
J. Math. Soc. Japan
Vol. 54, No. 4, 2002

Shannon graphs, subshifts and lambda-graph systems

By Wolfgang Krieger and Kengo Matsumoto

(Received Mar. 19, 2001)

Abstract. The relationship between presentations of subshifts by Shannon graphs

and by l-graph systems is studied. A class of presentations of subshifts by l-graph

systems is characterized. A notion of synchronization is introduced. A class of

presentations by l-graph systems, that are specifically associated to subshifts that fall

under this notion, is characterized.

1. Introduction.

Let S be a finite alphabet. On S
Z one has the left shift that sends a point

ðsiÞi AZ A S
Z into the point ðsiþ1Þi AZ A S

Z . Subshifts are the dynamical systems

that are obtained by restricting the shift to a closed shift-invariant set X HS
Z .

For an introduction to the theory of subshifts see [Ki] or [LM]. A subshift

X HS
Z is uniquely determined by its set of admissible words, that is the words

in the alphabet S that appear somewhere in a point ðxiÞi AZ A X . We consider

directed graphs whose edges are labeled by symbols in S. We define the ad-

missible words of a labeled directed graph as the words that appear as label

sequences of finite paths on the graph. We say that a labeled directed graph is

Shannon if its labeling is such that for every symbol a A S and every vertex v of

the graph there is at most one edge that leaves v and that carries the label a.

(Also di¤erent terminology is in use, e.g. directed graphs with such a labeling are

referred to also as deterministic transition systems). The set of label sequences

that are carried by the paths on the Shannon graph that leave a vertex v we call

the forward context of v, and we say that a Shannon graph is forward separated

if di¤erent vertices of the graph di¤er in their forward contexts. One says that

a Shannon graph presents the subshift X HS
Z if its set of admissible words of

the graph coincides with the set of admissible words of X. There is a theory of

presenting subshifts by Shannon graphs, that began with Fischer’s paper [Fis],

where the case of sofic systems [We] was considered (cf. e.g. [BK], [FF]).
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In this paper we consider on the one hand presentations of subshifts by

forward separated Shannon graphs that are such that every vertex has a pre-

decessor and a successor, and if we speak of presenting forward separated

Shannon graphs we mean such graphs. On the other hand we consider l-graph

systems as introduced in [Ma] that also present subshifts. A l-graph system is

a labeled directed Bratteli diagram [Br] with an additional structure. The vertex

set of the l-graph system we write as a disjoint union

V ¼ 6
n AZþ

V�n;

where Zþ ¼ f0; 1; 2; . . .g and V0 contains one vertex that we call the zero-vertex.

(In [Ma] the components of the vertex sets of the l-graph systems were indexed

by N . The reason for the change in indexation is that we give now preference to

the other time direction. Both points of view are completely equivalent.) All

edges of the l-graph system start at some vertex of some V�n, and end at some

vertex of V�nþ1, n A N . Here it is required that every vertex has a predecessor

and that every vertex except the zero-vertex has a successor. The additional

structure that turns a labeled directed Bratteli diagram into a l-graph system is a

map

i : 6
n AN

V�n ! V

such that

iðV�nÞ ¼ V�nþ1; n A N ;

and such that a condition that expresses compatibility with the labeling is

satisfied. In this paper, we consider only l-graph systems that are forward

separated Shannon graphs.

In section 2 of the paper we point out that there is a one-to-one corre-

spondence between the class of compact presenting forward separated Shannon

graphs and the class of forward separated Shannon l-graph systems. Hence,

presenting a subshift in the one way is equivalent to presenting it in the other

way.

l-graph systems are described algebraically by symbolic matrix systems

([Ma]). By means of these symbolic matrix systems it was possible to compute

K-theoretic groups such as Bowen-Franks groups introduced in [Ma] for several

subshifts (cf. [Ma2]). Also in [Ma] strong shift equivalence of l-graph systems

was formulated in terms of symbolic matrix systems. Labeled directed graphs

are described algebraically by their symbolic adjacency matrices and in terms of

these a translation of strong shift equivalence of forward separated Shannon l-
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graph systems into strong shift equivalence of the corresponding compact pre-

senting forward separated Shannon graphs can be formulated (compare here

[BK], [Na], [Na3]). A topological conjugacy between subshifts induces a natural

one-to-one map between the set of presenting forward separated Shannon graphs

of one subshift onto the set of presenting forward separated Shannon graphs of

the other subshift, and, as we will see in section 3, compact presenting forward

separated Shannon graphs are strong shift equivalent if and only if one graph

is carried into the other by the natural map that is induced by a topological

conjugacy between the presented subshifts.

Besides the maximal forward separated Shannon l-graph system that presents

a subshift every subshift is presented by another l-graph system that was de-

scribed in [Ma], and that was called the canonical l-graph system of the subshift.

In the canonical l-graph system of a subshift V
�n is the set of future contexts up

to time horizon n A N of the infinite pasts in the subshift, a directed edge with

label a indicates that the symbol a can be observed, while the time horizon

diminishes by one, and applying the map i means to lower the time horizon

by one and simultaneously shifting once in the positive time direction. To the

canonical l-graph system of a subshift there corresponds the closure of the

Shannon graph of future contexts of the infinite pasts in the subshifts (cf. [Kr3]).

In section 4 we characterize the canonical l-graph systems of subshifts and we

point out that these are invariantly associated to the subshifts. Orbits under the

map i in a forward separated Shannon l-graph system that describe the future

context of an infinite past in the presented subshift, we call contextual. We

prove in section 4 that the appearance of a non-contextual i-orbit in the canonical

l-graph system of a subshift is an invariant of topological conjugacy.

