Factorization in analytic crossed products

By Tomoyoshi Ohwada and Kichi-Suke Sarto

(Received Mar. 6, 2000) (Revised Jun. 7, 2000)

Abstract. Let M be a von Neumann algebra, let α be a *-automorphism of M, and let $M \rtimes_{\alpha} Z$ be the crossed product determined by M and α . In this paper, considering the Cholesky decomposition for a positive operator in $M \rtimes_{\alpha} Z$, we give a factorization theorem for positive operators in $M \rtimes_{\alpha} Z$ with respect to analytic crossed product $M \rtimes_{\alpha} Z_+$ determined by M and α . And we give a necessary and sufficient condition that every positive operator in $M \rtimes_{\alpha} Z$ can be factored by the form A^*A , where A belongs to $M \rtimes_{\alpha} Z_+ \cap (M \rtimes_{\alpha} Z_+)^{-1}$.

1. Introduction.

Let $B(\mathcal{H})$ be a set of all bounded linear operators on a Hilbert space \mathcal{H} . The problem of factorization of operators with respect to a subalgebra $\mathfrak A$ of $B(\mathcal{H})$ consists in writing a positive operator C in the form A^*A with A in \mathfrak{A} . If $\mathfrak{A}=B(\mathscr{H})$, then this problem is trivial, however if $\mathfrak{A}\subsetneq B(\mathscr{H})$, then it becomes complicated. Arveson ([2]) has introduced the notion of the outer operator in analogy with the outer functions in Hardy spaces. He showed that each positive invertible operator in $B(\mathcal{H})$ can be factored by the form A^*A , where A belongs to $\mathfrak A$ and the inverse A^{-1} is also in $\mathfrak A$. The factorization of a positive invertible finite matrix C as A^*A with A and its inverse in upper triangular form is known as the Cholesky decomposition. Power ([9], [10], [11]) has found a constructive Hilbert space version of the Cholesky decomposition to be of fundamental significance in the analysis of analytic operator algebras and the factorization property. He proved that every positive operator C has a factorization $C = A^*A$ with A outer in a nest algebra if and only if the nest is well-ordered. Factorization problems for other types of nest algebras are also studied by many authors (cf. [1], [5]–[8], etc). McAsey, Muhly and the second author in [12]–[14] studied such a factorization problem with respect to an analytic crossed product. Let M be a von Neumann algebra, let α be a *-automorphism of M, and let $M \rtimes_{\alpha} Z$ be the crossed product determined by M and α . They showed that every positive

²⁰⁰⁰ Mathematics Subject Classification. Primary 47L65; Secondary 47C15.

Key Words and Phrases. Analytic crossed products.

This work was supported in part by a Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

invertible operator in $M \rtimes_{\alpha} \mathbf{Z}$ can be factored by the form A^*A , where A belongs to the analytic crossed product $M \rtimes_{\alpha} \mathbf{Z}_+$ determined by M and α and the inverse A^{-1} also is in $M \rtimes_{\alpha} \mathbf{Z}_+$.

In this paper, we consider the Cholesky decomposition for a positive operator in $M \rtimes_{\alpha} \mathbf{Z}$, and we investigate the factorization problem with respect to an analytic crossed product $M \rtimes_{\alpha} \mathbf{Z}_{+}$.

2. Preliminaries and definitions.

Let M be a von Neumann algebra and let α be a *-automorphism of M. We regard M as acting on the non-commutative L^2 -space $L^2(M)$ in the sense of Haagerup (cf. [4]). For $x \in M$, let ℓ_x (resp. r_x) be the operator on $L^2(M)$ defined by the formula $\ell_x y = xy$ (resp. $r_x y = yx$), $y \in L^2(M)$. Then ℓ (resp. r) is a faithful normal representation (resp. anti-representation) of M on the Hilbert space $L^2(M)$. Put

$$\ell(M) = \{\ell_x \mid x \in M\} \quad \text{and} \quad r(M) = \{r_x \mid x \in M\},$$

respectively. If J is defined on $L^2(M)$ by the formula $Jy = y^*$, $y \in L^2(M)$, then J is a conjugate linear isometric involution on $L^2(M)$. Let $L^2(M)_+$ be the cone of all positive operators in $L^2(M)$. Since the quadruple $\{\ell(M), L^2(M), J, L^2(M)_+\}$ is a standard form of M in the sense of Haagerup ([3]), the von Neumann algebra $\ell(M)$ and r(M) are commutants of one another, and $J\ell(M)J = r(M)$. Moreover, by [3, Theorem 3.2], there exists a unitary operator u on $L^2(M)$ such that $\ell_{\alpha(x)} = u\ell_x u^*$ and $r_{\alpha(x)} = ur_x u^*$, $x \in M$. To construct a crossed product, we consider the Hilbert space L^2 defined by

