J. Math. Soc. Japan
Vol. 54, No. 4, 2002

Behavior of least-energy solutions to Matukuma type equations
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Abstract. Behavior of least-energy solutions to Matukuma type equations are
discussed. Especially, how they vanish or blow up are investigated. In either case, the
exact solution to a special equation plays a central role to analyze the behavior.

1. Introduction.
In this paper, we consider the behavior of least-energy solutions to
(1.1) Au+ K(x)u? =0 in R".

By the terminology “least-energy” solution, we mean that a positive solution
which is obtained by the minimization problem

J \Vu|? dx

(1.2) Sp=,nf | 2D
(J K(x)uP*! dx)

where Z is the completion of C;°(R") with respect to the norm ||V -|,, 1 <p <
(n+2)/(n—2) and n > 3. Note that Z is a Hilbert space with its inner product
Py == [pn VeV dx for ¢,y € 2. The standing assumption on K(x) is

x-VK(x)

(K.0) K(x)>0 in R", K(x)eC'(R"), e

e L(R").
We will show here that the asymptotic behavior of solutions as p 1 (n+2)/
(mn—2)and p| (n+2—2/)/(n—2), with / € (0,2), which will be determined by
the asymptotic behavior of K(x) at infinity.

In the bounded domain cases, the asymptotic behavior of least-energy solu-
tions (not restricted to Matukuma type equations) as p T (n+ 2)/(n — 2) is studied
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by Atkinson and Peletier [1], Han [9] (Dirichlet problems), Brezis and Peletier [4],
Rey (small linear term with the critical exponent), Budd, Knaap and Peletier
(scalar-field equation with the Neumann problem) and others. For the scalar-
field equation in the whole space, such asymptotics are investigated by Pan
and Wang ([18]). However, the case p | (n+2—2/)/(n—2) is not so well-
investigated compared with the case p T (n+2)/(n —2). Here, we give a unified
view to these behaviors.

It would be worth reviewing the results by Yanagida and Yotsutani on
radial solutions with radial K(x) (see also Yanagida [20]). Let us consider the
problem

(1
rn—_l(’”nfl“r)r + K(r)u? =0, r>0,
(1.3) u>0, r>0,
lim r"%u < o0, u(0) < 0.
L r— 0

Suppose that K(r) >0 in (0,00), K(r)e C'((0,0)) and that rK,/K is non-
increasing and non-constant in (0,00). Let us define

oo —tim K gy TR
rl0 K(}") r— 00 K(V)
n+2-12

n+2-2¢
Do .

D) y  Pr max{, n_2

THEOREM A ((i) of Theorem 2.1 of Yanagida and Yotsutani [21]). Under the
above assumptions, for any p € (py, ps), there exists a unique solution u, to (1.3).

Note that u,(0) = ||u||,, in this case.
As for the behavior of u,(0), Yanagida and Yotsutani obtained the

following.

THEOREM B (Theorems 2.3 and 2.4 of [21]).
(a) Suppose that ¢ < . Then u,(0) — o0 as p T p,.
(b) Suppose that 0 </ <2. Then u,(0) — 0 as p| p,.

RemARK 1.1. Under (K.0), we have o = 0.

Here, we investigate more detailed properties of u, as p | p, or p1(n+2)/
(n—2) than in without the radial symmetry assumption on K(x). For the
purpose of p | p;, we further assume that

(L) 0</<2,
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x-VK(x)+/K(x) >0,#0 in R",
(K.1) |l‘im Ix|” K (x) = ¢,
where ¢y > 0.
In turn, for p 1 (n+2)/(n—2), we assume

x-VK(x)<0 in R"\{0},

(K2) {K(x) < c¢|x|”" in R"\Bg,,

where ¢; >0, R; >0, s > 0 are constants and Bg := {x e R"||x| < R}. We can
take suitable radial K(x) which satisfies the Yanagida and Yotsutani conditions
and also (K.1) or [K.2).

Note that (1.1) has only u=0 in £ due to the Pohozaev identity at
p = p, under (K.0) and (K.1), and at p = (n+2)/(n — 2) under (K.0) and [K.2].
Indeed, the Pohozaev identity, which will be proved in in Section 2,
yields

(R

At p =p,, the integrand of is nonpositive and integrable by (K.0), while
that is nonnegative at p = (n+2)/(n—2). With the aid of elliptic regularity
theory and the maximum principle, we get u = 0 (see also Theorems 1 and 3 of
Naito [17]).

First, we consider the behavior of solutions as p | p,. To this end, we
introduce a constant

J \Vu)? dx

S(/) = ue}@ngio 2/(pr+1)°
Rn

Note that S(/) > 0 is attained by a function
(1 _|_C|x|2—/)—(n—2)/(2—f)

with any ¢ >0 (see Egnell and Horiuchi [10], [II]). The value S(/) is
explicitly written as

0

(n— 2)2a)n J P 4 rz_/)fz(”ff)/(sz) dr
0

o0 (n=2)/(n=2¢)"’
(a)nJ rn—l—f(l + r2—/)*2(n7/)/(27/) d}’)
0

(1.5) S(/) =
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where ), is the area of the unit sphere in R". Thus £ can be embedded in

L, = {u| J x|~ Ju| dx < oo}
R}’l

under (L). When /=0, S(0) is the usual best Sobolev constant and we denote
S(0) simply by S.

THEOREM 1.1.  Suppose that (L), (K.0) and (K.1) hold. Then there holds
Sy, — ¢y (n=2)/n=0) S(/) as p | ps. Moreover, any least-energy solution u, to (1.1)
satisfies u, — 0 weakly in 2, and |u,||, —0 as p| p, although ||Vup||§:

S’S["H)/(P—l) - ca(n—Z)/(Z—/)S(/)(”—/)/(z_/) as p lp/

RemArRk 1.2. Since u,, =0, u, never converges strongly to 0 as p | p,.
implies that u, appears at “infinity” as p exceeds p,.

To see how u, converges to 0, we rescale u,. Let

: 2—-7
" = llupll, with o, =TT

TueoreM 1.2.  For a solution w, obtained in Theorem 1.1, let

1 X
(1.6) Up(x) = Eup (ﬂ,;) .

Then v, converges uniformly to

c N\ 2/e=0)
(1.7) U(x) = (1 o 2)‘;’1 5 Ix|* >

on any annulus in R" and strongly in &. Moreover, the maximum point of u,
converges to 0 as p | py.

REMARK 1.3. v, converges to a solution to
(1.8) AU + co|x| " U2=20/=2) — 0 in R”

with U(0) = 1. However, any positive solution to (1.8) must be radially sym-
metric (due to Theorem 2 of Bianchi [2]) and is of the form (by Egnell

and Horiuchi [10], [11]).

