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Abstract. We compute the dimension group of the skew product extension of

a Cantor minimal system associated with a finite group valued cocycle. Using it, we

study finite subgroups in the commutant group of a Cantor minimal system and prove

that a finite subgroup of the kernel of the mod map must be cyclic. Moreover, we

give a certain obstruction for finite subgroups of commutant groups to have non-

zero intersection to the kernel of mod maps. We also give a necessary and su‰cient

condition for dimension groups so that the kernel of the mod map can include a finite

order element.

1. Introduction.

When X is the Cantor set and f is a homeomorphism on X which has

no non-trivial invariant closed subset, the topological dynamical system ðX ; fÞ

is called a Cantor minimal system. Cantor minimal systems are analogues of

ergodic systems in the topological setting and several authors have studied them

in the various ways. Among many subjects about Cantor minimal systems, the

study of automorphism groups is one of the most mysterious parts. We denote

by CðfÞ the set of all homeomorphisms on X commuting with f for a Cantor

minimal system ðX ; fÞ and call it the automorphism group or commutant group

of ðX ; fÞ. The symbol CðfÞ usually means the set of all continuous maps g :

X ! X which commute with f, but we restrict our attention only on the set of

commuting homeomorphisms in this paper. As f is minimal, CðfÞ acts on X

freely. We denote by Zf the subgroup generated by f in CðfÞ. In the present

paper, we give a new direction in the study of commutant groups, by using di-

mension groups of Cantor minimal systems.

The notion of dimension group was introduced for Cantor minimal systems

in [HPS] and this new invariant threw a new light on the study of Cantor

minimal systems. Let ðX ; fÞ be a Cantor minimal system and

Bf ¼ f f � f � f�1
; f A CðX ;ZÞg
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be the coboundary subgroup of integer valued continuous functions CðX ;ZÞ.

The dimension group K 0ðX ; fÞ of a Cantor minimal system ðX ; fÞ is the quotient

of CðX ;ZÞ by Bf. Define the positive cone

K 0ðX ; fÞþ ¼ f½ f � A K 0ðX ; fÞ; f A CðX ;ZÞþg;

where the bracket means the quotient map. The dimension group K 0ðX ; fÞ is

an ordered group with this positive cone and the equivalence class [1] of the

constant function one is called the order unit of K 0ðX ; fÞ. It was proved in

[GPS] that K 0ðX ; fÞ, as an ordered group with a distinguished order unit, char-

acterizes the strong orbit equivalence class of ðX ; fÞ. The dimension group

K 0ðX ; fÞ is order isomorphic to the K0-group of the C �-algebra C �ðX ; fÞ. In

this paper, however, we don’t deal with C �-algebras.

One of purposes of this paper is to compute the dimension group of the

Cantor minimal system ðY ;cÞ arising from the skew product extension of a

Cantor minimal system ðX ; fÞ associated with a finite group valued cocycle. The

dimension group of a Cantor minimal system ðX ; fÞ is usually computed as

the inductive limit system arising from the ordered Bratteli diagram of ðX ; fÞ

([HPS]). Unfortunately, however, there is no explicit way to write down the

ordered Bratteli diagram of the skew product system ðY ;cÞ by means of the

ordered Bratteli diagram of the original system ðX ; fÞ and the cocycle. In

Theorem 2.5, we will describe the dimension group K 0ðY ;cÞ as the quotient

of the restricted dimension group by the canonical infinitesimal subgroup.

Our main tool for the study of commutants is the mod map. Since

g A CðfÞ satisfies g � g�1 A Bf for all g A Bf,

modðgÞð½ f �Þ ¼ ½ f � g�1�

gives rise to an order automorphism of K 0ðX ; fÞ preserving the order unit

([GPS2]). It can be easily checked that the mod map is a group homomorphism

from CðfÞ to AutðK 0ðX ; fÞÞ. We define TðfÞ ¼ CðfÞV kermod. In Section 3,

we will prove that every finite subgroup of TðfÞ is cyclic. Moreover, we will

show that if a finite subgroup G of CðfÞ includes an element of prime order p

and it is in TðfÞ, then the p-Sylow group of G is cyclic. It should be remarked

that every finite group can be embedded into the commutant group of a Cantor

minimal system, which was shown in [LM]. Next, we will consider when the

kernel of the mod map can contain a finite order automorphism, and give a

necessary and su‰cient condition for dimension groups. The invariant h defined

in [M] will be computed for finite order elements. Several examples of finite

subgroups of CðfÞ and TðfÞ are given in Section 4. In our examples, every TðfÞ

is abelian. As mentioned above, TðfÞ cannot contain non-abelian finite groups.

But, we have no idea to deal with infinite order elements of CðfÞ. It’s an

interesting open problem whether or not the subgroup TðfÞ is always abelian.
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2. Dimension groups of skew products.

In this section, we define skew product extensions of Cantor minimal systems

associated with finite group valued cocycles, and give an algorithm of computing

the dimension group of skew product systems.

Definition 2.1. Let ðX ; fÞ be a Cantor minimal system and G be a finite

group.

A continuous map c : X ! G is called a G-valued cocycle.

G-valued cocycles c and c 0 are cohomologous if there is a continuous map

b : X ! G such that bðxÞcðxÞbðfðxÞÞ�1 ¼ c 0ðxÞ holds for all x A X .

Let c : X ! G be a cocycle. We set Y ¼ X � G and a homeomorphism c

on Y such as cðx; gÞ ¼ ðfðxÞ; gcðfðxÞÞÞ. This dynamical system ðY ;cÞ is called

the skew product extension or extension, simply, of ðX ; fÞ associated with the

G-valued cocycle c. Of course, cohomologous cocycles determine isomorphic

systems.

Let ðY ;cÞ be the extension of ðX ; fÞ associated with a cocycle c. Obviously,

there is a factor map from ðY ;cÞ to ðX ; fÞ. For each element h A G, let gh be

the homeomorphism on Y which sends ðx; gÞ to ðx; hgÞ. Then fgggg AG forms a

subgroup of CðcÞ isomorphic to G. We call this finite subgroup a canonical

commutant of the skew product extension.

Notice that the extension ðY ;cÞ is not always minimal. For example, when

ðX ; fÞ is an odometer system and G is a finite group and not cyclic, the skew

product extension ðY ;cÞ is never minimal for any G-valued cocycle, because

every cocycle c : X ! G is cohomologous to a cocycle c 0 whose range contains

only the identity e and a single element g. The reader may refer to Section

VIII.4 of [D] for odometer systems.

Lemma 2.2. Let ðY ;cÞ be a Cantor minimal system and GHCðcÞ be a

finite subgroup. Then, there exist a Cantor minimal system ðX ; fÞ and a cocycle

c : X ! G, such that the extension of ðX ; fÞ by the cocycle c is isomorphic to

ðY ;cÞ and the subgroup G coincides with the canonical commutant under this

isomorphism.

Proof. Let fgggg AG be the finite subgroup of CðcÞ. We can consider

the quotient system ðX ; fÞ of ðY ;cÞ by the action of fgggg. Denote the factor

map by p. Since Y is the Cantor set, there exists a clopen subset Y0 such

that the restriction ~pp of p on Y0 is a homeomorphism onto X. Set Yg ¼ ggðY0Þ

for each g A G. Then, fYggg is a clopen partition of Y and a map r sending
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ðx; gÞ A X � G to ggð~pp
�1ðxÞÞ is a homeomorphism. The minimal homeomor-

phism r�1 � c � r on X � G determines a cocycle c : X ! G. It is clear that

fgggg coincides with the canonical commutant. r

We fix a Cantor minimal system ðX ; fÞ and a finite group valued cocycle

c : X ! G. Let ðY ;cÞ be the extension. We would like to compute the dimen-

sion group K 0ðY ;cÞ. In order to do this, at first, we must represent the system

ðX ; fÞ by using an ordered Bratteli diagram ([HPS]) and fix the notation.

Let B ¼ ðV ;E;aÞ be a simple ordered Bratteli diagram associated with

ðX ; fÞ, where V ¼ 6y

n¼0
Vn and E ¼ 6y

n¼1
En are the sets of vertices and edges.