$$\boldsymbol{L}^{2} = \left\{ f : \boldsymbol{Z} \to L^{2}(M) \, \middle| \, \sum_{n \in \boldsymbol{Z}} \|f(n)\|_{2}^{2} < \infty \right\},\,$$

where $\|\cdot\|_2$ is the norm of $L^2(M)$. For each $x \in M$, we define operators L_x , R_x , L_δ and R_δ on L^2 by the formulae

$$(L_x f)(n) = \ell_x f(n), \quad (R_x f)(n) = r_{\alpha^n(x)} f(n)$$
 $(L_{\delta} f)(n) = u f(n-1)$ and $(R_{\delta} f)(n) = f(n-1),$

where $f \in L^2$ and $n \in \mathbb{Z}$. Put $L(M) = \{L_x \mid x \in M\}$ and $R(M) = \{R_x \mid x \in M\}$. We set $\mathfrak{L} = \{L(M), L_\delta\}''$ and $\mathfrak{R} = \{R(M), R_\delta\}''$, and define the left (resp. right) analytic crossed product \mathfrak{L}_+ (resp. \mathfrak{R}_+) to be the σ -weakly closed subalgebra of \mathfrak{L} (resp. \mathfrak{R}) generated by L(M) (resp. R(M)) and L_δ (resp. R_δ). Furthermore, we define

$$\mathbf{H}^2 = \{ f \in \mathbf{L}^2 \mid f(n) = 0, n < 0 \},\$$

and let P be the projection from L^2 onto H^2 . We refer the reader to [12]–[16] for discussions of these algebras including some of their elementary properties.

3. Factorizations.

We start with some general constructions for positive operator matrices. Although the following lemma is well-known, it contains an important idea of our approach. So we shall give full details of proof.

Lemma 3.1. Let \mathcal{H} be a Hilbert space with orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and C be a positive operator on \mathcal{H} with the matrix form

$$C = \begin{pmatrix} c & b^* \\ b & a \end{pmatrix} \overset{\mathcal{H}_1}{\underset{\mathcal{H}_2}{\oplus}}$$

with respect to $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$. Then there exists the operator $c_1 = \lim_{n \to \infty} b^* \cdot (a + n^{-1}I_1)^{-1}b$ in the strong operator topology and

$$C_1 = \begin{pmatrix} c_1 & b^* \\ b & a \end{pmatrix} \le C.$$

In particular, C_1 is minimal amongst those positive operators that agree with C on the subspace \mathcal{H}_2 .

PROOF. If a is invertible, then the operator matrix

$$A = \begin{pmatrix} I_1 & 0 \\ -a^{-1}b & I_2 \end{pmatrix}$$

is also invertible and

$$A^*CA = \begin{pmatrix} c - b^*a^{-1}b & 0\\ 0 & a \end{pmatrix}.$$

Hence C is a positive operator if and only if $c - b^*a^{-1}b \ge 0$.

In general, for each $n \in N$, applying the preceding operation to the positive operator

$$C + n^{-1}I = \begin{pmatrix} c + n^{-1}I_1 & b \\ b^* & a + n^{-1}I_2 \end{pmatrix},$$

we have $b^*(a+n^{-1}I_2)^{-1}b \le c+n^{-1}I_1$. Since $\{b^*(a+n^{-1}I_2)^{-1}b\}$ is a bounded increasing sequence of positive operators, it converges in the strong operator topology to an operator $c_1 \le c$. Putting

$$C_1 = \begin{pmatrix} c_1 & b^* \\ b & a \end{pmatrix} \mathcal{H}_1 \oplus \mathcal{H}_2$$

the positive operator C_1 satisfies the required minimality condition.

The minimality of the positive operator C_1 in Lemma 3.1 is important for our discussion. So we give the following:

DEFINITION 3.2. Let C be a positive operator in $B(\mathcal{H})$ and let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$. Then a positive operator C_1 is said to be the \mathcal{H}_2 -minimal part of C if $C_1|_{\mathcal{H}_2} = C|_{\mathcal{H}_2}$ and

$$P_{\mathcal{H}_1}C_1P_{\mathcal{H}_1} = \operatorname{s-lim}_{t\to 0} P_{\mathcal{H}_1}C(tP_{\mathcal{H}_2} + P_{\mathcal{H}_2}CP_{\mathcal{H}_2})^{-1}CP_{\mathcal{H}_1},$$

where $P_{\mathcal{H}_i}$ is the projection from \mathcal{H} onto \mathcal{H}_i (i=1,2). Moreover if $C=C_1$, then we say that C is \mathcal{H}_2 -minimal.