If we add some concrete assumptions on K(x), we have the vanishing order.
In the following, we mean
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ooy (2 (e
T \ox T T ox, — \0y

l

TueOREM 1.3.  Suppose that (K.0) and (K.1) hold. Moreover, assume that
.1 x-ViK(x/t) X\ o
- e+ xi 1<G)

holds locally uniformly in R"\{0} with ¢ > 0 and ¢; > 0. In addition, if n — ¢/ < g,
assume further that

(K.4) {K(X) = colx|” “(1- c3|x|™?) in R"\Bg,,

x-VK(x)+/K(x) >0 in Bg,,
for some R3 € (0,Ry). Then, if n—{¢ > q, there holds

2C x —{—q UZ(nf/)/(an) dx
(1= 2)(p+ 1)~ 2n— 1) J M

im —
plre uy||l? (p—1)(/+q)/(27) COJ |x]_/ U2n=0)/(1=2) gy

If n—{( =gq, there holds
2D+ )~ 20— 0)) I

D(n—=¢)/(2—¢ o
= Dl gl [ 0o

with

: VVK
hm;J f+x—w K 1 U£+1dx::1,
7% iglog, Ko )<\

If n— /¢ < gq, there holds
(n=2)(p+1)=2(n—7) I

plpe [y | P~ 20) B COJ x| U202 g
Rn

with

'VyK
lim 2J [+ 0/ky) jd o dx = I,
plocty) Jr K(x/u,) 1y

where v,(x) = ,up_(z_/)/(p_ up(X/1,).
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REMARK 1.4. In the case /=2 or / > 2, the situation is much different
from this case. Further arguments will be appear in Kabeya or Kabeya and

Yanagida [13].

Now in turn, we consider the behavior as p 1 (n+ 2)/(n — 2) in the spirit of
Pan and Wang ([I8]). Since they treated the scalar-field equation, solutions they
obtained decay exponentially at infinity. However, the Matukuma type equation
is not the case. Solutions decay at most |x|*(”*2)-order at infinity. This requires
careful treatments.

THEOREM 1.4. Suppose that (K.0) and (K.2) hold. Then there holds
S, — K(0)""I"S as p1 (n+2)/(n—2). Moreover, any least-energy solu-
tion u, to (1.1) converges to 0 locally uniformly in R"\{0} and |ju,|, — oo
as pl(n+2)/(n—2) although ||Vup||§ = Sl(,pH)/(p_l) — K(0)" 222 g
p1(n+2)/(n=2).

REMARK 1.5. Similar to Remark 1.2, u, never converges strongly to 0 as
pT(m+2)/(n—2). As we see below, u, blows up at the origin and vanishes

as p1(n+2)/(n=2).
Similar to [Theorem 1.2, we introduce a scaling. Let

v, 10 =

TaeoreM 1.5.  For a solution u, obtained in Theorem 1.4, let

Wp(x) = vg/(p_l)up(vpx).

Then w, converges to

K(O) |x|2)—(7l—2)/2

(1.9) W(x) = (1 t=D

locally uniformly in R" and strongly in % as p1 (n+2)/(n—2). Moreover, the
maximum point P, converges to 0 as p 1 (n+2)/(n—2).

REMARK 1.6. w, converges to a solution to
(1.10) AW + K0)wn2/=2) — o in R"

with W(0) = 1. However, it is well-known that any positive solution to (1.10)
must be radially symmetric and is of the form by Caffarelli, Gidas and

Spruck ([6]).

As for the blow-up rate of ||u,||,,, we get the following under some additional

assumptions similar to [Theorem 1.3
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THEOREM 1.6.  Suppose that (K.0) and (K.2) with s >2(n—2)/(n+2) hold.
Moreover, assume that

. x-ViK(tx m
(K.5) 1}%% — eyl

locally uniformly in R" with c4 > 0. When m > n, suppose further that
(K.6) x-VK(x) = —cs|x|" in B,

with 11 >0, ¢s > 0. Then, if 0 <m < n, there holds

2¢4 J x| " 72 1=2) gl

lim n—2)(p—+1) = 2n}|u,||"V"? = _ .
pT(n+2)/(n_2){( )(p ) H l7||oc K(O)J .

n

If m >n, then

. o I
lim  {(n—2)(p+1) =2}l | L = 1 ,
P (r+2) (n-2) K(0>J w2/ n-2) gy
Rn
where
I :=2 lim v‘”J x - VoK (v,x))w, (x)7 ! dx
=2l | (e VRO ()
with wy(x) = vg/(p_l)up(vpx).

ReMARK 1.7. The additional assumption on s is needed to ensure the decay
order of u, at infinity.

In view of Theorems [L1-1.6, we can say a global features of a least-energy
solution. A least-energy solution to (1.1) with K(x) satisfying (K.0), (K.1)
and with (L) (take K(x)=1/(1+|x|) with n =3 for instance) suddenly
appears at “infinity” as p exceeds p, and the “energy” concentrates to the
origin as p T (n+2)/(n—2) like a J-function and the solution vanishes at p =
(n+2)/(n-2).

This paper is organized as follows. Theorems concerning p | p, are proved
in Section 2 and those on p | (n+2)/(n—2) are done in Section 3.

2. Proofs of Theorems 1.1, 1.2 and 1.3.

In this section, we enumerate several lemmas and give proofs of Theorems
L1, and [L3. The fundamental lemma is to assure the existence of a
minimizer of (1.2), i.e., the existence of a least-energy solution to (1.1).



944 Y. KABEYA

LemMA 2.1. Under (L), (K.0) and (K.1), there exists a minimizer of (1.2)
for any pe(ps,,(n+2)/(n—2)). Similarly, under (K.0) and (K.2), there
exists po < (n+2)/(n—2) such that a minimizer of (1.2) exists for any pe

(po, (n+2)/(n—2)).

Proor. First we note that S, is uniformly bounded. Indeed, take ¢ e
Cy(R") (p#0). Then, from the definition of S,, we see that

J Vo|” dx
Rn

TR
<J K(x)p"*! dx>

Hence the right-hand side is uniformly bounded in p.
Thus we may take a minimizing sequence {u;} such that

S, <

J n K(x)u]‘.”+1 dx=1 and JRn Vu;)* dx — S,

as j— o. We can choose a subsequence (still denoted by {u;}) such that

uj — u,, weakly in 7,
uj — uy, locally strongly in LP*(R"),
uj — U, ae.in R".

Moreover, by the Holder and Sobolev inequalities, we have

(2.1) J K(x) || dx
R™\Bg
- J K (o) 2/ D=2) g
R”\BR

o (J 210 i
RH\BR

< g2 (J K () Cr(pr0i=2) g

)(2n(p+1)(n2))/2n
)(p+1)(n2)/2n

)(2n(p+l)(n2))/2n

for any R > 0. From (K.1), we see that there exists Ry > 0 such that
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2
K(x) < =% on R"™\Bg,

[

Thus we have

J K(X)Zn/{Zn—(p+1)(n—2)} dx < CORg—an/{Zn—(p+l)(n—2)} < 0
Rn\BRO
by p > p, with a constant Cy > 0.
In the case of [K.2), we get
J K(x)2/2- 02} g o o g2l (o2
RH\BRI
if 2n—(p+1)(n—2)—-2s<0, ie, po:=max{l,(n+2-2s)/(n—2)} <p<
(n+2)/(n—2), with a constant C; > 0.
Hence, in either case, for arbitrarily given ¢ > 0, we can take R > 0 suf-

ficiently large independent of j such that jRn\ 2 K (x)u}” ldx < e Since uj con-
verges to u,, in L”*!(Bg), we see that

J K(x)ujf.v+1 dx —e < J K(x)u}”+1 dx < J K(x)ujf."Jrl dx +¢
BR " BR

and thus

(2.2) lim J K(x)uj‘.”+1 dx = J K (x)ur dx.
Rn

Jj— o0 n
Finally, we prove
. 2 2
lim J \Vu;|” dx = J Vi, |~ dx.
J—0 R" R"

Since u; converges to u,, weakly in &, we have
(2.3) J\WMFWSJ V| dx.
Rﬂ RVL

On the other hand, and the fact that [p K(x)u!"'dx =1 imply that
o K(x)uli " dx =1. Thus we get

S, < J Vi) dx.

