomorphism defined by the

composite

f ðDðt;xÞÞ �!
f �1

Dðt;xÞ �!
p2

Dð0;xÞ �!
f

f ðDð0;xÞÞ:

Let L be the leaf of F passing through f ðt; xÞ and gðt; xÞ. The leaf of

Fj½0;1�� f ðDð0; xÞÞ
passing through gðt; xÞ is also a ðn� 1Þ-disk di¤eomorphic to

f ðDð0;xÞÞ under the projection p2 whose inverse in this case will be denoted by

p
�1.

Consequently, the map g : Dðt;xÞ ! L is given by the composite

Dðt;xÞ !
f
f ðDðt;xÞÞ !

Y

f ðDð0;xÞÞ !
p
�1

L

and we conclude that g is a local di¤eomorphism in the leaf direction.

In a neighborhood of ðt; xÞ in ½0; 1� � fxg the map g is given by the
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composite of f and the holonomy di¤eomorphism of the path ~aaðt;xÞ relative to

the transversals f ð½0; 1� � fxgÞ and ½0; 1� � f f ð0; xÞg. Therefore, g is a local

di¤eomorphism.

Since gjf0g�F ¼ f jf0g�F is a di¤eomorphism of F , we conclude that g is a

di¤eomorphism and the proof is finished. r

It follows from (iv) that f and g coincide on the quotient space

ð½0; 1� � F Þ=F. Consequently, they have the same invariant leaves.

From now on we only consider di¤eomorphisms f A Di¤ r
þð½0; 1� � F ;FÞ

satisfying:

3.2. f ð½0; 1� � fpgÞ ¼ ½0; 1� � fpg for some point p A F .

In this situation we have the following property:

Given z A ½0; 1� � fpg and a loop a in F based at p, let ~aaz be the lifting of

a to a leaf of F such that ~aazð0Þ ¼ z. Since both f ð~aazÞ and ½gfðaÞfðaÞ�f ðzÞ depend

continuously on z, its projections on F are homotopic.

Consequently the holonomy maps Ha and Hf ðaÞ of F associated to the loops

a and f ðaÞ satisfy:

Hf ðaÞ ¼ f �Ha � f
�1:

Therefore the problem about the periodicity of compact leaves which are

contained in FrðCðFÞÞ can be reduced to the following question:

Question 3.3. Let G be a finitely generated group and let H : G !

Di¤ 2
þð½0; 1�Þ be a representation. If c A AutðGÞ and f A Di¤ 2

þð½0; 1�Þ satisfy the

relation HcðaÞ ¼ f �Ha � f
�1 for all a A G then Fixð f ÞIFrðFixðHÞÞ?

The following remark will be used in §6.

Remark 3.4. Let F A Fol rþðMÞ, let f A Di¤ r
þðM;FÞ and let L be an

f -invariant compact leaf of F. It is easy to construct an isotopy f ftgt A ½0;1� of f

along the leaves of F and such that the map f1 preserves the fibers of a small

tubular neighborhood of L.

4. On Kopell’s Lemma.

In this section we prove a more general version of the famous Kopell’s

Lemma which we will use in the next section. The proof we give here is

essentially an extension of the proof of Lemma 1.a given by Kopell in [14, pp.

168–169].

Lemma 4.1. Let f be a C2 contraction to 0 on ½0; a�, a > 0. Suppose there

is a sequence gn A Di¤ 1
þð½ f ðaÞ; a�Þ; n A N U f0g such that the map g : ð0; a� ! ð0; a�
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defined by gðxÞ ¼ f n � gn � f
�nðxÞ, Ex A ½ f nþ1ðaÞ; f nðaÞ� is a C 1-di¤eomorphism.

Then g extends to a C1-di¤eomorphism on ½0; a� if and only if gn ! Id in the

C 1-topology.

Before proving Lemma 4.1 we recall the following two crucial results stated

by Kopell in [14, pp. 168–169].

If f is a C2-contraction to 0 on ½0; a� then:

(I) Aðx; y; nÞ ¼ ð f nÞ 0ðyÞ=ðð f nÞ 0ðxÞÞ converges uniformly on compact subsets

of ð0; a� � ð0; a� to a continuous strictly positive function Aðx; yÞ,

(II) the di¤erential equation

y 0 ¼
1

Aðx; yÞ
; x; y A ð0; a�ð4:1Þ

has the following property: if g is a solution of 4.1 such that gðxoÞ ¼ xo
for some xo A ð0; a� then g1 Id.

Proof of Lemma 4.1. From the definition of g we have that

gð f nðxÞÞ ¼ f nðgnðxÞÞ; Ex A ½ f ðaÞ; a�; n A N :

Di¤erentiation yields

g 0ð f nðxÞÞ:ð f nÞ 0ðxÞ ¼ ð f nÞ 0ðgnðxÞÞ:g
0
nðxÞð4:2Þ

for all x A ½ f ðaÞ; a�, n A N .

Then, we get

g 0
nðxÞ ¼ g 0ð f nðxÞÞ

ð f nÞ 0ðxÞ

ð f nÞ 0ðgnðxÞÞ
; Ex A ½ f ðaÞ; a�; n A N :ð4:3Þ

Hence gn is a solution of the di¤erential equation

y 0 ¼
g 0ð f nðxÞÞ

Aðx; y; nÞ
; x; y A ½ f ðaÞ; a�ð4:4Þ

satisfying the initial condition gnðaÞ ¼ a.

We observe that g 0ð f nðxÞÞ=Aðx; y; nÞ is a continuous map of ðx; yÞ A

½ f ðaÞ; a�2 and has continuous partial derivative with respect to y, which assures

the existence and uniqueness of the solutions of 4.4.

