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Abstract. Let M be a von Neumann algebra, let o be a *-automorphism of M, and
let M X, Z be the crossed product determined by M and «. In this paper, considering the
Cholesky decomposition for a positive operator in M X, Z, we give a factorization theorem
for positive operators in M X, Z with respect to analytic crossed product M >, Z, de-
termined by M and «. And we give a necessary and sufficient condition that every
positive operator in M X, Z can be factored by the form A*A, where A belongs to
M>,Z N(M>,Z,) "

1. Introduction.

Let B(s#) be a set of all bounded linear operators on a Hilbert space #.
The problem of factorization of operators with respect to a subalgebra A of
B() consists in writing a positive operator C in the form 4*4 with 4 in A. If
A = B(A), then this problem is trivial, however if U & B(), then it becomes
complicated. Arveson ([2]) has introduced the notion of the outer operator in
analogy with the outer functions in Hardy spaces. He showed that each positive
invertible operator in B(#’) can be factored by the form A*A, where 4 belongs
to A and the inverse 47! is also in A. The factorization of a positive invertible
finite matrix C as 4*A4 with 4 and its inverse in upper triangular form is known
as the Cholesky decomposition. Power ([9], [10], [11]) has found a constructive
Hilbert space version of the Cholesky decomposition to be of fundamental signifi-
cance in the analysis of analytic operator algebras and the factorization prop-
erty. He proved that every positive operator C has a factorization C = 4*A with
A outer in a nest algebra if and only if the nest is well-ordered. Factorization
problems for other types of nest algebras are also studied by many authors (cf.
[1], [5]-[8], etc). McAsey, Muhly and the second author in [12]-{14] studied such
a factorization problem with respect to an analytic crossed product. Let M be
a von Neumann algebra, let « be a x-automorphism of M, and let M >, Z be
the crossed product determined by M and «. They showed that every positive
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invertible operator in M X, Z can be factored by the form 4*A4, where 4 belongs
to the analytic crossed product M X, Z, determined by M and o and the inverse
A" also is in M X, Z,.

In this paper, we consider the Cholesky decomposition for a positive oper-
ator in M <, Z, and we investigate the factorization problem with respect to an
analytic crossed product M <, Z,.

2. Preliminaries and definitions.

Let M be a von Neumann algebra and let o be a *x-automorphism of M.
We regard M as acting on the non-commutative L>-space L*(M) in the sense of
Haagerup (cf. [4]). For x e M, let /, (resp. ry) be the operator on L?(M) defined
by the formula /,y = xy (resp. r,y = yx), y € L*(M). Then ¢ (resp. r) is a faith-
ful normal representation (resp. anti-representation) of M on the Hilbert space
L*(M). Put

{(M)={/|xeM} and r(M)=/{ri|xe M},

respectively. If J is defined on L?>(M) by the formula Jy = y*, y e L*(M), then
J is a conjugate linear isometric involution on L*(M). Let L*(M), be the
cone of all positive operators in L?>(M). Since the quadruple {/(M),L*(M),J,
L*(M),} is a standard form of M in the sense of Haagerup ([3]), the von
Neumann algebra /(M) and (M) are commutants of one another, and J/(M)J =
r(M). Moreover, by [3, Theorem 3.2], there exists a unitary operator u on L>(M)
such that 7,y = u/,u* and r,) = ur,u*, xe M. To construct a crossed product,
we consider the Hilbert space L’ defined by

S sl < oo},

L’ = {f:Z—>L2(M)
neZ

where || - ||, is the norm of L?(M). For each x € M, we define operators Ly, R,
Ls and Rs; on L? by the formulae

(Laf)(n) = £ f(n),  (Ref)(n) = 1) f ()
(Lof)(n) =uf(n—1) and (Rsf)(n) = f(n—1),
where feL? and neZ. Put L(M)={L.|xe M} and R(M) = {R,|xe M}.
We set & = {L(M),Ls}" and R = {R(M),Rs}", and define the left (resp. right)
analytic crossed product £, (resp. R, ) to be the g-weakly closed subalgebra of £

(resp. R) generated by L(M) (resp. R(M)) and Ls (resp. Rs). Furthermore, we
define

H?>={feL?|f(n)=0,n<0}
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and let P be the projection from L* onto H?. We refer the reader to [12]-[16]
for discussions of these algebras including some of their elementary properties.