Taking j — oo in [2.3) and using the Fatou lemma, we have

J 7
RVI

2dx < S, < J Vi, | dx,
Rn
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1e.,
2
J V| dx =S,.

This implies the strong convergence of u; in & and the existence of a minimizer

of (1.2). [J
REMARK 2.1. Any minimizer v of (1.2) must satisfy

Sp

(2.4) Av + <L" K)ol dx

K(x)v" =0.

)(p—l)/(p+1)

Thus, setting

5/
/ot
(J K (x)[o]"™! dx)
Rn

we see that u is a solution to (1.1). Hence we obtain

(2.5) J |Vl dx = J K(xur dx = S0,

Note that ||Vu||, is uniformly bounded even as p | p, under (L).

Here we prove the Pohozaev identity [1.4]. A proof is also given in
Proposition 1 in Naito under similar assumptions (instead of his decay
condition, we assume u € &), we give a proof for the sake of self-containedness.

LemMMA 2.2. For any nonnegative solution ue€ &%, the Pohozaev identity

J "{(ngz_pil> _pjrlx.lg(li)(X)}K(X)u“ldx:O

holds under (K.0).

Proor. First we prove that

(2.6) J |Vu\2dx:J K (x)uP " dx

R R
holds for any nonnegative solution ue% to (l.1). Indeed, note that
Jor K(x)uP™ dx < oo in view of (2.1) on R"\Bg and the Sobolev inequality for
Br (R>0). Moreover, u is a classical solution under (K.0). Multiplying the
both sides of (1.1) by u and integrating it over Bg, we have
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(2.7) J |Vu|2dx—J u@dS:J K (x)uP ! dx.
Br aBg OV B

By the Schwarz inequality, we have

2 1/2 1/2
J u@ds‘ < (J ”—ds) (J R\Vu|2ds) .
0BR v 0Bz R 0B

Using the Hardy inequality

and

u2 o0 u2
—dx = J <J —dS> dR
JR” x| o \Jog, R?

(note that R" = { Jp_ o{(0,R) |0 € 0BR}), we can choose a sequence {R;} (R; — o0
as j — oo) such that

2
J s o, J Ri|Vu|*dS — 0,
OBRj i 0Bg.

as j— co. Choosing R= R; in and letting j — oo, we obtain [2.6).
Next identical to the proof of Proposition 1 in [I7], multiplying the both
sides of (1.1) by x-Vu, and integrating it over Bg, we have

2
R(%) —B|Vu\2+il((x)up+1 ds
Br ov 2 p+1

-2 VK
4 J "2~ kgt = VK il g
P p+1 p+1

e8|

where v is the outward normal unit vector to dBg. As above, since

J V| dx = J <J |Vu|2dS> dR < 0,
R" 0 0Br

and since

o0

J n K(x)u?*dx = J

(J K(x)ul*! dS) dR < o0,
0 8BR

we can choose a sequence {R;} (R;j — oo as j — oo) such that
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J R;|Vul* dS — 0, J RK(x)u?™tds — 0
8BRj 6BR/.

as j— co. Moreover, since (du/dv)> < |Vu|*, choosing R=R; and letting
Jj— oo in (2.8), we have

J ”{<n;2_pi 1> _P-li-l x'KV(Ii)(X)}K(X)uP“dxzo

by using and x-VK/K e L*(R"). O

From [2.5), we see that any least-energy solution u, to (1.1) is uniformly
bounded in . We will show an a priori estimate of |ju||,.

Lemma 2.3. Suppose that (K.0) and (K.1) hold. For any least-energy solu-
tion uy, to (1.1), there exists C, > 0 independent of p near p; such that ||u,||, < Cs.

Proor. We regard (1.1) as
Auy, + L(x)u, =0 in R"
with L(x) :K(x)ug‘l. Then there exists 0 > 0 independent of p such that
L(x) eL"/2+5(R”). Indeed, since K(x)e L*(R") by (K.0) and (K.1), we have

loc
only to consider u”~! with p=p, +¢ In view of

(2—-"7/)n
n—2

2n
n—2

—I—n8<
2

oS

(pr+e—1)

if ¢ >0 is sufficiently small, we can take J > 0 independent of ¢ such that
(p—1)(n/2+6) <2n/(n—2). Moreover, we have

J L) dx < C|B(Q, 1)) 2 (=D p=1a/2+0))/2n
B(Q,r)

with some constant C; > 0 independent of p since ||Vu,|/, is bounded, where
B(Q,r) denotes the ball centered at Q with radius r.

Then, by of Pan and Wang (see also Lemma 7 of Han [9]),
we have

1 (n—2)/2n
(2.9) sup u, < Cy —nJ uﬁ”/(”_z) dx)
B(Q.7) " JB(0.2n)

for any Qe R" and r >0, and the constant C; depends only on n, J and
| L Lo2(gg.2r)- The deduction of is done by the Moser iteration
method. Note that || || L2+ (B(0,2r)) 18 Independent of p as we have seen above.
Moreover, by the Sobolev inequality and by the uniform boundedness of ||V,
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the right-hand side of is uniformly bounded. Taking Q as the maximum
point of u,, we see that ||u,||., is uniformly bounded. O

Next, we investigate the behavior of S,,.
LemMA 24. S, — ca(n_z)/(”_/)S(/) as p | py.

PrOOF. As in Pan and Wang [18], we prove

limsup S, < ¢, " "S(/) and liminf S, > ¢, """ s(2).
plps plps

First, we show limsup,|, S, < ¢, =2/ ("_K)S(/). To this end, let

L\ aveen
1:[,3 = <E + |X’ )

with ¢ = p — p, and calculate the quotient

J Vi) * dx

Qs (i) := 2/(p1)
(J K (x)alt! dx>
o

Since u, 1s radial, we see that

o0 ~ N\ 2
J Vii,|* dx = w, J ! <%> dr
n 0 dr

with r = |x|. From

A (n 2)( +r

we have

0 A\ 2 0 =2(n=0)/(2-¢)

, 1

J Pl (d_u) dr = (n—2)* J pri=2 (— + rz_/) dr.
0 dr 0

Letting r = ¢ /%")p, we get

o0 ~ N\ 2 o0
J rn—l (%) dr = (n . 2)28(n—2)/(2—/) J pn+l—2/(1 + p2—/)—2(n—/)/(2—/) dp
0 0

Similarly, we have
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J K(x)a? ™ dx

Y

n

_ n=t+1-2)0)/2=0) J o1~ K (D) 1 [y]?~)CO-0+0-28/C-0) 4

with the change of variables x = ¢ /@)y, By (K.1), we have

lim &/ K (V) = "_0/

el0 i

locally uniformly in R"\{0}. Thus we can apply the Lebesgue convergence
theorem to get