Suppose g extends to a C1-di¤eomorphism of ½0; a�. Since f nðaÞ A FixðgÞ

we have g 0ð0Þ ¼ 1 which implies that g 0ð f nðxÞÞ ! 1 uniformly on ½ f ðaÞ; a�.

Thus, g 0ð f nðxÞÞ=Aðx; y; nÞ converges to 1=Aðx; yÞ on ½ f ðaÞ; a� � ½ f ðaÞ; a�. We

will show that the di¤erential equation
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y 0 ¼
1

Aðx; yÞ
; x; y A ð0; a�ð4:5Þ

also satisfies the property of existence and uniqueness of solutions.

Indeed, if g1 and g2 are solutions of 4.5 which coincide at a point xo then

g 0
2 never vanishes and we have g�1

2 � g1ðxoÞ ¼ xo. On the other side, we have

ðg�1
2 � g1Þ

0ðxÞ ¼ ðg�1
2 Þ 0ðg1ðxÞÞ:g

0
1ðxÞ

¼
1

g 0
2ðg

�1
2 � g1ðxÞÞ

g 0
1ðxÞ ¼

Aðg�1
2 � g1ðxÞ; g1ðxÞÞ

Aðx; g1ðxÞÞ

¼
1

Aðx; g1ðxÞÞ:Aðg1ðxÞ; g�1
2 � g1ðxÞÞ

¼
1

Aðx; g�1
2 � g1ðxÞÞ

:

Thus g�1
2 � g1 is a solution of 4.5 having xo as a fixed point. By (II) it

follows that g1 1 g2 on a neighborhood of xo and hence g1 1 g2 on their common

definition interval.

The equations 4.4 and 4.5 satisfy the existence and uniqueness property of

maximal solutions. Thus gn ! Id uniformly on ½ f ðaÞ; a�. Returning to 4.3 we

see that g 0
n ! 1 uniformly on ½ f ðaÞ; a� and consequently gn ! Id in the C1-

topology.

Conversely, suppose that gn ! Id in the C1-topology. From 4.2 we obtain

g 0ð f nðxÞÞ ¼ Aðx; gnðxÞ; nÞ:g
0
nðxÞ; Ex A ½ f ðaÞ; a�; n A N :

Taking the limit when n ! y on both sides we have that g 0ðxÞ ! 1 as

x ! 0 and the proof is finished. r

5. Commutative holonomy and invariant fixed points.

In this section we prove Theorem 5.3. The generalized version of Kopell’s

Lemma proved in §4 will play an important role in this proof.

If c1 IdG then Question 3.3 has an a‰rmative answer without any assump-

tion on G.

Lemma 5.1. Let G be a group and let H : G ! Di¤ 2
þð½0; 1�Þ be a repre-

sentation. If f A Di¤ 2
þð½0; 1�Þ is such that Ha � f ¼ f �Ha for all a in G then

Fixð f ÞIFrðFixðHaÞÞ, Ea A G.

Furthermore, in each connected component C of ½0; 1� � FixðHÞ we have that

if f ðzÞ ¼ HgðzÞ0 z for some z A C and g A G then Hg 1 f on C. In particular

f jC 1 Id or Fixð f jCÞ ¼ q.

The proof of this lemma is an application of Kopell’s Lemma. Moreover,

it has a similar version for C2 di¤eomorphism of S1 by replacing FixðHaÞ with
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periodic points of Ha, FixðHÞ with points with finite orbit by G, and Fixð f Þ with

periodic points of f .

Here is the codimension one foliation version of Lemma 5.1.

Theorem 5.2. Let F A Fol2þðMÞ, let f A Di¤ 2
þðM;FÞ and let L be a com-

pact f -invariant leaf of F. If f� : p1ðLÞ ! p1ðLÞ is the identity homomorphism

then every leaf in supp½L� with nontrivial holonomy is f -invariant. Furthermore, if

a connected component C of M � CðFÞ contained in supp½L� has an f -invariant

leaf then all the leaves in C are also f -invariant.

We now prove the main result of this section.

Theorem 5.3. Let G be a finitely generated group and let H : G !

Di¤ 2
þð½0; 1�Þ be a representation. Suppose there are c A AutðGÞ and f A

Di¤ 2
þð½0; 1�Þ such that HcðaÞ ¼ f �Ha � f

�1, Ea A G. If ImðHÞ is a commutative

subgroup of Di¤ 2
þð½0; 1�Þ then Fixð f ÞIFrðFixðHÞÞ.

Proof. First note that G=kerðHÞ is a commutative finitely generated tor-

sion free group. Then it is isomorphic to Z
k for some k A N U f0g. On the

other hand, our hypothesis implies that cðkerðHÞÞ ¼ kerðHÞ. So, it su‰ces to

show the lemma for G ¼ Z
k.

Let a; b A FixðHÞ such that a < b and ða; bÞVFixðHÞ ¼ q. We need to

show that a; b A Fixð f Þ.

Suppose f ðbÞ0 b. Since f ðFixðHÞÞ ¼ FixðHÞ, we can assume, without loss

of generality, that f ðtÞ < t, 0 < Et < 1. In particular, f ðbÞa a < b. From the

equality HcðaÞ ¼ f �Ha � f
�1, Ea A Z

k we have

Ha ¼ f n �Hc�nðaÞ � f
�n; Ea A Z

k; n A Z:

Using Lemma 4.1 one sees that Hc�nðaÞ ! Id on ½ f ðbÞ; b� in the C1-topology,

as jnj ! y. In particular, the same is true on ½a; b�H ½ f ðbÞ; b�.

