J. Math. Soc. Japan
Vol. 54, No. 4, 2002

Shannon graphs, subshifts and lambda-graph systems

By Wolfgang KRIEGER and Kengo MATSUMOTO

(Received Mar. 19, 2001)

Abstract. The relationship between presentations of subshifts by Shannon graphs
and by A-graph systems is studied. A class of presentations of subshifts by A-graph
systems is characterized. A notion of synchronization is introduced. A class of
presentations by A-graph systems, that are specifically associated to subshifts that fall
under this notion, is characterized.

1. Introduction.

Let X be a finite alphabet. On X% one has the left shift that sends a point
(6));c € 2% into the point (511);., € Z%. Subshifts are the dynamical systems
that are obtained by restricting the shift to a closed shift-invariant set X < 2.
For an introduction to the theory of subshifts see or [LM]. A subshift
X < 27 is uniquely determined by its set of admissible words, that is the words
in the alphabet X' that appear somewhere in a point (x;),., € X. We consider
directed graphs whose edges are labeled by symbols in 2. We define the ad-
missible words of a labeled directed graph as the words that appear as label
sequences of finite paths on the graph. We say that a labeled directed graph is
Shannon if its labeling is such that for every symbol o € 2" and every vertex v of
the graph there is at most one edge that leaves v and that carries the label a.
(Also different terminology is in use, e.g. directed graphs with such a labeling are
referred to also as deterministic transition systems). The set of label sequences
that are carried by the paths on the Shannon graph that leave a vertex v we call
the forward context of v, and we say that a Shannon graph is forward separated
if different vertices of the graph differ in their forward contexts. One says that
a Shannon graph presents the subshift X = XZ if its set of admissible words of
the graph coincides with the set of admissible words of X. There is a theory of
presenting subshifts by Shannon graphs, that began with Fischer’s paper [Fis],

where the case of sofic systems was considered (cf. e.g. [BK], [FF]).
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In this paper we consider on the one hand presentations of subshifts by
forward separated Shannon graphs that are such that every vertex has a pre-
decessor and a successor, and if we speak of presenting forward separated
Shannon graphs we mean such graphs. On the other hand we consider A-graph
systems as introduced in that also present subshifts. A /-graph system is
a labeled directed Bratteli diagram with an additional structure. The vertex
set of the A-graph system we write as a disjoint union

V= U anv

}’leZ+

where Z, ={0,1,2,...} and V¥, contains one vertex that we call the zero-vertex.
(In the components of the vertex sets of the A-graph systems were indexed
by N. The reason for the change in indexation is that we give now preference to
the other time direction. Both points of view are completely equivalent.) All
edges of the A-graph system start at some vertex of some V_,, and end at some
vertex of V_,.1, ne N. Here it is required that every vertex has a predecessor
and that every vertex except the zero-vertex has a successor. The additional
structure that turns a labeled directed Bratteli diagram into a A-graph system is a
map

l: U Vo, —V
neN

such that

(Voy)=V_ps1, neN,

and such that a condition that expresses compatibility with the labeling i1s
satisfied. In this paper, we consider only A-graph systems that are forward
separated Shannon graphs.

In section 2 of the paper we point out that there is a one-to-one corre-
spondence between the class of compact presenting forward separated Shannon
graphs and the class of forward separated Shannon A-graph systems. Hence,
presenting a subshift in the one way is equivalent to presenting it in the other
way.

J-graph systems are described algebraically by symbolic matrix systems
(Ma]). By means of these symbolic matrix systems it was possible to compute
K-theoretic groups such as Bowen-Franks groups introduced in for several
subshifts (cf. [Ma2]). Also in strong shift equivalence of A-graph systems
was formulated in terms of symbolic matrix systems. Labeled directed graphs
are described algebraically by their symbolic adjacency matrices and in terms of
these a translation of strong shift equivalence of forward separated Shannon A-
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graph systems into strong shift equivalence of the corresponding compact pre-
senting forward separated Shannon graphs can be formulated (compare here
IBK], [Na], [Na3]). A topological conjugacy between subshifts induces a natural
one-to-one map between the set of presenting forward separated Shannon graphs
of one subshift onto the set of presenting forward separated Shannon graphs of
the other subshift, and, as we will see in section 3, compact presenting forward
separated Shannon graphs are strong shift equivalent if and only if one graph
is carried into the other by the natural map that is induced by a topological
conjugacy between the presented subshifts.

Besides the maximal forward separated Shannon A-graph system that presents
a subshift every subshift is presented by another A-graph system that was de-
scribed in [Ma], and that was called the canonical A-graph system of the subshift.
In the canonical A-graph system of a subshift }J_, is the set of future contexts up
to time horizon n e N of the infinite pasts in the subshift, a directed edge with
label o indicates that the symbol o can be observed, while the time horizon
diminishes by one, and applying the map : means to lower the time horizon
by one and simultaneously shifting once in the positive time direction. To the
canonical A-graph system of a subshift there corresponds the closure of the
Shannon graph of future contexts of the infinite pasts in the subshifts (cf. [Kr3]).
In section 4 we characterize the canonical A-graph systems of subshifts and we
point out that these are invariantly associated to the subshifts. Orbits under the
map ¢ in a forward separated Shannon A-graph system that describe the future
context of an infinite past in the presented subshift, we call contextual. We
prove in section 4 that the appearance of a non-contextual z-orbit in the canonical
J-graph system of a subshift is an invariant of topological conjugacy.