An admissible word of a subshift is called synchronizing if every word in its

past context is compatible with every word in its future context. A topologically

transitive subshift that has a synchronizing word is called synchronizing. An

admissible word of a subshift that has for all n A N a transitive past that is

compatible with all words of length n in its future context we call proto-

synchronizing. A protosynchronizing subshift is one with a protosynchronizing

word. Examples of protosynchronizing subshifts are the semisynchronizing sub-

shifts ([Kr3]). These are the subshifts that have a semisynchronizing word, that

is an admissible word with a transitive past that is compatible with the entire

future context of the word. Synchronizing and protosynchronizing subshifts

allow presentations by specific forward separated Shannon l-graph systems, and

these need not coincide with their canonical l-graph systems. In section 5 we

give a characterization of these specific l-graph systems and point out that these

are invariantly associated to the subshifts. In section 6 we give examples. One

of these examples is a protosynchronizing subshift that is not semisynchronizing.
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2. Shannon graphs and l-graph systems.

We introduce notation. For this consider directed graphs ðV ;EÞ where

every edge in the edge set E has an initial vertex and a final vertex in the vertex

set V. If there is an edge in the graph with initial vertex v A V and final vertex

v 0 A V , then we say that v is a predecessor of v 0, or that v 0 is a successor of v.

There are finite paths ðeiÞjaiak, ei A E, ja ia k, j; k A Z, ja k on the graph

that start at the initial vertex of ej and end at the final vertex of ek, where the

final vertex of ei coincides with the initial vertex of eiþ1, ja i < k. Similarly one

has semi-infinite paths ðeiÞjai<y
, j A Z respectively ðeiÞ�y<iak, k A Z, on the

graph, and also bi-infinite paths ðeiÞi AZ . We say that a vertex v 0 A V is con-

nected to a vertex v A V if there is a path that starts at v and ends at v 0, and we

say that a directed graph is irreducible if every vertex is connected to every other

vertex.

Let now ðV ;EÞ be a Shannon graph with labels in S. We say that a finite

or left-infinite word c can precede an entry into the vertex v A V , or that c can

lead into v, if there is a path that carries c and that ends at v. We say that a

vertex v A V accepts a finite or right-infinite word c if there is a path that carries c

and starts at v. Given a Shannon graph S, we denote for a finite word c that is

accepted by the vertex v A V , the vertex at which the path ends that starts at v

and carries c by FSðv; cÞ. The partial function FS we call the transition function

of the Shannon graph S.

We denote by Gþ
n ðvÞ the set of words of length n that are accepted by the

vertex v A V , n A N , and we denote by GþðvÞ the set of right-infinite words that

are accepted by v. The forward context of v is given by the union of the sets

Gþ
n ðvÞ, n A N , or equivalently, by GþðvÞ.

Shannon graphs S and ~SS with vertex sets V and ~VV with the same label

alphabet S and with transition functions F and ~FF are said to be isomorphic if

there is a bijection f : V ! ~VV such that for all v A V , fðvÞ accepts an a A S

precisely if v accepts a, and if v accepts a, then

fðFðv; aÞÞ ¼ ~FFðfðvÞ; aÞ:

To a finite alphabet S there is associated a Shannon graph. The vertex set

VðSÞ of this Shannon graph is the set of non-empty closed subsets of SN . We

denote by GnðvÞ the projection of a v AVðSÞ onto S½1;n�, n A N . Let d be a

metric of SN , e.g.

dððsnÞn AN ; ðs
0
nÞn ANÞ ¼

X

n AN

2�ndðsn; s
0
nÞ:

On VðSÞ we use the compact topology that is given by a Hausdor¤ metric dH
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dHðv; v
0Þ ¼ max sup

y A v
dðy; v 0Þ; sup

y 0 A v 0
dðy 0

; vÞ

 !

; v; v 0 AVðSÞ;

where dðy; v 0Þ ¼ infy 0 A v 0 dðy; y
0Þ and dðy 0

; vÞ ¼ infy A v dðy
0
; yÞ. A metric D that

is equivalent to dH is, for instance, given by

Dðv; v 0Þ ¼
X

n AN

2�jSj2 jGnðvÞV ðS½1;n� � Gnðv
0ÞÞU ðS½1;n� � Gnðv

0ÞÞVGnðv
0Þj;

v; v 0 AVðSÞ:

v AVðSÞ does not accept a A S if there is no sequence in v that starts with a. If

v AVðSÞ accepts a A S, then

FVðSÞðv; aÞ ¼ fðsiþ1Þi AN : ðsiÞi AN A v; s1 ¼ ag:

The mapping FVðSÞ is continuous. With the transition function FVðSÞ, VðSÞ is

the vertex set of a Shannon graph such that every vertex has a successor. This

Shannon graph is forward separated:

G
þðvÞ ¼ v; v AVðSÞ:

It is the maximal presenting Shannon graph of the full shift over the alphabet S.

We say that a subset V of VðSÞ is transition complete if for all v A V and

all a accepted by v, also FVðSÞðv; aÞ A V .

Lemma 2.1. If V HVðSÞ is transition complete, then the closure of V is

also transition complete.

Proof. Let V be the closure of V, let v A V , and let v accept a A S. There

are vi A V , i A N that accept a, and such that v ¼ limi!y vi. The transition

completeness of V implies that

FVðSÞðvi; aÞ A V ; i A N ;

and one has

FVðSÞðv; aÞ ¼ lim
i!y

FVðSÞðvi; aÞ;

and therefore

FVðSÞðv; aÞ A V : r

Transition complete subsets of VðSÞ with the restriction of FVðSÞ as tran-

sition functions are forward separated Shannon graphs such that every vertex has

a successor. On the other hand, given a forward separated Shannon graph with
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label alphabet S and vertex set V, such that every vertex has a successor, one

has the one-to-one correspondence that assigns to a vertex v A V its forward

context GþðvÞ, and by means of this one-to-one correspondence one can identify

the Shannon graph with the transition complete subgraph fGþðvÞ : v A Vg of

VðSÞ. Using this identification, one can define by means of Lemma 2.1 for

every forward separated Shannon graph such that every vertex has a successor

a Shannon graph as its closure. This closure also has the property that every

vertex has a successor.

Proposition 2.2. Let V HVðSÞ be a transition complete subset of VðSÞ

such that every v A V has a predecessor in V. Then the closure V is a transition

complete subset of VðSÞ such that every v A V has a predecessor.

