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Abstract. Osserman pseudo-Riemannian manifolds with diagonalizable Jacobi op-
erators are studied. A classification of such manifolds is achieved under two conditions
on the number of different eigenvalues of the Jacobi operators and their associated
eigenspaces.

1. Introduction.

A Riemannian manifold (M,g) is said to be an Osserman space if the
eigenvalues of the Jacobi operators are constant on the unit sphere bundle.
Clearly, Euclidean spaces are Osserman and moreover, any rank-one symmetric
space 1s so. The lack of other examples led Osserman to conjecture that any
Osserman Riemannian manifold must be locally isometric to a two-point ho-
mogeneous space ([21]). It was proved by Chi that the above conjecture holds
true in many cases. In particular, he showed that any n-dimensional Osser-
man Riemannian manifold is locally a space of constant curvature or a Kihler
manifold of constant holomorphic sectional curvature, provided that n # 4k,
k>1 ([9]). (See also [10], [11], for related work). A pseudo-Riemannian
manifold (M,g) is said to be Osserman if the (possibly complex) eigenvalues of
the Jacobi operators R, are independent of the spacelike or timelike unit vec-
tors x. It is shown in [5], that a Lorentzian manifold (M, g) is Osserman
at a point pe M if and only if the sectional curvature is constant at p and
hence that Osserman Lorentzian manifolds are locally real space forms. The
situation is however much more complicated when metrics of other signatures are
considered. Indeed, the existence of nonsymmetric (even not locally homoge-
neous) Osserman pseudo-Riemannian manifolds of any signature (p,q), p,q = 2
is shown in [7], [8], [I5]. A specific feature of those examples is that all of them
have nondiagonalizable Jacobi operators. Therefore, in order to characterize
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Osserman pseudo-Riemannian spaces, it seemed natural to consider those with
diagonalizable Jacobi operators at the first step. This has been done by Blazic,
Bokan and Raki¢, who showed that a four-dimensional Osserman manifold with
metric of signature (2,2) and diagonalizable Jacobi operators must be locally
isometric to a real, complex or paracomplex space form [6].

The purpose of this paper is to study further Osserman pseudo-Riemannian
manifolds of higher dimensions and arbitrary signature under the assumption of
the diagonalizability of the Jacobi operators. It is clear that, if the Jacobi op-
erator associated to each unit x is diagonalizable with a unique eigenvalue (which
changes sign from spacelike to timelike vectors), then the manifold is a space
of constant curvature. Therefore, we devote our attention to the first nontrivial
case: the Jacobi operators having two distinct eigenvalues.

(I) For each unit vector x, the Jacobi operator R, is diagonalizable with

exactly two distinct eigenvalues: e, A and exu, where &, = g(x,x).
Simplest examples of pseudo-Riemannian manifolds satisfying (I) are indefinite
Kéhler manifolds of constant holomorphic sectional curvature and para-Kéhler
manifolds of constant paraholomorphic sectional curvature. (See [I], and
for details and further references). Moreover, indefinite quaternionic and
paraquaternionic space forms (cf. [4], [16], [22]) as well as the Cayley planes over
the octonians and the anti-octonians (cf. [23]) satisfy (I) above.

It is well-known that not only the eigenvalues, but also the existence of
distinguished eigenspaces for the Jacobi operators provides of insight geometric
information. Hence, in what follows, we will make an additional hypothesis on
the eigenspaces of the Jacobi operators which may be viewed as an infinitesimal
version of Hopf fibration in terms of the eigenspace associated to one of the two
eigenvalues of R,. To describe this property, we introduce the following nota-
tion. For each unit vector x, let E;(x) denote the subspace generated by x and
the eigenspace associated to the eigenvalue &4 of the Jacobi operator Ry, i.c.,
E)(x) = <{x) @ ker(R, — &xA1d). Now, we put

() If z is a unit vector in E)(x), then E;(x)= E;(z) and moreover, if

v eker(R, — exuld), then x e ker(R, — eyuld).
Let (M,g,J) be a nonflat indefinite complex or paracomplex space form. Then
the Jacobi operator associated to each unit vector x has exactly two distinct ei-
genvalues e,4 and (&:/4)A. Moreover, E;(x) = {({x,Jx}) for each x, where J
denotes the complex or paracomplex structure of M and (II) follows immediately
from ¢(x,Jy) + g(Jx, y) = 0 (Furthermore, note that the induced inner product
on E;(x) is positive or negative definite for each unit x e T,M if (M,g,J) is an
indefinite complex space form, but it is of Lorentzian signature in the para-
complex case). Similarly, (II) is satisfied by indefinite quaternionic and para-
quaternionic space forms, as well as the Cayley planes over the octonians and the
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anti-octonians. Note here that conditions (I) and (II) above are independent
(see Remark 4.1 for examples of curvaturelike functions satisfying (I) but not

(II)).

For the sake of simplicity, we state the following definition

DreFINITION 1.1. A pseudo-Riemannian manifold (M, g) is said to be a
special Osserman space if (I) and (II) above are satisfied.

The purpose of this paper is to prove the following result on the charac-
terization of special Osserman manifolds:

Tueorem 1.1. Let (M,g) be a complete and simply connected special Os-
serman pseudo- Riemannian manifold. Then it is isometric to one of the following:

(a) an indefinite complex space form,

(b) an indefinite quaternionic space form,

(c) a paracomplex space form,

(d) a paraquaternionic space form, or

(e) a Cayley plane over the octonians with definite or indefinite metric, or a

Cayley plane over the anti-octonians with indefinite metric of signature
(8,8).

The paper is organized as follows. In §2 we derive some identities for the
curvature of special Osserman manifolds to be used through this paper. Section
3 is devoted to the study of the possible multiplicities of the distinguished ei-
genvalue 2. To do that we construct certain Clifford modules and, by means of
the use of topological restrictions on their existence, we obtain all the possible
multiplicities of 4 as well as the dimensions and signatures of the corresponding
tangent spaces where such curvature tensors are realized (cf. Theorem 3.2). In
section 4 we provide a proof of the local version of (a)—(d) in Mheorem 1.1. To
do that, we firstly show that the curvature tensor of a special Osserman mani-
fold with eigenvalue / of multiplicity different from 7 and 15 can be expressed in
terms of certain curvaturelike functions at each T, M (cf. Theorem 4.2). Then, in
§4.2, we show that any special Osserman manifold with eigenvalue A of mul-
tiplicity different from 7 and 15 is locally symmetric and (a)—(d) in
are obtained. Finally, the study of the exceptional cases corresponding to the
multiplicity of A equal to 7 and 15 is developed in §5.

2. Preliminaries.

In this section we will restrict our attention to the study of the tangent space
at an arbitrary point p e M of a special Osserman manifold (M",g). First of
all, it is worth to recall from (II) that the subspace E,(x) does not satisfy a
similar condition to that imposed on E;(x). This shows that the eigenvalues ¢4
and e, play different roles in the geometry of special Osserman manifolds.
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Lemma 2.1. Let (M,g) be a special Osserman manifold. Then,

() If x, y are unit vectors, with y € E;(x)", then y € ker(Ry — exu1d).
(ii) If x, y are chosen as in (i), then E;(y) L E)(x).

(i) T,M can be decomposed as a direct sum of orthogonal subspaces E;(-).

Proor. (i) follows immediately from the tangent space decomposition
T,M = E,;(x) @ ker(R, — &;u1d) since y is assumed to be orthogonal to E,(x).
To prove (ii), let X be a unit vector in E;(x). Then (II) implies that E;(X)
coincides with Ej;(x) and therefore, it follows from (i) that y € ker(R; — ezuId).
Then, again by (1I), we have X € ker(R, — ¢, 1d), and thus X L E;(y) for all unit
vectors X € E;(x). Finally, (iii) is obtained as a direct application of (ii). []

Now, it immediately follows from (I) and (II) that

LemMA 2.2, Let T,M = E;(x) ® E;(y) ® Ei(z) ®--- be an orthogonal de-

composition of TyM as in Lemma 2.1. Then
©) R(y,x1)x2 = —R(y,x2)x1 = =(1/2)R(x1,x2)y,

(i) R(x.7)z =0,

(lll) R(X],Xg)Xg, = 0,
where xi, xp, x3 are orthogonal unit vectors in E(x).