An admissible word of a subshift is called synchronizing if every word in its
past context is compatible with every word in its future context. A topologically
transitive subshift that has a synchronizing word is called synchronizing. An
admissible word of a subshift that has for all n e N a transitive past that is
compatible with all words of length »n in its future context we call proto-
synchronizing. A protosynchronizing subshift is one with a protosynchronizing
word. Examples of protosynchronizing subshifts are the semisynchronizing sub-
shifts (Kr3]). These are the subshifts that have a semisynchronizing word, that
is an admissible word with a transitive past that is compatible with the entire
future context of the word. Synchronizing and protosynchronizing subshifts
allow presentations by specific forward separated Shannon A-graph systems, and
these need not coincide with their canonical A-graph systems. In section 5 we
give a characterization of these specific A-graph systems and point out that these
are invariantly associated to the subshifts. In section 6 we give examples. One
of these examples is a protosynchronizing subshift that is not semisynchronizing.
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2. Shannon graphs and Z-graph systems.

We introduce notation. For this consider directed graphs (V,E) where
every edge in the edge set E has an initial vertex and a final vertex in the vertex
set V. If there is an edge in the graph with initial vertex v € V' and final vertex
v’ € V, then we say that v is a predecessor of v’, or that v’ is a successor of v.
There are finite paths (e;),.,4, &€ E, j<i<k, jikeZ, j<k on the graph
that start at the initial vertex of ¢; and end at the final vertex of e;, where the
final vertex of e; coincides with the initial vertex of e;.;, j <i < k. Similarly one
has semi-infinite paths (e;), ., j€ Z respectively (e;) ,_;.x, k€ Z, on the
graph, and also bi-infinite paths (e;);,.,. We say that a vertex v’ € V' is con-
nected to a vertex v e V if there is a path that starts at v and ends at v/, and we
say that a directed graph is irreducible if every vertex is connected to every other
vertex.

Let now (V,E) be a Shannon graph with labels in X. We say that a finite
or left-infinite word ¢ can precede an entry into the vertex v e V, or that ¢ can
lead into v, if there is a path that carries ¢ and that ends at v. We say that a
vertex v € V' accepts a finite or right-infinite word c if there is a path that carries ¢
and starts at v. Given a Shannon graph S, we denote for a finite word ¢ that is
accepted by the vertex v e V/, the vertex at which the path ends that starts at v
and carries ¢ by @g(v,c). The partial function @g we call the transition function
of the Shannon graph S.

We denote by )" (v) the set of words of length n that are accepted by the
vertex ve V, ne N, and we denote by I'"(v) the set of right-infinite words that
are accepted by v. The forward context of v is given by the union of the sets
I''(v), ne N, or equivalently, by I'*(v).

Shannon graphs S and S with vertex sets ¥ and ¥ with the same label
alphabet ~ and with transition functions @ and @ are said to be isomorphic if
there is a bijection ¢: ¥ — ¥V such that for all ve V, ¢(v) accepts an o€ X
precisely if v accepts o, and if v accepts o, then

H(D(v, ) = B(P(v), 2).

To a finite alphabet X2 there is associated a Shannon graph. The vertex set
¥°(X) of this Shannon graph is the set of non-empty closed subsets of ZV. We
denote by I;(v) the projection of a ve 7 (X) onto X' neN. Let d be a
metric of 2V, e.g.

d((an)neN7 (O-}{I)I’ZEN) = Z zind(am 01/1)

neN

On 77(X) we use the compact topology that is given by a Hausdorff metric dy
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dir(v,v') = max (sup d(y,"), sup (), v)), 0,0 € 1(2),

YEvD y'ev

where d(y,v") =inf, ¢y d(y,y’) and d(y',v) =inf,c,d()’, y). A metric D that
is equivalent to dy is, for instance, given by

Do) = 3 2 10N (- L) U - L) N )
nenN
v, 0" e V().

ve ¥ (X) does not accept o € 2 if there is no sequence in v that starts with o. If
ve V() accepts o€ X, then

gb“f/'(E)(Ua o) = {(Gi+1)ieN : (Ui)ieN € v,01 = .

The mapping @5 is continuous. With the transition function @, (5), ¥"() is
the vertex set of a Shannon graph such that every vertex has a successor. This
Shannon graph is forward separated:

I''(v)=v, vev?(2).

It is the maximal presenting Shannon graph of the full shift over the alphabet 2.
We say that a subset V' of #7(X) is transition complete if for all ve V' and
all o accepted by v, also @ (x(v,a) € V.

Lemma 2.1. If V < (X)) is transition complete, then the closure of V is
also transition complete.

Proor. Let V be the closure of V, let ve V, and let v accept o€ X. There
are v;e V, ie N that accept o, and such that v =1Ilim; ., v;. The transition
completeness of V' implies that

QDV(Z)(UHOC)E V7 iEN7
and one has

Dy (xy(v,0) = lim D) (v;, ),

and therefore
dja//(z)(l), OC) S I7 |:|

Transition complete subsets of ¥7(2) with the restriction of @, (x) as tran-
sition functions are forward separated Shannon graphs such that every vertex has
a successor. On the other hand, given a forward separated Shannon graph with
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label alphabet 2 and vertex set V, such that every vertex has a successor, one
has the one-to-one correspondence that assigns to a vertex ve V its forward
context "7 (v), and by means of this one-to-one correspondence one can identify
the Shannon graph with the transition complete subgraph {I'*(v):ve V} of
7°(X). Using this identification, one can define by means of for
every forward separated Shannon graph such that every vertex has a successor
a Shannon graph as its closure. This closure also has the property that every
vertex has a successor.