0

0:(u;) = ((n— 2)2wng(n—2)/(2—/) JO P2 (] p2—/)—2(n—/)/(2—/) dp)

/<82(n—2){n—/+(n—2)s}/(2—/){2(11—/)—)—(}1—2)3} (J 8—//(2 ) (y/gl/ (2-7) )

2(n—=2)/{2(n—¢)+(n—2)e}
( + |y|2 /) {2(n=¢)+(n—2)e}/(2—¢) dy) )

0
- ° o) (n—2)/(n—)
<cown [ o prye dp)

— Ca(”—z)/(”—/)S(/)
as ¢ | 0 since (14 |x|*7)""?/@) attains S(/) by [1.5) This implies that

limsup Sy,4, < ¢, " 2" s(2).
el0

Next, we prove liminf,yS,,+. > ¢, ~(n=2)/(n= )S(/). For u, which attains
Sy, +c with

J K(x)ug(n—/)/(n—Z)Jra dx = 17
we set
_ - _J
0:(y) = ug(x) with x ==.

&

Then we have

|
J . |qus(x)|2dx = N—_szn |Vyve(y)|2dy
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and

: 1 1
(2.10) J n K (x)u=0/ =248 gy — pr JR” ?K (%) p21=0)/ =2+ g,

=1.
By (K.1), we have

lim e 'K (Z> -2
#10 ¢/ Iyl

locally uniformly in R"\{0}. Thus we get

J Vi) dx
Rn

lim (i)nf
el ( J K (x)uz("_/) [(n=2)+e g
Rl’l

&

)2(n—2)/(2(n—/)+(n—2)s)

D | WP dy

= lim inf
el0

&

2(1—2)/(2(n—1)+(n—2)e)
: )

e—2(n=2)(n—7)/(2(n—{)+(n—2)e) <J 'K (X) p2(n=0)/(n=2)+¢ dy

J |Vyve|2dy
Rn

> C&(”—z)/(’“—/)S(/)

noting that limsup,,(maxg- v,)* <1 by the a priori estimate [2.9] in [Lemmal
2.3, and (2.10). Hence we see that lim,,, S, = ¢, " /" 7s(/). O

Next, we show that |u,||,, — 0 as p | p,.

LemMma 2.5. Suppose that (K.0) and (K.1) hold. Then, for any least-energy
solution u, to (1.1) satisfies ||u,||.,, — 0 as p | p,.

PrOOF. Multiplying by 2(p+1) and adding 2/ [,. Ku?™'dx to the
both sides, we have

n

_ 2J n (/ + %ﬂi)bo) K(x)ub ™ dx.

(2.11) (n—2)(p—p/)J K (x)ul*" dx
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From [2.5), we see that

: x-VK(x)
I X VAN k(xyurt dx = 0.
plﬁiLn (” K > (o™ dx

Since /K(x) +x-VK(x) >0, #0, u, — 0 in any compact set in {x € R" |/K(x) +
x-VK(x) >0} as p | p;. Suppose that there exists a sequence {p;} (p;j — p, as
Jj — o0) such that u,, — u. (#0) locally uniformly as j — co. Hence u, must
be a solution to Au + K(x)u?”” =0 in R". By the Pohozaev identity, u, =0 is
the only nonnegative solution, a contradiction. Thus u, — 0 locally uniformly
in R" as p | p,.

Suppose that ||u,||,, > Cs > 0 for any p (>p,) sufficiently close to p,. Then
the maximum point Q, of u, goes to oo as p | p,. Let uy(x) =u(x+ Q).
Then u, is a solution to

Ay + K(x + Qp)u) = 0.

Since #, is bounded, choosing a subsequence {p;} (p; — ps as j — o), we see
that u; converges locally uniformly to a classical nonnegative solution of
Au, = 0. Note that u, € Z in view of the boundedness of #, in 2. However,
since #,(0) > 0, there exists no nonnegative solution to Au, =0 in &. This is
a contradiction. Thus |u,||, — 0 as p | p,. O

LEMMA 2.6. For a least-energy solution uy, to (1.1) with x replaced by y, let

1 2—/ X
2.12 Up(X) :=—up(y), o =—7, y=—,
(212) W) =m0 = g =

with wy" = ||u,||.. Then v, converges uniformly to

Co
(n—=2)(n—1?)

on any annulus in R". Moreover, the maximum point of u, converges to 0 as
plps

5 —(n=2)/(2-¢)
e )

(2.13) U(x) := (1 +

Proor. We use the scaling (2.12). Since u(y) satisfies
Au(y)+K(y)u’ =0 in R",
we have
OCIJ+2A O(ppK i P — 0
T A (X) + 1y p vl = 0.
P

Since o, = (2—-7/)/(p—1), we see that v,(x) is a solution to
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X
P 4
Hp

and |jv,||, =1. By (K.1), we get

lim /K[~ ) =2
plpe H, |x|

locally uniformly in R"\{0}. Thus, choosing a subsequence {p;} (p; — p, as
j — o0) such that v, — U in locally uniformly in R"\{0}. Note that U is a
solution to (1.8). As is commented in Remark 1.3, it is known that

o

)—(n—Z)/(Z—/)

0= (1455

is the only solution to the limiting equation. Thus we see that v, — U locally
uniformly in R"\{0} without choosing a subsequence (by the uniqueness, we
have limsup, , v,(x) = liminf,, v,(x) = U(x)).

Since the maximum point of U is the origin and since U is a strictly
decreasing function, we see that Q, — 0 as p | p,. OJ

REmMARK 2.2. Note that U(x) attains S(/) and satisfies

J |VU|2dx:c0J x|~ UP ! dx
n Rn

since U is a solution to (1.8). Thus we have

J VU|* dx
Ri’l

(J x|~ UP 1 dx
Rn

(2-0)/(n~0)
S(/) = = (/) (J vu|? dx>

)2/(17/4-1) -0

1.e.
(g "2 5 ()01 — J VU dx.
Rf’l

LemMA 2.7. For any least-energy solution u, to (1.1), u, converges weakly
to 0.

Proor. We will prove

J Vu,Vpdx — 0 as p|p,



954 Y. KABEYA

for any p € 2. Since u, is a classical solution to (1.1) and since u, — 0 locally
uniformly in R", we see that [Vu,| — 0 locally uniformly in R". For any ¢ > 0,
we can choose R > 0 such that

1/2
(J Vol dx) <&
R"\Bg

Decomposing the integral as

Vu,Vodx + J Vu,Vodx,

J Vu,Vodx = J
n Rn\BR

Bg

we see that the first term converges to 0 as p | p, and that

< Cge

J Vu,Vodx
RH\BR

with Cs > 0 independent of p since ||Vu,|, is uniformly bounded. This implies
that u, — 0 weakly in & as p | p,. O

Using the scaling defined in [2.12), we see some properties of the rescaled
function.