Let C be a positive operator such that

$$C = \begin{pmatrix} c & b^* \\ b & a \end{pmatrix} \overset{\mathcal{H}_1}{\underset{\mathcal{H}_2}{\oplus}}$$

with respect to $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$. Let e_t denote the spectral projection for the operator a corresponding to the interval (t, ∞) . Then, for each t > 0, we have

$$||b^*a^{-1/2}e_t||^2 = \lim_{n \to \infty} ||b^*(a+n^{-1})^{-1/2}e_t(a+n^{-1})^{-1/2}b||$$

$$\leq \lim_{n \to \infty} ||b^*(a+n^{-1})^{-1}||$$

$$\leq ||c_1||.$$
(3.1)

Therefore $b^*a^{-1/2}e_t$ converges to an operator d in the strong topology as $t \to 0$. For each $x \in \mathcal{H}_1$, we have

$$da^{-1/2}x = \lim_{t \to 0} b^* a^{-1/2} e_t a^{-1/2} x$$
$$= b^* e_{0+} x.$$

Furthermore, the inequality

$$0 \le b^*(a+n^{-1}I_1)^{-1}b \le c+n^{-1}I_2$$

implies that

$$0 \le b^* (na + I_1)^{-1} b \le n^{-1} c + n^{-2} I_2.$$

Taking the strong limit as $n \to \infty$, we see that

$$b^*(I_1 - e_{0+})b = 0,$$

and so we have

$$da^{1/2} = b^* e_{0+} = b^* e_{0+} + b^* (I_1 - e_{0+})$$
$$= b^*.$$

Since $a^{1/2}d^* = b$, the map $a^{-1/2}:b\mathscr{H}_2 \to d^*\mathscr{H}_2$ is well-defined such that $d^* = a^{-1/2}b$. From the inequality (3.1), we have that $c_1 \ge (b^*a^{-1/2}e_t)a^{-1/2}b$. Taking the strong limit as $t \to 0$, we see that $dd^* \le c_1$.

On the other hand, since

$$\begin{pmatrix} dd^* & b^* \\ b & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ d^* & a^{1/2} \end{pmatrix}^* \begin{pmatrix} 0 & 0 \\ d^* & a^{1/2} \end{pmatrix} \ge 0,$$

by the minimality of C_1 , we have $dd^* \ge c_1$. Thus we obtain that $c_1 = dd^*$, and so C_1 has the following matrix representation:

$$C_1 = \begin{pmatrix} dd^* & b^* \\ b & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ d^* & a^{1/2} \end{pmatrix}^* \begin{pmatrix} 0 & 0 \\ d^* & a^{1/2} \end{pmatrix}.$$

From the present argument, we see that for each positive operator C on the Hilbert space $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ is always factored by the form

$$C = \begin{pmatrix} 0 & 0 \\ d^* & a^{1/2} \end{pmatrix}^* \begin{pmatrix} 0 & 0 \\ d^* & a^{1/2} \end{pmatrix} + \begin{pmatrix} c - dd^* & 0 \\ 0 & 0 \end{pmatrix},$$

and we note that the matrix $\begin{pmatrix} 0 & 0 \\ d^* & a^{1/2} \end{pmatrix}$ has the lower triangular form and the matrix $\begin{pmatrix} c - dd^* & 0 \\ 0 & 0 \end{pmatrix}$ is positive.

Suppose now that a Hilbert space \mathcal{H} have the decomposition

$$\mathscr{H} = \sum_{n=-\infty}^{\infty} \, \oplus \mathscr{H}_n$$

and let

$$\mathcal{M}_n = \sum_{k=-\infty}^n \oplus \mathcal{H}_k$$
 and $\mathcal{N}_n = \sum_{k=n}^\infty \oplus \mathcal{H}_k$.

For each positive operator C on \mathcal{H} , let $C^{(n+1)}$ be the \mathcal{N}_{n+1} -minimal part of C. Since $C - C^{(n+1)}$ is a positive operator, we can also construct the \mathcal{N}_n -minimal part of $C - C^{(n+1)}$ denoted by C_n . Repeating this way, we have the operator C_k (k < n) as the \mathcal{N}_k -minimal part of $C - (C_{k+1} + \cdots + C_n + C^{(n+1)})$. Putting $R^{(k-1)} = C - (C_k + C_{k+1} + \cdots + C_n + C^{(n+1)})$, we obtain the decomposition

$$C = R^{(k-1)} + C_k + C_{k+1} + \dots + C_n + C^{(n+1)}$$

which we call the *Cholesky decomposition* of C with respect to $\mathcal{H} = \mathcal{M}_{k-1} \oplus \mathcal{H}_k \oplus \cdots \oplus \mathcal{H}_n \oplus \mathcal{N}_{n+1}$. The following lemma appears in [11].