PROPOSITION 2.2. Let V < ¥ (X) be a transition complete subset of V" (X)
such that every ve V has a predecessor in V. Then the closure V is a transition
complete subset of ¥ (X) such that every ve V has a predecessor.

Proor. Let ve V, and let v;e V, i e N be such that lim;,,, v; = v. There
is an o €2 together with ;e V, ie N such that v; = @y (x)(u;,«). By com-
pactness one can then select a subsequence u;,, k € N, such that one has a limit
u = limy_. u;, and one has then ®-(s)(u,00) =v. By Lemma 2.1, V is transition
complete. O

Consider now a A-graph system € with vertex set

V=) V.,
neZ,
that 1s labeled with symbols from a finite alphabet 2. For the case that the A-
graph system £ is a forward separated Shannon graph, it is required that
a v_,eV_, accepts an o€ X if and only if 7(v_,) accepts a, and if v_, e V_,
accepts o then

(Do(v_p,a)) = Po(21(v_p),a), neN.

The sequences (v_p),. z.s V-n €V such that v_,,; =1(v_,), ne N are the i
orbits. If here any of the v_,, and therefore all of the v_,, accept an « € 2, then
(@o(v_p, ),y 18 also an z-orbit. Putting on the set

7.

neZ.,

the product of the discrete topologies, one has that the set of z-orbits is a compact
forward separated Shannon graph.

To the alphabet X, there is associated a forward separated and right-
resolving A-graph system Ly as in the following way. For ne Z,, the vertex
set V_, 1s the set of all non-empty subsets of the length n words 2”". For
vy € V_p, we put 1(v_,) = {(a1,...,0-1) € Pt | (ot1y ..y 0ty—1,0) €v_p}. Then
(v_,) defines an element of V_,.;. If a vertex v_, € V_, is written as
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_ 1 2 k
vy =oqv_, Umv?, U---Uoo?,

for o; € X with o; # o; (i #j) and Uin—i—l € V_,.1 as a disjoint union, then we
define ®x(v_,,a;) =v’, , for each ne N. The resulting labeled graph with map
1 becomes a forward separated and right-resolving A-graph system. We write it
as ¥y. The A-graph system &y has a maximal property, that is, any forward
separated and right-resolving A-graph system over X is a sub A-graph system of
Ly. We also know that the compact forward separated Shannon graph 7 ()
is the Shannon graph of the set of i-orbits of L.

We associate a A-graph system £(S) with a forward separated Shannon
graph S. We assume that the Shannon graph is given by a transition complete
set Vo = 77(2). We introduce for ne N the equivalence relation =, into V.
For v,v' € V)

v %(n) (%
means that
I (v) = T(v').

V_, is then the set of ~,-equivalence classes. The zero-vertex is Vy. The ver-
tices in V_, can be identified with the elements in the set {7, (v) : ve Vy}. Here
I, (v) accepts o € X precisely if v accepts o, and then

@Q(S) (1—;1(0), OC) = Fn—l (@S(U, O())
In particular, the associated A-graph system of the Shannon graph 7°(X) is €.

PROPOSITION 2.3. Let V < V' (X) be transition complete. Then the A-graph
system of V is isomorphic to the A-graph system of the closure of V.

Proor. The mapping that sends an m-equivalence class v of V into its
closure, n € N is an isomorphism of the A-graph system of J onto the A-graph
system of the closure of V. ]

PROPOSITION 2.4. Let V < ¥°(X) be compact and transition complete. Then
V as a Shannon graph is isomorphic to the Shannon graph of 1-orbits of the i-
graph system of V.

Proor. The mapping that sends a ve V' into the -orbit (u—,),. 7 , that is
given by

u,={ueV:>L(u)=1I,(v)}

is an isomorphism of the Shannon graph V' onto the Shannon graph of -orbits of
the A-graph system of V. O
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To a transition complete subset V' < 77(X) there is associated the topological
Markov chain M(V') that contains all points (v;,x;),., € (V x )% such that

Uit1 = 45%(2)(01',)@'); ieZ.

By ny we denote the projection that assigns to a point in M(V) its X%-
coordinate. Given V < #°(2) and V < #'(X) that present subshifts X c X
and X =« 2% and a topological conjugacy ¥ : X — X we say that a shift-
commuting map ¥ : M(V) — M(V) is a lift of ¥ if

ﬂI;Olﬁ:lpOn'V.

THEOREM 2.5. Let X < X%, X < 2% be subshifts, and let  : X — X be a
topological conjugacy. Let V < v (X) present the subshift X. Then there exists
a unique V c V(%) that presents X such that W has a lift e MV)— MV).
The lift l/; is also uniquely determined.