From now on we denote by 7 the multiplicity of the distinguished eigen-
value 1. Therefore, E;(&;) is a (7 + 1)-dimensional subspace of 7,M, for each
unit & € T,M. Moreover, put E;(&) = {{&, ¢, ..., &}y, where {&y,..., &} is
an orthonormal basis of ker(Rg, — ez, A1d). Next we investigate the form of the

Jacobi operator R, associated to any unit vector w of the form w = axg + by,
where yy € E;(xo)". This will allow us to obtain below, which will be ex-
tensively used in what follows.

LEMMA 2.3. Let xo, yo be unit vectors with yy € E;(xo)". The relation
T ;L _ //L 2
(2.1) ZR(% Yo, X0, ¥;) R(Xk, Yo, Xo, yj)ey, = ik (T) ExoEx;Ey,
j=1

holds  for all ik=1,...;t, where E;(xo)={{x0,X1,...,%:}), E;(y)=
Ayo, y1y---, yc}y and Oy denotes the Kronecker’s delta.

Proor. Let xg, yo be unit vectors with y eE;L(xo)L and take nonzero
a,b such that w=axo+byy is a unit vector. Further, let {xo,xp,...,x,
Y0s V1s+ ooy Ves 215+ oy Zn_2(c41)y De an orthonormal basis associated with the de-
composition T,M = E;(xo) ® E;(y0) ® (E;(x0) ® Ei(»))". Then one has

Ry(x0) = —abuex,yo + bz,ueyoxo

R, (x;) = (azexoi -+ bzeyo,u)xi + ab(R(x;, yo)xo + R(xi, X0)¥0)-
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Now, since R(x;,x0)y0 = 2R(x;, yo)xo, it follows from that
R(xs, 70)x0 € ({71, .- v}y, and hence

Ry(x7) = (e, d+ bPey,p)x; + 3ab > R(xi, yo. X0, ¥7)ey, ¥y,
j=1

for all i=1,...,7. In an analogous way

R,(y0) = azﬂngyO — abuey, X

T
R,(yi) = 3abZR(xj, Y05 X0, Vi)ex; Xj + (@exyui+ by )y, (i=1,...,7).
=

Moreover, since R(z;,x0)yo = R(zi, yo)xo =0, one has

Rw(zi) = MHewZ;
for all z; € (E;(xo) ® Ei(30)) "
Next consider the eigenspace of R, associated to the eigenvalue ¢,4. Since
{bexyeyy X0 — @Yo, X1, ..., X0, Y1y oy Yoy 21y o o+ Zyod(e41) ;1S an orthonormal basis of
(wyt, for each & e ker(R, — &,11d), put

T n=2(t+1)
(2.2) ¢ = albex,ey, X0 — ayo) + Z(%’xi +0iyi) + Z Bz
i=1 J=1

Then R, (&) = apen(bex,ep,x0 — ayo) + Yo (yixi +:p:) + Z;ZZ(TH) Bue,z; and,

if & is an eigenvector of R, associated to /4, one has

T n=2(t+1)
R\ (&) = adey(bex e, X0 — ayo) + Z(y,}»&,.;xi +0;2ewyi) + Z Bl z;.
i=1 J=1

Hence
T n—2(t+1)
(= )ew (Dt xo — avo) + Y (7 xi +6/ i) + Bi(% — wewz; =0
i=1 J
from where « =0 and §;,=0, j=1,...,n—2(t+1). Hence, e {{x],...,x,
Vis---y Ve}y, and thus ker(R, —e,21d) < V = {{x1,...,x;, y1,..., ¥c}>. Next,
let R, denote the restriction of R, to V. Then, when expressing in the basis
{x1,...,Xe, ¥1,..., ¥z}, one has

- a’ex )+ beyp) 1d, 3abC
(23) RW _ ( X0 Y :u) | :
3abB | (aPex, i+ b?ey,4) 1d,

where B and C are the (t x t)-matrices given by (Bj) = (&, R(x;, yo, X0, yi)) and
(Cy) = (ex RO 30,30, 7))
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Note here that, since ker(R, —¢,A1d) < V, R, has two eigenvalues, 4 and
4, both with multiplicity . Moreover it follows from (2.3) that ker(R,, — ¢,41d)
is determined by

(2.4) { —b*(A — p)ey,X + 3abCy = 0,
' 3abBX — a*( — p)ex, 7 = 0,
where X, ¥ are vectors in {{xi,...,x;}y and {{yi,..., y:}), respectively. One

can check directly that the solution of is given by

.3 b L (A=uY -
y= T— ZexOBx and CBX = (T) ExoEyp X-

Now, since ker(R, — &,41d) has dimension 7 and ¥, ¥ are (r x 1)-matrices,
it follows that CBX = ((4 — ,u)/3)26xoe},0?c for all vectors X in {{xi,...,x;}», and
then

A—pu 2
(2.5) CB = 3 | & Id,.
Finally, is obtained from just using the fact that the (i, k)-element of
the product CB, is given by e, Zle R(xi, yo, X0, y;)R(xk, Yo, X0, ¥j)&y,. ]

We close this section with the study of the eigenspaces corresponding to the
eigenvalues ¢,4 and &,u of R,.

LEMMA 2.4. Let xq, yo be unit vectors with y, € Ei(xo)l, and a, b nonzero

numbers such that w = axy + byy is a unit vector. Further, let {x),...,x;} be an
orthonormal basis of ker(Ry, — ex,A1d) and put
3 b ,
ui:xi—maeml{(xo,xi)yo, i=1,...,1,

b 3

UI:ESJYO'XI—I_ )-R(x07xl)y0’ i: 17"'7T‘

20—
Then

1) {wui,...,u;} is a basis of ker(R,, —&,A1d),

(i) <dvi,...,v.}) is a t-dimensional subspace of ker(R,, — &,uld),

(i)  Ryv; = pg(ui, ui)vy, for i,j=1,... 1.

ProoF. Let xg, yo be unit vectors with y, € E,l(xo)L and take nonzero a, b
such that w = axy + by, is a unit vector. If {y,..., y;} is an orthonormal basis
of ker(R,, — ¢,,41d), we already obtained in the proof of previous lemma that

3
(2.6) R (x;) = (a%ex, )+ bPey,p)x; — EabR(xo,xi)yo (i=1,...,7),

(2.7) Ry (y)) = (aPex ut + ey, )i+ 3abR(yi, xo)po  (i=1,...,7).
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Moreover, since

T

(28) R(x07xr)y0 - ZR(x(bxhyOvyj)g}’jyj? r= 17"'777
j=1

it follows that R, (R(xo,X:)y0) = D 7| R(x0,Xi, Yo, yj)ey,Ru(¥;), and from (2.7),

Rw‘(R(an xi)y()) = +3ab ZR(XOa Xiy V0, )’J)SJJR(JG? XO)J’O-
Jj=1

Next, from and R(y;, X0)yo = Y 1—; R(pj, X0, Yo, Xk )&x, Xk, We obtain

RW(R(Xo, X,‘)yo) = (aznglu + bzgyoll)R(xov xi)yO
T T
+3ab ) "3 R(xo, X1, yo, 37)R(yj, X0, Yo, %), }exkxk.
=1 =1

Then, using that R(xo,x;, yo, y;) = =2R(x;, yo, X0, ¥;) and  R(y;, xo, yo, Xk) =
R(xy, yo, X0, ;), it follows from Lemma 2.3, that

T A _ 2
R, (R(x0,x1)y0) = (a%ex, 1t + bey, 2) R(x0, x;)yo — 6ab Zélk <Tﬂ) Ex0Ex: €30 B, Xks
k=1

where

2 .
(2.9)  Ru(R(x0,x:)y0) = (a%ex, 1t + b*ey, 2)R(x0, X:)y0 — gab(/u — u)zgxoayoxi.
Then, (2.6) and (2.9) show that R,(u;) =¢,Au; and R, (v;) = &,uv;,
(i=1,...,7). Hence {uy,...,u;} and {vy,...,v,} are eigenvectors of R, cor-
responding to eigenvalues &,4 and e,u, respectively. To finish the proof, we
show that {u;},{v;}, i=1,...,7 are orthogonal nonnull vectors. To do this,

note that [2.8) and Lemma 2.3 give

h— i\
g(R(X(), X,')y(), R(Xo, Xj)y()) = 451,7 <Tﬂ> €x0€x;€y¢5 (iv J= 1? s T)v

and thus, since R(x¢,x;)yo and R(xo,x;j)yy are orthogonal to {{xi,...,x;}), one
gets g(us, uy) = 8i(ex,ex,60) /a®, and g(v;, v;) = 0j(ey,x,6w)/a” for all i, j=1,... .7,
which proves (i) and (ii). To prove (iii) note that i, = u;/||u;|| satisfies E,(w)
E,(it;) for all i=1,...,7. Moreover, from (ii) v; is orthogonal to E;(w) = E;(i;),
and hence v; € ker(Ry, — &;,11d) which shows that Rjv; = ¢;uv; for all i,
l,...,t.