LeMMA 2.8.  The rescaled solution v,(x) defined in (2.12) satisfies v, — U in
2, |Vol; — Ca("fz)/(H)S(/)(n—f)/(z—/))

J ) ﬂp_/[((lup—lx)vg"'l dx — ¢ JR" ‘X|_/ Uz(”—f)/(n—Z) dx

and Iu;(Q—/)/(P—l)—(”—Z) — 1 as p lpt’-

Proor. First note that v, — U locally uniformly in R"\{0} as p | p, as
in the proof of [Lemma 2.6.

Moreover, v, also converges to U weakly in & by the local uniform
convergence of v,. This can be proved similarly as in the proof of
2.7. Thus we can apply the Fatou lemma to v,.

Since

JR" Vo (3)|* dy = Nj(z_/)/(p_l)_(”_z) J Vv, | dx

n

and by Remark 2.2, we have
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(Ca(”—z)/(”—f) S(/))(nf/)/@—/)

:||\7U||§gnmian |vap(x)|2dx£1imsupJ Voy ()| dx
plpe JRe plps "

= lim sup ﬂ;2<2—f>/<p—1>+<n—2>J V,u,|* dy < limsup J V| dy
plpe R" plps "

by i, <1 in view of for p sufficiently close to p, and (n—2) —
22—-7)/(p—1)>0. Moreover, since u,(y) is an unscaled least-energy solution
to

Ayup + K(y)ul =0 in R",
we see that
i [ WPy = 21500
plpr JRr

by and [Lemma 2.4. Thus we obtain |[Vu,[|; — ¢, 2/ s(¢)=0/2)
2(2-¢)/(p—1)—=(n=2)
as p | p,. Thus, we have y, — 1 as p| p,.
Since the weak convergence of v, together with the convergence of the
corresponding norm implies the strong convergence, we see that v, converges
strongly to U in 9.

Moreover, since

1
J |va|2dx:J —K x v;deX,
n R" :up :up

since v, — U in &, and since

J |VU|2dx = C()J |x|_fU2("_/)/(”_2) dx,
n Ri’l

we see that

: LX) i —~( 72n—0)/(n-2)

lim | —K{— | dx=co| |x|"U" dx. ]

plre )Rt I, y P

PROOF OF THEOREM 1.1. is immediately from Lemmas 2.4, 0.3,

2.7 and 2.8. ]
PROOF OF THEOREM 1.2. is readily seen by Lemmas and
2.8. ]

ProoF oF THEOREM 1.3. As in [Lemma 2.6, we use the scaled solution
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_(7— _ . X
0p(x) = 45, NPV (y) - with y ==
Hp
where ||u,|,, = ;,24)/(1771).
The identity
(=2 + ) =20 -0} | K3 () dy

o (/ ; %)K@)u},’“m dy

yields

Hp

B x - VoK (x/p,) L YRV
o] (o B ()

Under the assumption (K.1), we see that

{(n=2)(p+1)—=2(n— /)}J n K<x> 0, (x)7 ! dx

uniformly in R"\B,, with any fixed r >0. By [Lemma 2.8, we have

hmj K()u(y) dy
plps Jpn

| X
~ im (2/)(p+1>/<p1)(nf)J Lol XY (o )7 gy
plpe lup o ,u; ,Up ( P( ))

~ J )20 g

Since the right-hand side tends to 0 as R — oo independent of p, we get

X VK(x)
| RV
lim !/ + P2 A k|22 ot ax
P /)
plpe 4 Ky

n K i
Hp

_ CQJ |02 gy



Behavior of least-energy solutions 957
in view of [K.3). Here we note that if 0 < ¢ <n —/, then |x|*"“e L'(B,) and

(2.14) J |x|_/_qv]",7+1 dx
R"\Bg

(n=2)(p+1)/2n
< C7R{(n+2)—(n—Z)P—Z(/+q)}/2 J 21/ (1=2) g,
R"\Bx |

by the Holder inequality with C; > 0 independent of R > 0.
Hence we obtain

—{—qyr2(n—¢)/(n-2)
- R I WL "
plpe ﬂz+q COJ |x’—/ U2(n—/)/(n—2) dx ’

1.€.

2ac x f/quZ(n—/)/(n—Z) dx
n s —2ms) 22|

plor |y PO/ - J|x|/U2(n—/)/(n_2)dx

by u, = ”“p”gg_l)/(z_/) and [Lemma 2.8
If g>n—/, then |x| ™" ¢ L'(B1). We decompose

x-V.K (x)
Ceil" Hp X p+1 n
31k, < {+——— | K| —|u,(x)"" dx < Cop)

BﬂpRZ K 1
Hp
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with 0 < Cg < Cy since the integrand is bounded and never converges to 0 as
plpsin By g, < Byr, by [K4]. Moreover, we have

x-V.K <1>
U
lim ,u;”J (NP g2 vp(x)‘wrl dx = Cjp > 0.
plps By r, X H,
K _
Hp
As for the second term, we have
x-V.K (1)
U
(2.15) J /4 L k() (0, 00)7+ ax
Rn\BﬂpRz ’up

Kl
Hp
el | )
R"\Bﬂpkz

by the order assumption in [K.4]. We note that

{(1,R)""™ =1}

J |x|7/7(] dx = /L
Bi\B,,r, +q—n

if /4 g > n and that

J x| dx = wn{—log(u,R2)}
BI\By,r,

if /+q=n.
Since v,(x) <1 in R", v, € Z and since (2.14), we see that
x-V.K <x>
U
lim,u;”J [ N[ L l’,’“dx
plps R™\B, r, K i H,
Hp
exists and so does
X - VXK (ﬁ)
U
1imﬂ”J [+ Ykt dx =1, 0
plp, P Jpn y P
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if ¢ >n—/. Similarly, we also see that

x-V.K <£>

u

lim u;”|logup|_1 J (+— T K<x> v dx
plpe R"\By,r, K X

Hp

exists and so does

X
lim u"|lo IJ { + P dx = 1>0
lim 4 log w,| o :

if g=n—-"/.
Hence, if ¢ >n—17/, we get
(n—=2)(p+1)-20n—7) _ I
plo 14y ||~ D2=0) COJ x| U2n-0/0-2) gy
Rn

and if ¢g=n—/, we have

2 QO =2)(p+1) ~2n—1)} 1 .
ploe (p—1)[|uy |7 logluy || | COJ x| R0/ -2 gy

]

Remark 2.3. The difference of convergence rate is due to the integrability
of |x|7"9(v,(x))”*" in the right-hand side of [2.15] in R".

3. Proofs of Theorems 1.4, 1.5 and 1.6.

In the spirit of Section 2, we consider the behavior of a least-energy solution
as p1 (n+2)/(n—2). By[Lemma 2.1, there exists a minimizer of (1.2) for any
p sufficiently close to (n+2)/(n—2). First we show the behavior of S, as

pl1(n+2)/(n=2).
Lemva 3.1, S, — K(0)" " 27"S as p1 (n+2)/(n—2).