ProOF. Let L e Z, be such that both y and ' are given by (2L + 1)-
block maps ¥ and ¥, that is, ¥ maps the set of admissible words of X of
length 2L + 1 into 2, ¥ maps the set of admissible words of X of length 2L + 1
into 2,  1s given by

Y(x) = (W((XHI)_LSISL))ieZa x=(Xi)jez €X,

and Y~ ! is given by

[p_l(fc) - (Sfl(()zi"‘l)*LSlgL))ieZ? X = ()zl')ieZ € X/a

(see e.g. [LM, Theorem 6.2.9]). We describe first V. For this, shifting 2L
steps in the negative time direction, interpret J as a subset of the subsets of
2(=2L:%)  Then choose a ve ¥ and a word w of length 3L + 1 that is accepted
by v, and set w= ¥(w). Then define a set # = XV as containing the points
X€e X’[Om) such that

((Wi)2r<icor ¥ (W, X)) € 0.

V is then defined as containing all sets # that can be obtained in this way from o.
We describe next the lift  : M(V) — M(V) of Y. For this, let (v;,x;),., €
M(V). Then setting

(5(1')1-62 = lp((xi)ieZ)v &((Uhxi)iel> = (ﬁi,ii)iel7
one has that 7; is given by
i ={(V)icjcer € X o) 97((21’):’—sz<1" (Ficjcw) €VI}, T€Z.

To confirm the uniqueness of ¥ and of y, assume that V,V'e ¥ (2) present
both a subshift ¥ « £Z and assume that
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n:M(V)— M)

is a lift of the identity, and prove that # is also the identity. Let (v;,x;),., €
M(V). Setting

(Vi Xi) ;e z) = (U], Xi)ie 7
one has that
vicv, I€Z,
and symmetrically one has
vicu, i€eZ,

and the proof of the theorem is complete. ]

3. Strong shift equivalence of Shannon graphs and A-graph systems.

In this section, we will discuss strong shift equivalence of Shannon graphs
and A-graph systems. We follow the development for sofic systems in and
[BK]. A Shannon graph S = (V,E) over an alphabet X is said to be bipartite if
there exist disjoint alphabets C,D < X2 with 2 = CUD and there exist disjoint
sets U, W < V with V= UU W such that for every edge e € E we have its initial
vertex in W, and its final vertex in U if the label of e is in D, and its initial vertex
in U, and its final vertex in W if the label of e is in C.

We denote by Sy the set of all finite formal sums of elements of 2. A
matrix with entries in Sy is called a symbolic matrix. Let .#s denote the
symbolic adjacency matrix associated to the Shannon graph S, that is defined as
a map

%S(,):VX V—)@E

in a natural way. Conversely, a 1-right resolving symbolic adjacency matrix
defines a Shannon graph, where a symbolic matrix is said to be 1-right resolving
if each symbol appears in every row at most one time.

Hence a Shannon graph S is bipartite if and only if the associated symbolic

matrix .#s is of the form: /g = [g ‘ﬂ where 2 is a 1-right resolving W x U

matrix with entries in S¢ and 2 is a 1-right resolving U x W matrix with entries
n 61).

For two symbolic matrices .o/ over an alphabet X and .o/’ over an alphabet
2’ and a bijection ¢ from a subset of X2 onto a subset of 2/, we say ./ and
/" specified equivalent under specification ¢ if ./’ can be obtained from .o/ by
replacing every symbol a appearing in o/ by ¢(a). We write this as o/ g .
We call ¢ a specification from X to 2.
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Let S=(V,E), S'= (V' E') be Shannon graphs over alphabets X X’
respectively. The associated symbolic adjacency matrices .#s, .#s for S,S’ are
saild to be strong shift equivalent in 1-step if there exist alphabets C,D and
specifications

p:2—CD, ¢:2"—DC

together with a 1-right resolving V' x V'’ matrix 2 over C and a 1-right resolving
V' x V matrix 2 over D satisfying the following equations

s X 23, g X 2P,

where 22 is a V x V' matrix over CD defined by
PI(u,v) = Z Pu,u)2u’,v), uveV,
u'eV’

and 22 is similarly defined.

One has that .#s and .4/ are strong shift equivalent in 1-step if and only if
there exists a bipartite Shannon graph S over the alphabet CUD such that the
associated symbolic matrix .#g is of the form

0 2
%Szlg 01

where # is a l-right resolving V' x V'’ matrix over C and 2 is a 1-right resolving
V' x V matrix over D satisfying the equations

s X 22, g L 2z
for some specifications
p:X—CD, ¢:2 — DC.
We write this situation as

%S ~ %SI.

1—st

Two symbolic matrices .#s,.#s are said to be strong shift equivalent in N-step
if there exist Shannon graphs S; over alphabets 2, i=1,2,..., N — 1 such that

1—st 1—st 1—st 1—st 1—st

Ms =~ Ms, =~ Ms, % - = Ms, , & Ms.

We denote this situation by
%S ~ %S/

N—st

and simply call it a strong shift equivalence.
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We also recall from the notion of symbolic matrix systems, bipartite
symbolic matrix systems and their strong shift equivalence. For a A-graph
system & with vertex set V' = Une Z. V_pn, let M _, —,—1 be the symbolic adjacency
matrix of the labeled graph £ between the vertices V_, | and V_,. That is,
M —y, —n—1 has a symbol « in the component (i, j), ie V_,, je V_,_ if there exists
an edge from j to i with symbol «. The matrices I, _,_1, n € Z, with entries in
{0,1} are defined by the mappings 7: V_,_; — V_, in a natural way. Then the
sequence of pairs (M _, —p—1,1-n,—n—1), n € Z, of matrices satisfies the equations:

I—n,—n—lfﬂ—n—l,—n—Z = %—n,—n—ll—n—l,—n—Z ne Z+-

We call such sequence of pairs of matrices (A _, _pn_1,1-n —n-1), n€ Z, a sym-
bolic matrix system and write it as (/#,1).