3. Factorizations.

We start with some general constructions for positive operator matrices.
Although the following lemma is well-known, it contains an important idea of
our approach. So we shall give full details of proof.

LemMma 3.1. Let # be a Hilbert space with orthogonal decomposition H# =
H @ H> and C be a positive operator on H with the matrix form

«\ A1
C:(C b)@
b a A,

with respect to H = H1 @ #>. Then there exists the operator c¢; =lim,_ ., b*-
(a—l—n‘lll)_lb in the strong operator topology and

C1 b*
C, = <C.
1 (b a)‘

In particular, Cy is minimal amongst those positive operators that agree with C on
the subspace .

Proor. If a is invertible, then the operator matrix
I 0
A=
( —a‘lb 12 )

c—b*a'h 0>
0 a)

1s also invertible and
ATCA = (

Hence C is a positive operator if and only if ¢ —b*a~'b > 0.
In general, for each n e N, applying the preceding operation to the positive
operator

C—|—n_llz(c+n 1 b )7

b* a+n_112

we have b*(a+n"'L)'b<c+n'I. Since {b*(a+n"'L)"'b} is a bounded
increasing sequence of positive operators, it converges in the strong operator
topology to an operator ¢; < c¢. Putting
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C1 b* %/l

C = ( b ) S)

a ) A,

the positive operator C; satisfies the required minimality condition. ]

The minimality of the positive operator C; in is important for
our discussion. So we give the following:

DeFINITION 3.2. Let C be a positive operator in B(#) and let # =
#H1 @ #>. Then a positive operator C; is said to be the #5-minimal part of C if

Py, CiPy; = s-lim Py, C(tPy, + Py, CPy,) ' CPy,
where Py, is the projection from # onto #; (i =1,2). Moreover if C = Cj,
then we say that C is #5-minimal.
Let C be a positive operator such that
b*\
(i 0)2
b a)

with respect to # = #] @ #>. Let e, denote the spectral projection for the
operator a corresponding to the interval (¢,00). Then, for each 7 > 0, we have

||b*a_1/2et||2 — lim ||b*(a_l_n—l)—l/Ze[(a_|_n—1)—1/2b||

n— o0

< fim [b"(a+ )|

n—oC

< HclH (3.1)

Therefore b*a~'/?e, converges to an operator d in the strong topology as ¢ — 0.
For each x e #, we have

da='?x = lim b*a "e,a " *x
t—0

= b"epyX.
Furthermore, the inequality
0<b*(a+n'I)'b<c+n'L
implies that

0<b*(na+5)"'b<n'c+n’h.
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Taking the strong limit as n — oo, we see that
b*(Iy — egs)b = 0,
and so we have
da'? = b*epr = b epy +b* (I} — eoy)
=b".
Since a'/’d* =b, the map a '/?:b#> — d*#> is well-defined such that
d* =a'?b. From the inequality (3.1), we have that ¢; > (b*a~'?e))a'/?b.

Taking the strong limit as ¢t — 0, we see that dd* < c.
On the other hand, since

dd b (0 0 N/0 0
b a) \d* d'?)\d* a'? =9

by the minimality of C;, we have dd* > ¢;. Thus we obtain that ¢; = dd*, and
so C; has the following matrix representation:

oo (dd b _ (0 0 Y /0 0
1 = b a - d* Cll/2 d* a1/2 )

From the present argument, we see that for each positive operator C on the
Hilbert space # = #1 @ #> is always factored by the form

(0 00 0 c—dd* 0
- \d* 4 d* a'l? o 0 0)’

and we note that the matrix (;* a?/2> has the lower triangular form and the
c—dd* 0

0 O)
Suppose now that a Hilbert space # have the decomposition

matrix ( is positive.