Proor. First of all, note that ||K||, = K(0) by x-VK(x) <0 in R". As
in [Lemma 2.4, we are going to prove

limsup S, < K(O)_(”_z)/”S and liminf S, > K(O)_(”—2)/nS'
p1(n+2)/(n-2) p1(n+2)/(n-2)
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We show limsup,,;,.2) /(i 2) Sy < K(0)""2/"g first. Lete:=(n+2)/(n—2)—p
and Ww,(x) == o(|x]) (e + |x|*)~ =272 Wwith g e Cr(R"), ¢(0)=1, maxg:gp=1,
supp@ = B; and suppg, = Bj\By/. As in the proof of [Lemma 2.3 of Pan and
Wang or Lemma 1.1 of Brezis and Nirenberg [3], we have

2
Vil = Mre 22 0(1) with My = (n-2)° | ( g

—2ndx
1+ |x]7)

as ¢ | 0.
As for [p. K(x) vi/z”/(" 270 dx, we get

JnK( )W’ 2n/(n-2)-¢ g,
:J n K(x)¢2n/(n 2)- ‘(e + |x| ) n+(n=2e/2 g
= | Ko )
+J nK(x)((pzn/(n—z)—s (e + |x| ) nt(n=2)e/2 1.

:8—n/2+(n—2)8/2J K(\/(:Iy)( _{_‘y’ ) n+(n— 23/2dy+0( )

n

with x = /ey as ¢ | 0. Since maxg: K(x) = K(0) and since (1 + |y|*)™" € L'(R"),
we see that

J K(O)Wf”/(”*z)*g dx = MZK(O)é‘*n/z + 0(1)

as ¢ | 0 in view of the Lebesgue dominant convergence theorem, where M, =
[gr(14|y[*) ™" dy. Thus we have

J Vv, |* dx
Rn

(J K(X) 2n/(n-2) bdx

_ Mg~ (=22 + 0(1)
(MoK (0)e—/2 4+ O(1)) 22/ 2n=(n=2¢}

M,

= +o(1).
K(O)(an)/nMén—Z)/n

QS(WE) -

) 2(n—2)/{2n—(n—-2)e}
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Hence we obtain

limsup S, < K(0)""2/"s
PI(m42)/(n-2)

constant S.
Next, we show K(O)_(”_z)/ "S <liminf,(12)/(-2) Sp- Take W, € Z which
attains S,. Then we have

= § since the function (1 + | y|2)_("_2)/ ? attains the best Sobolev

J K ()i d

. ) X (2n—(n=2)(p+1))/2n (n=2)(p+1)/2n
S(J K () 2/ 2a-(-2(p+1) dx) <J 20/ -2 dx)

by the Holder inequality for pe (max{l,(n+2—-2s)/(n—2)},(n+2)/(n—2))
(see the proof of Lemma 2.1). Hence we see that

J Vi, | dx

(n=2)/n
wjn/(an) dx)

3.1) S<

URn
( ]Vﬂ/p|2dx> <J K ()22 2) g
Jr R’

2/(p+1)
(J K(x)vT/]"j’+1 dx)

>(2n(n2)(17+1))/n(17+1)

)(2n—(n—2)(17+1))/n(17+1)

_ (J K ()220 g s,

Fix R > 0 sufficiently large so that K(x) < ¢i|x|™" on R"\Bg. Then we get

J K(x)2/ 22} gy

_ J +J K(x)2/ 22040} gy
Bx  JR™\Bg

L k(o)) /0r- 200, g
n

IA

n/(2n—(n-2)(p+1))
wp{2n— (n=2)(p+1)} ‘i g
n{(n—2)(p+ 1) — 201 — 8)} \RO-Dp+D-20-5)
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since K(0) is the maximum of K(x). Thus we have

{2n—(n=2)(p+1)}/n(p+1)
(J K(x)2/ 2240} dx) P g
Rn

l 2n/{2nf(n72)(p+1)}w n w”{zn B (n - 2)(p + 1)}
= {n(K(O)) K -2+ 1) - 2n - 5)}

( 2 n/{2n—(n-2)(p+1)} {2n—(n=2)(p+1)}/n(p+1)
1
) }

R(n=2)(p+1)-2(n—s

= K(O)" " as p1(n+2)/(n—2)

since R can be taken large enough so that ¢? < RU=2(+1)=201=5) for any p near
(n+2)/(n—2). Taking the limit in (3.1), we get

K(0)""2/"s < liminf S,
P1(+2)/(n-2)

Thus we obtain the desired equality. O

Next, we consider the behavior of |ju,||, as p1 (n+2)/(n—2). Unlike
p L ps, we have |juy|,, — 0 as p T (n+2)/(n—2).

LemMA 3.2, Let u, be a least-energy solution to (1.1). Then |u,|, — o
and u, — 0 locally uniformly in R"\{0} as p 1 (n+2)/(n—-2).

PrOOF. Suppose to the contrary that we can choose a subsequence {p;}
(pj 1 (n+2)/(n—2) as j— oo) so that |u,|, is uniformly bounded. Since
|V, ||, is uniformly bounded, we can choose further a subsequence (still denoted
by {p;}) such that u, — u, weakly in & and u, — u, locally uniformly in
C?(R"). By the Pohozaev identity [1.4], we have

(n—=2)(p;+1)—2n

+ 2 1 J 41
3.2 d 17dx = VK)ulit d
( ) 2(pj n 1) JR" |Vupj| X p/ i 1 . (‘x )upj X

in view of
2 .
J n Vi, |” dx = JR” I((x)u[f’;frl dx.

Since ||V, is uniformly bounded, we can take the limit as j — oo in (3.2) to
get

(3.3) lim J (x - VK)ub*! dx = 0.
R" !

J—=o
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In view of x-VK <0 in R"\{0}, we see that u,, =0. Thus u, — 0 locally
uniformly in R".
By the Holder inequality, we have

J K (x)ult! dx
R™\Bg !

< J K ()2 Cr =2 (pr1) g
R™\Bg

X (J u;f“/ (n=2) iy
R"\Bg

a)n{Zn B (n B 2)(p] + 1)} (2n—(n=2)(pj+1))/2n C% 1/2
T n{(n-2)(pi+1)-2(n—ys)} R(=2)(pj+1)=2(n=s)

(n=2)(p;j+1)/2n
% (j u2n/(n—2) dx)

pj

)(2n(”2)(17/+1))/2n

)("2)(171+1)/2n

<2¢R* (J w2 (=2 g

Dj

>(”—2)(Pj+1)/2n

for any sufficiently large j. Since the right-hand side of the above inequality is
uniformly bounded by the Sobolev inequality, we can take R > 0 sufficiently large
and jo > 0 for any given ¢ >0 so that fRn\BR K(x)u,ﬁ_’{“dx < ¢ holds for any
j>Jjo. As in [2.5), we get

B4 s ("’l)zj K(x)upr™! dx = (J +J )K(x)u;;f“ dx.
J n J BR Rn\BR )j

Since u; — 0 uniformly on Bg, letting j — oo in [3.4), we obtain
K(O)f(n72)/2Sn/2 < e,
a contradiction. Thus |u,||, — oo as j — oo. O

In view of x-VK <0 in R"\{0} and [2.2), u, blows up only at the origin.
Next, as in the proof of Mheorem 1.2, we rescale u,.

LemmA 3.3, Let u, be a least-energy solution and define

0 = s wp(0) = v (), =

Then w,(x) converges to
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K(0) —(n=2)/2
W(x) = (1 o) |x|2>

locally uniformly in R" as p1 (n+2)/(n—2). Moreover, the maximum point of
u, converges to 0 as p T (n+2)/(n—2).