Let (.#,I) and (.4',1') be symbolic matrix systems over alphabets
2,2 respectively, where #_, 1,1y —n—1 are m(n) x m(n+ 1) matrices and
M, I, o are m'(n) x m'(n+1) matrices. Then (4,1), (M',1) are

said to be strong shift equivalent in 1-step, written as (.#,1) K (' 1) if
—St
there exist alphabets C, D and specifications ¢ : 2 — CD and ¢ : 2’ — DC such
that for each n e N, there exist an m(n — 1) x m’(n) matrix #_, over C and an
m'(n— 1) x m(n) matrix #_, over D satisfying the following equations:
¢
a_nﬂl =

4 /
I—n—O—l,—n%—n,—n—l = %—n%—n—l; I- —n,—n—1 — H _nHp1

n+1
and

H !

—n,—n—1

!
= I—n—i—l,—n”—n—la e%/—nl—n, —-n—1 = I_n_¢_17_n%—n—l-

(M, 1) and (', 1') are said to be strong shift equivalent in N-step, or to be
strong shift equivalent, written (.#,1) ~ (.#',1'), if there exist symbolic matrix
. . —St
systems (%(’),I(’)), i=1,2...,N—1 such that
I ~ M 7MWy & 2 72y ~ ...
(a,0) (A0 10) 5 (1) ~

t 1—st 1

x (N IV T,

—st ( ’ ) 1—st ( ’ )
We remark that if /-graph systems are right-resolving and forward separated,

strong shift equivalence is equivalent to properly strong shift equivalence of their

symbolic matrix systems ([Ma], [Ma3]).

PROPOSITION 3.1. Let V < ¥ (%) and V < ¥'(X) be compact. Then the
symbolic adjacency matrices of V and V are strong shift equivalent if and only if
the symbolic matrix systems of V and V are strong shift equivalent.

ProoOF. It i1s enough to consider 1-step strong shift equivalence, in which
case the statement of the proposition is confirmed by inspection using bipartite
Shannon graphs and bipartite symbolic matrix systems. ]
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PROPOSITION 3.2. Let V ¥ (X) and V < ¥'(X) present the subshifts
X 2% and X < 2%. Then the symbolic adjacency matrices of V and V are
strong shift equivalent if and only if there exists a topological conjugacy W - X — X

with a lift that carries M (V) into M(V).

Proor. Recall the result of Nasu and [Na2], who introduced the
notion of bipartite subshifts. A subshift X over an alphabet X is said to be
bipartite if there exist disjoint subsets C,D < X such that in any (x;),.,€X
either x; € C and x;, ;e D forallie Z, or x;e D and x;.; e Cforallie Z. Let
X be the 2-higher power shift of X. Put

Xep = {(cidy),., € XP | ¢; e C,d; € D},
Xpc = {(dici);c 7 € X' | ci € C,d; € D}.

These are subshifts over CD and DC respectively. Hence X% is partitioned into
the two subshifts X¢p and Xpc. Nasu in [Na], also introduced the notion
of bipartite conjugacy. The conjugacy from X¢p onto Xpc that maps (c¢;d;),.,
to (diciy1);., 1s called the forward bipartite conjugacy. The conjugacy from
Xcp onto Xpe that maps (cid;);,., to (di_ici),., 1s called the backward bi-
partite conjugacy. A topological conjugacy between subshifts is called a sym-
bolic conjugacy if it is a 1-block map given by a bijection between the underlying
alphabets of the subshifts. Nasu in proved that any topological conjugacy
¢ between subshifts is factorized into a composition of the form:

¢ = 1,Cutcn_18,1 -+ - K1{ Ko

where ko, ...,k, are symbolic conjugacies and (;,...,{, are either forward or
backward bipartite conjugacies.

It follows that it is enough to confirm the statement of the proposition in
the case of bipartite codings, in which case this is done by inspection using
bipartite Shannon graphs. L]

4. Presentations of subshifts.

We consider subshifts X = 24. For the admissible blocks of the subshift
X we use notation like

Xiik] = (xj)igjgka X = (xi)ieZ €X,
X[i,k} = {x[,-yk] X E X}

By I'"(X,y) we denote the set of all xe X . that can follow ye X_. ;,
i€ Z. Similarly for an admissible finite block a I'*(X,a) denotes the set of
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all right-infinite words that can follow a, I""(X,a) having the time symmetric
meaning. By I'"(X,y) we denote the set of all admissible words of length n
that can follow ye X(_, ;, i€ Z.

For a subshift X < X7, let

ViX)={I,(X,y):yeX_ w0}, neN

n

and
VAX) ={I'"(X,»):y e X(_w,q}-

VT (X) is a transition complete subset of 7'(X). As a Shannon graph V*(X)
presents X. We remark at this point that a subshift X has one maximal
presenting Shannon graph whose vertex set 1s the set of all closed subsets of the
set I (X,y):y€ X w0

Set for ae X_; ), € Z,,

Vit (X,a)={I'"(X,ya):yeI' (X,a)}.