We denote the range and source map by r and s. For every v A VnV0, a linear

order is defined on r�1ðvÞ. Let ðe1; e2; . . . ; emÞ be the ordered list of the edges

in r�1ðvÞ. We define a map y from VnV0 to the set of finite sequences consisting

of vertices such as yðvÞ ¼ ðsðe1Þ; sðe2Þ; . . . ; sðemÞÞ. In this paper, we use the map

y to describe the partial order on E. We can identify ðX ; fÞ with the infinite

path space of B and the Bratteli-Vershik map on it. For each n A N , the vertex

set Vn corresponds to towers of Kakutani-Rohlin partitions of X. We denote

this partition by

Pn ¼ fXðn; v; kÞ; v A Vn; 1a ka hðvÞg;

where each X ðn; v; kÞ is the clopen set of level k in the tower corresponding

to v and h : V ! N is the height of the tower. Here, we have fðXðn; v; kÞÞ ¼

X ðn; v; k þ 1Þ for v A Vn and 0a ka hðvÞ � 1. We set

Xn ¼ 6
v AVn

Xðn; v; hðvÞÞ

and call it the top set of n-th step. Then, we also get

fðXnÞ ¼ 6
v AVn

Xðn; v; 1Þ:

The sequence of the top sets fXngn is decreasing and shrinks to one point set

fxmaxg. We also have that Pnþ1 is a finer partition than Pn and fPngn generates

the topology of X.

Let us recall the way of computing the dimension group K 0ðX ; fÞ. We

denote by CðPnÞ the set of integer valued functions on X which are constant on

each clopen set of Pn. The characteristic functions on the clopen sets contained

in the same tower of Pn give the same element of K 0ðX ; fÞ. Therefore, we can

view that CðPnÞ forms a free abelian group Z
Vn . We denote the canonical basis

of Z
Vn by the same symbols fv; v A Vng as vertices. For each n A N , the edge

set En determines the incidence matrix An from Z
Vn to Z

Vnþ1 , which is given by

Anðv;wÞ ¼ ]fk; 1a ka hðwÞ;X ðnþ 1;w; kÞHX ðn; v; hðvÞÞg
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for v A Vn and w A Vnþ1. Hence, the dimension group is computed such as

K 0ðX ; fÞ ¼ limAn : Z
Vn ! Z

Vnþ1
:

If we set un ¼
P

v AVn
hðvÞv A Z

Vn for all n A N , we get unAn ¼ unþ1 and fungn is

the order unit of K 0ðX ; fÞ.

We would like to consider the dimension group of the skew product ðY ;cÞ.

We may assume that the Kakutani-Rohlin partition P1 is finer than the clopen

partition determined by the cocycle c. We can define a map d from VnV0 to G

as follows;

dðvÞ ¼ cðxÞcðfðxÞÞcðf2ðxÞÞ � � � cðfhðvÞ�1ðxÞÞ;

where x is an arbitrary point in Xðn; v; 1Þ. We call dðvÞ the label of the

vertex v determined by the cocycle c. Let w be a vertex of Vnþ1. If yðwÞ ¼

ðv1; v2; . . . ; vmÞ, we get

dðwÞ ¼ dðv1Þdðv2Þ � � � dðvmÞ

from the definition of d.

Lemma 2.3. In the above setting, the skew product ðY ;cÞ is a Cantor

minimal system if and only if fdðvÞ; v A Vng generates G for every n A N .

Proof. Assume fdðvÞ; v A Vng does not generate G for some n. We can

replace the cocycle c to c 0, in the same cohomology class, whose range gen-

erates a proper subgroup of G, and so the extension ðY ;cÞ is not minimal.

Let us prove the converse. We assume that dðVnÞ generates G for all n.

We can identify X and xmax A X with the infinite path space of B ¼ ðV ;E;aÞ

and the unique maximal path. It su‰ces to show that the set

H ¼ fg A G; ðxmax; gÞ A Orbcððxmax; eÞÞg

coincides with G. Since H is a subgroup of G, it is enough to show that H

includes a generating set of G. Let xmax ¼ ðe1; e2; . . .Þ and fðxmaxÞ ¼ ð f1; f2; . . .Þ

be the unique maximal and minimal paths. We also assume that all maximal

edges of En have the same source vertex as en. Take n A Nnf1; 2g and set

yðrð fnÞÞ ¼ ðv1; v2; . . . ; vmÞ. When we define

hi ¼
Xi

j¼1

hðvjÞ; gi ¼ dðv1Þdðv2Þ � � � dðviÞ

for i ¼ 1; 2; . . . ;m, we have chiðxmax; eÞ ¼ ðfhiðxmaxÞ; giÞ and the first n� 2 edges

of fhiðxmaxÞ agree with ðe1; e2; . . . ; en�2Þ. We set Kn ¼ fgi A G; i ¼ 1; 2; . . . ;mg.

From the assumption, Kn is a generating set of G. Because G is a finite set,
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there exists a generating set K of G such that Kn ¼ K holds for infinitely many

n. Then we get ðxmax; gÞ A Orbcððxmax; eÞÞ for all g A K , and so the proof is

completed. r

From now on, we assume that the skew product ðY ;cÞ is a Cantor minimal

system. We define Kakutani-Rohlin partitions fQngn for ðY ;cÞ as the following;

Yðn; v; k; gÞ ¼ X ðn; v; kÞ � fgg;

Qn ¼ fY ðn; v; k; gÞ; v A Vn; 1a ka hðvÞ; g A Gg;

and we set the top set as

Yn ¼ Xn � G ¼ 6
v AVn;g AG

Y ðn; v; hðvÞ; gÞ:

The partition Qn consists of ]ðVn � GÞ towers, and fQngn generates the topology

of Y. However, we should note that the intersection of the top sets fYngn is

not one point. It is equal to fxmaxg � G. Therefore, we cannot use the same

method as the case of ðX ; fÞ. We need a proposition obtained by Putnam in

order to compute the dimension group K 0ðY ;cÞ.

Proposition 2.4 ([P, Theorem 4.1]). Let ðY ;cÞ be a Cantor minimal system

and fyig
m
i¼1 be a finite subset of Y lying in distinct orbits. When we define

D ¼ CðY ;ZÞ=f f � f � c�1
; f A CðY ;ZÞ; f ðyiÞ ¼ 0 for all i ¼ 1; 2; . . . ;mg;

it is an ordered group. Moreover, the sequence

0 ! Z !
j
Z

m !
d
D !

q
K 0ðY ;cÞ ! 0

is exact, where the map j sends the generator of Z to ð1; 1; . . . ; 1Þ and q is the

natural quotient map. The map d is given as follows; for u ¼ ðuiÞi A Z
m, we take

f A CðY ;ZÞ such as f ðyiÞ ¼ ui and define dðuÞ to be the equivalence class of

f � f � c�1.

We would like to apply the proposition above for the extension ðY ;cÞ and

the finite subset fxmaxg � G. Let us define

K 0ðY ;c;GÞ ¼ CðY ;ZÞ=f f � f � c�1
; f A CðY ;cÞ; f ðxmax; gÞ ¼ 0 for all g A Gg;

and call it the restricted dimension group of ðY ;cÞ. The restricted dimension

group K 0ðY ;c;GÞ can be represented as an inductive limit sequence by means

of the Kakutani-Rohlin partitions fQngn. At first, we give this description of

K 0ðY ;c;GÞ.

Since the partition Qn consists of ]ðVn � GÞ towers, we can consider that

CðQnÞ forms a free abelian group Z
Vn�G GZ

Vn nZ½G�. We denote the canon-
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ical basis of Z
Vn nZ½G� by fvn g; v A Vn; g A Gg, and choose the characteristic

function on Yðn; v; hðvÞ; gÞ as the representative of vn g. Let us consider the

incidence matrix Bn from n-th step to nþ 1-th step. If v A Vn and w A Vnþ1

satisfy Xðnþ 1;w; kÞHXðn; v; hðvÞÞ for some k A f1; 2; . . . ; hðwÞg, then, for all

g A G, Yðnþ 1;w; k; gÞHYðn; v; hðvÞ; gÞ holds and there exists h A G such that

chðwÞ�kðY ðnþ 1;w; k; gÞÞ ¼ Yðnþ 1;w; hðwÞ; ghÞ. Of course, if k ¼ hðwÞ, h is

the identity. Otherwise, the element h is given by

h ¼ cðxÞcðcðxÞÞcðc2ðxÞÞ � � � cðchðwÞ�k�1ðxÞÞ;

where x is an arbitrary point in Xðnþ 1;w; k þ 1Þ. We would like to write down

the incidence matrix as the matrix the size of Vn � Vnþ1 which has entries in the

group ring Z½G �. Let w be a vertex in Vnþ1 and assume yðwÞ ¼ ðv1; v2; . . . ; vmÞ.