Now fix h A ImðHÞ with hj½a;b� 0 Id. From Szekeres [23] there exists a

C 1 vector field X on ½a; bÞ with flow ðXtÞ such that X1 ¼ h. For each

g A Di¤ 1
þð½a; b�Þ commuting with h let tðgÞ A R be the unique real number given

by Kopell’s result such that g ¼ XtðgÞ. The relation g ¼ XtðgÞ defines a con-

tinuous homomorphism

t : fHaj½a;b�; a A Z
kg ! R:

Hence, o ¼ t �H : Z
k ! R is a non trivial homomorphism such that

oðcnðaÞÞ ! 0 as jnj ! y

for each a A Z
k. According Lemma 5.4 below this is a contradiction and the

proof of the theorem is complete. r
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Lemma 5.4. Let o : R
k ! R be a linear form. Suppose that there exists an

isomorphism c : R
k ! R

k such that oðcnðaÞÞ ! 0, Ea A Z
k as jnj ! y. Then o

is trivial.

Proof. Complexifying o and c it is easy to verify that oðcnðaÞÞ ! 0 as

jnj ! y for every a in C
k.

We use the Jordan form of c to prove that o is trivial. It su‰ces to show

the case when c has Jordan form ½c� ¼ lI s þ E1; s in a basis fv1; . . . ; vsg, where I s
is the identity matrix and ðE1; sÞi; j ¼ di; jþ1, E1a i; ja s and 00 l A C . Re-

placing c by c�1 if necessary we can assume that jljb 1.

For nb s� 1 we have:

ðlIs þ E1; sÞ
n ¼

X

s�1

i¼0

n

i

� �

ln�iðE1; sÞ
i

¼ lnIs þ
n

1

� �

ln�1E1; s þ � � � þ
n

s� 1

� �

ln�sþ1ðE1; sÞ
s�1

:

Thus

cnðviÞ ¼ lnvi þ
n

1

� �

ln�1vi�1 þ � � � þ
n

i � 1

� �

ln�iþ1v1

for all nb s� 1 and 1a ia s. We conclude that

oðcnðviÞÞ ¼ lnoðviÞ þ
n

1

� �

ln�1oðvi�1Þ þ � � � þð5:1Þ

þ
n

i � 1

� �

ln�iþ1oðv1Þ

for all nb s� 1 and 1a ia s.

As n ! y we obtain:

oðcnðv1ÞÞ ! 0 ) jlnj koðv1Þk ! 0 ) oðv1Þ ¼ 0:

Returning to 5.1 we conclude by finite induction on i that oðviÞ ¼ 0,

1a Eia s. This completes the proof of the lemma. r

Here is the S1 version of Theorem 5.3. Recall that CðHÞ denotes the set

of points x A S1 for which OHðxÞ is finite.

Theorem 5.5. Let G be a finitely generated group and let H : G !

Di¤ 2
þðS

1Þ be a representation. Suppose there are c A AutðGÞ and f A Di¤ 2
þðS

1Þ

such that HcðaÞ ¼ f �Ha � f
�1, Ea A G. If ImðHÞ is a commutative subgroup of

Di¤ 2
þðS

1Þ then every point in FrðCðHÞÞ is f -periodic.
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Proof. If FrðCðHÞÞ0q then by Theorem 2.1 there is an f -periodic point

xo in FrðCðHÞÞ with period kb 1.

Let Ixo ¼ fa A G;HaðxoÞ ¼ xog be the isotropy group of xo. The relation

HckðaÞ ¼ f k �Ha � f
�k; Ea A G

assures that ckðIxoÞ ¼ Ixo . On the other hand, Ixo acts trivially on

CðHÞ. Restricting the action to the subgroup Ixo and replacing f with f k,

c with ck and Di¤ 2
þðS

1Þ with Di¤ 2
þð½0; 1�Þ, Theorem 5.3 gives that

FrðFixðHjIxo ÞÞHFixð f kÞ, which implies that the set of periodic points of f

contains FrðCðHÞÞ. r

To complete this section we give the foliation version of Theorem 5.3.

Theorem 5.6. Let F A Fol2þðMÞ, let f A Di¤ 2
þðM;FÞ and let L be an

f -periodic compact leaf. Suppose the holonomy of ½L� is commutative. Then

every leaf equivalent to L lying in FrðCðFÞÞ is also f -periodic.

Corollary. Let F A Fol2þðMÞ be a foliation almost without holonomy and

let f A Di¤ 2
þðM;FÞ. Then every leaf in FrðCðFÞÞ is f -periodic.

Proof. The hypothesis implies that each equivalence class of compact

leaves has commutative holonomy. r

6. Invariant non compact leaves.

In this section we analyse the invariance of leaves lying in a connected

component C of M � CðFÞ without holonomy. This means that we will be

working with foliations almost without holonomy.

We begin by briefly recalling important well known results due to

Sacksteder, Hector, Moussu and Imanishi for a foliation F A Fol2þðMÞ without

holonomy in N ¼ IntðMÞ. For details see [8], [12], [13].

Let F A Fol2þðMÞ be without holonomy in N ¼ IntðMÞ. By a Sacksteder

result there is a topological flow fjtgt AR on N transverse to F and preserving F.

Furthermore, fjtg acts transitively on the quotient space N=F of N by the leaves

of F.

Fix a base point p in N. Let ð ~NN; ~ppÞ !
p
ðN; pÞ be the universal covering of

N and denote by ~FF and by f~jjtgt AR the lifts to ~NN of F and fjtgt AR respectively.

We also denote by Lq (resp. ~LL~qq) the leaf of F (resp. ~FF) passing through q

(resp. ~qq).

Remark 6.1. The map c : ~LL~pp � R ! ~NN defined by cðx; tÞ ¼ ~jjtðxÞ is a

homeomorphism which carries leaves ~LL~pp � ftg of the product foliation to leaves

of ~FF.
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Remark 6.2. By Remark 6.1 each loop g A WðN; pÞ is homotopic either to a

loop on Lp or to a loop transverse to F. Loops which are transverse to F are

homotopic to the product of two paths gs and gLp
where gs ¼ fjtsðpÞ; t A ½0; 1�g

with jsðpÞ A Lp ðs0 0Þ and gLp
is a path on Lp from jsðpÞ to p.