LeMmAa 4.1. Let le Z.. V*H(X) is compact if and only if V' (X,a) is
compact for all ae X .

ProOF. On the one hand side, one has

)= U 7(x,a),

LZGX[_/,O]

and on the other hand, one has for all y e I'" (X, a), I'" (X, ya) given precisely by
the x e I'"(X, y) such that a = x;_; g O

PROPOSITION 4.2.  For subshifts X, the compactness of V*(X) is an invariant
of topological conjugacy.

Proor. Let X < 2%, X c 2% be topologically conjugate subshifts, and
let there be a topological conjugacy of X onto X given for some Le Z, by a
(2L + 1)-block map @ with the inverse of the conjugacy given by a (2L + 1)-
block map @. Let V*(X) be compact. According to [Lemma 4.1, we establish
the proposition by showing for a € X|_,; ¢ that V(X ,a) is compact. For this,
let there be given

k) e I' (X,a), keN,
such that there 1s a limit

v=lim ' (X, yMa).

k— o0

We have to show that there is a y € I (X,a) such that
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(1) v=TI"(X,ya).

Selecting, if necessary, a subsequence we can assume without loss of generality
that there is a block b e X|_3;, ;) and

79 e r-(X,b), keN,
such that
59 = b(3 %)
and moreover, such that there is a limit

5= lim I'H(X, 30b).

k— o0

By V*(X,b) is compact, and we have a je I~ (X,b) such that
5=T%X,yb). We set y=®(jb). By construction ye ' (X,a). We show
that (1) holds. For this we observe that here

xelI'" (X, ya)
is equivalent to
X =D(ai_s1,0,x) € (X, 7b),

which is equivalent to having a ky € N such that

el (X, 70b), k> ko,
which in turn is equivalent to

xe I''(X,yWa), k> k,
and therefore to

X €. ]

We introduce an additional notation. Given a forward separated Shannon
A-graph system

V= k) V_n,

neZ,

we denote for n e N by #_,(V) the set of words ¢ such that there exists a vertex
in V_, into which ¢ leads, and that is maximal among the vertices in V_, into
which ¢ leads, and for ¢ e #_,(V) denote by v_,(c) the vertex with the stated
property.

For an admissible left-infinite word (o_;);,., of a forward separated
Shannon A-graph system (V_,, E_), ., We say that a vertex ve V., ne Z,, is
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associated to (0-;);. If the following holds: (0-;);., can lead into v, and v
is maximal among the vertices of V_, into which (o_;);., can lead.

Lemma 4.3, Let for all ne Z.., v_, € V_, be associated 10 (6-;);.z . Then
(V-n)pez, is an r-orbit.

PrOOF.  Observe first that a vertex ve V_,, ne Z, is associated to (0-;);. 7.
if and only if the following holds: (¢_;),.; precedes an entry into v and there
is an /e N such that (0_;);5,50€ Z-u(V) and v=v_,((6-i);5;50). Let now
ve Voy, neN, be associated to (5-;);. . and select an [ € N as described. We
prove that i(v) is also associated to (0_;);.7 . Assume that there is not the
case and let u e V_,, be such that (6_;),, z. precedes an entry into u, and that
there is a word b e I'*(u) that is not accepted by 1(v). Then let we V_, ;.
be such that there is a path from w to u that carries the word (6_;);.,5 = ¢,
and let w' e V_,_; be such that w=1(w'), w' accepts the word cbo for some
ge 2. It follows that v accepts the word bo, and therefore i(v) accepts the
word b, a contradiction. ]

We say that the r-orbit (v_y),., Where v_, is associated to (0_); 7, Is
associated to (0-;);.z . The i-orbits that are associated to admissible left-infinite
words we call contextual r-orbits. The contextual i-orbits form a sub-Shannon
graph of the Shannon graph of -orbits. By construction the Shannon graph of
contextual z-orbits of the canonical A-graph system of a subshift is isomorphic
to the Shannon graph of forward contexts of the subshift.

PROPOSITION 4.4. The existence of a non-contextual i1-orbit in the canonical
A-graph system of a subshift X < X% is an invariant of topological conjugacy.

PrOOF. Observe that all -orbits of the canonical A-graph system are con-
textual if and only if V(X) is compact. Apply [Proposition 4.2 ]

For every subshift X ¢ % one has the maximal forward separated Shannon
J-graph system that presents X and that corresponds to the maximal presenting
Shannon graph of the subshift. In its vertex set (V_,),.7 , V_n contains all
subsets of the sets in V,/(X), ne N, and the corresponding compact forward
separated Shannon graph is given by the set of all compact subsets of the sets
that are in the closure of V*(X). Every subshift X = X% has also a presen-
tation by the canonical forward separated /-graph system of [Ma]. Its vertex set
(Von(X)),ez, is given by

Vo.=VHX) neN,

and the corresponding compact forward separated Shannon graph is given by the
closure of V*(X).
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We want to characterize the canonical A-graph system of a subshift X c >Z.