For a vertex v A Vn, we define non-negative integers flggg as follows;

lg ¼ ]fi; 1a iam; v ¼ vi; g ¼ dðviþ1Þdðviþ2Þ � � � dðvmÞg;

and set Bnðv;wÞ ¼
P

g AG lgg. From the argument above, we see that the matrix

Bn represents the connecting map from n-th step to nþ 1-th step. Then, we get

K 0ðY ;c;GÞ ¼ limBn : Z
Vn nZ½G� ! Z

Vnþ1 nZ½G�;

where vectors are considered as row vectors of Z½G �Vn and the product of vectors

and matrices are computed in the obvious way. The positive cone is obtained by

the inductive limit of the canonical positive cone of Z Vnþ1 nZ½G �, and the order

unit is given by
P

g AG un n g A Z
Vnþ1 nZ½G� at n-th step.

For example, consider the case of the diagram in Fig. 1, where the partial

order in the edge set En is expressed by the map y. If the label of vi is gi A G

for each i ¼ 1; 2, then we have dðw1Þ ¼ g1g1g2, dðw2Þ ¼ g1g2g2g1g2 and dðw3Þ ¼

g1g2g2. The usual incidence matrix An : Z
Vn ! Z

Vnþ1 and the incidence matrix

Bn : Z½G �Vn ! Z½G�Vnþ1 of the extension are given by

An ¼
2 2 1

1 3 2

� �

; Bn ¼
g1g2 þ g2 g2g2g1g2 þ g2 g2g2

e g2g1g2 þ g1g2 þ e g2 þ e

� �

:

Figure 1.

yðw1Þ ¼ ðv1; v1; v2Þ

yðw2Þ ¼ ðv1; v2; v2; v1; v2Þ

yðw1Þ ¼ ðv1; v2; v2Þ
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We can obtain An from Bn, sending each entry of Bn by the canonical ring

homomorphism from Z½G� to Z.

In order to compute the dimension group K 0ðY ;cÞ, we must describe

explicitly the image of the map d in Proposition 2.4. We can realize that d is

the map from Z½G �. For g A G and n A N , let f be the characteristic function on

the clopen set Xn � fgg. Then, we have f ðxmax; gÞ ¼ 1 and f ðxmax; hÞ ¼ 0 for

h0 g, and so the image of g A Z½G� by the map d is given by the equivalence

class of f � f � c�1 in K 0ðY ;c;GÞ. When xv A X is a point in X ðn; v; 1Þ for

each v A Vn, the function f � c�1 is the characteristic function on the clopen

set 6
v AVn

Yðn; v; 1; gcðxvÞÞ. Since chðvÞ�1ðYðn; v; 1; gcðxvÞÞ ¼ Yðn; v; hðvÞ; gdðvÞÞ

for every v A Vn, we can conclude that dðgÞ equals

eðn; gÞ ¼
X

v AVn

vn g� vn gdðvÞ A Z
Vn nZ½G �

at n-th step. The equation eðn; gÞBn ¼ eðnþ 1; gÞ can be checked easily, and so

feðn; gÞgn determines a subgroup Z in K 0ðY ;c;GÞ. We denote by Zn the sub-

group of Z
Vn nZ½G � generated by feðn; gÞ; g A Gg. Remark that

P
g eðn; gÞ

equals zero for all n.

Theorem 2.5. Keep the above notation. The dimension group K 0ðY ;cÞ of

the skew product ðY ;cÞ is obtained as the quotient of

K 0ðY ;c;GÞ ¼ limBn : Z
Vn nZ½G � ! Z

Vnþ1 nZ½G �

by the subgroup fZngn which is isomorphic to Z
]G�1.

Let us consider the action on K 0ðY ;cÞ induced by the canonical commu-

tant fgggg. In the following argument, we use the description of K 0ðY ;cÞ in

the above theorem. Because gh transfers Y ðn; v; hðvÞ; gÞ to Yðn; v; hðvÞ; hgÞ, the

induced action on Z
Vn nZ½G � sends vn g to vn hg for all v A Vn and g A G.

Assume gh A TðcÞ, that is, modðghÞ ¼ id. Then, for all n A N , v A Vn and g A G,

there exists m such that

ðvn ðg� hgÞÞBnBnþ1 � � �Bnþm

is contained in Znþmþ1. The following lemma is needed to prove the main

theorem in the next section.

Lemma 2.6. Let ðY ;cÞ be the skew product as above and H be a normal

subgroup of G such that modðghÞ ¼ id for all h A H. By telescoping the ordered

Bratteli diagram B ¼ ðV ;E;aÞ, we may assume that ðvn ðg� hgÞÞBn A Znþ1 for

all v A Vn, g A G and h A H.

For w A Vnþ1, let K be the cyclic subgroup of G generated by dðwÞ. Then,
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we have Anðv;wÞ A lZ for all v A Vn, where the natural number l is the index of

the subgroup H VK in H.

Proof. Let v be a vertex of Vn, and Bnðv;wÞ ¼
P

g AG lgg. We will proveP
g AG lg A lZ. From the assumption, there exists fmggg AG HZ such that

ðvn ðe� hÞÞBn ¼
X

g AG

mgeðnþ 1; gÞ;

and so we have

ðe� hÞ
X

g AG

lgg ¼
X

g AG

mgðg� gdðwÞÞ;

which implies lg � lh�1g ¼ mg � m
gdðwÞ�1 for all g A G. When we write ~llg ¼P

k AK lgk, we get ~llg ¼ ~llhg and this equation holds for all h A H. Let G ¼

6m

i¼1
HgiK be the decomposition into double cosets by H and K. Since H is

a normal subgroup of G, each double coset consists of l left K-cosets. Hence,

we get
P

g AG lg ¼ l
Pm

i¼1
~llgi A lZ. r

3. Commutants and dimension groups.

We will prove the main theorems about finite subgroups of the commutant

group in this section. When a Cantor minimal system ðY ;cÞ has a finite

subgroup G in CðcÞ, by Lemma 2.2, we can regard it as the skew product

extension obtained by a Cantor minimal system ðX ; fÞ and a cocycle c.

Moreover, the dimension group K 0ðY ;cÞ can be described as in Theorem 2.5 by

means of the ordered Bratteli diagram of ðX ; fÞ. We often use this identification

in the following argument.

Lemma 3.1. Let ðY ;cÞ be a Cantor minimal system and t A CðcÞ be an

element of finite order n. If g A TðcÞ satisfies g � t � g�1 ¼ tk for some k, then k

must be one.

Proof. We may assume there exist a Cantor minimal system ðX ; fÞ and

a continuous function f : X ! Z=nZ such that

Y ¼ X � Z=nZ; cðx; lÞ ¼ ðfðxÞ; l þ f ðxÞÞ; tðx; lÞ ¼ ðx; l þ 1Þ

for all x A X and l A Z=nZ. Let p be the factor map from ðY ;cÞ to ðX ; fÞ.

From the assumption we have p � g � t ¼ p � g, and so there exists ~gg A CðfÞ such

that ~gg � p ¼ p � g. We denote by p� the injection from K 0ðX ; fÞ to K 0ðY ;cÞ

induced by p ([GW, Proposition 3.1]). It can be easily seen that modðgÞ � p� ¼

p� �modð~ggÞ, hence we get modð~ggÞ ¼ id, thus ~gg A TðfÞ. Therefore we can find

a continuous function g : X ! Z=nZ such as
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f � f � ~gg ¼ g� g � f:

We define a homeomorphism g0 on Y ¼ X � Z=nZ by g0ðx; lÞ ¼ ð~ggðxÞ; l þ gðxÞÞ

for ðx; lÞ A Y . It is clear that g0 commutes with t. We can also check that p �

g�1 � g0 ¼ p and

c � g0ðx; lÞ ¼ ðf � ~ggðxÞ; l þ gðxÞ þ f ð~ggðxÞÞÞ

¼ ð~gg � fðxÞ; l þ f ðxÞ þ gðfðxÞÞÞ

¼ g0 � cðx; lÞ

for all ðx; lÞ A Y . Then we conclude that there exists m such that g�1 � g0 ¼ tm

holds, which implies that g commutes with t. r

The following lemma shows that if TðcÞ contains a finite abelian subgroup

H, then H is cyclic.