Proof. Let v A V , and let vi A V , i A N be such that limi!y vi ¼ v. There

is an a A S together with ui A V , i A N such that vi ¼ FVðSÞðui; aÞ. By com-

pactness one can then select a subsequence uik , k A N , such that one has a limit

u ¼ limk!y uik and one has then FVðSÞðu; aÞ ¼ v. By Lemma 2.1, V is transition

complete. r

Consider now a l-graph system [Ma] L with vertex set

V ¼ 6
n AZþ

V�n;

that is labeled with symbols from a finite alphabet S. For the case that the l-

graph system L is a forward separated Shannon graph, it is required that

a v�n A V�n accepts an a A S if and only if iðv�nÞ accepts a, and if v�n A V�n

accepts a then

iðFLðv�n; aÞÞ ¼ FLðiðv�nÞ; aÞ; n A N :

The sequences ðv�nÞn AZþ
, v�n A V�n such that v�nþ1 ¼ iðv�nÞ, n A N are the i-

orbits. If here any of the v�n, and therefore all of the v�n, accept an a A S, then

ðFLðv�n; aÞÞn AN is also an i-orbit. Putting on the set

Y

n AZþ

V�n

the product of the discrete topologies, one has that the set of i-orbits is a compact

forward separated Shannon graph.

To the alphabet S, there is associated a forward separated and right-

resolving l-graph system LS as in the following way. For n A Zþ, the vertex

set V�n is the set of all non-empty subsets of the length n words S
n. For

v�n A V�n, we put iðv�nÞ ¼ fða1; . . . ; an�1Þ A S
n�1 j ða1; . . . ; an�1; anÞ A v�ng. Then

iðv�nÞ defines an element of V�nþ1. If a vertex v�n A V�n is written as
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v�n ¼ a1v
1
�nþ1 U a2v

2
�nþ1 U � � �U akv

k
�nþ1

for ai A S with ai 0 aj ði0 jÞ and v i�nþ1 A V�nþ1 as a disjoint union, then we

define FSðv�n; aiÞ ¼ v i�nþ1 for each n A N . The resulting labeled graph with map

i becomes a forward separated and right-resolving l-graph system. We write it

as LS. The l-graph system LS has a maximal property, that is, any forward

separated and right-resolving l-graph system over S is a sub l-graph system of

LS. We also know that the compact forward separated Shannon graph VðSÞ

is the Shannon graph of the set of i-orbits of LS.

We associate a l-graph system LðSÞ with a forward separated Shannon

graph S. We assume that the Shannon graph is given by a transition complete

set V0 HVðSÞ. We introduce for n A N the equivalence relation AðnÞ into V0.

For v; v 0 A V0

vAðnÞ v
0

means that

GnðvÞ ¼ Gnðv
0Þ:

V�n is then the set of AðnÞ-equivalence classes. The zero-vertex is V0. The ver-

tices in V�n can be identified with the elements in the set fGnðvÞ : v A V0g. Here

GnðvÞ accepts a A S precisely if v accepts a, and then

FLðSÞðGnðvÞ; aÞ ¼ Gn�1ðFSðv; aÞÞ:

In particular, the associated l-graph system of the Shannon graph VðSÞ is LS.

Proposition 2.3. Let V HVðSÞ be transition complete. Then the l-graph

system of V is isomorphic to the l-graph system of the closure of V.

Proof. The mapping that sends an n-equivalence class v of V into its

closure, n A N is an isomorphism of the l-graph system of V onto the l-graph

system of the closure of V. r

Proposition 2.4. Let V HVðSÞ be compact and transition complete. Then

V as a Shannon graph is isomorphic to the Shannon graph of i-orbits of the l-

graph system of V.

Proof. The mapping that sends a v A V into the i-orbit ðu�nÞn AZþ
, that is

given by

u�n ¼ fu A V : GnðuÞ ¼ GnðvÞg

is an isomorphism of the Shannon graph V onto the Shannon graph of i-orbits of

the l-graph system of V. r
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To a transition complete subset V HVðSÞ there is associated the topological

Markov chain MðVÞ that contains all points ðvi; xiÞi AZ A ðV � SÞZ such that

viþ1 ¼ FVðSÞðvi; xiÞ; i A Z:

By pV we denote the projection that assigns to a point in MðVÞ its SZ -

coordinate. Given V HVðSÞ and ~VV HVð ~SSÞ that present subshifts X HSZ

and ~XX H
~SSZ and a topological conjugacy c : X ! ~XX we say that a shift-

commuting map ĉc : MðVÞ ! Mð ~VVÞ is a lift of c if

p ~VV � ĉc ¼ c � pV :

Theorem 2.5. Let X HSZ , ~XX H
~SSZ be subshifts, and let c : X ! ~XX be a

topological conjugacy. Let V HVðSÞ present the subshift X. Then there exists

a unique ~VV HVð ~SSÞ that presents ~XX such that c has a lift ĉc : MðVÞ ! Mð ~VVÞ.

The lift ĉc is also uniquely determined.

Proof. Let L A Zþ be such that both c and c�1 are given by ð2Lþ 1Þ-

block maps C and ~CC , that is, C maps the set of admissible words of X of

length 2Lþ 1 into ~SS, ~CC maps the set of admissible words of ~XX of length 2Lþ 1

into S, c is given by

cðxÞ ¼ ðCððxiþlÞ�LalaLÞÞi AZ ; x ¼ ðxiÞi AZ A X ;

and c�1 is given by

c�1ð~xxÞ ¼ ð ~CCðð~xxiþlÞ�LalaLÞÞi AZ ; ~xx ¼ ð~xxiÞi AZ A ~XX ;

(see e.g. [LM, Theorem 6.2.9]). We describe first ~VV . For this, shifting 2L

steps in the negative time direction, interpret V as a subset of the subsets of

Sð�2L;yÞ. Then choose a v A V and a word w of length 3Lþ 1 that is accepted

by v, and set ~ww ¼ CðwÞ. Then define a set ~vvH ~SSN as containing the points

~xx A ~XX½0;yÞ such that

ððwiÞ�2L<ia0;
~CCð~ww; ~xxÞÞ A v:

~VV is then defined as containing all sets ~vv that can be obtained in this way from v.