LEmMMA 4.5. Let X c X% be a subshift. For all y € X(—co,0) and ne N there
is a koe N such that

I—;1+(X7 y[—ko,O}) = I—;1+(X7 y)
Proor. It is

LIX,y)= () I(X, yk.0)- O
keN

LEMMA 4.6. Let V be a forward separated Shannon JA-graph system. Let
I,mneN, and let ae F_,,_,(V) have length I. Let ¢ be an admissible word of
V of length [+ m that begins with a such that ¢ = ab. Then

(2) ceF V), v_nlc)=Qy(v_p_mla),b).
PrROOF. Set
u=o&y(v_y_m(a),b),

let ' be any vertex in V_, into which ¢ can lead, and let then w be any vertex
in V_,_,—; such that u’' = @p(w,c). It is

V_p_m(a) > @y (w,a),
and therefore u’ > u and (2) follows. O

Lemma 4.7. Let V be a forward separated Shannon J-graph system. For
all ne N

and for c€ F_,_1(V),
(v_py_1(c)) = v_p(c).
Proor. The map 1 respects the labeling. ]

PROPOSITION 4.8.  In the canonical J-graph system V(X) of a subshift X = 2%
one has for all ne N that
(1) for all ve V_,(X) there is a ce F_,(V(X)) such that

v=uv_4(c),

(2) every left infinite word (x_y), . that can lead into the zero-vertex ends in
a word in F_,(V(X)).
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ProoF. Apply [Lemma 4.3. ]
We have a converse of the proposition.

ProPOSITION 4.9. Let

V=) V.,

neZ.,

be a forward separated Shannon A-graph system such that for all ne N
(1) for all ve V_,(X) there is a ce F_,(V(X)) such that

v=uv_4(c),

(2) every left infinite word (x_y),.n that can lead into the zero-vertex ends
in a word in 7_,(V(X)).
Then V is isomorphic to the canonical J-graph system of the subshift that it
presents.

Proor. We have to show that to every left infinite word that can lead into
the zero-vertex there is associated an z-orbit and that these contextual -orbits
are dense in the space of i-orbits. Let (x_,),.y be a word that can lead into
the zero-vertex. Then the words (x_;),.,, /€N, can also lead into the zero-
vertex and one finds from that there is a sequence I, € N such that
L,;1 > I,, ne N, and such that the words b, = (x_i)_,isiSO are in #_,(V), ne N.
By means of [Lemma 4.7, one has a selection argument that shows that there is
an z-orbit (u_,) such that for all ne N there is a K, € N such that

nEZ+

vy =v_p(br), k>K,.

It follows that the i-orbit (u-,),.,, 1is associated to the sequence (x_p),cy-
To show the density of the contextual i-orbits, let ne N and ue V_,, and
ceF V), u=v_y(c). Write ¢ = (y_y)o<r<x and let (y_p), .z be a word that
leads into u. Then the i-orbit that is associated to (y_j);., contains u. [

THEOREM 4.10. Let X < X%, X < X% be subshifts, and let  : X — X be a
topological conjugacy. Then

G) )M V(X)) = M(V(X))
Proor. It is (cf. [Kr3, Section 3)),
WMV (X)) = M(V"(X)).

Due to the uniform continuity of \ with respect to the metrics on V(X) and
V(2) one has then also (3). [
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5. Protosynchronization.

We call an admissible word ¢ of a subshift X = XZ protosynchronizing if
for all ne N there is a transitive y € I'~ (X, ¢) such that

(X, ye)=T"(X,c).

Every admissible word of a subshift that begins with a protosynchronizing word
is also protosynchronizing. For a protosynchronizing subshift X X%, that is
a subshift with a protosynchronizing word, it is therefore possible to define the
canonical protosynchronizing A-graph system

V) = () V)
nez,

as the forward separated Shannon A-graph system that has as elements of
V)(X) the sets I (X, c), ¢ a protosynchronizing word of X, ne N.

For a forward separated Shannon A-graph system V' and a word

ce () Z-u(V)
neN

we say that the i-orbit (v-,(c)),.,, is associated to c. We say that a forward
separated Shannon A-graph system J is a protosynchronizing A-graph system, if

() F=u(V) # &,

neN

and if also all 1-orbits of ¥ that are associated to a word in (), _, Z.(V) contain
for every vertex ue€ V' a vertex that can be connected to u. The canonical
protosynchronizing A-graph system of a protosynchronizing subshift is proto-
synchronizing in this sense.

PROPOSITION 5.1. Let X < 2%, X < X% be subshifts, X protosynchronizing,
and let y : X — X be a topological conjugacy. Then X is also protosynchronizing
and

(1) p(rM(X) = virx).

PrRoOF. Let L e Z, be such that both y and ' are given by (2L + 1)-
block maps. To prove that X is protosynchronizing, let n e N, and consider
the situation that one is given a left transitive point x € X' such that for some
KeZ,, (Xi)_y;_kx<i<o 18 a protosynchronizing word for X, and such that

F2+L+n(X7 x[fZLfK,O]) = F2+L+n(X7 x(*f’ovo])'
Set ¥ =y !(x). Then
F,f@h )NC[—L—K,L]) = 17()2’ )NC(—och])'
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One concludes that (%) ; x.,., is a protosynchronizing word for X. (1) is
seen by inspection. ]

LEMMA 5.2. Let V = Un Z. V_, be a protosynchronizing A-graph system, and
let meN, ueV_,. Then there exists a

(2) be () 7u(V)
neN
such that
(3) u=uv_p(b).
PrOOF. Let
ce () Z_a(V).
neN

There is for some k € N a word a such that v_,,_(c) is connected to u by a. Set
b equal to ca. By [Lemma 4.6, (2) and (3) hold. O

LEmMMmA 5.3. Let V = Une z. V_, be a protosynchronizing i-graph system,
and let a be an admissible word of V. Then there exists a word in (), _y F—n(V)
that ends in a.