H = zw: D A

n=—ao0

and let

n o0
My=Y @M and Ny =) @A
k=—o0 k=n
For each positive operator C on #, let C”+!) be the .4, -minimal part of C.
Since C — C"*1) is a positive operator, we can also construct the .4;-minimal
part of C — C"tD denoted by C,. Repeating this way, we have the operator
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Cr (k <n) as the A}-minimal part of C — (Ciy1 +---+ C, + C(”“)). Putting
R* D = C—(Cy + Cpy1 + -+ + C, + C"*D)) we obtain the decomposition

C=R*V 4+ C+Crpy+-+C,+ CtD
which we call the Cholesky decomposition of C with respect to # = .1 @
H® - @ Ay ® Ny, The following lemma appears in [11].

LemMa 3.3. Keep the notation as above. Then, for each k,ne Z (k < n),
the operator Cy + Cp1 + -+ C, + C"Y s the Nj-minimal part of C.

Now we return to the context and notation of analytic crossed products.
Applying the Cholesky decomposition for positive operators in £, we have the
following:

THEOREM 3.4. For each positive operator C in L, there exists a positive
operator C., in & and an operator A in W such that C = A*A+ C,..

PrOOF. Putting #, = L>*(M) (Vne Z), we may write

L’ = i @A,

n=—ao

Thus, considering the decomposition
Lz = e//f_(n_‘_l) (‘B %—n @ e @ %1 @ =/1/I"l+17
we have the Cholesky decomposition of C as follows:
C = R—(’H'l) + C—n 4 Cn + C’(’H'l)'

It is clear that R~"*t1) converges to zero in the strong topology as n — oo.
Since C > C"+1) and C™ is bounded, there exists the limit C., of {C™} in the
strong topology as n — oo such that C=>","  Ci+ C,,. By [Lemma 3.3, the
operator » .~ C+ Cy is the .4,-minimal part of C. For each ne Z, there
exists an operator

=//n—l
0 0 O D

Ao=\d a 0| A,
o o o/ ©

N1
with respect to L=, | ®H & Nnt1 such that C, = A7A4,. Since

(£0)(Ee)-Lwe

k=—n k=—n k=—n
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we have | Y7 Ax|® < ||C|| < oo, it follows that {37 _ A} converges to an
operator 4 in the weak operator topology as n — oo such that 4*4 =" __ C,.

n=—0o0

We note that the operator A has the lower triangular form with respect to the
decomposition

L?=... OH, D - DHD .

We next show that C,, belongs to £. For each fe.t,, Rsf e Ny, it
follows that

R;C"VRsf = R} CRsf
= RIR;CY
= Cf.

By the minimality of C"™, we have R; C"tDRs > C™W. Similarly, for each
f e N1, we have R(sC(”)Rg‘ > C"+1) | this implies RgC(”“)Rg = C™_ Thus we
see that R;C Ry = C,,. Moreover, for each n € Z and each unitary operator w
in M, we have

R:C"R,f =R'CR,f
— R'R,Cf
=Cf (VfeM).

Therefore we have R:’;C(”)Rw > C". Replacing w with w*, we also see that
RWC(”)R:; > C", so that R;CyR, =C,. Hence C,, commutes with all gen-
erators of R, and so C,, belongs to & which is the commutant of ‘R.

Next we claim that 4 belongs to 2. Indeed, since C, = C" — C"*+1) and
Rs;C"HUR: = CW . we have

RaCnRg = Ré(C(’l) _ C(n+1))R§
= RéC(”)Rg _ Réc(nH)R;
— cn=1) _ ¢

— Ln-1.