We describe next the lift ĉc : MðVÞ ! Mð ~VVÞ of c. For this, let ðvi; xiÞi AZ A

MðVÞ. Then setting

ð~xxiÞi AZ ¼ cððxiÞi AZÞ; ĉcððvi; xiÞi AZÞ ¼ ð~vvi; ~xxiÞi AZ ;

one has that ~vvi is given by

~vvi ¼ fð~yyjÞia j<y
A ~XX½i;yÞ :

~CCðð~xxjÞi�La j<i; ð~yyjÞia j<y
Þ A vig; i A Z:

To confirm the uniqueness of ~VV and of ĉc, assume that V ;V 0
AVðSÞ present

both a subshift Y HSZ and assume that
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h : MðVÞ ! MðV 0Þ

is a lift of the identity, and prove that h is also the identity. Let ðvi; xiÞi AZ A

MðVÞ. Setting

hððvi; xiÞi AZÞ ¼ ðv 0i ; xiÞi AZ ;

one has that

vi H v 0i ; i A Z;

and symmetrically one has

v 0i H vi; i A Z;

and the proof of the theorem is complete. r

3. Strong shift equivalence of Shannon graphs and l-graph systems.

In this section, we will discuss strong shift equivalence of Shannon graphs

and l-graph systems. We follow the development for sofic systems in [Na] and

[BK]. A Shannon graph S ¼ ðV ;EÞ over an alphabet S is said to be bipartite if

there exist disjoint alphabets C;DHS with S ¼ C UD and there exist disjoint

sets U ;W HV with V ¼ U UW such that for every edge e A E we have its initial

vertex in W, and its final vertex in U if the label of e is in D, and its initial vertex

in U, and its final vertex in W if the label of e is in C.

We denote by SS the set of all finite formal sums of elements of S. A

matrix with entries in SS is called a symbolic matrix. Let MS denote the

symbolic adjacency matrix associated to the Shannon graph S, that is defined as

a map

MSð ; Þ : V � V ! SS

in a natural way. Conversely, a 1-right resolving symbolic adjacency matrix

defines a Shannon graph, where a symbolic matrix is said to be 1-right resolving

if each symbol appears in every row at most one time.

Hence a Shannon graph S is bipartite if and only if the associated symbolic

matrix MS is of the form: MS ¼ 0 P

Q 0

h i

where P is a 1-right resolving W �U

matrix with entries in SC and Q is a 1-right resolving U �W matrix with entries

in SD.

For two symbolic matrices A over an alphabet S and A
0 over an alphabet

S 0 and a bijection f from a subset of S onto a subset of S 0, we say A and

A
0 specified equivalent under specification f if A

0 can be obtained from A by

replacing every symbol a appearing in A by fðaÞ. We write this as A F

f
A

0.

We call f a specification from S to S 0.
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Let S ¼ ðV ;EÞ, S
0 ¼ ðV 0

;E
0Þ be Shannon graphs over alphabets S;S 0

respectively. The associated symbolic adjacency matrices MS;MS 0 for S;S
0 are

said to be strong shift equivalent in 1-step if there exist alphabets C;D and

specifications

j : S ! CD; f : S 0 ! DC

together with a 1-right resolving V � V
0 matrix P over C and a 1-right resolving

V
0 � V matrix Q over D satisfying the following equations

MS F

j
PQ; MS 0 F

f
QP;

where PQ is a V � V matrix over CD defined by

PQðu; vÞ ¼
X

u 0 AV 0

Pðu; u 0ÞQðu 0
; vÞ; u; v A V ;

and QP is similarly defined.

One has that MS and MS 0 are strong shift equivalent in 1-step if and only if

there exists a bipartite Shannon graph ŜS over the alphabet C UD such that the

associated symbolic matrix M
ŜS
is of the form

M
ŜS
¼

0 P

Q 0

� �

where P is a 1-right resolving V � V
0 matrix over C and Q is a 1-right resolving

V
0 � V matrix over D satisfying the equations

MS F

j
PQ; MS 0 F

f
QP

for some specifications

j : S ! CD; f : S 0 ! DC:

We write this situation as

MS A

1�st

MS 0 :

Two symbolic matrices MS;MS 0 are said to be strong shift equivalent in N-step

if there exist Shannon graphs Si over alphabets Si, i ¼ 1; 2; . . . ;N � 1 such that

MS A

1�st

MS1
A

1�st

MS2
A

1�st

� � � A
1�st

MSN�1
A

1�st

MS 0 :

We denote this situation by

MS A

N�st

MS 0

and simply call it a strong shift equivalence.
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We also recall from [Ma] the notion of symbolic matrix systems, bipartite

symbolic matrix systems and their strong shift equivalence. For a l-graph

system L with vertex set V ¼ 6
n AZþ

V�n, let M�n;�n�1 be the symbolic adjacency

matrix of the labeled graph L between the vertices V�n�1 and V�n. That is,

M�n;�n�1 has a symbol a in the component ði; jÞ, i A V�n, j A V�n�1 if there exists

an edge from j to i with symbol a. The matrices I�n;�n�1, n A Zþ with entries in

f0; 1g are defined by the mappings i : V�n�1 ! V�n in a natural way. Then the

sequence of pairs ðM�n;�n�1; I�n;�n�1Þ, n A Zþ of matrices satisfies the equations:

I�n;�n�1M�n�1;�n�2 ¼ M�n;�n�1I�n�1;�n�2 n A Zþ:

We call such sequence of pairs of matrices ðM�n;�n�1; I�n;�n�1Þ, n A Zþ a sym-

bolic matrix system and write it as ðM; IÞ.