>

LIl
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3. Multiplicities of the eigenvalue /.

In this section we study the possible multiplicities of the eigenvalue 4. To
do this, we endow each subspace E;(-) with a certain Clifford module structure
and, by using some topological restrictions on the existence of such structures, we
will obtain that the eigenvalue 2 may only have multiplicity 1, 3, 7, or 15 (cf.

MTheorem 3.2). We begin with the following
DErFINITION 3.1.  Let x( be a unit vector and {x, xi,...,x;} an orthonormal
basis of Ej(x¢). For each i=1,...,7, define ¢, : E;(x¢)" — E;(xo)" by
3
3.1 i — R s A )G

. . L
where ¢ is any vector in Ej;(xg) .

REMARK 3.1. Note that the maps ¢, are well-defined by
(iii). Moreover, if &, is a unit vector in E;,(xo)i and E; (&) = {&y, &0
then, since R(xg,x:)& € {¢&1,...,& )y, it follows from that
$:&o = (3/(2(2 — w))) Y21 R(xo, x1,&0,&j)es & Once more, from Lemma 2.2H(i),
R(x0,x1,&y, &) = —=2R(x4, o, X0, &;) and thus

3 T
(3.2) $iCo = —rZR(«\'hfo,xO, fj)ﬁg’jfj-
K=

This shows that cach subspace E;(-) < E;(x¢)" remains invariant by the action
of the ¢,s.

Let us recall at this point that a complex structure on a vector space W is an
endomorphism J of W such that J> = —Id. Moreover, an inner product {,) is
called Hermitian if {x,Jy)+ {Jx,y> =0 for all x,ye W. Also, an endomor-
phism J of W with J? =1d is called a paracomplex structure and an inner prod-
uct {,» is said to be para-Hermitian if it satisfies {x,Jy) + {(Jx,y> =0 for all
x,ye W. Now, by using Lemma 2.3, we have the following

LEMMA 3.1.  The endomorphisms ¢; of E)(xo)" defined by (3.1) satisfy the
following:
Q) g(d:&,n) +g(& ¢n) =0, for all vectors & ne E;(xo)",
(i) g(¢:C, $,C) = dijexyex,9(E, &), for all vectors feEi(xo)l,
(i)  ¢;0; + $;¢; = —20j8x,8x, 1d,
where i,je{l,...,1}.
ProoF. If &,77 € E;(x0)", then

Z(liﬂ)g(R(xo,Xi)éa n) = A_3ﬂ 9(R(xo, xi)n,8) = =g(&, pim),

g(d:&,n) =
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which shows (i). To prove (ii), let & be a unit vector in Ej(xo)" and put
Eﬂ,(éO) = <{607£17 ) 7ér}>' By ; we have
3 2 1
g(¢i609¢j60) = (m) ZR(-X[) é(ﬁx()aék)R(xﬁéOaanék)gika
=1
and thus, shows that g(¢;&o, ¢;<0) = djexyex,9(S0, o), Which proves

(ii). Next, to prove (iii), let ¢ be an arbitrary vector in E;(x)" and note that,
from (i) and (ii),

(3.3) g(¢i¢jfv ¢) = —g(¢:, ¢jf) = —0jjéx,ex,9(&, €).
Now, if &neE;(xo)", sois (€+7), and from [3.3), after linearization

g(¢i¢j67 <)+ g(¢i¢j’7> n) + g(¢i¢jf: n) + g<¢i¢j’7: <)
— _51']'3,\‘03,\‘19(67 é) - 5ij8x08x,»g<77= 77) - 25ij8x08xig<£> 77)

Hence g(¢;9,¢, 1) + g(d:idn, &) = —20j8x,8x,9(&, 1), and the desired result follows
from (i). O

Complex and paracomplex structures may only exist on even-dimensional
spaces. Therefore, from [Lemma 3.1-(iii) the multiplicity of A is necessarily
odd. Moreover note that indefinite Hermitian metrics are of signature (2k,2r),
(k,r > 0) but para-Hermitian metrics are necessarily of neutral signature (k,k).
As an application, we obtain the following:

Lemma 3.2, Let T,M = E;(x) ® E;(y) ® - - - be an orthogonal decomposition
of the tangent space of a special Osserman manifold given by Lemma 2.1. Then,
either of the following hold:

(i) The restriction of the metric to each E,(-) is definite of signature

(t+1,0) or (0,7+1).
(ii) The restriction of the metric to each E;(-) is of neutral signature
(t+1)/2,(z+1)/2).

Proor. Let T,M = E;(x) ® E;(y) @ --- be an orthogonal decomposition of
T,M as given by Lemma 2.1. If {xo,...,x;} is an orthonormal basis of E;(x)
then the induced ¢,’s satisty ¢52 =o0;1d, where og;= —ey &, (i=1,...,7).
Therefore they are v complex structures on Ej(x¢)" or exactly ((z—1)/2)-
complex and ((r + 1)/2)-paracomplex structures on Ej;(xo)". Now, the first case
above happens if the restriction of the metric to E;(x) is definite (and thus, it is
the case for all the subspaces E;(-)) and the second case corresponds to neutral
metric on E;(xy) (and thus in all the E)(-)’s). O]
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Next, we will show that the multiplicity of 4 strongly influences the di-
mension of a special Osserman manifold whenever such multiplicity is assumed
to be greater than 3.

LemMa 3.3. Let (M,g) be a special Osserman manifold. If the multiplicity
of J is strictly greater than 3, then dim M = 2(t + 1).

PrOOF. Let xg, yo € T,M be unit vectors with yy € E;(xo)" and consider
the endomorphisms ¢, : E;(xo)" — E;(x0)", (i=1,...,7) defined by (3.1).
follows from previous results that {&, ¢,&,...,¢.¢} is an orthonormal basis of
E;(yy) for each unit ¢ € E;(yy), and thus we put

ii¢ = ) OE+ ) ay(E)g¢
s=1

where i # j, i,je{l,...,t}. Since for each i # j, ¢, e {{¢ ¢, (/ﬁjf})ﬂ the
above expression reduces to

T

(34) b= ) 4L

s=1,8#1i, ]
Next, suppose that dim M > 2(r+ 1), and take a unit vector # orthogonal to
the subspaces E;(x¢) and E;(y9). Choose nonzero a,b in such a way that w =
al + by and t = b¢ — aegeyn are unit vectors. Then, for I, mne{l,... 7} we
have that g(¢;4,,4,w,1) =0, since ¢,¢, 4w e E;(w) and re E;(w)". Hence,

0= ab(g(¢l¢m¢né’ f) - 85817g(¢l¢m¢n777 77))

— a2856,7g((/),¢,n¢,1f, 77) + bzg(¢l¢m¢n?]7 f)?

and since g(¢,4,,9,¢.1) = 9(49,,6,m,&) =0 (note that E;(E) L E;(n), and
both subspaces remain invariant under the action of the ¢’s) we obtain that

9(D19n9C, C) = eceyg(18udun,m).  This shows that the coefficients o (<) in
ate given by a5(2) = (6% 4. E)9(bE §,6) = —tnyteng (B, n) and therefore,
they are independent of the unit vector £. Thus, we have [3.4] for all unit vec-
tors & e E;(yy), where the coefficients o do not depend on £, Now, choose
ke{l,...,t} in such a way that i, j k are different. Then [3.4] leads to

T T

80,5 = Y ah (B = —whenen S+ Y aihpl

s=1,8#1, ] s=1,s#1, j, k

On the other hand, also gives

T

¢ (¢ ¢] ) OCl]8xO8xké Z a;j¢s¢kéa

s=1,s#1, j,k
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and, since ¢i¢j(¢ké) = ¢i¢j¢ké = ¢k¢i¢jf = ¢k(¢i¢jf): we obtain ¢i¢j¢k§ =
—oci’;fex()exkf, for all unit vectors &€ E;(y9). This shows that the composition
qﬁ,,-qﬁ} coincides with ¢, or —¢, on E;(yy), whenever i, j, k are different, which is
a contradiction. Therefore, dim M = 2(7 + 1). ]

Next, we concern with the possible multiplicities of the eigenvalue 4. First
of all, we will recall some known facts about Clifford modules. Let W™ be a
m-dimensional real vector space endowed with an inner product {,». A real
Cliff (v)-module structure C on W is a family ¢; of endomorphisms of W with
cicj + cjc; = =205 for i,j=1,...,v (i.e., C determines an anticommuting family
of complex structures on ). There exist topological restrictions to the existence
of Clifford structures as follows.