REMARK 3.1. As commented in Remark 1.3 (with Z =0), W(x) is a unique
solution to

AW 4+ K(0)Wn+2)/(=2) — (0 in R",
(3.5) W>0 in R", W —0 (|x] = o0),
w(0) = 1.

As in Remark 2.2 (with / = 0), we have |[VW|; = K(O)_(”_z)/zS”/z. Note that
v, —»0as pl(n+2)/(n—2) by Lemma 3.2

Proor. First note that u, can blow up only at the origin. Thus the max-
imum point P, tends to 0 as p T (n+2)/(n—2). Since u(y) with y =v,x is a
solution to

Ayu(y) + K(py)u(y)” =0,

we have

vp—Z—z/(p—l)Apr(x) + V;zp/(p_l)K(Vp.X)Wﬁ = 0,
1e.,
(3.6) Axw + K (vpx)w” = 0.

Since ||w,(0)||., is bounded, there exists a subsequence {p;} (p; T (n+2)/(n —2)
as j — oo) such that w,, converges locally uniformly to W/(x), which is a solution
to [3.5]. However, as mentioned in the proof of [Lemma 2.6, the uniqueness of
solutions to implies that w, converges to W without extracting a sub-

/l

sequence. L]
How does |[ju,| ., blow up? We answer this question.
LemMmA 3.4. Let w, and v, be defined as in Lemma 3.3. Then w), satisfies

wp = Woin 7, (Vw3 — (K(0))" D22y 00l 1 and

J ,, K(vpx)wht! dx — K(0) JRn w2 =2 g

as p1(n+2)/(n-2).

PrROOF. As before, let y =v,x. Then we have
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| iy =y |

|wal,,(x)|2 dx.
Rn

As in the proof of Lemma 2.8, we get

(K(O))—(H—Z)/zSn/z

= |VW|? < liminf J Vo, (x)|* dx
W< limint | (Vo (o)

< limsup J |wap(x)|2dx
p1(n+2)/(n=2) JR"

= limsup vp(”z)“/(pl)J V,u,|*dy < limsup J V| dy
pl(n+2)/(n=2) R" pl(n+2)/(n=2) JR"

by noting Remark 22, v,—0 as pT(n+2)/(n—2) and —(n—2)+
4/(p—1) > 0. Since u,(y) is an unscaled least-energy solution to

Ayup(y) + K(y)uj(y) =0 in R”,
[Lemma 3.1 implies that

lim J Viw 20y — (K(0)) "=2/2gn/2.
pl(n+2)/(n-2) Rn| (V)| dy = (K(0))

Thus, we have
Vw3 — (K(0))~"=22gm2 =24 0=l) 1 as p 1 (n+2)/(n—2).

In view of [Lemma 3.3, w, converges to W locally uniformly in R", thus we see
that w, converges weakly to W in &. Since the weak convergence together with
the convergence of the corresponding norm implies the strong convergence, we
see that w, converges strongly to W.

Moreover, since

2
JR" Vw,|“dx = JR” K(vpx)wl*! dx,
since w, — W in & and since
VW|?dx = K(0)| w202 g
| ,
Rl’l n

we see that

lim J K(v,x)w’™ dx = K(0 J w2l (n=2) gy, ]
pI(n+2)/(n-2) J g Cpy 0 R’
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PrOOF OF THEOREM 1.4. [Theorem 1.4 is obtained by Lemmas B.1, B.2 and

B4 O]
PROOF OF THEOREM 1.5. is readily seen from Lemmas 3.3 and
B4 ]

To prove Theorem 1.6, we need to know the decay order of u,.

LemMA 3.5. Suppose that u, € 7 is a positive solution to (1.1) with (K.0),
(K.2) and p is sufficiently close to (n+2)/(n—2). If s>2n—-2)/(n+2), then
u, decays at the rate x| ar infinity.

ProoF. First we consider the case s > 2. Then by Theorem 2.9 of Li and
Ni [14], we see that u, decays at the rate |x|"""% at infinity.

In the following, we consider the case 2(n—2)/(n+2) <s<2. In this
proof, various constants independent of x are denoted only by C. We use a
modification of of Li and Ni [14] (see also Theorem 2.25 of [14],
Theorems 2.4, 2.8, 2.16 and 3.2 of Li and Ni [15], [16]). Using the Green

function of —4 on R", we have

B K(»)up()”
Uy(x) = CJRH N d

By the Holder inequality, we see that

J KD)u,(»)”
R |x =y

- J K(y)uy(y)” "

n—2
yl<t |x — Y|

K(y)
" Jx—yzl (x —y|"?

(n=2)p/2n
(o)

< o0

(2n—(n—=2)p)/2n

2n/(2n—(n—2)p)

in view of 2n(n—2)/{2n— (n—2)p} >n for p sufficiently close to (n+2)/
(n—2). Since [[Vu,l|, is finite in view of u, € 7, so is |[uy|[y,)(,—p due to the
Sobolev inequality. Using this inequality, we derive the decay order of u, using
the technique in the proof of of [14].

For sufficiently large |x|, since u, is uniformly bounded for large |x| by the
elliptic regularity estimate, we see that



Behavior of least-energy solutions 967
K
J (y)up( ) d < C|X|
i<t Jx = y|"

by assumption [K.2). As for the second term, we decompose as

2n/(2n—(n—2) p)
K
=y 1\ |x — )|

2n/(2n—(n-2)p)
_ _KO) .
= + + n—2 i
t<p—yl<x/2 Jx2<i—p<a] Ja—yl=2x )\ |x =]

=L+L+5

The first term yields

I < C|x|—2ns/(2n—(n—2)p) x — y|—2n(n—2)/(2n—(n—2)p) dy
L<|x—yl<|xl/2

(lx1/2
< C|X’*2ns/(2n*(n*2)p) pn—1=2n(n=2)/(2n—(n-2)p) dr

J1
(|x]"{2 5)—(n=2)p}/(2n—(n— +‘ - 2ns/(2n—(n— 2)1)))

in view of |x| —|y| <|x —y| < |x|/2 and the decay rate of K(x).
In the similar fashion, we have

1

—2ns/(2n—(n-2)p) 1
L < Clx| g 2n(n=2)/(2n—(n=2)p) b

J|x—y|=2|x| |.X y’

0

< C|x\ 2ns/(2n—(n-2)p) ) |rn—1—2n(n—2)/(2n dl"
J2|x

— C|x|n{2(2*S)*(n*2)17}/(2n*(n*2)17)

since the integrand is integrable at infinity as commented in the above.
Finally as for I, noting that K(x)e L*(R") by (K.2), we have

]2 < C|x|_2ns/(2”_(”_2)l7) J _I_J (K(y))Zn/(Zn—(n—Z)p) dy
ly|<1 1<y <3x|

< C| | —2n(n-2)/(2n—(n—2)p ( +| |n 2ns/(2n—(n— Z)p))'

Combining these estimates, we obtain

uy(x) < Clx|[ 7 + C(I + I + L) 0202
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1e.,
—s+2—(n—-2)p/2
p(xX) < C(|x] ™ 4 x0TI xR,

for sufficiently large |x|. Since we are concerned with the process p 1 (n+2)/
(n—2), we see that 2—(n—2)p/2<0. If s> (n—2) (this is possible for
n=23), we are done. Thus we assume s <n—2. Then we have

(3.7) uy(x) < Clx|™*

for sufficiently large |x|.
Again decomposing as

K(u()"
x—y|"?