Lemma 3.2. Let ðY ;cÞ be a Cantor minimal system and G be a finite p-

subgroup of CðcÞ for a prime p. If a normal subgroup H of G is included in TðcÞ

and the quotient of G by H is cyclic, then G is also cyclic.

Proof. Let r be the quotient map from G to G=H. We may consider that

ðY ;cÞ is the extension of ðX ; fÞ by a G-valued cocycle c, and ðX ; fÞ is rep-

resented by an ordered Bratteli diagram. We use the same notation as in Section

2. Because fghgh A H is contained in TðfÞ, we may assume ðvn ðe� hÞÞB1 A Z2

for all v A V1 and h A H. Since ðY ;cÞ is minimal, dðV2Þ generates G, which

implies that there exists a vertex w A V2 such that rðdðwÞÞ is a generator of

the cyclic group G=H. Let K be the cyclic subgroup of G generated by dðwÞ.

By Lemma 2.6, we have A1ðv;wÞ A lZ for every v A V1, where l is the index of

H VK in H. On the other hand, when yðwÞ is equal to ðv1; v2; . . . ; vmÞ, dðwÞ

is the product of dðviÞ’s, and so

rðdðwÞÞ ¼
Xm

i¼1

rðdðviÞÞ ¼
X

v AV1

A1ðv;wÞrðdðvÞÞ:

If l is a multiple of p, rðdðwÞÞ cannot be a generator of G=H. Hence, l is

one and H is included in K, which means that G is a cyclic group generated

by dðwÞ. r

Using the above lemmas, we can prove the following.

Theorem 3.3. If ðY ;cÞ is a Cantor minimal system and H is a finite

subgroup of TðcÞ, then H is a cyclic group.

Proof. We say that a group G has a property M if there exists a Cantor
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minimal system ðY ;cÞ such that G is contained in TðcÞ. The proof is by con-

tradiction. Assume that H is a finite non-cyclic group of minimum order which

has the property M. It is clear that all proper subgroups of H are cyclic. Take

a Cantor minimal system ðY ;cÞ which satisfies HHTðcÞ. Assume K is a non-

trivial normal subgroup of H. Then we can consider the quotient system ðX ; fÞ

of ðY ;cÞ by the action of K. By the same argument as in Lemma 3.1, we

can deduce that the quotient group H=K is contained in TðfÞ, that is, H=K

has property M. From the assumption we infer that H=K is cyclic. Choose a

generator of H=K and its lift h A H. By applying Lemma 3.1 to a generator of

K and h in H, we obtain that H is an abelian group. However, we know that

a finite abelian group having property M must be cyclic by Lemma 3.2, and it

contradicts to the assumption of H. As a consequence, H is a simple group

whose every proper subgroup is cyclic. In light of Exercise 7.(a) in Section 2.2

of [S], we get a contradiction. r

For substitution minimal subshifts of constant length, the automorphism

groups were computed in [LM] and [HP], and it was also shown that there is a

substitution minimal subshift ðX ; fÞ for an arbitrary finite group G such that the

commutant group CðfÞ is isomorphic to GlZf. In these papers, actually,

measure-theoretic automorphims were investigated and we can deduce the same

results directly in the topological dynamical setting. However, the above

theorem says that the same statement never hold for TðfÞ. We will show that

there exists a Cantor minimal system ðY ;cÞ for every n A N , which satisfies

CðcÞ ¼ TðcÞ ¼ Z=nZlZc, in the next sectinon.

Lemma 3.4. Let ðY ;cÞ be a Cantor minimal system and Q be the quaternion

group. If CðcÞ contains Q, then QVTðcÞ is trivial.

Proof. Assume Q is generated by a; b; c A Q satisfying a ¼ b2 ¼ c2, a2 ¼ e

and bc ¼ acb. We may consider that ðY ;cÞ is the extension of a Cantor minimal

system ðX ; fÞ associated with a Q-valued cocycle. We use the same notation as

in Section 2. The proof is by contradiction. If QVTðcÞ is non-trivial, a A Q

must be in TðcÞ. We may assume that ðvn ðe� aÞÞB1 is included in Z2 for all

v A V1. Since dðV2Þ generates Q, we may also assume that there exist vertices

w1;w2 A V2 such that dðw1Þ ¼ b and dðw2Þ ¼ c. Let v A V1 be an arbitrary

vertex. When we set B1ðv;wiÞ ¼
P

g AQ l i
gg for i ¼ 1; 2, there exists fnggg HZ

such that

X

g AQ

ðe� aÞl i
gg ¼

X

g AQ

nggðe� dðwiÞÞ

holds for i ¼ 1; 2. From these equations, we have
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ðl1e � l1aÞ þ ðl1b � l1abÞ þ ðl1c � l1acÞ þ ðl1abc � l1bcÞ

¼ ne � nab þ nb � ne þ nc � nbc þ nabc � nc

¼ nb � nabc þ nabc � nab þ nabc � nab þ nab � nbc

¼ ðl2b � l2abÞ þ ðl2abc � l2bcÞ þ ðl2abc � l2bcÞ þ ðl2ab � l2bÞ A 2Z:

Consequently we get A1ðv;w1Þ ¼
P

g AQ l1g A 2Z. Because v is an arbitrary vertex

of V1, we obtain a contradiction as in Lemma 3.2. r

In the next section, we will give some examples of finite subgroups of

CðcÞ and TðcÞ. The following theorem, however, shows that there exists an

obstruction for a finite group G which has non-trivial intersection with TðcÞ.

Theorem 3.5. Let ðY ;cÞ be a Cantor minimal system, G be a finite subgroup

of CðcÞ and p be a prime. If a p-Sylow group of G has non-trivial intersection

with TðcÞ, then the p-Sylow group is cyclic.

Proof. We may assume G is a p-group which has non-zero intersection

with TðcÞ. From Lemma 3.2, we see that all the abelian subgroups of G are

cyclic. Hence, by using of (4.4) of Section 4.4 in [S], we deduce that G is a

cyclic group or a generalized quaternion group. If G is a generalized quaternion

group, it contains the quaternion group Q and Q has non-trivial intersection with

TðcÞ. By means of Lemma 3.4, we get a contradiction. r

We would like to consider a finite cyclic subgroup Z=mZ of TðcÞ. In the

rest of this section, we denote a generator of Z=mZ by a and the canonical ring

homomorphism from Z½Z=mZ � to Z by r and set P ¼
Pm�1

j¼0 a j .

Let ðY ;cÞ be the Cantor minimal system obtained as the extension of ðX ; fÞ

associated with a cocycle c : X ! Z=mZ. We denote the generator of the

canonical commutant by g A CðcÞ. If a function f A CðY ;ZÞ is fixed by

modðgÞ in K 0ðY ;cÞ, there exists r A Z½Z=mZ � such that

½ f � f � g�1� ¼ dðrÞ;

where the bracket means the equivalence class in the restricted dimension group

K 0ðY ;c;GÞ and d is as in Section 2. Then, we can define the map ~hhðgÞ from

kerðid �modðgÞÞ to Z=mZ by

~hhðgÞð½ f �Þ ¼ rðrÞ þmZ:

The following is another obstruction for actions of commutants. Note that

we can identify the dimension group K 0ðX ; fÞ with Im
Pm�1

j¼0 modðgÞ j.
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Lemma 3.6. When ðY ;cÞ is a Cantor minimal system and g A CðcÞ is an

element of order m, we have

kerðid �modðgÞÞ=Im
Xm�1

j¼0

modðgÞ j GZ=mZ;

and

ker
Xm�1

j¼0

modðgÞ j ¼ Imðid �modðgÞÞ:

Proof. Let ðY ;cÞ be the skew product extension of a Cantor minimal

system ðX ; fÞ associated with a Z=mZ-valued cocycle and ~hhðgÞ be as above.