THEOREM 3.1 ([24]). Let m =2"-my, with my odd.
i) V™ admits a CIiff (v)-module structure if and only if v < v(r),
(i) TS ' admits a g-dimensional distribution, for 2q < m — 1, if and only if
g < v(r),
where v is given by v(i+4) = v(i) +8 and v(i)=2"—1 for i =0,1,2,3.

Now, we have the following

THEOREM 3.2. Let (M,g) be a special Osserman manifold. Then one of the
following conditions holds:

(i) t=1and M is a 2n-dimensional manifold with metric of signature (n,n)
or (2k,2r), for some k,r >0,

(i) =3 and M is a 4n-dimensional manifold with metric of signature
(2n,2n) or (4k,4r), for some k,r > 0,

(iil) 7 =7 and M is a 16-dimensional manifold with metric of signature (8, 8),
(16,0) or (0,16), or

(iv) ©=15 and M is a 32-dimensional manifold with metric of signature
(16,16),

where t denotes the multiplicity of the eigenvalue ).

Proor. Let T,M = E;(xo) ® E;(y0) ® --- be an orthogonal decomposition
of T,M as in and define endomorphisms ¢; on E;(yo) by [3.1]. By
Lemmas B.1 and B.2, we have 7 complex structures defining a Cliff(7)-module
structure on E)(yp). Note that dim E;(yo) =7+ 1 (if the restriction of the metric
to E;(yo) is definite) or dim E;(y) = 27 + 1 (whenever the induced metric on
E;(») is of neutral signature). Further note that a Cliff(r)-module structure is
available on a (7r+ 1)-dimensional vector space if an only if the r-dimensional
sphere is parallelizable, which restricts to the cases of =1, 3, or 7.

Henceforth, we next concentrate on the case 7 = (r — 1)/2. It follows from
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Theorem 3.1-(i) that there exists such Cliff(7)-module structure on E;(y) if and
only if
(3.5) 7 < v(r),

where 2742 =2"-m,, with m, odd.

First of all, suppose that 7 is even (7 = 2a). Then 27 +2 =2"-m is given
by 27+2=40+2=22x+1), and thus r=1 and my =20+ 1. Therefore,
from [3.5), 2« < v(1) =1 and hence 7 must be zero or odd. In what follows
we will suppose that 7 is odd and it can be written in the form 7=2%—1 for
some ¢. In this case, 27 +2 = 2" -my is given by 27 +2 = 2(2* — 1) +2 = 2**!
and then r=o+ 1 and my=1. Hence, shows that there exists a CIiff(7)-
module structure on E;(yy) if and only if

(3.6) 2% =1 <v(a+1).

Next we consider this inequality. If one put a+1=4a+b, 0<h <3, we
have v(a+ 1) = v(h) 4 8a and since v(h) =2° —1 and a = («+ 1 — b)/4, it fol-
lows that v(et+ 1) = 2% — 2b+ 20+ 1. Then, reduces to 2% — 1 <20 —2h +
20+ 1, that is, 2% — 20 < 2> — 2h+ 2. Now, since 0 < b < 3, we have that 27 —
2b +2 <4 and, therefore,

(3.7) 2% 24 < 4.

Let f(x) =2*—2x, with xe R. This function grows strictly in (2,+o0), and
f(4) =8, which implies that 2* — 2z > 8 whenever o > 4. Thus, gives a
contradiction whenever o > 4 and hence 7 cannot be written in the form 2* — 1
for « > 4. Let suppose that 7 satisfies

(3.8) 24— 1<i<2 —1, a>4,

and put 27 +2 = 2" - my, with my odd. Then holds and implies that
20+ <27 my < 2972, from where r < a+ 1 and thus

(3.9) v(r) < v(a+1).
On the other hand, since « >4, (3.6) does not hold,
(3.10) 2% =1 >v(a+1).

Note now that {3.5), (3.8), (3.9) and (3.10) give

T<v(r)<va+1)<2*-1<7,

which means that 7 cannot satisfy [3.8). Therefore, 7€ {0,1,3,5,7,9,11,13}.
Now, a direct calculation from (3.5) shows that 7€ {0,1,3,7} and hence 7€
{1,3,7,15}. Now the result follows from Lemmas and B.3. ]
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4. Special Osserman manifolds with eigenvalue /. of multiplicity different
from 7, 15.

The purpose of this section is to prove a local version of Theorem 1.1, in
the characterization of special Osserman manifolds when the eigenvalue 4 is of
multiplicity different from 7 and 15 as in the below

THEOREM 4.1. Let (M,g) be a special Osserman pseudo-Riemannian man-
ifold. If the multiplicity of the distinguished eigenvalue /. is different from 7 and
15 then (M,g) is locally isometric to one of the following

(a) an indefinite complex space form,

(b) an indefinite quaternionic space form,

(¢) a paracomplex space form, or

(d) a paraquaternionic space form.

To prove the result above, we firstly obtain the expression of the curvature

tensor of such manifolds in §4.1. Then, follows from the second
Bianchi identity in §4.2.

4.1. Pointwise expression of the curvature tensor.
A quadrilinear map F: W x W x W x W — R is said to be a curvaturelike
function on a vector space W if it satisfies

F(x,y,z,w) = —=F(y,x,z,w) = =F(x, y,w, z),
F(x,y,z,w) = F(z,w,x,y),
F(x,y,2,w) + F(y,z,x,w) + F(z,x, y,w) = 0,

for all vectors x, y,z,we W. Moreover, if {, ) denotes an inner product on W
then the associated (1,3)-tensor defined by (F(x, y)z,w) = F(x, y,z,w) will be
called the associated curvaturelike tensor. Next we recall the definition of two
curvaturelike tensors which will play a basic role in what follows. Induced by
the inner product {, ), define a curvaturelike tensor as follows

R(x, )z = (p, 2px — {x, 2)y.

Also, if J is a complex (resp., paracomplex) structure on W in such a way that
(V,<{,>,J) is an indefinite Hermitian (resp., para-Hermitian) vector space,

R (x, y)z = {Jx, 2)Jy = (Jy, 2)Jx + 2{Jx, y)Jz

defines a curvaturelike tensor on W.
Our purpose in this subsection is to show that the curvature tensor of any
special Osserman manifold whose eigenvalue / has multiplicity different from 7
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and 15, can be writen at each point as a linear combination of R” and certain
R”’s as follows

THEOREM 4.2. Let (M,g) be a special Osserman manifold with eigenvalue
A of multiplicity different from 7 and 15. Then, at each point p € M one of the
following conditions holds:
(i) There exists a complex structure J such that (g,J) defines an indefinite
Hermitian structure on T,M and the curvature tensor satisfies
A—p

R =uR® —TRJ.

(i) There exists a paracomplex structure J such that (g,J) defines a para-
Hermitian structure on T,M and the curvature tensor is given by
5 —
R=uR +2_ER7.
3
(iii) There exists a quaternionic structure Q such that (g,Q) defines an

indefinite Hermitian quaternionic structure on T,M and the curvature
tensor is given by

) — 3
R:ﬂRO_TﬂzRJi?
i=1

where {J1,J,J3} is a canonical basis for Q.
(iv) There exists a paraquaternionic structure Q such that (g, Q) defines a
Hermitian paraquaternionic structure on T,M and the curvature satisfies

\ 3

PR

R:ﬂR0+—3”§ iR,
i=1

where {J1,J>,J3} is a canonical basis for 0 and J?=0;1d, i=1,2,3.