Lemma 3.3. Keep the notation as above. Then, for each $k, n \in \mathbb{Z}$ (k < n), the operator $C_k + C_{k+1} + \cdots + C_n + C^{(n+1)}$ is the \mathcal{N}_k -minimal part of C.

Now we return to the context and notation of analytic crossed products. Applying the Cholesky decomposition for positive operators in \mathfrak{L} , we have the following:

Theorem 3.4. For each positive operator C in \mathfrak{L} , there exists a positive operator C_{∞} in \mathfrak{L} and an operator A in \mathfrak{A} such that $C = A^*A + C_{\infty}$.

PROOF. Putting $\mathcal{H}_n = L^2(M)$ ($\forall n \in \mathbb{Z}$), we may write

$$L^2 = \sum_{n=-\infty}^{\infty} \oplus \mathscr{H}_n.$$

Thus, considering the decomposition

$$L^2 = \mathcal{M}_{-(n+1)} \oplus \mathcal{H}_{-n} \oplus \cdots \oplus \mathcal{H}_n \oplus \mathcal{N}_{n+1}$$

we have the Cholesky decomposition of C as follows:

$$C = R^{-(n+1)} + C_{-n} + \cdots + C_n + C^{(n+1)}.$$

It is clear that $R^{-(n+1)}$ converges to zero in the strong topology as $n \to \infty$. Since $C^{(n)} \ge C^{(n+1)}$ and $C^{(n)}$ is bounded, there exists the limit C_{∞} of $\{C^{(n)}\}$ in the strong topology as $n \to \infty$ such that $C = \sum_{k=-\infty}^{\infty} C_k + C_{\infty}$. By Lemma 3.3, the operator $\sum_{k=n}^{\infty} C_k + C_{\infty}$ is the \mathcal{N}_n -minimal part of C. For each $n \in \mathbb{Z}$, there exists an operator

$$A_{n} = \begin{pmatrix} 0 & 0 & 0 \\ d_{n}^{*} & a_{n}^{1/2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{array}{c} \mathcal{M}_{n-1} \\ \bigoplus \\ \mathcal{H}_{n} \\ \bigoplus \\ \mathcal{N}_{n+1} \end{array}$$

with respect to $L^2 = \mathcal{M}_{n-1} \oplus \mathcal{H}_n \oplus \mathcal{N}_{n+1}$ such that $C_n = A_n^* A_n$. Since

$$\left(\sum_{k=-n}^{n} A_k\right)^* \left(\sum_{k=-n}^{n} A_k\right) = \sum_{k=-n}^{n} A_k^* A_k$$
$$= \sum_{k=-n}^{n} C_k,$$

we have $\|\sum_{k=-n}^n A_k\|^2 \le \|C\| < \infty$, it follows that $\{\sum_{k=-n}^n A_k\}$ converges to an operator A in the weak operator topology as $n \to \infty$ such that $A^*A = \sum_{n=-\infty}^{\infty} C_n$. We note that the operator A has the lower triangular form with respect to the decomposition

$$L^2 = \cdots \oplus \mathscr{H}_{-n} \oplus \cdots \oplus \mathscr{H}_n \oplus \cdots$$

We next show that C_{∞} belongs to \mathfrak{L} . For each $f \in \mathcal{N}_n$, $R_{\delta}f \in \mathcal{N}_{n+1}$, it follows that

$$R_{\delta}^* C^{(n+1)} R_{\delta} f = R_{\delta}^* C R_{\delta} f$$
$$= R_{\delta}^* R_{\delta}^* C f$$
$$= C f.$$