Let ðM; IÞ and ðM 0
; I 0Þ be symbolic matrix systems over alphabets

S;S 0 respectively, where M�n;�n�1; I�n;�n�1 are mðnÞ �mðnþ 1Þ matrices and

M
0
�n;�n�1; I

0
�n;�n�1 are m 0ðnÞ �m 0ðnþ 1Þ matrices. Then ðM; IÞ, ðM 0

; IÞ are

said to be strong shift equivalent in 1-step, written as ðM; IÞ A
1�st

ðM 0
; I 0Þ if

there exist alphabets C;D and specifications j : S ! CD and f : S 0 ! DC such

that for each n A N , there exist an mðn� 1Þ �m 0ðnÞ matrix H�n over C and an

m 0ðn� 1Þ �mðnÞ matrix K�n over D satisfying the following equations:

I�nþ1;�nM�n;�n�1 F
j
H�nK�n�1; I 0�nþ1;�nM

0
�n;�n�1 F

f
K�nH�n�1

and

H�nI
0
�n;�n�1 ¼ I�nþ1;�nH�n�1; K�nI�n;�n�1 ¼ I 0�nþ1;�nK�n�1:

ðM; IÞ and ðM 0
; I 0Þ are said to be strong shift equivalent in N-step, or to be

strong shift equivalent, written ðM; IÞ A
N�st

ðM 0
; I 0Þ, if there exist symbolic matrix

systems ðMðiÞ
; I ðiÞÞ, i ¼ 1; 2; . . . ;N � 1 such that

ðM; IÞ A
1�st

ðMð1Þ
; I ð1ÞÞ A

1�st
ðMð2Þ

; I ð2ÞÞ A
1�st

� � � A
1�st

ðMðN�1Þ
; I ðN�1ÞÞ A

1�st
ðM 0

; I 0Þ:

We remark that if l-graph systems are right-resolving and forward separated,

strong shift equivalence is equivalent to properly strong shift equivalence of their

symbolic matrix systems ([Ma], [Ma3]).

Proposition 3.1. Let V HVðSÞ and ~VV HVð ~SSÞ be compact. Then the

symbolic adjacency matrices of V and ~VV are strong shift equivalent if and only if

the symbolic matrix systems of V and ~VV are strong shift equivalent.

Proof. It is enough to consider 1-step strong shift equivalence, in which

case the statement of the proposition is confirmed by inspection using bipartite

Shannon graphs and bipartite symbolic matrix systems. r
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Proposition 3.2. Let V HVðSÞ and ~VV HVð ~SSÞ present the subshifts

X HSZ and ~XX H
~SSZ . Then the symbolic adjacency matrices of V and ~VV are

strong shift equivalent if and only if there exists a topological conjugacy c : X ! ~XX

with a lift that carries MðVÞ into Mð ~VVÞ.

Proof. Recall the result of Nasu [Na] and [Na2], who introduced the

notion of bipartite subshifts. A subshift X over an alphabet S is said to be

bipartite if there exist disjoint subsets C;DHS such that in any ðxiÞi AZ A X

either xi A C and xiþ1 A D for all i A Z, or xi A D and xiþ1 A C for all i A Z. Let

X ð2Þ be the 2-higher power shift of X. Put

XCD ¼ fðcidiÞi AZ A X ð2Þ j ci A C; di A Dg;

XDC ¼ fðdiciÞi AZ A X ð2Þ j ci A C; di A Dg:

These are subshifts over CD and DC respectively. Hence X ð2Þ is partitioned into

the two subshifts XCD and XDC . Nasu in [Na], [Na2] also introduced the notion

of bipartite conjugacy. The conjugacy from XCD onto XDC that maps ðcidiÞi AZ
to ðdiciþ1Þi AZ is called the forward bipartite conjugacy. The conjugacy from

XCD onto XDC that maps ðcidiÞi AZ to ðdi�1ciÞi AZ is called the backward bi-

partite conjugacy. A topological conjugacy between subshifts is called a sym-

bolic conjugacy if it is a 1-block map given by a bijection between the underlying

alphabets of the subshifts. Nasu in [Na] proved that any topological conjugacy

f between subshifts is factorized into a composition of the form:

f ¼ knznkn�1zn�1 � � � k1z1k0

where k0; . . . ; kn are symbolic conjugacies and z1; . . . ; zn are either forward or

backward bipartite conjugacies.

It follows that it is enough to confirm the statement of the proposition in

the case of bipartite codings, in which case this is done by inspection using

bipartite Shannon graphs. r

4. Presentations of subshifts.

We consider subshifts X HSZ . For the admissible blocks of the subshift

X we use notation like

x½i;k� ¼ ðxjÞiajak; x ¼ ðxiÞi AZ A X ;

X½i;k� ¼ fx½i;k� : x A Xg:

By GþðX ; yÞ we denote the set of all x A X½i;yÞ that can follow y A Xð�y; iÞ,

i A Z. Similarly for an admissible finite block a GþðX ; aÞ denotes the set of
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all right-infinite words that can follow a, G
�ðX ; aÞ having the time symmetric

meaning. By G
þ
n ðX ; yÞ we denote the set of all admissible words of length n

that can follow y A Xð�y; iÞ, i A Z.

For a subshift X HS
Z , let

Vþ
n ðXÞ ¼ fGþ

n ðX ; yÞ : y A Xð�y;0�g; n A N

and

VþðXÞ ¼ fGþðX ; yÞ : y A Xð�y;0�g:

VþðXÞ is a transition complete subset of VðSÞ. As a Shannon graph VþðXÞ

presents X. We remark at this point that a subshift X has one maximal

presenting Shannon graph whose vertex set is the set of all closed subsets of the

set G
þðX ; yÞ : y A Xð�y;0�.

Set for a A X½�l;0�, l A Zþ,

VþðX ; aÞ ¼ fGþðX ; yaÞ : y A G
�ðX ; aÞg:

Lemma 4.1. Let l A Zþ. VþðXÞ is compact if and only if VþðX ; aÞ is

compact for all a A X½�l;0�.

Proof. On the one hand side, one has

VþðX Þ ¼ 6
a AX½�l; 0�

VþðX ; aÞ;

and on the other hand, one has for all y A G
�ðX ; aÞ, GþðX ; yaÞ given precisely by

the x A G
þðX ; yÞ such that a ¼ x½�l;0�. r

Proposition 4.2. For subshifts X, the compactness of VþðX Þ is an invariant

of topological conjugacy.