Moreover, since FjN has no holonomy, the inclusion of Lp in N induces an

injective homomorphism of p1ðLp; pÞ in p1ðN; pÞ whose image we shall identify

with p1ðLp; pÞ.

We identify the leaf space ~NN= ~FF with R via the map T ¼ p2 � c
�1 where p2

is the standard projection of ~LL~pp � R on the second factor.

Remark 6.3. The action of p1ðN; pÞ on ~NN preserves ~FF, so it acts on
~NN= ~FFAR. By Remark 6.2, p1ðN; pÞ acts on ~NN= ~FF by translations. This action

is described by the homomorphism f : p1ðN; pÞ ! R given by fðaÞ ¼ Tða � ~ppÞ

where a � ~xx denotes the action of a A p1ðN; pÞ on ~xx A ~NN. We have that kerðfÞ ¼

p1ðLp; pÞ.

The quotient group p1ðN; pÞ=p1ðLp; pÞ is isomorphic with the subgroup

K ¼ ft A R; jtðpÞ A Lpg

of R. The group K is called the group of periods of F and fjtgt AR.

Remark 6.4. K ¼ R if and only if all the leaves of F are dense in N. If

K 0R then F is defined by a fibration over S1.

We continue to assume that if f A HomeoþðN;FÞ has f -invariant leaves

then f has at least a fixed point, say p, lying in one of those leaves. This is

true up to an isotopy along the leaves of F as already noted in §3. Hence

f� : p1ðN; pÞ ! p1ðN; pÞ defines an isomorphism

f� : p1ðN; pÞ=p1ðLp; pÞ ! p1ðN; pÞ=p1ðLp; pÞ:

In what follows we keep the notation above.

Proposition 6.5. Let F A Fol2þðMÞ and let f A HomeoþðM;FÞ. Suppose

that F restricted to N ¼ IntðMÞ has trivial holonomy and has dense leaves. Then

the following conditions are equivalent:

(i) all leaves in N are f -invariant,

(ii) there is an f -invariant leaf in N and

f� : p1ðNÞ=p1ðLÞ ! p1ðNÞ=p1ðLÞ

is the identity homomorphism.

Proof. Let L be an f -invariant leaf of F and let p A L be a fixed point

of f . Fix ~pp A p�1ðpÞ and let ~ff A Homeoþð ~NN; ~FFÞ be the lift of f to ~NN with
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~ff ð~ppÞ ¼ ~pp. We denote by ~ffT : R ! R the projection of ~ff on R via T . By the

lifting properties of ~ff we have that

~ff ða � xÞ ¼ f�ðaÞ � ~ff ðxÞ; Ea A p1ðN; pÞ; x A ~NN

hence, on the quotient we obtain

~ffT ðtþ tÞ ¼ f�ðtÞ þ
~ffTðtÞ; Et A R; t A KHR:

Since ~ffT ð0Þ ¼ 0 we conclude that ~ffT ðtÞ ¼ f�ðtÞ, Et A K .

Suppose that f� 1 Id. Then, ~ffTðtÞ ¼ t, Et A K and as K is dense in R we

have that ~ffT 1 IdR. Thus every leaf of ~FFj ~NN is ~ff -invariant, hence every leaf of

FjN is f -invariant.

Conversely, suppose that every leaf in FjN is f -invariant. In this case,
~ffTðTð ~FF ÞÞ � Tð ~FFÞ A K for each leaf ~FF of ~FF. Since ~ffT ð0Þ ¼ 0, ~ffT � Id is con-

tinuous and K0R, we have ~ffTðTð ~FF ÞÞ � Tð ~FFÞ ¼ 0 and so ~ffT 1 IdR. Thus

f� 1 Id, which completes the proof. r

We remark that the union of invariant leaves need not be closed in M. The

following example shows that the invariance of all leaves in FjIntðMÞ does not

imply the invariance of the boundary leaves.

Example. Consider the foliation F on T 2 � S1 obtained by multiplying by

S1 each leaf of a fixed foliation on the torus T 2. Let ðId; jÞ be the double

covering of T 2 � S1 where j : S1 ! S1 is the double covering of S1, and let ~FF

be the ðId; jÞ-lift of F. It is easy to see that all leaves of ~FF are invariant under

the nontrivial covering map ~ff A AutððId; jÞÞ.

Now choose a closed curve G in T 2 � f1gHT 2 � S1 transverse to F and

apply the turbulization process to introduce a Reeb component in a small

tubular neighborhood of G. Let F1 be this new foliation and let ~FF1 be its

ðId; jÞ-lift. All leaves of ~FF1 are ~ff -invariant except the leaves on the solid torus

associated to the Reeb components. The desired example is obtained by taking

out the interior of the Reeb components of ~FF1.

We close this section by treating the case where FjIntðMÞ has no dense

leaves. In this situation we must have qM0q.

Proposition 6.6. Let F A Fol2þðMÞ and let f A Di¤ 2
þðM;FÞ. Suppose that

F restricted to N ¼ IntðMÞ satisfies the following properties:

(i) without holonomy,

(ii) without dense leaves,

(iii) without compact leaves.

If F has an f -invariant leaf in N then all leaves in N are f -invariant.
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Proof. In the absence of holonomy and dense leaves the foliation FjN is

defined by a fibration x : N ! S1. Fix a section GAS1 of x. The projection of

f on G along the leaves defines a C2 preserving orientation di¤eomorphism fG
of G having a fixed point p A G corresponding to the invariant leaf. We shall

see that the dynamics of F close to qM implies fG 1 IdG .