By the minimality of $C^{(n)}$, we have $R_{\delta}^*C^{(n+1)}R_{\delta} \geq C^{(n)}$. Similarly, for each $f \in \mathcal{N}_{n+1}$, we have $R_{\delta}C^{(n)}R_{\delta}^* \geq C^{(n+1)}$, this implies $R_{\delta}C^{(n+1)}R_{\delta}^* = C^{(n)}$. Thus we see that $R_{\delta}C_{\infty}R_{\delta}^* = C_{\infty}$. Moreover, for each $n \in \mathbb{Z}$ and each unitary operator w in M, we have

$$R_{w}^{*}C^{(n)}R_{w}f = R_{w}^{*}CR_{w}f$$

$$= R_{w}^{*}R_{w}Cf$$

$$= Cf \quad (\forall f \in \mathcal{N}_{n}).$$

Therefore we have $R_w^*C^{(n)}R_w \ge C^{(n)}$. Replacing w with w^* , we also see that $R_wC^{(n)}R_w^* \ge C^{(n)}$, so that $R_w^*C_\infty R_w = C_\infty$. Hence C_∞ commutes with all generators of \mathfrak{R} , and so C_∞ belongs to \mathfrak{L} which is the commutant of \mathfrak{R} .

Next we claim that A belongs to \mathfrak{Q}_+ . Indeed, since $C_n = C^{(n)} - C^{(n+1)}$ and $R_{\delta}C^{(n+1)}R_{\delta}^* = C^{(n)}$, we have

$$R_{\delta}C_{n}R_{\delta}^{*} = R_{\delta}(C^{(n)} - C^{(n+1)})R_{\delta}^{*}$$

$$= R_{\delta}C^{(n)}R_{\delta}^{*} - R_{\delta}C^{(n+1)}R_{\delta}^{*}$$

$$= C^{(n-1)} - C^{(n)}$$

$$= C_{n-1}.$$

Now we consider the matrix forms of C_{n-1} and C_n as follows:

$$C_{n-1} = \begin{pmatrix} d_{n-1}d_{n-1}^* & b_{n-1}^* & 0 & | & 0 \\ b_{n-1} & a_{n-1} & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \stackrel{\mathcal{M}_{n-2}}{\underset{\oplus}{\oplus}}, \quad C_n = \begin{pmatrix} d_nd_n^* & b_n^* & | & 0 \\ b_n & a_n & | & 0 \\ \hline 0 & 0 & | & 0 \end{pmatrix} \stackrel{\mathcal{M}_{n-1}}{\underset{\oplus}{\oplus}}.$$

$$\stackrel{\oplus}{\underset{\mathcal{N}_{n+1}}{\oplus}}$$

From the relation $R_{\delta}C_nR_{\delta}^*=C_{n-1}$ it follows that $a_n=a_{n-1},\ b_n=b_{n-1}$ so that

$$d_{n-1} = a_{n-1}^{-1/2} b_{n-1}$$
$$= a_n^{-1/2} b_n$$
$$= d_n.$$

Thus we have $R_{\delta}A_{n-1}R_{\delta}^*=A_n$. Taking a strong limit as $n\to\infty$, we have that $R_{\delta}AR_{\delta}^*=A$. Furthermore, for every unitary operator $v\in M$, the operator R_v has the following matrix form:

$$R_v = egin{pmatrix} \cdot \cdot \cdot & & & 0 & & dots & \mathcal{H}_{-1} & & dots & \mathcal{H}_{-1} & & dots & \mathcal{H}_{-1} & & dots & & dots & \mathcal{H}_{-1} & & dots & & dots & \mathcal{H}_{0} & dots & & dots & \mathcal{H}_{0} & dots & & dots &$$

Since $R_v C_n R_v^* = C_n$ and considering the matrix form of C_n with respect to $\mathcal{M}_{n-1} \oplus \mathcal{H}_n \oplus \mathcal{N}_{n+1}$ as above, we see that

Hence we see that

Thus we have $R_v A_n R_v^* = A_n$ so that $R_v A R_v^* = A$. Hence A commutes with all generators of \Re , and so A belongs to \Re . Moreover, since A has the lower triangular form with respect to

$$\mathscr{H} = \cdots \oplus \mathscr{H}_{-n} \oplus \cdots \oplus \mathscr{H}_n \oplus \cdots$$

we see that A belongs to \mathfrak{Q}_+ .

As in [11, Lemma 5], we have the following:

PROPOSITION 3.5. Let C be a positive operator in \mathfrak{L} with the decomposition $C = A^*A + C_{\infty}$ as in Theorem 3.5. If there are B in \mathfrak{L}_+ and a positive operator D in \mathfrak{L} such that $C = B^*B + D$, then $A^*A \geq B^*B$.