Proof. Let X HS
Z , ~XX H ~SS

Z be topologically conjugate subshifts, and

let there be a topological conjugacy of ~XX onto X given for some L A Zþ by a

ð2Lþ 1Þ-block map F with the inverse of the conjugacy given by a ð2Lþ 1Þ-

block map ~FF. Let Vþð ~XX Þ be compact. According to Lemma 4.1, we establish

the proposition by showing for a A X½�2L;0� that V
þðX ; aÞ is compact. For this,

let there be given

yðkÞ A G
�ðX ; aÞ; k A N ;

such that there is a limit

v ¼ lim
k!y

G
þðX ; yðkÞaÞ:

We have to show that there is a y A G
�ðX ; aÞ such that
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v ¼ G
þðX ; yaÞ:ð1Þ

Selecting, if necessary, a subsequence we can assume without loss of generality

that there is a block ~bb A ~XX½�3L;�L� and

~yyðkÞ A G
�ð ~XX ;

~bbÞ; k A N ;

such that

~yyðkÞb ¼ ~FFðyðkÞaÞ;

and moreover, such that there is a limit

~vv ¼ lim
k!y

G
þð ~XX ; ~yyðkÞ~bbÞ:

By Lemma 4.1 ~VVþð ~XX ;

~bbÞ is compact, and we have a ~yy A G
�ð ~XX ;

~bbÞ such that

~vv ¼ G
þð ~XX ; ~yy~bbÞ. We set y ¼ Fð~yy~bbÞ. By construction y A G

�ðX ; aÞ. We show

that (1) holds. For this we observe that here

x A G
þðX ; yaÞ

is equivalent to

~xx ¼ ~FFðað�2L;0�; xÞ A G
þð ~XX ; ~yy~bbÞ;

which is equivalent to having a k0 A N such that

~xx A G
þð ~XX ; ~yyðkÞ~bbÞ; kb k0;

which in turn is equivalent to

x A G
þðX ; yðkÞaÞ; kb k0;

and therefore to

x A v: r

We introduce an additional notation. Given a forward separated Shannon

l-graph system

V ¼ 6
n AZþ

V�n;

we denote for n A N by F�nðVÞ the set of words c such that there exists a vertex

in V�n into which c leads, and that is maximal among the vertices in V�n into

which c leads, and for c A F�nðVÞ denote by v�nðcÞ the vertex with the stated

property.

For an admissible left-infinite word ðs�iÞi AZþ
of a forward separated

Shannon l-graph system ðV�n;E�nÞn AZþ
we say that a vertex v A V�n, n A Zþ, is
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associated to ðs�iÞi AZþ
if the following holds: ðs�iÞi AZþ

can lead into v, and v

is maximal among the vertices of V�n into which ðs�iÞi AZþ
can lead.

Lemma 4.3. Let for all n A Zþ, v�n A V�n be associated to ðs�iÞi AZþ
. Then

ðv�nÞn AZþ
is an i-orbit.

Proof. Observe first that a vertex v A V�n, n A Zþ, is associated to ðs�iÞi AZþ

if and only if the following holds: ðs�iÞi AZþ
precedes an entry into v and there

is an I A N such that ðs�iÞIbib0 A F�nðVÞ and v ¼ v�nððs�iÞIbib0Þ. Let now

v A V�n, n A N , be associated to ðs�iÞi AZþ
and select an I A N as described. We

prove that iðvÞ is also associated to ðs�iÞi AZþ
. Assume that there is not the

case and let u A V�nþ1 be such that ðs�iÞi AZþ
precedes an entry into u, and that

there is a word b A G
þðuÞ that is not accepted by iðvÞ. Then let w A V�n�Iþ1

be such that there is a path from w to u that carries the word ðs�iÞIbib0 ¼ c,

and let w 0 A V�n�I be such that w ¼ iðw 0Þ, w 0 accepts the word cbs for some

s A S. It follows that v accepts the word bs, and therefore iðvÞ accepts the

word b, a contradiction. r

We say that the i-orbit ðv�nÞn AZþ
where v�n is associated to ðs�iÞi AZþ

is

associated to ðs�iÞi AZþ
. The i-orbits that are associated to admissible left-infinite

words we call contextual i-orbits. The contextual i-orbits form a sub-Shannon

graph of the Shannon graph of i-orbits. By construction the Shannon graph of

contextual i-orbits of the canonical l-graph system of a subshift is isomorphic

to the Shannon graph of forward contexts of the subshift.

Proposition 4.4. The existence of a non-contextual i-orbit in the canonical

l-graph system of a subshift X HS
Z is an invariant of topological conjugacy.

Proof. Observe that all i-orbits of the canonical l-graph system are con-

textual if and only if VþðX Þ is compact. Apply Proposition 4.2. r

For every subshift X HS
Z one has the maximal forward separated Shannon

l-graph system that presents X and that corresponds to the maximal presenting

Shannon graph of the subshift. In its vertex set ðV�nÞn AZþ
, V�n contains all

subsets of the sets in Vþ
n ðX Þ, n A N , and the corresponding compact forward

separated Shannon graph is given by the set of all compact subsets of the sets

that are in the closure of VþðXÞ. Every subshift X HS
Z has also a presen-

tation by the canonical forward separated l-graph system of [Ma]. Its vertex set

ðV�nðX ÞÞn AZþ
is given by

V�n ¼ Vþ
n ðX Þ n A N ;

and the corresponding compact forward separated Shannon graph is given by the

closure of VþðXÞ.
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We want to characterize the canonical l-graph system of a subshift X HS
Z .