Now we consider the matrix forms of C,_; and C, as follows:

My—>
dn—ld*_l b*_l 0 0 é ; M, -1
n n d,d* b 0 n
b1 a1 0 0 Hp-1 " n @®
Cn—l = ® , Cn = bn ay 0 %;1 .
RS o o 1o S
0 o olo @ At
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From the relation RsC,R; = C,; it follows that a, = a,_1, b, = b,—1 so that
dyy = a, *h,_
—a b,
= d,.

Thus we have RsA4,_1R; = A,. Taking a strong limit as n — oo, we have
that RsARj = A. Furthermore, for every unitary operator v e M, the operator
R, has the following matrix form:

Since R,C,R; = C, and considering the matrix form of C, with respect to
My ® H, D N,y as above, we see that

0
tyn(V)a, = aptyn(v)  and  r(v)b, s (0) = by,.
O VarH»l (1)*)
Hence we see that
0
"OCH (U)dﬂ K111+2 (U*)
0 ran+1 (U*)
1/2 0
- Van(v)a; / bn K171+2<U*>
O VM’T‘F] (UX)
1/2 0
= }’7 / I"an(l))bn Van+2(v*)
0 Ty (UF)

= a;l/zb,, =d,.
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Thus we have R,4A,R; = A, so that R,AR; = A. Hence A commutes with all
generators of M, and so A belongs to & Moreover, since 4 has the lower
triangular form with respect to

H= - ®DH,D - DA, D -,
we see that 4 belongs to L. H

As in [11, Lemma 5], we have the following:

>

ProOPOSITION 3.5. Let C be a positive operator in & with the decomposition
C=A*A+ C,, as in Theorem 3.5. If there are B in L, and a positive operator
D in & such that C = B*B+ D, then A*A > B*B.

ProoF. Since, by Lemma 3.3, A*Pyd + Co, =0 Cy + Cy, is the H?-
minimal part of C, we see that

A*Pyp2A+ Cyy < B*PppB+ D.
Thus, for all n, we have
Ry"A"Ppa AR + Co, = Ry (A" Py A + Coo )R}
< R;"(B*Py:B+ D)R§
< R;"B*Py:BR{ + D.
Taking the limit in the strong topology as n — co, we see that R;”A* Py AR]

and R;"B* Py BR§ converge to 0 respectively. Hence we have C,, < D, and it
follows that 4*4 > B*B. ]

In Theorem 3.4, we have an interest in the condition for the factorization
C=A4"A4. As an analogue of Arveson’s terminology of outer operator, we in-
troduce the concept of the outer operator in analytic crossed products, and we
consider the problem.

DEFINITION 3.6. An operator 4 in £, is called outer if the range projection
E, of A lies in L(M), and AH? is dense in [AL*)N H? where [4L*] denotes the
closed subspace spanned by AL>.

We note that if 4 is an outer operator, then E4 belongs to £,. Thus we see
that E4H> < H 2, it follows that £, commutes with Ppe.

The following lemma which appeared in essentially characterizes the outer
operators.

LemMa 3.7. Let A be an operator in L. such that E4 belongs to L(M).
Then the following conditions are equivalent:
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(i) [AH?] =[AL*)NH".
() Ep,au-p,,) < Eap,,.
(iii) A*Pyed is H*-minimal.

Now we give a necessary and sufficient condition on a positive operator C
for the existence of a factorization C = 4*4 with an outer operator 4 in £,.

THEOREM 3.8. For each positive operator C in 2, we put

C' = s-lim(P), CPy:) " (tPy> + Pyp CPy2) ™ (P CPyp).

t—0

Then C admits a factorization C = A* A, with an outer operator A, if and only if
the operator Ry"C'R} converges in the strong operator topology to 0 as n — co.
Moreover if C is invertible in 2, then C satisfies this conditions.