PROOF. Since, by Lemma 3.3, $A^*P_{H^2}A + C_{\infty} = \sum_{n=0}^{\infty} C_n + C_{\infty}$ is the H^2 -minimal part of C, we see that

$$A^*P_{H^2}A + C_{\infty} \leq B^*P_{H^2}B + D.$$

Thus, for all n, we have

$$R_{\delta}^{-n}A^{*}P_{H^{2}}AR_{\delta}^{n} + C_{\infty} = R_{\delta}^{-n}(A^{*}P_{H^{2}}A + C_{\infty})R_{\delta}^{n}$$

 $\leq R_{\delta}^{-n}(B^{*}P_{H^{2}}B + D)R_{\delta}^{n}$
 $\leq R_{\delta}^{-n}B^{*}P_{H^{2}}BR_{\delta}^{n} + D.$

Taking the limit in the strong topology as $n \to \infty$, we see that $R_{\delta}^{-n}A^*P_{H^2}AR_{\delta}^n$ and $R_{\delta}^{-n}B^*P_{H^2}BR_{\delta}^n$ converge to 0 respectively. Hence we have $C_{\infty} \le D$, and it follows that $A^*A \ge B^*B$.

In Theorem 3.4, we have an interest in the condition for the factorization $C = A^*A$. As an analogue of Arveson's terminology of outer operator, we introduce the concept of the outer operator in analytic crossed products, and we consider the problem.

DEFINITION 3.6. An operator A in \mathfrak{L}_+ is called outer if the range projection E_A of A lies in L(M), and AH^2 is dense in $[AL^2] \cap H^2$ where $[AL^2]$ denotes the closed subspace spanned by AL^2 .

We note that if A is an outer operator, then E_A belongs to \mathfrak{L}_+ . Thus we see that $E_A \mathbf{H}^2 \subset \mathbf{H}^2$, it follows that E_A commutes with $P_{\mathbf{H}^2}$.

The following lemma which appeared in [11] essentially characterizes the outer operators.

Lemma 3.7. Let A be an operator in \mathfrak{Q}_+ such that E_A belongs to L(M). Then the following conditions are equivalent:

- (i) $[AH^2] = [AL^2] \cap H^2$.

Now we give a necessary and sufficient condition on a positive operator C for the existence of a factorization $C = A^*A$ with an outer operator A in \mathfrak{L}_+ .

Theorem 3.8. For each positive operator C in \mathfrak{L} , we put

$$C' = \text{s-}\lim_{t \to 0} (P_{\boldsymbol{H}^2}^{\perp} C P_{\boldsymbol{H}^2})^* (t P_{\boldsymbol{H}^2} + P_{\boldsymbol{H}^2} C P_{\boldsymbol{H}^2})^{-1} (P_{\boldsymbol{H}^2}^{\perp} C P_{\boldsymbol{H}^2}).$$

Then C admits a factorization $C = A^*A$, with an outer operator A, if and only if the operator $R_{\delta}^{-n}C'R_{\delta}^{n}$ converges in the strong operator topology to 0 as $n \to \infty$. Moreover if C is invertible in \mathfrak{Q} , then C satisfies this conditions.

PROOF. Suppose that $T = A^*A$ for some outer operator A in \mathfrak{Q}_+ . equation $T = (I - P_{H^2})A^*(I - P_{H^2})A(I - P_{H^2}) + A^*P_{H^2}A$ implies that

$$C = \begin{pmatrix} (I - P_{H^2})C(I - P_{H^2}) & (I - P_{H^2})(A^*P_{H^2}A)P_{H^2} \\ P_{H^2}(A^*P_{H^2}A)(I - P_{H^2}) & P_{H^2}(A^*P_{H^2}A)P_{H^2} \end{pmatrix}.$$

Since A is outer, by (iii) of Lemma 3.7, we see that

$$C' = (I - P_{H^2})(A^*P_{H^2}A)(I - P_{H^2}).$$

Thus, for each $f \in L^2$, we have

$$\begin{split} \|R_{\delta}^{-n}C'R_{\delta}^{n}f\| &= \|R_{\delta}^{-n}P_{H^{2}}^{\perp}A^{*}P_{H^{2}}AP_{H^{2}}^{\perp}R_{\delta}^{n}f\| \\ &= \|R_{\delta}^{-n}P_{H^{2}}^{\perp}A^{*}P_{H^{2}}R_{\delta}^{n}AR_{\delta}^{-n}P_{H^{2}}^{\perp}R_{\delta}^{n}f\| \\ &\leq \|A\| \|P_{H^{2}}R_{\delta}^{n}AR_{\delta}^{-n}P_{H^{2}}^{\perp}R_{\delta}^{n}f\| \\ &\leq \|A\| (\|P_{H^{2}}R_{\delta}^{n}AR_{\delta}^{-n}P_{H^{2}}^{\perp}R_{\delta}^{n}f - P_{H^{2}}R_{\delta}^{n}Af\| + \|P_{H^{2}}R_{\delta}^{n}Af\|) \\ &\leq \|A\|^{2} \|P_{H^{2}}^{\perp}R_{\delta}^{n}f - f\| + \|A\| \|R_{\delta}^{-n}P_{H^{2}}R_{\delta}^{n}Af\| \\ &\to 0 \quad (n \to \infty). \end{split}$$