REMARK 4.1. As pointed out in the Introduction, conditions (I) and (II) in
Definition 1.1 are pointwise independent. In fact, it is not difficult to exhibit
examples of curvaturelike functions satisfying (I) but not (II) as follows.

Let (V,<{,>) be an inner product vector space and {Jj,J>} a pair of
anticommuting complex structures such that (V,<{,>,J;) and (V,{,),J>) are
Hermitian vector spaces. Next, consider the curvaturelike function F = R’ +
R’. 1t follows that the Jacobi operators F, are diagonalizable with F, =
diag[3,3,0,...,0] for all unit vectors xe V. Thus F = R’/ + R is an Osser-
man curvaturelike function satisfying condition (I). However, it does not sat-
isfy condition (II). In fact, note that E;(x)= {{x,Jix,/ox}) and E;(Jix) =
Hx, Jix,JoJi1x}), which shows that E;(x) # E;(J1x) in contradiction to condition

(11).
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In order to prove Theorem 4.2, some technical lemmas are needed. As an
immediate consequence of Lemma 2.4 and [3.1], we have

LemMa 4.1. Let x9,& € T,M be unit vectors with feE;,(xo)L, and a, b
nonzero comstants such that axo -+ b¢ is a unit vector. Let {xy,...,x;} be an
orthonormal basis for ker(Ry, —ex,21d) and ¢,,...,¢. the associated endomor-
phisms defined by (3.1). Then

u,-:x[—aexod)if, i=1,...,1,

b
v; :Esg_xi—i—(ﬁ[f, i=1,...,1,
satisfy
R, = g(upuj)pw;, i,j=1,...,7.

LemMa 4.2. Let xoe T,M be a unit vector. For any unit vector ¢ or-
thogonal to E;(x¢), one has

2 S
R(Xi’xj)é: _g(;h_:u)g«\'o¢i¢jfv 1# Z,je{l,...,f},

where {x1,...,x.} is an orthonormal basis of ker(R,, — ex,A1d) and ¢, ..., ¢, are
the associated endomorphisms defined by (3.1).

Proor. Take i,je{l,...,7}, i# j. Since ¢ is a unit vector orthogonal to
E;(x0), so is ¢,¢ and therefore, if @ and b are nonzero such that axy + b¢,C is a
unit vector, gives

(4.1) R, v; = g(u;, u;) oy,
b b b After linearizati
where u; = x; + ngfé and v; = _Exofy EeXi + ¢:9,€. ter linearization,

3
R, v; = aeanxjegR(x,:, X;)xj + §8xO8Xj8§R(x,j, &)¢

b2
+ Eé‘xogf(R(Xi» xp)¢ + R(xi, £)x;) + R(¢i,<, x7)x;

2

i %R((/),.@f, &)e+ ZEX/ (R(:9,¢,x))¢ + R(¢;9,¢,E)x;),

and, from Lemmas 2.1 and 2.2



862 A. BoNOME, R. CAsTRO, E. GARCIA, L. HERVELLA and R. VAZQUEZ-LORENZO

b b3 3b

2

b? 3b
+ <8~(],u +— 86&) ¢l¢ f + 8\08 R(X”x])f

9

Therefore, since g(u;, u;) = &y, +—éz, (4.1) is equivalent to
i, U P

3

(bewgc_:; +— EXngJﬂ)xl 3 b (¢¢5 <)X

2 2

b 3b
+ (8«‘9‘# +—= 22 >¢ ¢ ¢ ‘|‘ 8~c085R(xla x])é

b b3 b?
— ag\oggu+ T Exgbft | Xi + 8AJ/H— et | 9:i9C,

and hence
2 2

e~ I+ yeeR ()¢

b

b
= — Eex(}eg(/l — W)Xi — 5 =& R(4;0,¢, &) x;.

2a

Now, since ¢;4;¢ and R(x;, x;)¢ are orthogonal to E;(xo), and moreover x; and
R(¢;¢,¢,&)x; belong to E;(x¢), previous expression gives

b> 3 p2
ek ee(A — ﬂ)¢¢f+ 8x08R(*c,,A,)f 0,

from where it follows that (3/2)3X0R(x,~,x,~)(f = —(A—w)¢;9;¢ and the desired
result is obtained. ]

Next we prove the main result of this subsection.

ProOOF OF THEOREM 4.2. Since the multiplicity of A is assumed to be different
from 7 and 15, shows that only multiplicity 1 or 3 may occur. We
will analyze each case separately.

(a): A of multiplicity 7 = 1.

Let x( be a unit vector in 7, M and take x; a unit vector in ker(Ry, — &y,41d).
Let ¢: E;(xo)" — Ej(xo)" be defined by (3.1), so that ¢* =oId, where o =
—&y,6x,.  Next, if yy 1S a unit vector orthogonal to E)(x), take y; = —&,,@¥o
and define  : E;(xo) — E;(xo) by ¥ = (3/(2(2— 1)))R(yo, y1), in such a way
that > = —&y,6,, ld =01d. Hence J =y @ ¢ defines a complex (resp., para-
complex) structure on T,M if 0 =—1 (resp., o = +1).
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Next we will show that the curvature tensor R in 7,M can be expressed in
terms of the curvaturelike tensors R and R’. (R’ being defined by the Her-
mitian or para-Hermitian structure (g,J), where g is the metric tensor in 7, M
and J is the complex or paracomplex structure above). To do this, we will show
that F = R — uR" — ((A— u)/3)oR’ vanishes identically.

First of all we study the action of F on vectors in E;(xg). It is easy to
check that F(E;(xo), E;(x0))E;(x0) < E;(xo) and then, if F, R, R’, R’ denote the
restrictions of F,R,R’, R’ to E;(x¢), one has

R, =& 1d,, R2 = ¢, Idy, Rx‘l = 3o¢, 1d;,

for all unit vectors x € E;(xy). Thus F, = 0, which shows that F vanishes when
restricted to E;(xo). Next, note that F(E;(xo)",E;(xo) )Ei(x0)" < Ei(xo)",
and denote by F, R, R’, R’ the restrictions of F, R, R%, R’ to Ei(xo)L. Ifisa
unit vector in E;(xo)" then the associated Jacobi operators, when expressed in the
basis {JEny,..., 1,4} of (EY'NE;(xo)" are given by

R;: = diag[e:/, ez, "4, ecpd], f%g = diag[es, "3, &), ng = diag[30¢:, 0,74, 0],

and thus Fg = 0. This shows that F' is identically zero when applied to vectors
in E;,(XO)L. So far, we have proved that considering the decomposition 7,M =
E;(x0) ® E;(xo)", the curvaturelike tensor F vanishes when restricted to anyone
of the subspaces. Thus, by [Lemma 2.2, to show that F is identically zero it
suffices to prove that F(xo,x1) : E;(xo)" — E;(x¢)" vanishes. For, if ¢ is a unit
vector in Ej(xo)",

(4.2) R(xp,x1)¢ =

(ST

(A —pJé, Ro(xo,xl)f =0.

Also,  since  g(Jxo,x1) = (3/(2(4 — u)))g(R(yo, y1)X0,x1) = (3/(2(4 — 1)) -
g(R(x0,x1)y0, ¥1) = g(Jyo, y1) and y; = —g, Jyy, it follows that g(Jxg,x;) =g,
and thus

(4.3) R (x0,x1)¢ = 2g(Ixo,x1)JE =2aJC.

Now, (4.2) and [4.3) give F(xo,x1)¢ = (2/3)(A—w)JE - ((A—w)/3)a(26JE)
= 0, which proves when the multiplicity of 1 is equal to 1.

(b): 4 of multiplicity 7 = 3.

Let xo be a unit vector in 7,M and fix an orthonormal basis {xi, x>, x3}
of ker(Ry, —&g,21d). Define ¢, : E;(xo)" — E;(xo)" by (3.1), such that ¢ =
o;1d, where g, = —¢&,,ey, (i =1,2,3). Next, let yy be a unit vector orthogonal to
E;(x¢) and take y; = —¢,,¢;,30. Then {yo, y1, y2, ¥3} is an orthonormal basis of
E,(y0), and define y; : E;(xo) — E;(xo), by ¥; = (3/(2(4 — 1)))R(yo, yi), so that
wiz = —¢,¢, Id=0;1d. (Note that, either 6 =0y =03 =—-1 or g1 = -0, = —03 =
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—1 as a consequence of Lemma 3.2, See also for algebras with a certain
number of generators). Now, for each i =1, 2,3, the endomorphisms J; : T,M —
T,M defined by J; =, @ ¢; are complex or paracomplex structures on 7,M de-
pending on whether g; is —1 or +1, respectively.