We use the same notation as in Section 2. Let lv A f0; 1; . . . ;m� 1g be the

natural number such that dðvÞ ¼ alv . For every n, we set

sn ¼
X

v AVn

vn ðeþ aþ � � � þ alvÞ

in K 0ðY ;c;GÞ. It is not hard to check that the quotient image of sn in K 0ðY ;cÞ

drops into kerðid �modðgÞÞ, and its value by ~hhðgÞ is one in Z=mZ. Therefore,

~hhðgÞ is surjective. We would like to show the injectivity. Let s ¼
P

v AVn
vn sv

be an arbitrary element of Z
Vn nZ½Z=mZ �, and assume

X

v AVn

vn ðe� aÞsv ¼
X

v AVn

vn ðe� dðvÞÞr

for some r A Z½Z=mZ �. Then, sv equals ðeþ aþ � � � þ alvÞr modulo a scalar

multiple of P. If rðrÞ is zero modulo m, there exists r 0 A Z½Z=mZ � such that

r is equal to ðe� aÞr 0 modulo a scalar multiple of P. Because vnP is in

Im
Pm�1

j¼0 modðgÞ j, we can see that s equals

X

v AVn

vn ðe� dðvÞÞr 0

modulo Im
Pm�1

j¼0 modðgÞ j, which is zero in K 0ðY ;cÞ.

The other equation is proved in a similar fashion. r

Remark. The above lemma gives a quite strong restriction for the exis-

tence of finite order automorphisms. For example, we have the following.

(i) If K 0ðY ;cÞ is isomorphic to Z½1=r�lZ for an odd number r as an

abelian group, there does not exist an order two element in CðcÞ.

(ii) If K 0ðY ;cÞ is isomorphic to Z
sþ1 as an abelian group and s is not

divisible by a prime p, then there does not exist an element of order p in CðcÞ.
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We would like to consider when there exists a finite order element in the

kernel of the mod map. We say a triple ðG;Gþ; uÞ is a dimension group in an

abstract sense, if ðG;GþÞ is an unperforated ordered group satisfying the Riesz

interpolation property and u is a distinguished element of Gþnf0g called the

order unit ([GPS, Section 1]). For a Cantor minimal system ðX ; fÞ, of course,

ðK 0ðX ; fÞ;K 0ðX ; fÞþ; ½1�Þ becomes a dimension group in this meaning. Two

dimension groups are said to be isomorphic, when there is an isomorphism pre-

serving the positive cones and the order units.

Theorem 3.7. When ðG;Gþ; uÞ is a simple dimension group except Z , and

m is a natural number, the following are equivalent.

(i) There exists a Cantor minimal system ðY ;cÞ such that

ðK 0ðY ;cÞ;K 0ðY ;cÞþ; ½1�Þ is isomorphic to ðG;Gþ; uÞ and TðcÞ has an element

of order m.

(ii) G=mG is isomorphic to Z=mZ as an abelian group and the order unit

u of G is divisible by m.

Proof. The implication (i) ) (ii) follows from Lemma 3.6.

Let us prove the other implication (ii) ) (i). Take an element u0 A Gþ

such as u ¼ mu0. For the simple dimension group ðG;Gþ; u0Þ, there exists a

Bratteli diagram ðV ;EÞ and G is order isomorphic to the inductive limit

limAn : Z
Vn ! Z

Vnþ1 ;

where An denotes the incidence matrix determined by En. Since G=mG is

isomorphic to Z=mZ, by telescoping the diagram ðV ;EÞ, we can choose a rep-

resentative sn ¼
P

v AVn
lvv A Z

Vn of a generator of G=mG satisfying

1a lvam; snAn 1 snþ1 ðmodmÞ

for every n A N . We may further assume that there is cv A f0; 1; 2; . . . ;m� 1g

such as

vAn 1 cvsnþ1 ðmodmÞ

for every v A Vn and n A N , and it follows that

X

v AVn

lvcv 1 1 ðmodmÞ:

Let X be the infinite path space of ðV ;EÞ. Although a partial order on E

has not yet been defined, we can find a cocycle c : X ! Z=mZ which determines

the label d : Vn ! Z=mZ such that dðvÞ ¼ alv .

We would like to define a partial order on the edge set E and construct

a Cantor minimal system ðX ; fÞ so that the canonical commutant of the skew
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product extension ðY ;cÞ of ðX ; fÞ associated with c is included in TðcÞ. In this

case, we must note that the dimension group of ðY ;cÞ is automatically iso-

morphic to ðG;Gþ; uÞ. By telescoping, we may assume that each entry of An is

not less than m2 þm. Fix a natural number n and an arbitrary vertex v0 A Vn.

We will define a linear order on each r�1ðwÞ for w A Vnþ1, so that v0 is the source

vertex of the minimum and maximum edges of r�1ðwÞ for all w and the incidence

matrix Bn from Z½Z=mZ �Vn to Z½Z=mZ �Vnþ1 satisfies

ðvn ðe� aÞÞBn A Znþ1

for every v A Vn.

We construct a finite set Gw of directed edges on the vertex set Z=mZ for

each w A Vnþ1. Because
P

v AVn
lvcv equals one modulo m, we can define a finite

set Gv of directed edges over Z=mZ for every v A Vn, as follows;

]Gv ¼ cv; sðxÞrðxÞ�1 ¼ alv for all x A Gv;

and for each b A Z=mZ

] r�1ðbÞV 6
v AVn

Gv

 !

� ] s�1ðbÞV 6
v AVn

Gv

 !

¼

1 b ¼ e

�1 b ¼ a

0 otherwise

8

<

:

:

Moreover, we can associate an element rv A Z½Z=mZ � with v A Vn by

rv ¼
X

x AGv

rðxÞ:

For each v A Vn and w A Vnþ1, we set

Gv;w ¼ Gv � f1; 2; . . . ; lwg

and

rðx; kÞ ¼ rðxÞak�1; sðx; kÞ ¼ sðxÞak�1

for all ðx; kÞ A Gv;w. Let G 0
v be the set of directed edges over the vertex set Z=mZ

such as

G 0
v ¼ fx0; x1; . . . ; xm�1g;

rðxkÞ ¼ ak; sðxkÞ ¼ akþlv :

Since Anðv;wÞ is equal to ]Gv;w modulo m, by adding some disjoint copies of G 0
v

to Gv;w, we get the set G 0
v;w consisting of Anðv;wÞ directed edges. The element

rv;w A Z½Z=mZ � associated with Gv;w is defined by
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rv;w ¼
X

y AG 0
v;w

rðyÞ

and it equals to

ðeþ aþ � � � þ alw�1Þrv

modulo a scalar multiple of P and satisfies rðrv;wÞ ¼ Anðv;wÞ. Let Gw be the

disjoint union of G 0
v;w for all v A Vn. For b A Z=mZ, we have

]fx A Gw; rðxÞ ¼ bg � ]fx A Gw; sðxÞ ¼ bg

¼
X

lw

k¼1

X

v AVn

]ðr�1ðba�kþ1ÞVGvÞ � ]ðs�1ðba�kþ1ÞVGvÞ

¼

1 b ¼ e, b0 dðwÞ

�1 b ¼ dðwÞ, b0 e :

0 otherwise

8

<

:

Since the directed graph Gw includes at least two copies of G 0
v for every v A Vn,

thanks to the unicursal theorem, we can find a directed path ~yy ¼ ðy1; y2; . . . ; ylÞ

which starts from dðwÞ and ends at e and in which each element of Gw appears

exactly once. Moreover, we can choose the path so that y1 and yl is contained

in G 0
v0;w

. We can obtain from the directed path ~yy the ordered list ðe1; e2; . . . ; elÞ

of edges in r�1ðwÞ such that the source vertex of ek in the Bratteli diagram ðV ;EÞ

is v A Vn when yk is in G 0
v;w. In this way, the partial order on En is well defined

and it gives a simple order on the Bratteli diagram ðV ;EÞ. It is clear that

Bnðv;wÞ is equal to rv;w, and so we get

ðvn ðe� aÞÞBn ¼
X

w AVnþ1

wn ðe� dðwÞÞrv A Zn;

there by completing the proof. r

Let us consider the invariant h defined in [M]. The homomorphism h was

defined on TðcÞ and takes its value in ExtðK 0ðY ;cÞ;ZÞ. The Ext group is the

cokernel of the natural map from HomðK 0ðY ;cÞ;RÞ to HomðK 0ðY ;cÞ;R=ZÞ.

In Section 5 of [M], we constructed a representative FðgÞ of hðgÞ in

HomðK 0ðY ;cÞ;R=ZÞ for g A TðfÞ, by fixing an invariant measure m on Y.