Conversely, we assume that

$$\operatorname{s-}\lim_{n\to\infty} R_{\delta}^{-n}C'R_{\delta}^{n} = 0. \tag{3.2}$$

The positive operator C can be factored in the form $A^*A + C_{\infty}$ as in Theorem 3.4. Let P_{-n} be the projection form L^2 onto $R_{\delta}^{-n}H^2$, and let $P_{-n}^{\perp} = I - P_{-n}$. Then we see that

$$R_{\delta}^{-n}P_{H^2}R_{\delta}^n=P_{-n}\quad (\forall n\in N).$$

Since
$$C = P_{-n}^{\perp} C P_{-n}^{\perp} + P_{-n}^{\perp} C P_{-n} + P_{-n} C P_{-n}^{\perp} + P_{-n} C P_{-n}$$
, we have
$$s\text{-}\lim_{t \to 0} P_{-n} C P_{-n}^{\perp} \{ t P_{-n}^{\perp} + P_{-n}^{\perp} C P_{-n}^{\perp} \}^{-1} P_{-n}^{\perp} C P_{-n} = R_{\delta}^{-n} C' R_{\delta}^{n}$$

Thus $C^{(n)}$ has the following matrix form:

$$C^{(n)} = \begin{pmatrix} P_{-n}^{\perp} C P_{-n}^{\perp} & P_{-n}^{\perp} C P_{-n} \\ P_{-n} C P_{-n}^{\perp} & R_{\delta}^{-n} C' R_{\delta}^{n} \end{pmatrix}.$$

Hence,

$$||C^{(n)}f||^{2} = ||P_{-n}^{\perp}CP_{-n}^{\perp}f + P_{-n}^{\perp}CP_{-n}f||^{2} + ||P_{-n}CP_{-n}^{\perp}f + R_{\delta}^{-n}C'R_{\delta}^{n}f||^{2}$$

$$\leq ||P_{-n}^{\perp}Cf||^{2} + (||C|| ||P_{-n}^{\perp}f|| + ||R_{\delta}^{-n}C'R_{\delta}^{n}f||)^{2}.$$

This follows that $||C^{(n)}f||^2 \to 0$ $(n \to \infty)$ by hypothesis (3.2). This implies that $C_{\infty} = 0$, and so we have the factorization $C = A^*A$. In this case, the operator

$$A^*P_{H^2}^{\perp}A = \sum_{n=0}^{\infty} C_n$$

is H^2 -minimal part of C. Thus, by (iii) of Lemma 3.6, we see that A is outer. We next assume that C is invertible. Since T_C is invertible in $B(H^2)$, by Lemma 3.1, we see that

$$C' = H_C T_C^{-1} (H_{C^*})^*.$$

Thus, for each $f \in L^2$, we have

$$||R_{\delta}^{-n}C'R_{\delta}^{n}f|| = ||R_{\delta}^{-n}H_{C}T_{C}^{-1}(H_{C^{*}})^{*}R_{\delta}^{n}f||$$

$$\leq ||H_{C}T_{C}^{-1}|| ||(H_{C^{*}})^{*}R_{\delta}^{n}f||$$

$$= ||H_{C}T_{C}^{-1}|| ||P_{H^{2}}C(I - P_{H^{2}})R_{\delta}^{n}f||$$

$$\leq ||H_{C}T_{C}^{-1}|| (||P_{H^{2}}CR_{\delta}^{n}f|| + ||P_{H^{2}}CP_{H^{2}}R_{\delta}^{n}f||)$$

$$= ||H_{C}T_{C}^{-1}|| (||P_{H^{2}}R_{\delta}^{n}Cf|| + ||R_{\delta}^{-n}P_{H^{2}}CP_{H^{2}}R_{\delta}^{n}f||)$$

$$= ||H_{C}T_{C}^{-1}|| (||R_{\delta}^{-n}P_{H^{2}}R_{\delta}^{n}Cf|| + ||R_{\delta}^{-n}P_{H^{2}}CP_{H^{2}}R_{\delta}^{n}f||)$$

$$\to 0 \quad (n \to \infty).$$

This implies that $R_{\delta}^{-n}C'R_{\delta}^{n}$ converges to zero in the strong operator topology.