PrOOF. Suppose that 7= A4*A4 for some outer operator 4 in .. The
equation T = (I — Py2)A*(I — Py2)A(I — Py2) + A*Py2 A implies that

C— ( (I = Py2)CUI — Py2) (I_PH2>(AXPH2A)PH2).
Pyr(A By A)I — Byz)  Pyp(A” By )Py
Since A is outer, by (iii) of Lemma 3.7, we see that
C'= (I = Pp)(A" Py A)(I = Pyp2).
Thus, for each f e L? we have
IR5"C'REf || = || Ry " Pya A" P2 AP R S |
= ||R5" Pya A" Py R§ARS" Py R f |
< || 4]l | Py R ARS" Py RS |
< ||AI[(|Pg>RFAR;"Pypa R} f — P2 RFAS || + || P2 R AS 1)
< AP 1Py RES = F1l + 4] [R5 Py REAS |
—0 (n— o).
Conversely, we assume that

s-lim R;"C'R} = 0. (3.2)

n— o0

The positive operator C can be factored in the form 4*4 + C., as in
34. Let P_, be the projection form L’ onto R{;”Hz, and let P_L” =[-P_,.
Then we see that

R;"PpR} =P, (VneN).
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Since C = P, CPY +P-CP_,+P_,CP- + P_,CP_,, we have

—n

s-lim P_,CP", {tP", + P! CPL ) 'PLCP., = R;"C'R.

n

Thus C™ has the following matrix form:

c _ pLcprt  PLcCP,
-\ P,CPL R;"C'R} )

Hence,
ICYf 1 = || PL,CPLf + PLCP P + [P CPL f + Ry"C'RES |
< [PLCAIP + (I IPL 1 + IR C'R A1)
This follows that |C?f]||*> — 0 (n — oo) by hypothesis [3.2). This implies that

C, =0, and so we have the factorization C = A*A4. In this case, the operator

A'PpAd=Y "G,
n=0

is H*-minimal part of C. Thus, by (iii) of Lemma 3.6, we see that 4 is outer.
We next assume that C is invertible. Since T¢ is invertible in B(H?), by

Lemma 3.1, we see that
C'=HcT  (He)"
Thus, for each f e L? we have
IR5"C'RifIl = |R"He T (He-) " RS |

< |[|HcTe | I(He ) R S|
= [|Hc TS | 1Py CUI — Py2) R} f |
< [|Hc T (1 By CRES || + || By CPy2 REF 1)
= [|Hc T ||(| Py Ry CF || + | Ry " Py CPy2 RE )
= [|HTE | (|R5 " Py R Cf || + || R5" Py CPy2 R3S 1))
—0 (n— o).

This implies that R;y"C'R] converges to zero in the strong operator topology.

[l

Factorization problems with respect to an analytic crossed product have been
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studied in [12}-{14]. They showed that every invertible element 7 in € can be
decomposed as "= UA where U is a unitary operator and A is an invertible
operator in £,. Moreover they proved that every invertible positive operator in
€ can be factored in the form 4*4, where 4 belongs to (£,)N(2,)"". As a
corollary of Theorem 3.5, we can obtain the same result.

CoroLLARY 3.9 ([14, Corollary 5.3]). Every positive invertible operator in £
can be factored in the form A*A, where A is outer in LN (L’+)_].

Finally, we show that the factorization of positive operators in (Corollary 3.9
is unique as following:

ProprosITION 3.10. Let C = A*A be the factorization in Corollary 3.9. If
there exists an operator B in L, N (8.)™" such that C = B*B, then there is a
unitary operator U in Q+ﬂ(2+)_l such that B = UA.

PROOF. Since 4*A = B*B, we see that ||Af|| = ||Bf| for each f in L’.
Since A and B are invertible, there exists a unitary operator U such that B = UA.
Moreover, we see that U = BA™! eQ+ﬂ(Q+)_1 because 4 and B belong to

2Ny 0
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