Let ðY ;cÞ be the Cantor minimal system obtained as the extension of

ðX ; fÞ associated with a cocycle c : X ! Z=mZ. Assume the canonical com-

mutant g is in TðcÞ. Then, the map ~hhðgÞ is identified with the quotient map

from K 0ðY ;cÞ to K 0ðY ;cÞ=mK 0ðY ;cÞGZ=mZ.

Lemma 3.8. In the above setting, ~hhðgÞ is a representative of hðgÞ.
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Proof. Fix a c-invariant measure m on Y. By taking the average of

fm � g jgm
j¼0, we may assume that m is also invariant under the action of the

canonical commutant. We denote Z=mZ by G. Let FðgÞ be the element of

HomðK 0ðY ;cÞ;R=ZÞ determined by m (Section 5 of [M]). It su‰ces to show

that ~hhðgÞð½ f �Þ coincides with FðgÞð½ f �Þ for the characteristic function f on the

clopen set Yðn; v; hðvÞ; bÞ for all n A N , v A Vn and b A G.

We can assume that there exists fnkgk HZ such that ðvn ðb� abÞÞBn is

equal to
P

k AG nkeðn; kÞ. Then, by definition, we have

~hhðgÞð½ f �Þ ¼
1

m

X

k AG

nk þ Z:

Let ðvn bÞBn ¼
P

w AVnþ1;k AG
lw;kwn k. We define the function ~ff A CðY ;ZÞ by

~ff ¼
X

w AVnþ1;k AG

lw;kwYðnþ1;w;hðwÞ;kÞ;

where w means a characteristic function. Since we have ½ f � ¼ ½ ~ff � in K 0ðY ;cÞ,

there exists a function F0 A CðY ;ZÞ such that f � ~ff ¼ F0 � F0 � c
�1, which

implies

f � f � g�1 ¼ F0 � F0 � g
�1 � ðF0 � F0 � g

�1Þ � c�1 þ ~ff � ~ff � g�1;

and mðF0 � F0 � g
�1Þ ¼ 0 by the definition of m. Moreover, we have

~ff � ~ff � g�1 ¼
X

w AVnþ1;k AG

ðlw;k � lw;a�1kÞwY ðnþ1;w;hðwÞ;kÞ

¼
X

w AVnþ1;k AG

ðnk � n
kdðwÞ�1ÞwY ðnþ1;w;hðwÞ;kÞ;

and it is equal to F1 � F1 � c
�1, where F1 is a function such as

F1 ¼
X

w AVnþ1;k AG

XhðwÞ

j¼1

nkwYðnþ1;w;hðwÞ;kdðwÞÞ � c
j:

Therefore, we get

FðgÞð½ f �Þ ¼ mðF1Þ þ Z ¼
X

w AVnþ1;k AG

hðwÞnkmðYðnþ 1;w; hðwÞ; kdðwÞÞÞ þ Z

¼
1

m

X

w AVnþ1;k AG

hðwÞnkmðX ðnþ 1;w; hðwÞÞ � GÞ þ Z

¼
1

m

X

k AG

nk þ Z;

and so ~hhðgÞ is equal to FðgÞ. r
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The following corollary says that h is either zero or injective on finite order

elements of TðcÞ.

Corollary 3.9. When ðY ;cÞ is a Cantor minimal system and g A TðcÞ is

an element of finite order, we have hðgÞ ¼ 0 if and only if HomðK 0ðY ;cÞ;ZÞ0 0,

and in this case HomðK 0ðY ;cÞ;ZÞ is isomorphic to Z.

Proof. Let g be an element of order m. If hðgÞ ¼ 0, the representative

~hhðgÞ has a lifting to HomðK 0ðY ;cÞ;RÞ. Since ~hhðgÞ is a surjection to Z=mZ, the

lifting gives a non-trivial element of HomðK 0ðY ;cÞ;ZÞ.

Conversely, if HomðK 0ðY ;cÞ;ZÞ is non-zero, we get a surjection from

K 0ðY ;cÞ to Z=mZ. Because ~hhðgÞ coincides with the quotient map to K 0ðY ;cÞ=

mK 0ðY ;cÞGZ=mZ, it should have a lifting to HomðK 0ðY ;cÞ;ZÞ. Therefore,

hðgÞ is zero in the Ext group. It is easy to check HomðK 0ðY ;cÞ;ZÞGZ. r

4. Examples.

(1) Let n;m be natural numbers and l ¼ nm. We give a Cantor minimal

system ðY ;cÞ such that CðcÞ ¼ Z=lZlZc and TðcÞ ¼ Z=mZlZc, by using

a bijective substitution ([LM]). For a finite or infinite word x, we denote the

i-th letter of x by xi. Let x be a substitution of constant length l þm on

the alphabet set L ¼ f0; 1; 2; . . . ; l � 1g such as

xð0Þi ¼

i � k ðk � 1Þðnþ 1Þ þ 1a ia kðnþ 1Þ, k ¼ 1; 2; . . . ;m� 1

i �m ðm� 1Þðnþ 1Þ þ 1a ia l þm� 1

0 i ¼ l þm

8

<

:

and xð jÞi ¼ xð0Þi þ j for j ¼ 0; 1; . . . ; l � 1 and i ¼ 1; 2; . . . ; l þm, where the

addition is understood modulo l. For example,

xð0Þ ¼ 01233450; xð1Þ ¼ 12344501; xð2Þ ¼ 23455012;

xð3Þ ¼ 34500123; xð4Þ ¼ 45011234; xð5Þ ¼ 50122345;

when n ¼ 3 and m ¼ 2. Note that Morse substitution is obtained when we

put n ¼ 1 and m ¼ 2. Let ðY ;cÞ be the substitution subshift determined by

x. We refer the reader to [DHS] for basic facts about substitution subshifts

and Bratteli diagrams. We define a homeomorphism g on LZ such as gðxÞi ¼

xi þ 1 for x A LZ and i A Z. It is easy to check that gðY Þ ¼ Y and g A CðcÞ.

By Theorem 5 of [LM], CðcÞ is isomorphic to Z=lZlZ and g is a generator

of Z=lZ. The substitution rule x can be extended to a continuous map x :

Y ! Y . Let y A Y be the fixed point of x such that y�1 ¼ y0 ¼ 0. In the case

of n ¼ 3 and m ¼ 2, the infinite sequence y is
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� � � 5012234501233450 j 0123345012344501234550123450012334500123 � � � ;

where the vertical bar separates yð�y;�1� from y½0;yÞ.

We define a map p : Y ! f0; 1gZ such as

pðxÞi ¼
0 xi � xi�1 ¼ 0

1 xi � xi�1 ¼ 1; 1� l

�

for x A Y . It can be easily seen that p is a well-defined factor map from ðY ;cÞ

to the subshift on f0; 1gZ . We denote by ðX ; fÞ the image of ðY ;cÞ by p. We

can see that pðxÞ ¼ pðx 0Þ if and only if x and x 0 have the same g-orbit in Y,

and so the system ðX ; fÞ is the quotient system of ðY ;cÞ by the action of g.

By the definition of p, we get

pðyÞ ¼ � � � 1 j 0 11 � � � 1
zfflfflffl}|fflfflffl{

n

0 11 � � � 1
zfflfflffl}|fflfflffl{

n

� � � 0 11 � � � 1
zfflfflffl}|fflfflffl{

n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðnþ1Þ�m

1 11 � � � 1
zfflfflffl}|fflfflffl{

n

� � � :

Define the substitution rule z of constant length l þm by

zð0Þ ¼ 0 11 � � � 1
zfflfflffl}|fflfflffl{

n

0 11 � � � 1
zfflfflffl}|fflfflffl{

n

� � � 0 11 � � � 1
zfflfflffl}|fflfflffl{

n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðnþ1Þ�ðm�1Þ

0 11 � � � 1
zfflfflffl}|fflfflffl{

n

zð1Þ ¼ 0 11 � � � 1
zfflfflffl}|fflfflffl{

n

0 11 � � � 1
zfflfflffl}|fflfflffl{

n

� � � 0 11 � � � 1
zfflfflffl}|fflfflffl{

n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðnþ1Þ�ðm�1Þ

1 11 � � � 1
zfflfflffl}|fflfflffl{

n

on the alphabet set f0; 1g. Let z A f0; 1gZ be the fixed point of z such that

z�1 ¼ 1 and z0 ¼ 0, where z is extended to a continuous map on f0; 1gZ . Then,

we have

z ¼ lim
k!y

f1þnþnðlþmÞþ���þnðlþmÞk ðpðyÞÞ;

which implies that ðX ; fÞ is the substitution subshift associated with z. When

we put

cðxÞ ¼
e x0 ¼ 0

a x0 ¼ 1

�

for x A X , where a denotes the generator of Z=lZ, the system ðY ;cÞ is the

extension of ðX ; fÞ associated with the cocycle c.