Suppose there is a (compact) boundary leaf L such that f ðLÞ ¼ L. Fix a

collar neighborhood U ¼ ½0; 1Þ � L of L in M. As already noted in §3 (Remark

3.4), we can assume up to an isotopy of f along the leaves of F that:
. f has a fixed point q A L,
. in a small neighborhood of L in U the map f preserves the foliation

defined by the fibers of U .

Consequently the relation

Hf ðaÞ ¼ f �Ha � f
�1; Ea A WðL; qÞð6:1Þ

holds in a small neighborhood of the origin in ½0; 1Þ.

Since FjN has no dense leaves, the holonomy of L is cyclic and generated

by a C2-contraction Hb defined in a neighborhood of the origin in ½0; 1Þ.

Let H be the normal subgroup of p1ðL; qÞ consisting of the homotopy

classes whose holonomy is trivial. We have p1ðL; qÞ=HAZ.

In view of 6.1 we can take the quotient of f� : p1ðL; qÞ ! p1ðL; qÞ by H

obtaining an isomorphism f� : p1ðL; qÞ=H ! p1ðL; qÞ=H such that f�ðbÞ ¼ b,

where b is the class of b in p1ðL; qÞ=H. Hence Hf ðbÞ ¼ Hb in a neighborhood

½0; eÞ of the origin in ½0; 1Þ and then f �Hb ¼ Hb � f in ½0; eÞ. Therefore, f

induces a di¤eomorphism ~ff on the quotient ð0; eÞ=HbAS1 of ð0; eÞ by the action

of Hb.

According to Szekeres and Kopell there exists a C1 vector field X on ½0; eÞ

and to A R such that Hb and f are the time one and the time to maps of X

respectively. Therefore, ~ff is represented by a rotation.

The restriction of x to a fundamental domain of Hb is a k-sheeted covering
~xx : ð0; eÞ=Hb ! GAS1 of G for some k A N .

Fix ~pp A ð0; eÞ=Hb such that ~xxð~ppÞ ¼ p. Let ~ffG be the lift of fG having ~pp as

a fixed point. Then ~ff ¼ R � ~ffG where R A Autð~xxÞ. Since ~ffG is a lift of the

orientation preserving di¤eomorphism fG , it follows that ~ffG commutes with R

and we have:

ð ~ff Þk ¼ Rk � ð ~ffGÞ
k ¼ ð ~ffGÞ

k:ð6:2Þ

Thus ð ~ffGÞ
k is conjugated to a rotation. Since ~ffG has a fixed point, it must

be the identity map.

In the general case there is an s A N such that f sðLÞ ¼ L and 6.2 gives

ð ~ff sÞk ¼ ð ~ff s
GÞ

k. This finishes the proof. r
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7. Invariant leaves under di¤eomorphisms close to the identity.

We begin this section by giving a construction which will facilitate the study

of invariant leaves under di¤eomorphisms close to identity. This construction

enables us to reduce this problem to that of existence of fixed points.

Let F A Fol rþðMÞ. Fix a Cy vector field X on M transverse to F and a

Cy riemannian metric on M. Let A ¼ fAig and B ¼ fBkg be two finite cubic

covers of M bi-regular for F and X such that if Ai VAj 0q then Ai UAj HBk

for some Bk A B.

A cubic cover of M bi-regular for F and X is a cover of M by open sets

di¤eomorphic to ð0; 1Þn�1 � ð0; 1Þ such that the foliations F and X are defined

by the first and the second factors of ð0; 1Þn�1 � ð0; 1Þ respectively.

Now let f A Di¤ r
þðM;FÞ be close to the identity in Di¤ rðMÞ so that for

each x A M the points x and f ðxÞ lie in the same bi-regular neighborhood Ai of

A. Taking f su‰ciently C r close to IdM the projection of f ðxÞ along the leaves

of FjAi
on the orbit of X jAi

passing through x defines a C r di¤eomorphism fX of

M which is C r close to IdM and preserves the leaves of F. Furthermore, all the

orbits of X are invariant under fX .

The construction above holds also for foliations close to the foliation F. In

fact, the following result is well known.

7.1. Let e > 0 and let V1 be a neighborhood of IdM in Di¤ rðMÞ. There

exist neighborhoods V of IdM in Di¤ rðMÞ and U of F in Fol rþðMÞ satisfying

the following properties at any ~FF A U and ~ff A VVDi¤ r
þðM; ~FFÞ:

(7.1.1) the projection ~ffX of ~ff along the leaves of ~FF is well defined,

(7.1.2) ~ffX A V1 VDi¤ r
þðM; ~FFÞ,

(7.1.3) dX ðx; ~ffX ðxÞÞ, d ~FFð ~ff ðxÞ; ~ffX ðxÞÞ < e, Ex A M, where dX and d ~FF denote

the induced distance on the X-orbits and on the leaves of ~FF

respectively.

We observe that for convenient choices of e > 0 and of V1 the map ~ffX does

not depend on the covers A and B, moreover ~ffX is the end point of a C r isotopy

of ~ff along the leaves of ~FF. To see this, consider the codimension one plane field

tangent to F and approximate it by a Cy plane field s. The restriction of the

exponential map to the sub-bundle s of TM gives small embedded ðn� 1Þ-disks

DxðFÞ in M centered at x. These disks are not contained in the leaf LxðFÞ

of F passing through x, but they can be projected on Lxð ~FFÞ along the X -

orbits. Thus we can assume that ~ff ðxÞ is in the disk centered at ~ffX ðxÞ. Now

the isotopy is natural. The compactness of M is fundamental to control the

minimum ray of the embedded disks DxðFÞ.