Lemma 4.5. Let X HS
Z be a subshift. For all y A Xð�y;0� and n A N there

is a k0 A N such that

G
þ
n ðX ; y½�k0;0�Þ ¼ G

þ
n ðX ; yÞ:

Proof. It is

G
þ
n ðX ; yÞ ¼ 7

k AN

G
þ
n ðX ; y½�k;0�Þ: r

Lemma 4.6. Let V be a forward separated Shannon l-graph system. Let

l;m; n A N , and let a A F�m�nðVÞ have length l. Let c be an admissible word of

V of length l þm that begins with a such that c ¼ ab. Then

c A F�nðVÞ; v�nðcÞ ¼ FV ðv�n�mðaÞ; bÞ:ð2Þ

Proof. Set

u ¼ FV ðv�n�mðaÞ; bÞ;

let u 0 be any vertex in V�n into which c can lead, and let then w be any vertex

in V�n�m�l such that u 0 ¼ FV ðw; cÞ. It is

v�n�mðaÞIFV ðw; aÞ;

and therefore u 0 I u and (2) follows. r

Lemma 4.7. Let V be a forward separated Shannon l-graph system. For

all n A N

F�n�1ðVÞHF�nðVÞ;

and for c A F�n�1ðVÞ,

iðv�n�1ðcÞÞ ¼ v�nðcÞ:

Proof. The map i respects the labeling. r

Proposition 4.8. In the canonical l-graph system VðXÞ of a subshift X HS
Z

one has for all n A N that

(1) for all v A V�nðXÞ there is a c A F�nðVðXÞÞ such that

v ¼ v�nðcÞ;

(2) every left infinite word ðx�nÞn AN that can lead into the zero-vertex ends in

a word in F�nðVðX ÞÞ.
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Proof. Apply Lemma 4.5. r

We have a converse of the proposition.

Proposition 4.9. Let

V ¼ 6
n AZþ

V�n

be a forward separated Shannon l-graph system such that for all n A N

(1) for all v A V�nðXÞ there is a c A F�nðVðXÞÞ such that

v ¼ v�nðcÞ;

(2) every left infinite word ðx�nÞn AN that can lead into the zero-vertex ends

in a word in F�nðVðXÞÞ.

Then V is isomorphic to the canonical l-graph system of the subshift that it

presents.

Proof. We have to show that to every left infinite word that can lead into

the zero-vertex there is associated an i-orbit and that these contextual i-orbits

are dense in the space of i-orbits. Let ðx�nÞn AN be a word that can lead into

the zero-vertex. Then the words ðx�iÞi>I , I A N , can also lead into the zero-

vertex and one finds from Lemma 4.6 that there is a sequence In A N such that

Inþ1 > In, n A N , and such that the words bn ¼ ðx�iÞ�Iiaia0 are in F�nðVÞ, n A N .

By means of Lemma 4.7, one has a selection argument that shows that there is

an i-orbit ðu�nÞn AZþ
such that for all n A N there is a Kn A N such that

v�n ¼ v�nðbkÞ; k > Kn:

It follows that the i-orbit ðu�nÞn AZþ
is associated to the sequence ðx�nÞn AN .

To show the density of the contextual i-orbits, let n A N and u A V�n, and

c A F�nðVÞ, u ¼ v�nðcÞ. Write c ¼ ðg�kÞ0akaK and let ðg�kÞk AZþ
be a word that

leads into u. Then the i-orbit that is associated to ðg�kÞk AZþ
contains u. r

Theorem 4.10. Let X HSZ , ~XX H ~SSZ be subshifts, and let c : X ! ~XX be a

topological conjugacy. Then

ðĉcÞðMðVðXÞÞÞ ¼ MðVð ~XXÞÞ:ð3Þ

Proof. It is (cf. [Kr3, Section 3]),

ðĉcÞðMðVþðXÞÞÞ ¼ MðVþð ~XXÞÞ:

Due to the uniform continuity of c with respect to the metrics on VðSÞ and

Vð ~SSÞ one has then also (3). r
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5. Protosynchronization.

We call an admissible word c of a subshift X HSZ protosynchronizing if

for all n A N there is a transitive y A G�ðX ; cÞ such that

Gþ
n ðX ; ycÞ ¼ Gþ

n ðX ; cÞ:

Every admissible word of a subshift that begins with a protosynchronizing word

is also protosynchronizing. For a protosynchronizing subshift X HSZ , that is

a subshift with a protosynchronizing word, it is therefore possible to define the

canonical protosynchronizing l-graph system

V ðpsÞðX Þ ¼ 6
n AZþ

V ðpsÞ
�n ðXÞ

as the forward separated Shannon l-graph system that has as elements of

V
ðpsÞ
�n ðXÞ the sets Gþ

n ðX ; cÞ, c a protosynchronizing word of X, n A N .

For a forward separated Shannon l-graph system V and a word

c A 7
n AN

F�nðVÞ

we say that the i-orbit ðv�nðcÞÞn AZþ
is associated to c. We say that a forward

separated Shannon l-graph system V is a protosynchronizing l-graph system, if

7
n AN

F�nðVÞ0q;

and if also all i-orbits of V that are associated to a word in 7
n AN

F�nðVÞ contain

for every vertex u A V a vertex that can be connected to u. The canonical

protosynchronizing l-graph system of a protosynchronizing subshift is proto-

synchronizing in this sense.

Proposition 5.1. Let ~XX H ~SSZ , X HSZ be subshifts, X protosynchronizing,

and let c : ~XX ! X be a topological conjugacy. Then ~XX is also protosynchronizing

and

ĉcðV ðpsÞð ~XXÞÞ ¼ V ðpsÞðXÞ:ð1Þ

Proof. Let L A Zþ be such that both c and c�1 are given by ð2Lþ 1Þ-

block maps. To prove that ~XX is protosynchronizing, let n A N , and consider

the situation that one is given a left transitive point x A X such that for some

K A Zþ, ðxiÞ�2L�Kaia0 is a protosynchronizing word for X, and such that

Gþ
2LþnðX ; x½�2L�K ;0�Þ ¼ Gþ

2LþnðX ; xð�y;0�Þ:

Set ~xx ¼ c�1ðxÞ. Then

Gþ
n ð ~XX ; ~xx½�L�K;L�Þ ¼ Gþ

n ð ~XX ; ~xxð�y;L�Þ:
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One concludes that ð~xxiÞ�L�KaiaL is a protosynchronizing word for ~XX . (1) is

seen by inspection. r

Lemma 5.2. Let V ¼6
n AZþ

V�n be a protosynchronizing l-graph system, and

let m A N , u A V�m. Then there exists a

b A 7
n AN

F�nðVÞð2Þ

such that

u ¼ v�mðbÞ:ð3Þ

Proof. Let

c A 7
n AN

F�nðVÞ:

There is for some k A N a word a such that v�m�kðcÞ is connected to u by a. Set

b equal to ca. By Lemma 4.6, (2) and (3) hold. r

Lemma 5.3. Let V ¼6
n AZþ

V�n be a protosynchronizing l-graph system,

and let a be an admissible word of V. Then there exists a word in 7
n AN

F�nðVÞ

that ends in a.