We would like to compute the dimension groups of ðX ; fÞ and ðY ;cÞ.

Since the substitution rule z is proper, we can easily write down the ordered

Bratteli diagram ðV ;E;aÞ of ðX ; fÞ ([DHS, Proposition 16]). Every vertex set Vn
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consists of two points, namely vn;0 and vn;1, which correspond to the alphabets

0 and 1. For example, since 0 appears m times in the word zð0Þ, the number of

edges between vn;0 and vnþ1;0 equals to m. The dimension group K 0ðX ; fÞ is the

inductive limit of Z
2 with the incidence matrix

A ¼
m m� 1

l l þ 1

� �

:

Therefore, we have

K 0ðX ; fÞGZ
1

l þm

� �

lZ;

ðp; qÞ A K 0ðX ; fÞþ if and only if p ¼ q ¼ 0 or pþ
ðm� 1Þq

l þm� 1
> 0

and the order unit is ð1; 0Þ.

Let us consider the skew product extension ðY ;cÞ. The label of each vertex

is determined by the cocycle c and we get dðvn;0Þ ¼ e, dðvn;1Þ ¼ a for all n.

In order to compute the restricted dimension group, we would like to write the

connecting matrix B. If n ¼ 3 and m ¼ 2, we have

zð0Þ ¼ 01110111; zð1Þ ¼ 01111111;

and we can make the following tables;

zð0Þ ¼ 0 1 1 1 0 1 1 1

e a5 a4 a3 a3 a2 a e

and

zð1Þ ¼ 0 1 1 1 1 1 1 1

a e a5 a4 a3 a2 a e:

Hence, the 0–0 entry of the matrix B is equal to eþ a3, which is the sum

of elements under the letter 0 appearing zð0Þ. The 1–0 entry of B equals

a5 þ a4 þ a3 þ a2 þ aþ e by the same reason. The other entries can be obtained

in a similar way. In general, we have

B ¼

Xm

j¼1
a jn

Xm

j¼2
a jnþ1

X l

j¼1
a j eþ

X l

j¼1
a j

2

6

4

3

7

5

and the restricted dimension group K 0ðY ;c;Z=lZÞ is obtained as the induc-

tive limit of Z
2 nZ½Z=lZ � with the incidence matrix B. It is easy to check

that ðe� an; 0ÞB and ð0; e� anÞB are contained in the subspace spanned by
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fð0; ak � akþ1Þgk, and so we have gn A TðcÞ. Let ðZ; tÞ be the quotient system

of ðY ;cÞ by the action of gn. The dimension group K 0ðZ; tÞ is naturally iso-

morphic to the subgroup mK 0ðY ;cÞ of K 0ðY ;cÞ, because gn acts identically

on K 0ðY ;cÞ. Since the dimension group is torsion free, it su‰ces to compute

K 0ðZ; tÞ instead of K 0ðY ;cÞ. We let c 0 be the composition of c and the quotient

map from Z=lZ to Z=nZ. The system ðZ; tÞ is isomorphic to the extension of

ðX ; fÞ associated with the cocycle c 0. We denote Z=nZ by G. The restricted

dimension group K 0ðZ; t;GÞ is obtained by the inductive limit of Z
2 nZ½G �

with the incidence matrix

C ¼
me ðm� 1Þb

m
Xn

j¼1
b j eþm

Xn

j¼1
b j

" #

;

where b is the generator of G. By using Theorem 2.5, we can express the

dimension groups K 0ðZ; tÞ and K 0ðY ;cÞ within the abelian group Z½1=ðl þmÞ�

lZl ðZ½1=m�nZ½G �Þ such as

p

ðl þmÞk
; q;

1

mk
rðe� bÞ

 !

;

p; q A Z; k A N ; r A Z½G�;

pþ lq ¼ ðl þm� 1ÞrðrÞ

( )

with the strict ordering from the first coordinate, where r is the canonical ring

homomorphism from Z½G� to Z. The order unit of K 0ðZ; tÞ and K 0ðY ;cÞ are

given by ðnðl þm� 1Þ; 0; 0Þ and ðlðl þm� 1Þ; 0; 0Þ respectively. The canonical

commutant g A CðcÞ acts on the dimension group K 0ðY ;cÞ as the multiplication

by b in the last coordinate, and so TðcÞ is isomorphic to Z=mZlZc. By

Corollary 3.9, we can see that hðgnÞ is zero.

When x is the Morse substitution, ðY ;cÞ and ðX ; fÞ are isomorphic to the

systems described in Example (4) of [M].

(2) Let S3 be the symmetric group of degree three generated by a and b

satisfying a3 ¼ b2 ¼ e and bab ¼ a�1. The element a forms the normal subgroup

Z=3Z of S3. We construct a Cantor minimal system ðY ;cÞ such as CðcÞ ¼

S3 lZc and TðcÞ ¼ Z=3ZlZc.

Define a proper substitution x on the alphabet set L ¼ f0; 1; 2g such that

xð0Þ ¼ 010021112112

xð1Þ ¼ 000002101212

xð2Þ ¼ 010210121112;

and let ðX ; fÞ be the associated substitution subshift. Thanks to Proposition

16 of [DHS], we obtain the stationary ordered Bratteli diagram ðV ;E;aÞ which
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represents ðX ; fÞ. The vertex set Vn is canonically identified with L, and so

we put Vn ¼ fvn;0; vn;1; vn;2g for each n A N . The incidence matrix from Z
Vn to

Z
Vnþ1 is represented as

A ¼

3 6 3

6 3 6

3 3 3

2

6

4

3

7

5

for all n A N under the identification of Vn with L. The dimension group

K 0ðX ; fÞ is obtained as the inductive limit of Z
3 with the incidence matrix A.

Hence, we get

K 0ðX ; fÞG
p

12n
;

q

ð�3Þn

� �

; p; q A Z; p1 2q ðmod 5Þ

� �

with the strict ordering from the first coordinate and the order unit is ð20; 0Þ.

Let Z ¼ f0; 1; . . . ; 11gZ and t be the odometer system on Z. Because

]r�1ðvn; iÞ ¼ 12 for all n A Nnf1g and i ¼ 0; 1; 2, we can construct a factor map

r from ðX ; fÞ to ðZ; tÞ in the same way of Section 2 of [GJ]. The same con-

struction of factor maps can be found in Section 7 of [M], too. For every point

z A Z, the preimage r�1ðzÞ consists of at most three points. Because the sub-

stitution rule x satisfies

fxð0Þi; xð1Þi; xð2Þig ¼ f0; 1; 2g if and only if i ¼ 5; 6; 8;

r�1ðzÞ includes three distinct points if and only if the tail of z A Z consists of

only 4; 5 and 7. When g is in CðfÞ, there is s A CðtÞ satisfying s � r ¼ r � g

and the subset

fz A Z; ]r�1ðzÞ ¼ 3g

must be preserved by s. It follows that s is a power of t. On the other hand,

if g A CðfÞ satisfies r � g ¼ r, g is the identity because there exists a point z A Z

such that ]r�1ðzÞ ¼ 1. As a consequence, we obtain CðfÞ ¼ Zf.

We set a S3-valued cocycle c on X as follows;

cðxÞ ¼

a x0 ¼ 0

b x0 ¼ 1

a�1 x0 ¼ 2

8

<

:

for all x A X . By a straightforward computation, we have

dðvn;0Þ ¼ abaaa�1bbba�1bba�1 ¼ a;

dðvn;1Þ ¼ aaaaaa�1baba�1ba�1 ¼ b;

dðvn;2Þ ¼ abaa�1baba�1bbba�1 ¼ a�1
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for all n A N , and so the extension ðY ;cÞ associated with the cocycle c is a

Cantor minimal system by Lemma 2.3. By the same argument in the last para-

graph, we see that the automorphism group CðcÞ is isomorphic to S3 lZc.