More generally:
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Choosing the neighborhoods V and U in 7.1 su‰ciently small, we can guar-

antee that

(7.1.4) there exists a C r isotopy from ~ff to ~ffX along the leaves of ~FF and

lying in V1.

From now on given F A FolrþðMÞ and a vector field X on M transverse

to F we consider only perturbations ~FF of F and ~ff of IdM for which X is

transverse to ~FF and the projection ~ffX of ~ff along the leaves of ~FF is well

defined. We also assume that the holonomy of F and of its perturbated are

defined in segments contained in the X -orbits.

Let ~ff A Di¤ r
þðM; ~FFÞ be such that ~ffX has a fixed point p A M. In this case

the leaf ~LLp of ~FF passing through p is contained in Fixð ~ffX Þ and the points p and
~ff ðpÞ are close along ~LLp. The leaves of ~FF passing through fixed points of ~ffX will

be called strongly ~ff -invariant leaves.

Theorem 7.2. Let F A Fol2þðMÞ. There exists a neighborhood V of the

identity in Di¤ 2ðMÞ such that for all f A VVDi¤ 2
þðM;FÞ we have:

(i) the leaves of F with nontrivial holonomy are strongly f -invariant,

(ii) if a connected component of M � CðFÞ has an f -invariant leaf (resp.

strongly f -invariant leaf ) then all leaves lying in this component are f -

invariant (resp. strongly f -invariant).

This theorem together with (7.1.4) implies that for rb 2 if F A Fol rþðMÞ has

nontrivial holonomy in all connected components of M � CðFÞ then every

f A Di¤ r
þðM;FÞ su‰ciently close to the identity is C r isotopic to the identity

map under an isotopy along the leaves of F. In fact, on the connected com-

ponents of M � CðFÞ this isotopy is given by Theorem 7.2 and by (7.1.4). It

is easy to extend it to IntðCðFÞÞ. This extension is essentially the isotopy to the

identity of a di¤eomorphism of ½0; 1� close to the identity.

In [15] J. Leslie proves that for F A Folyþ ðMÞ and qM0q the connected

component DðM;FÞ of Di¤y
þ ðM;FÞHDi¤ rðMÞ containing the identity map

admits a structure of an infinite dimensional manifold. Clearly the leaves

with nontrivial holonomy are f -invariant for all f A DðM;FÞ. In particular

this holds for f close to IdM in the topology of the manifold DðM;FÞ. As

remarked in the previous paragraph, if F has nontrivial holonomy in all con-

nected components of M � CðFÞ then every f A Di¤y
þ ðM;FÞ su‰ciently Cy

close to IdM is contained in DðM;FÞ. In this case the group DðM;FÞ is a

closed subgroup of Di¤yðMÞ.

Before giving its proof we will use Theorem 7.2 to prove the following

result.

Theorem 7.3. Let F A Fol rþðMÞ, rb 2, let X be a vector field transverse
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to F and let V1 be a neighborhood of IdM in Di¤ rðMÞ. There exists a

neighborhood V of IdM in Di¤ rðMÞ such that for all f A VVDi¤ rðM;FÞ we

have:

(i) fX is well defined and fX A V1 VDi¤ r
þðM;FÞ,

(ii) if g A VVDi¤ r
þðM;FÞ then fX � gX 1 gX � fX on each connected

component of M � CðFÞ,

(iii) there exists a C r isotopy fFtgt A ½0;1� of fX 1F0 supported on IntðCðFÞÞ

such that F1 1 Id on IntðCðFÞÞ and Ft A V1 VDi¤ rðM;FÞ, Et A ½0; 1�.

Proof. The item (i) was already shown. In order to prove (ii) fix a con-

nected component C of M � CðFÞ. By Theorem 7.2 we have only to consider

the case where F has no holonomy in C. There are two possibilities.

Case 1: C is a boundaryless manifold.

In this case all leaves are dense. Let V be a neighborhood of IdM where (i)

holds. Fix an X -orbit G (R or S1) and let H be the subgroup of Di¤ r
þðGÞ

generated by the set f fX jG ; f A Vg. We claim that H is a commutative group.

Indeed, let g 2 H and suppose that g has a fixed point x A G. All the X -orbits

are invariant by the di¤eomorphism g considered as an element of Di¤ r
þðM;FÞ.

Thus, g1 Id on a neighborhood of x in Lx, so we must have g1 Id on Lx.

Since Lx is dense, we have g1 Id on M. In particular, g1 IdG . Therefore the

action of H is free of fixed points on G .

Case 2: C is a manifold with non empty boundary.

Let L be a boundary leaf of C. Since FjC is without holonomy the com-

pact leaf L has nontrivial commutative holonomy. Fix a holonomy map Ha of

L given by a contraction defined in a segment SHC starting at p A L and lying

on an X -orbit. Let f ; g A VVDi¤ r
þðM;FÞ, where V is the neighborhood given

in Theorem 7.2. From Theorem 7.2 we have fX 1 IdL 1 gX on L. Thus, fX
and gX commute with Ha in a neighborhood of p in S. By Kopell’s lemma, the

commutator ½ fX ; gX � has a fixed point in C. Again by Theorem 7.2 we have

½ fX ; gX �1 IdC .

In order to prove (iii) fix a connected component C of IntðCðFÞÞ. We

know that C is the interior of ½0; 1� � L where L is a compact leaf of F, and FjC
is the product foliation defined by the second factor. Since the boundary leaves

L0 ¼ f0g � L and L1 ¼ f1g � L of IntðCðFÞÞ have nontrivial holonomy, by

Theorem 7.2 we have fX jLi
1 IdLi

, i ¼ 0; 1.

We first prove that fX is C r-flat at Li. The only nontrivial situation is

when Li lies in the boundary of a connected component of M � CðFÞ without

holonomy. Since fX commutes with the holonomies of Li which are C r-flat,

Kopell’s result implies that fX is also C r-flat at Li.