Proof. Let m A N , u A V�m be such that u is connected by a to the zero-

vertex. By Lemma 5.2, there is a b A7
n AN

F�nðVÞ such that u ¼ v�mðbÞ. By

Lemma 4.6 ba A7
n AN

F�nðVÞ. r

Lemma 5.4. For a protosynchronizing l-graph system V ¼6
n AZþ

V�n every

word in 7
n AN

F�nðVÞ is protosynchronizing for the subshift X that is presented

by V.

Proof. By Lemma 5.3, one has a sequence

bðkÞ A 7
n AN

F�nðVÞ; k A N ;

such that for every admissible word a of V infinitely many of the words bðkÞ,

k A N , end in a. Let c A7
n AN

F�nðVÞ and let n0 A N . One constructs in-

ductively sequences mðkÞ A N , k A Zþ, and lðkÞ A N , k A N ; such that n0 < mð0Þ,

and

mðk � 1Þ < lðkÞ < mðkÞ; k A N ;

together with a sequence uk A V�mðkÞ, k A Zþ such that v�n0ðcÞ ¼ FV ðu; cÞ and

such that for all k A N , v�lðkÞðb
ðkÞÞ can be connected to uk�1, and v�lðkÞðb

ðkÞÞ ¼

FV ðuk; b
ðkÞÞ. Filling in the connections one obtains a transitive past y of c such

that
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v�n0ðcÞ ¼ Gþ
n0
ðX ; ycÞ: r

Proposition 5.5. A protosynchronizing l-graph system V is isomorphic to the

canonical protosynchronizing l-graph system of the subshift X that it presents.

Proof. In view of Lemma 5.4, we are left with proving that every pro-

tosynchronizing word b of X is in 7
n AN

F�nðVÞ. For this let n0 A N , and let

c A 7
n AN

F�nðVÞ. Since b is protosynchronizing, there is an admissible word

a of X such that cab is admissible, and such that

Gþ
n0
ðX ; cabÞ ¼ Gþ

n0
ðX ; bÞ:

Then

v�n0ðcabÞ ¼ Gþ
n0
ðX ; bÞ:

This means that b A F�n0ðVÞ, and that v�n0ðbÞ ¼ v�n0ðcabÞ. r

Every admissible word of a subshift that contains a synchronizing word as

a subword is also synchronizing. For a synchronizing subshift X HSZ it is

therefore possible to define the canonical synchronizing l-graph system

V ðsÞðX Þ ¼ 6
n AZþ

V ðsÞ
�n ðXÞ

as the forward separated Shannon l-graph system that has as elements of V
ðsÞ
�n ðXÞ

the sets Gþ
n ðX ; cÞ, c a synchronizing word of X, n A N . For synchronizing

subshifts X HSZ , V ðsÞðXÞ coincides with V ðpsÞðX Þ.

6. Examples.

For sofic systems the canonical l-graph system corresponds to the complete

right-resolving extension of [Kr], [Kr2], and the canonical synchronizing l-graph

system of topologically transitive sofic systems corresponds to the Fisher au-

tomaton ([Fis]). There are topologically transitive sofic systems X such that

VðXÞ is equal to V ðsÞðX Þ ([Fie]).

We list some synchronizing non-sofic examples. These are coded systems

X ðCÞ defined by codes C ([BH]).

1.

S ¼ fg; 0; 1g;

C ¼ fg0 l1 l
: l A Ng:

Here the canonical synchronizing l-graph system is a proper subsystem of the

canonical l-graph system and all i-orbits are contextual.
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2. a)

S ¼ fg; 0; 1g;

C ¼ fg0kl1kl
: l A Ng; k > 1:

b)

S ¼ fa; b; 0; 1a; 1bg;

C ¼ fa0kl1kl
a : l A NgU fb0kl1kl

b : l A Ng; k > 1:

Here in both cases the canonical synchronizing l-graph system is a proper sub-

system of the canonical l-graph system and there are non-contextual i-orbits.

One can obtain semisynchronizing nonsynchronizing examples by using these

coded systems X ðCÞ and the Dyck shifts in a product construction.

We give an example of a protosynchronizing subshift that is not semi-

synchronizing. Let

S ¼ fa; b; gg;

and let S be the shift on SZ . We describe disjoint closed sets E1;E2;E3;E4 HSZ

such that the subshift

X ¼ 7
i AZ

S iðE1 UE2 UE3 UE4Þ

is protosynchronizing but not semisynchronizing. Here

E1 ¼ fx A SZ
: x1 0 agU fx A SZ

: x0 ¼ x1 ¼ ag;

E2 ¼ fx A SZ
: x0 0 a; x1 ¼ ag

V 7
i AN

ðfx A SZ
: x�iþ1 0 agU fx A SZ

: x�i ¼ x�iþ1 ¼ agÞ:

For

x A SZ � ðE1 UE2Þ

define rðxÞ as the smallest integer r > 1 such that

x�r 0 a; x�rþ1 ¼ a:

Let D be the set of

x A SZ � ðE1 UE2Þ

such that the number of i A N , 1a ia 2rðxÞ, such that

x�i ¼ b

Shannon graphs, subshifts and lambda-graph systems 897



is greater than or equal to the number of i A N , 1a ia 2rðxÞ, such that

x�i 0 a; x�iþ1 ¼ a;

and for x A D define hðxÞ as the smallest h A N , 1a ia 2rðxÞ, such that the

number of i A N , 1a ia h, such that

x�i ¼ b

is equal to the number of i A N , 1a ia h, such that

x�i 0 a; x�iþ1 ¼ a:

Let

E3 ¼ fx A D : x�hðxÞ�q 0 g; q A Ng;

and for x A D� E3 define qðxÞ as the smallest q A N such that

x�hðxÞ�q ¼ g:

Then set

E4 ¼ ðD� E3Þ � fx A D� E3 : xi ¼ a; 1 < ia 2qðxÞg:
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