The restricted dimension group K 0ðY ;c;S3Þ is computed as the inductive

limit of Z
3 nZ½S3� by the incidence matrix

B ¼

eþ abþ a2b eþ bþ 2abþ 2a2b eþ aþ ab

2aþ a2 þ bþ abþ a2b aþ a2 þ b aþ 2a2 þ bþ abþ a2b

eþ a2 þ a2b eþ abþ a2b eþ abþ a2b

2

6

4

3

7

5
:

To get the first column of this matrix B, we need to make the following table;

xð0Þ ¼ 0 1 0 0 2 1 1 1 2 1 1 2

e b a2b ab a2b a a2b a a2 ab a2 e:

The tables for xð1Þ and xð2Þ can be wrote in the same way. By summing up the

elements under the letter 0 in xð0Þ, the 0–0 entry eþ abþ a2b of B is obtained.

The other entries of B are also obtained in this method. When we put

vðgÞ ¼ ðg� ga; g� gb; g� ga�1Þ A Z
3 nZ½S3�

for g A S3, we can check the equations

ðe� a; 0; 0ÞB ¼ vðeÞ þ vðabÞ;

ð0; e� a; 0ÞB ¼ �vðeÞ þ vðaÞ

and

ð0; 0; e� aÞB ¼ �vðaÞ � vðbÞ;

which imply ga A TðcÞ. In the same method as the example (1), we have

K 0ðY ;cÞG
p

12 l
;

q

ð�3Þ l
;

r

ð�2Þ l

 !

; p; q; r A Z; p1 2q ðmod5Þ

( )

with the strict ordering from the first coordinate and the order unit is ð10; 0; 0Þ.

The element b A S3 induces modðgbÞ which changes the signal of the last co-

ordinate.

Because there are no non-trivial homomorphisms from K 0ðY ;cÞ to Z, by

Corollary 3.9, hðgaÞ is not zero in ExtðK 0ðY ;cÞ;ZÞ. Since ðY ;cÞ is not strong

orbit equivalent to odometer systems, this example gives a positive answer to the

problem (1) raised in [M].

For the dihedral group Dn ¼ ha; b; e ¼ an ¼ b2; bab ¼ a�1i of order 2n, we

can construct a Cantor minimal system ðY ;cÞ such that CðcÞ ¼ Dn lZc and
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TðcÞ ¼ Z=nZlZc, whenever n is odd. Theorem 3.5 tells us that we can never

construct it for even n.

(3) Let D6 be the dihedral group as above. We will show that there

is a Cantor minimal system ðY ;cÞ satisfying CðcÞ ¼ D6 lZc and TðcÞ ¼

Z=3ZlZc.

We define a proper substitution x of constant length such as

xð0Þ ¼ 010121122102122

xð1Þ ¼ 001220000122122

xð2Þ ¼ 011001201001212

on the alphabet set f0; 1; 2g. We denote by ðX ; fÞ the substitution minimal

subshift determined by x. When the cocycle c is defined by

cðxÞ ¼

a x0 ¼ 0

b x0 ¼ 1

a�1 x0 ¼ 2

8

<

:

for all x A X , we can show that the extension ðY ;cÞ is minimal and CðcÞ is

isomorphic to D3 lZc in the same way as the example (2). Moreover, we

have g2a A TðcÞ and hðg2aÞ is not zero. We omit the computation.

(4) We give a Cantor minimal system ðY ;cÞ such that ker h is isomorphic

to ZlZc.

Define an ordered Bratteli diagram ðV ;E;aÞ as follows; the vertex set Vn

ðn0 0Þ consists of two vertices, namely vn;0; vn;1, and the incidence matrix from

n-th step to nþ 1-th step is given by Anþ1, where A is

A ¼
2 1

1 2

� �

:

The partial order on the edge set E is defined by

yðvnþ1;0Þ ¼ ðvn;0; vn;0; . . . ; vn;0
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

3 n

; vn;0; . . . ; vn;0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

mnþ1

; vn;1; . . . ; vn;1
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

mn

; vn;1; vn;1; . . . ; vn;1
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

3 n

Þ

and

yðvnþ1;1Þ ¼ ðvn;0; vn;0; . . . ; vn;0
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

3 n

; vn;1; . . . ; vn;1
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

mnþ1

; vn;0; . . . ; vn;0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

mn

; vn;1; vn;1; . . . ; vn;1
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

3 n

Þ;

for n A N , where mn is ð3n � 1Þ=2. When we denote the infinite path space by X

and the Bratteli-Vershik map by f, we can see that ðX ; fÞ is a Cantor minimal

system, since ðV ;E;aÞ is simple. The dimension group K 0ðX ; fÞ is isomorphic

to Z½1=3�lZ, where the unique state is given by Z½1=3�lZ C ðp; qÞ 7! pþ q=2
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and the order unit is ð1; 0Þ. We can construct a factor map from ðX ; fÞ to an

odometer system of type 3y. By the same reason as the above examples, we

have CðfÞGZf.

Let G be the projective limit of Z=3n
Z and a be ð1; 1; . . .Þ A G. The

addition by a is the odometer system of type 3y on G. We denote by rn the

canonical projection from G to Z=3n
Z. Define a G-valued cocycle c on X such

as cðxÞ ¼ a if the infinite path x goes through v1;0 and cðxÞ ¼ a�1 otherwise.

The extension ðY ;cÞ of ðX ; fÞ associated with the G-valued cocycle c can be

defined in the same way as the case of finite groups and the canonical commutant

fgggg AG A CðcÞ is obtained. Let ðYn;cnÞ be the extension of ðX ; fÞ associated

with the Z=3n
Z-valued cocycle rn � c. By sending ðx; gÞ A Y to fðx; rnðgÞÞgn,

we get the isomorphism from ðY ;cÞ to the projective limit of ðYn;cnÞ. By

Proposition 3.7 of [M], ðY ;cÞ is a Cantor minimal system and the dimension

group K 0ðY ;cÞ is the inductive limit of K 0ðYn;cnÞ. Moreover, we have CðcÞ ¼

GlZc.

We would like to show that the canonical commutant gg is in TðcÞ for every

g A G. Take an element g A G. When we write gn as the generator of the ca-

nonical commutant of ðYn;cnÞ, the restriction of modðggÞ on K 0ðYn;cnÞ is a power

of modðgnÞ. Therefore, it su‰ces to show that gn acts identically on K 0ðYn;cnÞ

for all n A N . The label of the vertices vm;0 and vm;1 determined by the cocycle

rn � c are rnðaÞ and rnða
�1Þ respectively. We write Bl A M2ðZ½Z=3n

Z �Þ as the

incidence matrix of the extension ðYn;cnÞ from l-th step to l þ 1-th step. When

l is larger than n, the matrix Bl is given by

Xmn

j¼0
rnðaÞ

�j
Xmn�1

j¼0
rnðaÞ

j

Xmn�1

j¼0
rnðaÞ

�j
Xmn

j¼0
rnðaÞ

j

2

6

4

3

7

5
;

modulo scalar multiples of
P3 n

j¼1 rnðaÞ
j. Then,

ðe� rnðaÞ; 0ÞBl A Zlþ1

and

ð0; e� rnðaÞÞBl A Zlþ1

are easily checked for all l > n, where Zl is a subspace of Z
2 nZ½Z=3n

Z �

spanned by

ðrnða
jÞ � rnða

jþ1Þ; rnða
jÞ � rnða

j�1ÞÞ j ¼ 1; . . . ; 3n:

As a consequence, gn A TðcnÞ is derived, and so TðcÞ ¼ CðcÞ ¼ GlZc.

The dimension group K 0ðY ;cÞ is isomorphic to Z½1=3�lZ½1=3� with the

unique state given by ðp; qÞ 7! pþ q=2 and the order unit is ð1; 0Þ. The in-

variant h argued in Lemma 3.8 takes its value in
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Ext Z
1

3

� �

lZ
1

3

� �

;Z

� �

GExt Z
1

3

� �

;Z

� �

lExt Z
1

3

� �

;Z

� �

:

Let k be the natural quotient map from G to ExtðZ½1=3�;ZÞ whose kernel is

generated by a A G. For all g A G, we have

hðggÞ ¼ ð0; kðgÞÞ;

which implies ker h is isomorphic to Z
2 generated by ga and c. This example

shows that the value of h can be zero for non-trivial infinite order elements, even

if HomðK 0ðY ;cÞ;ZÞ is zero.

We remark that all Cantor minimal systems in the above examples are orbit

equivalent to odometer systems by Theorem 2.2 of [GPS].
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