Each segment fxg � ½0; 1� is invariant under fX . This allows us to isotope

fX jC to IdC . As remarked before this isotopy is essentially the isotopy to the
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identity of a di¤eomorphism of ½0; 1� close to the identity. This finishes the proof

of the theorem. r

The proof of Theorem 7.2 requires the following two lemmas.

Lemma 7.4. Let F A Fol2þðMÞ. There exist neighborhoods V of the identity

in Di¤ 2ðMÞ and U of F in Fol2þðMÞ such that the following holds. For all
~FF A U and ~ff A VVDi¤ 2

þðM; ~FFÞ we have that if a connected component of

M � Cð ~FFÞ has a strongly ~ff -invariant leaf then all leaves lying in this component

are also strongly ~ff -invariant.

Proof. Consider neighborhoods V and U of IdM and F respectively given

by 7.1. Let ~FF A U, let ~ff A VVDi¤ 2
þðM; ~FFÞ and let ~CC be a connected com-

ponent of M � Cð ~FFÞ. It su‰ces to show that ~CC VFixð ~ffX Þ is an open subset

of ~CC.

Let z A ~CC VFixð ~ffX Þ. The leaf ~LLz of ~FF passing through z is contained in

Fixð ~ffX Þ and consequently Clð~LLzÞHFixð ~ffX Þ. If ~LLz is not dense in ~CC then Clð~LLzÞ

contains a leaf ~LL with nontrivial holonomy (a compact boundary leaf or a leaf

in an exceptional minimal set).

Fix p A ~LL and let SHClð ~CCÞ be a small segment on an X -orbit, starting at

p. There exist a loop a A Wð~LL; pÞ and a point q A ~LLz VS su‰ciently close to p

such that ~HHaðqÞ lies between p and q on S. Hence ~HH n
a
ðqÞ is defined for all n A N

and ~HH n
a
ðqÞ ! q 0 as n ! y. Thus q 0 A Fixð ~ffX ÞVFixð ~HHaÞ. Since ~ffX 1 Id on ~LL,

it commutes with the holonomies of ~LL in small neighborhoods of p in S. By

Kopell’s result, ~ffX 1 Id on a neighborhood of q in S. Consequently, ~ffX 1 Id on

a neighborhood of z in ~CC. r

Lemma 7.5. Let F A Fol2þðMÞ. There exists a neighborhood V of the

identity in Di¤ 2ðMÞ such that every connected component of M � CðFÞ with

nontrivial holonomy contains a strongly f -invariant leaf for all f A VV

Di¤ 2
þðM;FÞ.

Proof. Suppose that CðFÞ is non empty and let ½L1�; . . . ; ½Ls�, sb 1 be

the equivalence classes of compact leaves of F. Fix a vector field X on M

transverse to F and transverse to the fibers of the fibrations defined by the

supports of the classes ½Li�; 1a ia s. Choose a neighborhood V of the identity

in Di¤ 2ðMÞ such that for f A VVDi¤ 2
þðM;FÞ we have:

. supp½Li�; 1a ia s are f -invariant,

. fX is defined,

. f� : p1ðLiÞ ! p1ðLiÞ is the identity homomorphism for i ¼ 1; . . . ; s.

By Theorem 5.2 the leaves in 6s

i¼1
supp½Li� with nontrivial holonomy are fX -

invariant, which means that they are strongly f -invariant leaves. So, the lemma

is proved for connected components of M � CðFÞ contained in 6s

i¼1
supp½Li�.
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Let now CHM �6s

i¼1
supp½Li� be a connected component of M � CðFÞ

having a leaf L with nontrivial holonomy. Thus there is a loop a on L whose

associated holonomy Ha has a one side isolated fixed point p. Choosing V even

smaller if necessary, we have that fX ðpÞ ¼ p for all f A VVDi¤ 2
þðM;FÞ and the

leaf passing through p is strongly f -invariant.

Since there are only finitely many connected components in

M �6s

i¼1
supp½Li�, the proof is finished for CðFÞ0q.

The proof for the case CðFÞ ¼ q is the same as above for a component

lying in M �6 s

i¼1
supp½Li�. r

Proof of Theorem 7.2. Recall that M �6s

i¼1
supp½Li� is a finite disjoint

union of connected components fCjg
k
j¼1 of M � CðFÞ.

In order to prove (i) choose f A Di¤ 2
þðM;FÞ su‰ciently C2 close to the

identity so that Theorem 5.2 applies to each supp½Li�; i ¼ 1; . . . ; s and Lemmas

7.4 and 7.5 apply to each Cj; j ¼ 1; . . . ; k.

The item (ii) for the case of strongly invariant leaves follows from Lemma

7.4. It remains to prove (ii) for f -invariant leaves which are not strongly

f -invariant. By (i) these leaves lie in connected components of M � CðFÞ

without holonomy. In this case the theorem follows from Propositions 6.5 and

6.6. r

Theorem 7.6 below is an application of the following result of G. Duminy

[5].

Theorem 7.6. Let F A Fol2þðMÞ. There exist neighborhoods V of Id in

Di¤ 2ðMÞ and U of F in Fol2þðMÞ such that if ~FF A U has a compact leaf then

either ~FF is a fibration or ~FF has a compact leaf with nontrivial holonomy whose

orbit by the action of the group generated by VVDi¤ 2
þðM; ~FFÞ is a finite union

of compact leaves.

Theorem (G. Duminy). There exists a neighborhood V of the identity in

Di¤ 2
þðS

1Þ such that the group generated by any family of elements of V either

has a finite orbit or has all orbits dense.