Factorization problems with respect to an analytic crossed product have been

studied in [12]-[14]. They showed that every invertible element T in \mathfrak{L} can be decomposed as T = UA where U is a unitary operator and A is an invertible operator in \mathfrak{L}_+ . Moreover they proved that every invertible positive operator in \mathfrak{L} can be factored in the form A^*A , where A belongs to $(\mathfrak{L}_+) \cap (\mathfrak{L}_+)^{-1}$. As a corollary of Theorem 3.5, we can obtain the same result.

COROLLARY 3.9 ([14, Corollary 5.3]). Every positive invertible operator in \mathfrak{L} can be factored in the form A^*A , where A is outer in $\mathfrak{L}_+ \cap (\mathfrak{L}_+)^{-1}$.

Finally, we show that the factorization of positive operators in Corollary 3.9 is unique as following:

PROPOSITION 3.10. Let $C = A^*A$ be the factorization in Corollary 3.9. If there exists an operator B in $\mathfrak{Q}_+ \cap (\mathfrak{Q}_+)^{-1}$ such that $C = B^*B$, then there is a unitary operator U in $\mathfrak{Q}_+ \cap (\mathfrak{Q}_+)^{-1}$ such that B = UA.

PROOF. Since $A^*A = B^*B$, we see that ||Af|| = ||Bf|| for each f in L^2 . Since A and B are invertible, there exists a unitary operator U such that B = UA. Moreover, we see that $U = BA^{-1} \in \mathfrak{L}_+ \cap (\mathfrak{L}_+)^{-1}$ because A and B belong to $\mathfrak{L}_+ \cap (\mathfrak{L}_+)^{-1}$.

References

- [1] M. Anoussis and E. G. Katsoulis, Factorization in nest algebras, Proc. Amer. Math. Soc., 125 (1997), 87–92.
- [2] W. B. Arveson, Interpolation problems in nest algebras, J. Funct. Anal., 20 (1975), 208–233.
- [3] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271–283.
- [4] U. Haagerup, L^p-spaces associated with an arbitrary von Neumann algebra, (Colloques internationaux du CNRS, No274, Marseille 20–24 Juin 1977);, algèbre d'opèrateurs et leurs applications en physique mathèmatique (1979), Éditions du CNRS, Paris, 175–184.
- [5] G. Ji and K.-S. Saito, Factorization in subdiagonal algebras, J. Funct. Anal., **159** (1998), 191–202.
- [6] E. C. Lance, Cohomology and perturbation of nest algebras, Proc. London Math. Soc., 43 (1981), 334–356.
- [7] D. R. Larson, Nest algebras and similarity transformations, Ann. Math., 121 (1985), 409–427.
- [8] D. R. Pitts, Factorization problems for nests: Factorization methods and characterizations of the universal factorization property, J. Funct. Anal., 79 (1988), 57–90.
- [9] S. C. Power, Nuclear operators in nest algebras, J. Operator Theory, 10 (1983), 337–352.
- [10] S. C. Power, Factorization in analytic operator algebras, J. Funct. Anal., 67 (1986), 413-432.
- [11] S. C. Power, Spectral characterization of the Wold-Zasuhin decomposition and prediction-error operator, Math. Proc. Camb. Phil. Soc., 110 (1991), 559–567.
- [12] M. McAsey, P. S. Muhly and K.-S. Saito, Non-selfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc., **248** (1979), 381–409.
- [13] M. McAsey, P. S. Muhly and K.-S. Saito, Non-selfadjoint crossed products II, J. Math. Soc. Japan, 33 (1981), 485–495.
- [14] M. McAsey, P. S. Muhly and K.-S. Saito, Non-selfadjoint crossed products III, J. Operator Theory, 12 (1984), 3–22.

- [15] K.-S. Saito, Toeplitz operators associated with analytic crossed products, Math. Proc. Camb. Phil. Soc., **108** (1990), 539–549.
- [16] K.-S. Saito, Toeplitz operators associated with analytic crossed products II (Invariant subspaces and factorization), Integral Equation and Operator Theory, 14 (1991), 251–275.
- [17] M. Terp, L^p -spaces associated with von Neumann algebras, Rapport No. 3, University of Odense, (1981).

Tomoyoshi Ohwada

Department of Mathematics General Education Tsuruoka National college of Technology Tsuruoka, 997-8511, Japan E-mail: ohwada@tsuruoka-nct.ac.jp

Kichi-Suke Saito

Department of Mathematics Faculty of Science Niigata University Niigata, 950-2181, Japan

E-mail: saito@math.sc.niigata-u.ac.jp