First of all we will show that there is no loss of generality in assum-
ing JiJ, = J;. Consider the decomposition T,M = E;(xo) ® E;(xo)". If & is a
unit vector in anyone of the subspaces, then J;J>¢ belongs to E;(¢) and, since
J1JE e <{f,Jlé,Jzé}>L, it follows that J;J>& € (J3&). This proves that JiJ, =
+J3 and, changing xo by —x( if necessary, we have that J,J, = J;.

The condition JiJ, =J; may be generalized to have J,Jy = J,p for o, f =
1,2,3, where the product «-f is equal to the value +y such that +e, =
esep{ep,er,er,e3} is a standard basis for the multiplication given by the follow-

ing table:
€ €1 e e3

() € €1 e €3

(4] €1 g1€9 €3 (A1)

(%) () —e3 072€ —07€]

e3 e3 —01€> 07€1 g3€
Note that this product corresponds to the quaternion one if gy =gy = g3 = —1,
and to the paraquaternion one if o = —g, = —g3 = —1 (cf. [19]). Moreover,

put Jo =1d and denote by J_, the tensor —J,.

Next we will prove that the curvature tensor R on 7,M can be expressed
according to by showing that F = R — uR® — (. — p)/3) 2, o, R’
vanishes identically. Considering again the orthogonal decomposition 7,M =
E;(x0) @ E;(x)", and proceeding in the same way as in the case of multiplicity
1, we have that the curvaturelike tensor F vanishes when restricted to anyone of
the subspaces E;(xo) and E;(x¢)". Therefore, it will suffice to show that for
each o, f€{0,1,2,3}, a <, F(x,,xp): E;,(xo)L — Ei(xo)L vanishes identically.

If & is a unit vector in E,{(X())L, then

W N

(44) R(.X(), x%)é = (/1 - lu)JGCé* Ro(x07 xa)f = 07

and g(Jixo, xu) = (3/(2(2 — 1)) g(R(y0, yi)X0, %) = (3/(2(2 — w))) -
g(R(x0, Xx)¥0, i) = g(J.y0, yi). Moreover, since y; = —¢,Jiyo, it follows that
g(Jixo,xy) = 01,0, and thus,

(4.5) R’ (x0,%,)E = 29(Jix0, X4)Ji& = 20;,0,J,E.
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Now, (4.4) and (4.5) give

UJI[\)

F(x0,x,)¢ == (2 — u)Jyé — 0i(20:,04J5&)

T Mw

UJI[\)

which proves that F(xg,x,) vanishes (o« =1,2,3).
Finally if & is a unit vector in Ei(xo)L and a,f € {1,2,3}, « < f5, then using
that J,Jg = J,; and we get

2.
— = (A = wex,Jupl,

(46) R(x“, x[g)f = 3

and  g(Jixy, xg) = (3/(2(2 — 1)))g(R(yo, i) Xa, Xp) = —x,9(Juppo, yi). Therefore,
since y; = —&y,Jiyo, it follows that g(Jix,,Xp) = —0; 4p0,pex,, and thus

(4.7) R (x4, xp5)E = 29(Jixy, Xp)JiE = =20 150 Jup.-

Moreover, since R(x,,x5)¢ =0, from and one has

2 A—u 3
F(Xoc» xﬁ)é = - § (/1 - ,u)gxojaﬂé - T Z O'i(_zéi,aﬁo'aﬁgxojaﬁé)
i=1
2 A—u
= _5(1 - :u)gxo*]mﬂf + 3 ngo*]ocﬂf - 07
which completes the proof of [Theorem 4.2| ]

4.2. Local classification.

In what remains of this subsection, (M,g) is assumed to be a special
Osserman manifold with 4 of multiplicity distinct of 7, 15. Therefore, from
Theorem 4.2, the curvature tensor of M is locally given by

A= ,
— 0 Ji
(4.8) R =uR" + 3 ;1 aiR",

where =1 and (g,J) defines an indefinite almost Hermitian structure in a
neigbordhood U, of each pe M (if ¢ = —1) or (g,J) is an almost para-Hermitian
structure on U, (for ¢ =1). In the case =3, (g9,<{/1,/2,J3})) defines an in-
definite quaternionic structure on U, when o1 = 0> =03 = —1 and a paraqua-
ternionic structure if o = —1,00 =03 = 1.

Next, we state some technical lemmas involving the covariant derivatives of
the tensor fields J;.
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Lemma 4.3. Let (g,J) be an indefinite almost Hermitian or almost para-
Hemitian structure on a manifold M. Then
Q) VxJ)JY =-J(VxJ)Y,
(i) g((VsJ)Y.Z) = —g(Y. (VyJ)2),
(i) g((VxJ)Y,Y) =g((VxJ)Y,JY) =0,
for all vector fields X, Y, Z on M.

LemMa 4.4. Let (M,g) be a pseudo-Riemannian manifold whose curvature
tensor is given by (4.8). Then,

(VXR)(Y, Z)W = /L_Tlu i()'l{(j( Y,J,W)(VXJZ)Z + q( Y, (fo,) W)J,Z

- g(Z,J, W)(VXJ,) Y — g(Z, (ij,) W)J,Y
+29(Y, JZ)(VxJ)W +29(Y, (VxJ:)Z)J: W }
for all vector fields X, Y, Z, W on M.

LemmMa 4.5. Let (M,g) be a pseudo-Riemannian manifold whose curvature
tensor is given by (4.8). Then,

(VxJ)X e {IiXie{l,...,t}i#s})y, s=1,...,71,
for all vector fields X on M.

Proor. Let Y be a unit vector field orthogonal to E;(X). Then from
and (VyR)(X,,Y)X+ (VxR)(JLY, V)X +(V,yR)(Y,X)X =0, it fol-
lows that

0= Za,{g VyJ)X)g(Jid Y, Y) = g(Y, (VxJi)X)g(JiJ Y, Y)

+29(4, Y, J: Y)g((VyJ)X, Y)}.

Now, since ¢(J;Y,J;Y)= —d;0,ey and q(JJ Y. Y)=—g(J;Y,JY), one
has g((VyJ)X,X)=3¢g((VyJ)X,Y) and thus [Lemma 4.3-(iii) shows that
g((VxJy)X,Y) =0, from where it follows that (VXJS)X eE;,(X ) and the result
follows from [Lemma 4.3. n

Now we are ready to prove the following

THEOREM 4.3. Let (M,g) be a special Osserman pseudo-Riemannian mani-
fold with eigenvalue A of multiplicity different from 7, 15. Then, it is a locally
symmetric space.
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PrOOF. In what follows we will show that any pseudo-Riemannian mani-
fold with curvature tensor given by is locally symmetric. Let X, e 7T,M be
a locally defined unit vector field and consider the local decomposition 7M =
E;(Xo) ® E;(Yy) ®--- given by Lemma 2.1. We will show that

(49) (VXOR)(T7 XO: X07 W) = 07

for all vector fields 7, W in the orthonormal local frame induced by the de-
composition above.

First of all note that, from Lemma 4.4, since X; is orthogonal to J; X, and
(Vx,Ji) Xo,

T

(VXOR)(TvX()?XOv W) = (}“ - Iu) ZO’,'{Q(T,J,'X())(](W, (VXOJi)XO)

+ (T, (Vx,Ji) Xo)g(W, JiXo)}.

Now, by Lemma 4.3, it follows that previous expression vanishes whenever at
least one of the vector fields 7, W is orthogonal to E;(X,) and thus holds
for such a choice of T and W. To finish the proof we analize the case of
T,WeE;(Xy). Since

Vi, (R(T, Xo, Xo, W)) — R(Vx, T, Xo, Xo, W) — R(T, Xy, Xo,Vx, W)
= Vx,(Aex, (T, W)) — 2ex,g(W,Vx, T) — 2ex,9(T, Vx, W)
= Jex,(Vxog)(T, W) = 0,
it follows that
(4.10)  (Vy, R)(T, Xo, Xo, W) = —R(T, Vx, Xo, Xo, W) — R(T, Xy, V, Xo, W).