PrOOF. Let me N, ueV_,, be such that u is connected by a to the zero-
vertex. By Lemma 3.7, there is a be (), yZ—s(V) such that u=wv_,(b). By
bae ),y Zn(V). O

LEMMA 5.4. For a protosynchronizing A-graph system V = Une 7. Von every
word in (| _n F-a(V) is protosynchronizing for the subshift X that is presented
by V.

Proor. By [Lemma 5.3, one has a sequence

b e (\ F.(V), keN,
neN
such that for every admissible word a of V infinitely many of the words 5%,
keN, end in a. Let ce(),_yZ-u(V) and let npe N. One constructs in-
ductively sequences m(k) e N, ke Z ., and I(k) € N, k € N, such that ny < m(0),
and

m(k —1) <Il(k) <m(k), keN,

together with a sequence w € V_, ), k€ Z, such that v_, (c) = ®y(u,c) and
such that for all ke N, v_y (M) can be connected to u;_;, and U_i(k) (b)) =
@y (u, bX)). Filling in the connections one obtains a transitive past y of ¢ such
that
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0-(e) = I (X, ye). 0

PROPOSITION 5.5. A protosynchronizing A-graph system V' is isomorphic to the
canonical protosynchronizing A-graph system of the subshift X that it presents.

Proor. In view of [Lemma 5.4, we are left with proving that every pro-
tosynchronizing word b of X is in (1) _yZ_,(V). For this let ny € N, and let
cEe ﬂne ~Z-u(V). Since b is protosynchronizing, there is an admissible word
a of X such that cab i1s admissible, and such that

I} (X cab) = I} (X.b).
Then
0 o(cab) = I} (X )
This means that be Z_, (V), and that v_,,(b) = v_p,(cab). ]

Every admissible word of a subshift that contains a synchronizing word as
a subword is also synchronizing. For a synchronizing subshift X < X% it is
therefore possible to define the canonical synchronizing A-graph system

o) = () )

—n
neZ,
as the forward separated Shannon A-graph system that has as elements of V_(Z)(X )
the sets I't(X,c), ¢ a synchronizing word of X, ne N. For synchronizing
subshifts X = 2%, V(X)) coincides with V(") (X).

6. Examples.

For sofic systems the canonical A-graph system corresponds to the complete
right-resolving extension of [Kr], [Kr2], and the canonical synchronizing A-graph
system of topologically transitive sofic systems corresponds to the Fisher au-
tomaton ([Fis]). There are topologically transitive sofic systems X such that
V(X) is equal to V¥ (X) ([Fie)).

We list some synchronizing non-sofic examples. These are coded systems
X (%) defined by codes ¢ ([BH]).

1.

2= {y,0,1},
% ={y0"1":1e N}.

Here the canonical synchronizing A-graph system is a proper subsystem of the
canonical A-graph system and all i-orbits are contextual.
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2 ={y,0,1},
¢ ={0"1" : 1eN}, k>1.
b)
2 = {aaﬂaoa 10!7 lﬁ}a
€ ={a0"1," : 1e NYU{pO“1)' : 1e N}, k> 1.

Here in both cases the canonical synchronizing A-graph system is a proper sub-
system of the canonical A-graph system and there are non-contextual i-orbits.
One can obtain semisynchronizing nonsynchronizing examples by using these
coded systems X (%) and the Dyck shifts in a product construction.
We give an example of a protosynchronizing subshift that is not semi-
synchronizing. Let

2 ={o,B,7},

and let S be the shift on 4. We describe disjoint closed sets E;, E», E3, Ey < X%
such that the subshift

X =) SEIUE,UE;UEy)
ieZ

is protosynchronizing but not semisynchronizing. Here
Ei={xeX? : x;#a}U{xeX? : xyp=x; =0},
Ezz{erZ:xo # o, X] = o}

N N{xeZ%:x i #afU{xeX? x;=x_y =a}).
ieN

For
xeX? — (E|UE)

define r(x) as the smallest integer r > 1 such that
X_p 0, X_ppp = 0.

Let D be the set of
xeX? — (E|UE)

such that the number of ie N, 1 <i < 2r(x), such that

X =p
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is greater than or equal to the number of ie N, 1 <i < 2r(x), such that
X_j 0y, X_jp] = 0,

and for x e D define h(x) as the smallest 7e N, 1 <i<2r(x), such that the
number of ie N, 1 <i <h, such that

X_i=p
is equal to the number of ie N, 1 <i<h, such that
X_jF 0, X_jy1 = 0.
Let
Ey={xeD:x_jy_q#7,9€ N},
and for x e D — E; define ¢(x) as the smallest ¢ € N such that

X_h(x)—q = 7-
Then set
Es=(D—-FE;)—{xeD—FE;:x;=0a,1 <i<2q(x)}.
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