Proof of Theorem 7.6. Fix a vector field X transverse to F having a

closed orbit G . Choose neighborhoods V of the identity in Di¤ 2ðMÞ and U

of F in Fol2þðMÞ such that:
. ~ffX is defined for all ~FF A U and ~ff A VVDi¤ 2

þðM; ~FFÞ,
. the restriction of ~ffX to G lies in the neighborhood of the identity

V
0 HDi¤ 2

þðGÞ given by Duminy’s theorem.

Let ~FF A U and suppose Cð ~FFÞ0q. We have two possibilities:

(i) Cð ~FFÞVG ¼ q.
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In this case the connected component ~CC of M � Cð ~FFÞ which contains G is

invariant under ~ff A VVDi¤ 2
þðM; ~FFÞ. Consequently its boundary leaves satisfy

the theorem.

(ii) Cð ~FFÞVG 0q.

If the action of the group ~HHG generated by

f ~ffX jG ;
~ff A VVDi¤ 2

þðM; ~FFÞg

has all orbits dense then ~FF is a fibration. If not, there is xo A G whose orbit

by the action of ~HHG is finite. In this case the proof follows from Lemma

2.2. r

It would seem that the proof of Theorem 7.6 should not require a result as

strong as the result of Duminy. More precisely, we would like to answer the

following question.

Question. Let F A Fol2þðMÞ and G be a finitely generated subgroup of

Di¤ 2
þðM;FÞ. Suppose F has a compact leaf L with nontrivial holonomy such

that supp½L� is a fibration over S1. Then does F have a compact leaf with

nontrivial holonomy whose orbit by the action of G is a finite union of compact

leaves? The same question with GHDi¤ 2
þðM;FÞ not finitely generated.

In particular, consider f A Di¤ 2
þðS

1Þ such that q0Fixð f Þ0S1. We know

that if g A Di¤ 2
þðS

1Þ commutes with f then all points in FrðFixð f ÞÞ are g-

periodic with the same period. Is it true that there exists xo A FrðFixð f ÞÞ whose

orbit by the centralizer of f is finite?

To conclude this section we give an application of Theorem 7.6 to the per-

sistence of compact leaves.

Definition 7.7. A foliation F A Fol rðMÞ has the compact leaf persistence

property if every foliation C r close to F has at least a compact leaf.

We shall denote by FQ the foliation in Fol rðQ�MÞ obtained by multiplying

each leaf of F A Fol rðMÞ by Q.

If F has the compact leaf persistence property then the same holds for the

foliation FS 1 of S1 �M, unless F can be approximated by foliations given by

fibrations over S1. This follows from Theorem 2.1 and from the following fact:

the foliations close to FS 1 are given by suspending foliations ~FF close to F by

di¤eomorphisms ~ff A Di¤ r
þðM; ~FFÞ close to the identity.

Theorem 7.8. Let F A FolrþðMÞ, rb 2 and let Q be a closed manifold.

Suppose that F cannot be C r approximated by foliations defined by fibrations over

S1. Then F has the compact leaf persistence property if and only if the same

property holds for FQ.
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Proof. If FQ has the compact leaf persistence property it is easy to see that

F has the same property.

For the converse, assume that F has the compact leaf persistence prop-

erty. Let X be a vector field transverse to the foliation F.

If ~GG A Fol rþðQ�MÞ is su‰ciently C r close to FQ we can define the per-

turbed holonomies ~ffa A Di¤ r
þðM; ~GGjfqg�MÞ associated to the homotopy class of

each loop a A WðQ; qÞ as follows:

Let x A M and let ~aa denote the path in a leaf of ~GG starting at ðq; xÞ obtained

by lifting the loop ðaðtÞ; xÞ; t A ½0; 1� along the orbits of the vector field ð0;XÞ

in Q�M. We define ~ffaðxÞ ¼ p2ð~aað1ÞÞ where p2 is the standard projection

of Q�M on M.

Fix loops a1; . . . ; ak A WðQ; qÞ whose homotopy classes generate p1ðQ; qÞ and

let V and U be as in Theorem 7.6. Choose ~GG su‰ciently C r close to FQ so

that:
. ~GGjfqg�M lies in U,
. ~ffai ; 1a ia k lie in V,
. ~GGjfqg�M has a compact leaf with nontrivial holonomy.

It follows that ~GGjfqg�M has a compact leaf ~LL whose orbit by the action of

the subgroup generated by f ~ffai ; 1a ia kg is a finite union of compact leaves

L1; . . . ;Ls.

Let ~FF be the leaf of ~GG containing ~LL. We claim that ~FF is compact. For

this, let ~ll be a leaf of ~GGjfqg�M contained in ~FF . Consider a path ~bb in ~FF from ~LL

to ~ll transverse to the second factor of Q�M. The path ~bb projects to a closed

loop b on Q such that ~ffbð~LLÞ ¼
~ll. Since p1ðQ; qÞ is generated by the homotopy

classes of a1; . . . ; ak we have that ~llH6s

j¼1
~LLj. Hence ~FF V fqg �M ¼ 6s

j¼1
~LLj .

Since ~FF is a fibration over Q with fiber ~LL, and ~FF intersects fqg �M finitely many

times, we conclude that ~FF is compact and the proof is finished. r

Let p : E ! M be a fibration with fibre Q. Suppose that F has the com-

pact leaf persistence property and it cannot be C r approximated by foliations

defined by fibrations (over S1). In general, we do not know if p�ðFÞ has

the compact leaf persistence property. If H1ðQ;RÞ ¼ f0g then p�ðFÞ has this

property. This is a consequence of the following D. Henč’s result [10]: if

H1ðQ;RÞ ¼ f0g then, up to isomorphisms C r close to the identity map, all the

small C r perturbations of p�ðFÞ are obtained as a pull-back of small C r

perturbations of F.
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