K(y)u(y)?
_C(J | | )<><>d
oyl<lxl/2 Jlfasiv-pi<2x Jpeylz2 ) [ =y

and using [3.7)], we have

J K(y)u( ) dy< C|X| (p+1)s
-yl <lxl/2 |[x = p|"

u(x) = CJ

Rl’l

and

K(y)u(y)? _
j Ry < 72 e
xl/2< -yl <20 [x = |

in the similar Way as above.
Since |x — y|~ ("=2) is not integrable at infinity, the previous method is not
applicable directly to the rest integral. We decompose

J K(y)up(y)pd _ K(y)uy(y )

W J|x—y|zzx| xp]220x
erl22 =l awsbizid O bizaw ) KA

dy =1y + Is.

Note that |x — y| > 2|x| implies |y| > |x|. For sufficiently large |x|, K(y)u,(y)” <
C|y|—(P+1)S on |x| < |y| <2|x| by and . Thus we have

K(y)u,(y)”

Pe—y|=2|x|

ILL<C
2 hizp XY

< C|x|—(n—2)—(p+1)sJ dy < C|x|>P+Ds
X[ <|y[<2lx]
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For I5s, we use the elementary inequality |x —y| > ||y| — |x||. For |y| = 2|x|,
we have |x —y| > |y|/2. Thus we have

B R (p+1)s
(p
Is < CJ|xy|Z2XI||Tdy < C|X|
|y =2|x|

in view of 1 —(p+1)s< —1 if p is sufficiently close to (n+2)/(n—2) with
2(n—2)/(n+2) <s. Hence we obtain

p(x) < C(|x| 7" 4 x>

for sufficiently large |x|.

If 2—(p+1)s<—(n—2), then we are done. If 2—(p+1)s>—(n—2),
then we need to check that this process gains the decay rate. If
2—(p+1)s<—sie, 2/p<s, then we obtain a better decay rate. Since our
assumption is 2(n — 2)/(n+2) <s, 2/p < s is assured for any p sufficiently close
o (n+2)/(n—2). Thus we obtain

y(x) < Clx| P,

Repeating this arguments in finitely many times, we have the desired decay
rate. Indeed, let ¢y =2— (p+1)s and a,.; = pa, +2 — s (this relation repre-
sents the decay order by this deduction). Then we get

il 2— 2—s
ay =p ap + — .
r—-1) p-1

Since a1 +(2—35)/(p—1)=p(2—ps)/(p—1) <0 by 2/p <s, we see a, — —©
as n — oo. Thus the repeat of this process is ensured. ]

Now we are in a position to prove [Theorem 1.6.

PROOF OF THEOREM 1.6. Let v,, w, and y be defined in [Lemma 3.3. Since
u,(y) is a least-energy solution to (1.1), we have

J |\7up|2dy=J K(y)ul*' dy.
R R
Thus, the Pohozaev identity yields

(=2 1) =20 | Ko™ dr=2| (VKO

n

Expressing the equality in terms of w,, we get
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{(n-2)(p+1) - 2n}v1’f_2(”+1)/(p_1) J K(vpx)wf;”rl dx

= 2v;*2(p+1)/(1’*1) J (x- VxK(vpx))ng dx.

(3.8) {(n—2)(P+1)—2n}J

K(vpx)wi*! dx

n

= 2J (x- VXK(VPX))W;;JFI dx.

As we have seen in the proof of Lemma 3.4, we have
lim J K(v,x)wlt dx = K(0 J W2/ (n=2) gy
p1(n+2)/(n=2) J g (1’ ) P (0) )

We also note that

. VK
lim xX-VeK(vpx) _ —eax]™
P2/ v

locally uniformly in R" by [K.5).
If 0 <m<n, then |x|"W?>/"=2) ¢ L'(R"). Thus we can take an L!(R")

function (decaying at the rate |x|” *"** with &> 0 sufficiently small so that
m—2n+¢ < —n) which is uniformly bigger than v "x VK (vpx)wllj“, since W,
decays like |x|*(”*2) at infinity by applying [Lemma 3.3 to (3.6) and the con-
vergence of w, to W in & by [Lemma 3.4. Thus, from the Lebesgue dominant
convergence theorem, we see that

. 1 m -
lim —J (x - VK (vpx)) Wit dx = —C4J x| " W2 1 =2) gy
pT(n+2)/(n—=2) v;}l n ;

Hence, by [3.8], we get

2¢4 J x| w2 (=2 x

lim n—2(p+1)-2ntyv"=— )
pT(n+2)/(n—2){( Jp+ 1) =2npv, K(0) J 2 (1-2) gy

n

Since v, = ||u,||;"""/*, we obtain

lim  {(n—2)(p+1) = 2n}|u,|LI"* = — .
im0 =2)(p 1) = 2n} | X0) J S
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If m > n, then we see |x|"W?>/"=2) ¢ LI(R"). So we decompose

(3.9) J ” (x - VoK (vpx) )W dx

= J +J (x- Vxl((vl,,x))w]f’,’+1 dx
Bv;lrl Rn\va—lrl

as in the proof of Mheorem 1.3. As for the first term of [3.9), we have

x| ()7 i,

- B 1,
ol

l[? "n

L | (0 - VK (vp))wy ()71 dx = sy J

by (K.6). Note that

p+1
[ mmrtar= e [ (2)
B By, Vp

v;lrl

with y = v,x. In view of the decay order of w, (~|x|""? at infinity by

3.5) and the convergence property of w, to W, we see that

y p+l
B,

lim —
pT(n+2)/(n-2) Vp
exists. Thus
lim vm+2_(”_2)”J x| w, (x)P ! dx
Pl+2)/(n-2) P B, " )
P

exists, 1.e.,

3.10 lim vz_("_z)pJ x -V K(v,x))w,(x)" T dx
B10) ] (R

vy
exists.

For the second term of [3.9], we again set y =v,x. Hence we get

| y p+l1
J (x- VXK(vpx))wI,,(x)er dx = vP”J (y-V,K(»)) (Wp <—>) dy.
R”\Bvl;lrl Rn\B"l VP

As in the same reasoning in the above (the decay property of w,), in view of

y (=v,x) € R"\B,,, we see

lim v_(n—Z)(p+1)J VK () (l)d
pT(n+2)/(n=2) P R”\B,l(y y (y)) P ) Y
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exists, 1.e.,

3.11 li 2—("—2>pJ -V.K ptl g
( ) pT(né%l(n—z) " R\B | (x-V. (vpx))wp(x) X
Vp r

exists.
By Cemma 3.4, v, " 77" 1 as p1 (n+2)/(n—2). Hence, combining
and (3.11), we see that

I, =2 lim v‘”J x - Vo K (v,x)) WPt dx
T I O

exists and negative. Thus we obtain

lim  {(n—2)(p+1) = 2n}u,| P~ =
mm)/(nfz){( )(p+ 1) — 2n}|uy|| s J r——

by [3.8). O
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