Next, put 7'=X; and W =X, with i,je{l,...,t}. If i # j, Lemma 2.2H(iii)
shows that (4.10) vanishes. If i =j, from (4.10) we get

(Vx, R)(Xi, Xo, Xo, Xi) = —2R(Xo, X;, Xi, Vx, Xo) = —27ex,9(Xo, Vx, Xo),

which also vanishes since ¢(Xy,Vy,Xo) =0. This shows that holds and
therefore, (M,g) is locally symmetric. O]

ProOF OF THEOREM 4.1. Since the multiplicity of 1 is different from 7
and 15, (M,g) is locally symmetric and its curvature tensor is given by (4.8).
Further note that, as an immediate consequence of the definition of the R’’s, one
has

(4.11) (VxRI)WY,Z2)Z = 3{g(VxJ)Z, Y)J,Z + g(Y,J;Z)(VyJ)Z},
for all vector fields X, Y and Z.
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(a); =1 and (g,J) defines an indefinite almost Hermitian structure.

Since (M,g) is locally symmetric, implies that VR’ =0 and, in par-
ticular, (VyR’)(JY,Y)Y =0 for all vector fields X, Y. Now, (4.11) and
give (VxR7)(JY,Y)Y =3ey(VyJ)Y, and thus (VyJ)Y =0. This
shows that (g,J) is an indefinite Kdhler structure. On the other hand, if
x,ye T,M with y e {{x, Jx}y*, since RY(x,Jx, x,Jy) = R’ (x,Jx,x,Jy) =0, (4.8)
implies that R(x,Jx,x,Jy) =0. Now, the constancy of the holomorphic sec-
tional curvature follows from [1, Theorem 5.1].

(b): 7=1 and (g,J) defines an almost para-Hermitian structure.

Proceeding in the same way as before, it follows that (g,J) is a para-Kdhler
structure. Moreover, it also follows from that R(x,Jx,x,Jy) =0 for all
x,yeT,M with ye {{x, Jx}>*. Hence, the paraholomorphic sectional curva-
ture is constant (cf. [13, Theorem]).

(¢): 7=3and (g,<{J1,J>,J3})) defines an indefinite quaternionic structure.

Since M is locally symmetric and the curvaturelike tensor R° is par-
allel, if follows from that 327 (VyR%)(Z, Y)Y =0 for all vector fields
X, Y, Z. Now, if ZeE;(Y)", (4.11) and give (VyR/)(Z,Y)Y =
3g((VyJ))Y,Z)J;Y and thus ¢((VyJ;)Y,Z)=0 whenever Ze E;(Y)". This
shows that Q = {{J;,J>,J3}) is parallel and thus, the indefinite quaternionic
structure is Kéhler. Now, if x, y € T,M with y e {{x,Jix,/Jox, Jix}>t, it follows
from that R(x,Jix,x,J;y) =0 for all i=1,2,3 and therefore, the quater-
nionic sectional curvature is constant (cf. [22, Lemma 5.4]).

(d): =3 and (g,<{{J1,J2,J3})) defines a paraquaternionic structure.

In the same way as in (c) we prove that the paraquaternionic struc-
ture Q = HJ1,J2, 03}y is Kidhler. Moreover, if x, y are vectors with ye
Hx, Jix, Jox, Jax})h, then, as in (c), we get R(x,Jix,x,J;y) =0, i=1,2,3,
and thus the paraquaternionic sectional curvature is constant (cf. [16, Theorem

4.1)). O

5. [Exceptional cases: multiplicities 7 =7 and 15.

In this section we will prove the remaining part of [Theorem I.I. That
is, those cases when the multiplicity of A is equal to 7 (dim M = 16) and 15
(dim M = 32). Let x, y be unit vectors with y e Ei(x)L and take {xi,...,x;} an
orthonormal basis of ker(R, — ecA1d). Further, let {yo =y, y1 = ¢yo,...,y: =
¢.vo} be an orthonormal basis of E,(y), where the ¢;’s are given by [3.1]. Next,
define a product on E;(y) by

Yo Yi=Yi-Yo=Yi, Vi'Vi=¢byo, Lj=1,...,7,

and let {ey,eq,...,e;} denote a standard basis for the product above (i.e., a basis
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of E;(y) such that e,-eg is a basic element, say e,3). Note that, in the case
7 =7, such a product is given by the following table

€y 4] () e3 €4 s €6 e7
() () el ér e3 €4 és (o e7
el (4] —& e3 —é —€s5 €4 —e7 (o1
€ ér —e3 —€y €1 —é€q €7 €4 —es
e3 ée3 é —€] —€y —e7 —&€g és €4
€4 €4 és € e7 —&€ —E&e] —E&e —&es
€5 €5 —é4 —e7 €6 ey —&€) —&e3 &en
€ € (i —é4 —es o) ey —E&€ —E&eq
e7 | ey —€6 es —e4 ées —&er &ey —&ep

It corresponds to the product of the octonians (resp., the anti-octonians) if & =
eyex = 1 (resp., e =gy e = —1) ([19]).

LemMa 5.1. Let (M,g) be a special Osserman manifold with . of multiplicity
t="7,15, and let x, y be unit vectors with y € Ei(x)l. Then, there exists an or-
thonormal basis {xi,...,x,} of ker(R, — &, A1d) such that

¢a¢ﬁy0:¢xﬁy07 OC,ﬁE{l,...,T}
where ¢y =1d and ¢_, = —¢,.

Proor. Let {xj,...,x;} be an orthonormal basis for ker(R,, —&y,A1d)
and consider the associated endomorphisms ¢; defined by [3.1). Moreover let
{»0, ¥1,...,y:} denote the induced basis for E;(yy) given by y; = ¢y, i =
l,...,t. If {eo=yo,e1,...,e;} is a standard basis for the product in E;(yy),
then expressing the ¢;’s in the basis {yo,..., y:}, one has

T
€y = Jo, eizg aiyj, i=1,...,1
Jj=0
Next, define
T
Xo = Xo, X’izg agx;, i=1,...,1
J=0

and show that {Xo, %y,...,X,} is the desired basis. Note that, if ¢,,...,¢. denote
the associated endomorphisms defined by such basis, then
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p
b, dpy0 = <2(/1;—u)> R(Xo, %,)R(X0, Xp)y0

3 T
_ > asapR(xo,x,
2(1_/1) hs:la rdpgs (xO/Y)¢Sy0

7
= Z aara/fs(yr y;) = €y " €p,

r,s=1

and, on the other hand,

¢¢ﬁy0 = 3(}v _ ,U) R(X(), xaﬁ)yo

3 2(
200 —p) Z Aap)r ¢1J/0 Z A(ap)iVi = €yp-

Now, the result follows from previous expressions, SINce e, - eg = €,p.

]

THEOREM 5.1. Let (M,g) be a special Osserman manifold with 1. of mul-

tiplicity Tt ="17,15. Then it is locally symmetric.

PrOOF. Let X be a locally defined unit vector field, and show that
(VyR)(T,X,X,W) =0 for all W, T. Let Y be a unit vector field in E;(X)"

and take a basis {Xi,...,X;} of ker(Ry, —éx,A1d) given by Lemma 5.1.

In

what follows we will show that (VyR)(T,X,X, W) =0 for all T and W chosen

in {Xo=X,X1,.... X, Yo=Y, Y,.... Y}, where Y;=¢, Yy, (i=1,...,7).

First of all, if 7 # W € E;(X), then
(VxR)/(T, X, X, W) =Vxlexg(T, W) — dexg(W,VxT) — lexg(T,Vx W)
— R(T,VyX,X, W) —R(T,X,VyX, W)
= Jex(Vxg)(T, W) =0
by [Lemma 2.2H(iii). Also, if 7= W € E,(X), one has
VxR)(W, X, X, W) = Jex(Vxg)(W, W) =2R(X, W, W,VxX)
= 2o g(X,VyX) = 0.
In an analogous way, if T # W e E;(Y) then
(VxR)(T, X, X, W) =Vyuexg(T, W) — pexg(W,VxT) — uexg(T,Vx W)
— R(T,VyX,X, W) - R(T,X,VyX, W)
—R(X,W,T,VyX)+R(T, X, W,VyX) =0
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by (ii) and, if 7= W e E;(Y), then

(VyR)(W, X, X, W) = uex(Vxg) (W, W) = 2R(X, W, W ,VyX)
= —2/18Wg(X, VXX) = 0.

To complete the proof, let consider the case T = X; and W = Y;. Then,
from [Lemma 2.2+(ii) and [Lemma 3.1,

(V3 R)(X, X, X, ) = (2~ ) {exa( ¥,V X)) — g( ¥y, Vi X))
On the other hand, once again from [Cemma 2.2-(ii)

(VxR)(Y, Y;, ¥}, X) = pey,g(Yy, Vi X) — Zey,g( Yy, Vx X)

3
- ER(Yja Yy, X, Vx Yj).
Now, by [Lemma 2.2-i), R(Y;, Y;j))X = (o R(Y;, Yy, X, Xi)ex, Xk and thus,
since R(Y, Yy, X, X)) = R(Y;, Yy, X, Xo) = S o(2/3) (= p)g( Yig, Yy), it follows
that R(Y}, Yy)X = (2/3)(4 — u)exey, X;. Then

(VeR)(Yy. Y), Y, X) = (7~ ey, {exg(X). Vi X)) — g( ¥y, Vo X))}

and therefore (VyR)(X:, X, X, Y;) =ey,(VxR)(Y;, Y}, Y;, X). Next, by the second
Bianchi identity,

(VXR)(YU? Y;, Yi?X) = _(VYJR)(Y]”XvX’ Y]) - (VER)(III,']"X7X7 Y])

and this expression vanishes (proceeding in an analogous way as for the previous
case T, W € E;(Y)), from where it follows that (VyR)(X;, X, X, Y;) =0 and thus,
(M,g) is locally symmetric. []

Now, we are ready to complete the announced

PrOOF OF THEOREM 1.1. First of all note that from only those
cases corresponding to multiplicity of A equal to 7, 15 need to be considered. As
a first observation, note that the action of the holonomy group of a special
Osserman manifold with 2 of multiplicity 7, 15 is irreducible. Indeed, take an
orthonormal basis of the tangent space 7,M induced by the decomposition
T,M =E)(x) ®E;,(y) and Lemma 5.1. Then, after a straightforward calcula-
tion, using and Lemmas and 4.2, one obtains the following expressions
of the curvature endomorphisms R(x, y).

For each i=1,...,7, the endomorphisms R(xy,x;) satisfy
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—&x,Ax; =0

2() —
R(x0,xi)xy =< ey, Axo o =1 and  R(xg,x;)y, = ( 3 #) Vi
0 o # 0,1
Also, R(x,yo) is given by
—&x, )0 =10
R(xg, y0)x, = 0
o= { (0 . 570
Eyo X0 a=20

R(x0, y0)ya = { —((2 = 1) /3)exytpyxs o #0.

Furthermore, for each i,j=1,...,7, i # j, R(x;,x;) satisfies
—& AX; o =1
I _ 2(h-p
R(xj,xj)x, = § exdx;  a=j and R(x;,x;)p, = — 3 Exalit)

0 o F#I,J.
Also, for each i=1,...,7, R(x;, o) is given by

—((A=w)/3)yi x=0
R(xi, yo)xa = § —&x,00 o=1
—((/1—/1)/3)8)(0)/,'“ o #0,1

and

Ey X a=20
R(x1,y0)yy = { (A= p)/3)ex,epx0 a=1i
_((/1 - ﬂ)/?’)gyoxicx oa#0,1.

Now, it follows from previous expressions that the action of the holonomy
group on each tangent space is irreducible and thus, if (M,g) is assumed to be
complete and simply connected, then it follows that the special Osserman pseudo-
Riemannian manifolds with eigenvalue /4 of multiplicity = 7,15 must correspond
to one of the symmetric spaces in Berger’s list [2, p. 157]. In order to complete
the proof of Theorem 1.1, we will consider separately the different possibilities
corresponding to t =7 and 7 = 15.

(a): The 16-dimensional case; 7= 7.

First of all we note that, after a long but straightforward calculation, it
can be shown that the curvature endomorphisms R(x;,x;), (i,j=0,...,7,i <J)
and R(x;, o), (i=1,...,7) are linearly independent. Thus, the dimension of the
isotropy group of a special Osserman manifold with eigenvalue A of multiplicity
7 must be >36. Moreover, any special Osserman manifold with eigenvalue A4

of multiplicity 7 must be of signature (16,0), (0,16), or (8,8) (cf. Theorem 3.2).
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Thus, the only candidates in Berger’s list are SL(9, R)/(SL(8,R) + R), SO(9,C)/
SO(8,C), Sp(,R)/(Sp(1, R) + Sp(4, R)), F4/SO(9), F2/SO(9), F?/SO'(9), F}/
SO0*(9), and

SUn)/(SU*(k+h) +SU ™ n—k-h+T), (k+h(mn—-k—h) =S8,
SO (n)/(SO*(k +h) + SO (n—k —h)), (k+h)(n—k—h) =16,
k+h>2n—k—h>2,

Spi(n)/(Sp*(k + 1)+ Sp™™ (n—k —h)+T), (k+h)(n—k—h)=4.

Now, note that SL(9,R)/(SL(8,R)+ R), and Sp(5,R)/(Sp(1,R)+ Sp(4,R)),
correspond to the paracomplex and paraquaternionic space forms, respectively.
Moreover, SO(9,C)/SO(8,C), corresponds to the complex sphere CS®, which
can be viewed as a hypersurface in the indefinite sphere. It easily follows from
that such complex spheres are not Osserman spaces. Now, it also follows
that SO'(n)/(SO*(k + h) 4+ SO*~*(n — k — I)) occurs only if n =8, but it must
be excluded, since in this case the dimension of the holonomy group is <36.
The symmetric spaces Sp(n)/(Sp*(k + h) + Sp"*(n — k — h) + T) can only occur
if n=25 and then they correspond to the indefinite quaternionic projective or hy-
perbolic spaces. Also, by an argument on the dimension of the holonomy group,
SU(n)/(SU*(k +h) +SU™ (n—k —h) + T) may only occur if n =9, but in this
case, they correspond to the indefinite complex projective or hyperbolic spaces.

The remaining spaces, F4/SO(9), F}/SO(9), F}/SO'(9) and F[/SO*9),
correspond to the Cayley planes over the octonians and the anti-octonians (see
also [23]).

(b): The 32-dimensional case; 7 = 15.

Proceeding as in the previous case, the curvature endomorphisms R(x;, X;),
(i,j=0,...,15/i <j) and R(x;, o), (i=1,...,15) are linearly independent and
thus, the dimension of the isotropy group of any special Osserman manifold with
eigenvalue 4 of multiplicity 15 must be >136. Moreover, since any such spe-
cial Osserman manifold must be of neutral signature (16,16) (cf. Mheorem 3.2),
an examination of Berger’s list shows that, the only candidates are SL(17,R)/
(SL(16,R) + R), SO(17,C)/SO(16,C), Sp(9,R)/(Sp(1,R) + Sp(8,R)) and

SUm)/(SUk+h) +SU -k —h)+T), (k+h)(n—k-h) =16,
SO'(n) /(SO (k +h) + SO (n—k —h)), (k+h)(n—k—h) =32,
k+h>2n—k—h>2,
Sp'(n)/(Sp*(k+ 1)+ Sp™ (n—k —h)+T), (k+h)(n—k—h)=S8.
Now, SL(17,R)/(SL(16,R)+R), and Sp(9,R)/(Sp(1,R) + Sp(8,R)), corre-
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spond to the paracomplex and paraquaternionic space forms, with eigenvalue A
of multiplicity one and three, respectively. Proceeding as in the previous case,
the other symmetric spaces listed above are not special Osserman, or they corre-
spond to the indefinite complex or quaternionic space forms. Therefore, it fol-
lows the nonexistence of special Osserman manifolds with eigenvalue 4 of multi-
plicity 15.

This finishes the proof of MTheorem 1.1. ]

ReEMARK 5.1. Note that (I) and (II) reduces to Axioms 1, 2 in if the
metric ¢ is assumed to be positive definite. Moreover, reduces to
[10, Theorem 1] for Riemannian metrics.

REMARK 5.2. Finally, note that lists the simplest pseudo-
Riemannian manifolds (besides the spaces of constant curvature) from the point
of view of their curvature.
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