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Some extensions of the Marcinkiewicz interpolation theorem

in terms of modular inequalities

By Maria J. CaArrO and Ludmila NIKoLOVA

(Received Oct. 22, 2001)

Abstract. Given a quasi-subaditive operator T : Lo(u) — Lo(v), we want to study
mapping properties of interpolation type for which the following modular inequality holds

| Pazr@paw < | s du

where P and Q are modular functions. These results generalize the classical Marcin-
kiewicz interpolation theorem.

§1. Introduction.

Let (#,u) and (A",v) be two o-finite measure spaces and Lo(u) and Lo(v) the
sets of measurable functions defined on .# and ./ respectively. Given two operators
S Lo(u) — Lo(v) and T : Lo(p) — Lo(v), we say that T is S-subaditive if

IT(f +9)(x¥)| < Sf(x) + Sg(x).

If §=|T| then T is said to be subaditive. If f" is the decreasing rearrangement
of f defined by £(¢) = inf{s > 0;if(s) < ¢}, where A7(s) = u{x;|f(x)| > s} is the dis-
tribution function of f, then Tf(s) = f,*(¢) is S-subaditive, where Sf(7) = f,"(¢/2).

A function Q:[0,0) — [0,00) is called a modular function if Q is an increasing
(non-decreasing) right-continuous function and Q(0+) = 0. Given a modular function
0, we set

Lo(s) = Lo = {f Lol Ifllo = | QU7 dutx) < oo},

and given two modular functions P and Q, we say that T satisfies a (P, Q) modular
inequality if the following inequality holds

(1) | Pazreapave < | otredu.

Such modular inequalities have been studied previously by many authors (cf. [KK],
[CH], [L]) and in a great number of contexts since many problems in Analysis deal with
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the question of determining the relation between the integrability property of a function
and of its image Tf.

In particular, the theory of interpolation (see [BS], [BL]) is an extremely useful tool
to deal with such kind of problem. Also the theory of Orlicz spaces (see [KR]) deals
with this type of modular inequalities since an operator 7, satisfying (1), satisfies that
T : L(Q) — L(P) is bounded, where in this case L(Q) and L(P) represent the associate
Orlicz spaces endowed with the Luxemburg norm. However, unlike the case we treat
here, the functions P and Q are typically Young’s or N-functions.

In [CH], the authors studied modular inequalities for the Hardy operator

170 = [ 10070 as

0
and also for the conjugate operator. In the case a > 1, they had to use some kind
of interpolation result (see Theorem 3.5, [CH]) for which the concept of admissible
function (see [Definition 1.2 below) was introduced.

The purpose of this paper is to further investigate on these type of interpolation
results by analyzing the minimum hypothesis needed on the operator 7, the optimality
of the obtained results and giving concrete examples.

The two following concepts are fundamental for our purpose:

DEerINITION 1.1. A subset D < Lo(u) is said to be upper-stable if
Vf € D, Yo > O’fX{|f‘>1} € D,
and it 1s lower-stable if

VfED,VO( > O7fX{\f\£c¢} e D.

Finally, we say that D is stable if it is upper-stable and lower-stable simultaneously.

Obviously the set D of decreasing (or increasing) functions in Lo(R") is upper-
stable. The sets D = {f;||f]|,, <1} (or in general the unit ball of any lattice space),
D = {yp; E is u-measurable}, D = {radial functions in Lo(R")}, or D a lattice are stable
sets. Finally, the set D= {g = fy ,; f is increasing and r > 0} is lower stable.

DerFiNiTION 1.2, A function 4 : [0, 00) — [0, 00) is said to be D-admissible for an
operator T, if A(0) =0, A(z/y) is measurable on [0, c0) x [0, 00) and, for every f € D,

Arp(y) < JWA(%XN) du(x).

If D= Ly(u), we simply say that A4 is admissible.

EXAMPLES.

(1) Obviously if 7 is any operator of weak type (p,p), then A(z) =+t is
admissible.

(2) In [BP], the authors study a generalization of the Hardy-Littlewood maximal
function as follows: let @ be a Young function and let us define
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Maf (x) = sup inf{z > 05| @l < rQ|},
xeQ 0

where O is a cube in RY. Then, they prove that @ is an admissible function for this

operator.
(3) Let T be a subaditive operator such that 7" : L?(u) — L% *(v), that is,

2% () < (J P du(x)>l/p.

Now, simple com-

TMMMQJ%(pM<M, (X)|/»)du(x) with  A(f) = 7.
= (Tf);(¢?/?). Consequently,

putations show that A% (¥ )? / = Arr(y), where Tf (1)
A(t) =t is an admissible function for this operator 7.

The paper is organized as follows: in Section 2, we develop our interpolation
theorems for bounded operators on L*. In Section 3, we deal with distribution con-
trolled operators, and Section 4 is devoted to study interpolation results when two
admissible functions are known.

The notation used is standard: if f/g is bounded above and below by positive
constants we write f ~ g and we say that f and g are equivalent functions. Constants,
denoted by C, are assumed to be positive and independent of the functions involved and
may be different at different places. y; is the characteristic function of the set E.

Finally, inequalities, such as (1), are interpreted in the sense that if the right side
is finite, so is the left side and the inequality holds and we assume that P and Q are
modular functions.

§2. Modular interpolation results for bounded operators on L*.
The main result of this section is the following.

THEOREM 2.1. Let T be an S-subaditive operator and let D < Lo(u) be an upper-
stable set. Assume that S : L*(u) — L*(v) is bounded with constant M and that A is D-
admissible for S. Then T satisfies a (P, Q) modular inequality on D, for every P and Q
such that, for some 0 < c¢ <1,

@) jMz/(l_C) A(i) dP(y) < (1)

0 cy
Proor. Let f e D and let us write f = f; + f,, where
Jv =X 111> 1=y

with 0 < ¢ <1 as in (2) and y > 0 fixed. Then,

Ay (¥) < Agpi(ey) + Ay, (1 = €)p).

Now, since [|Sfll.,, < M| £, < (1 —c¢)y, we obtain that g, ((1 —c)y) =0 and
hence, since D is upper-stable, f; € D and we get by (1) that
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o0

J,¢/~P(|Tf(X)I>dv(x) -,

<[] ('fl(x)') du(x)dP(y)

Jo cy
0
| 4 (M) du(x)dP(y)
0 J{x;[f(x)[>(1=c)y/ M} ¢y

0 cy

2 () dP(y) < Jf - (cy) dP(y)

IA

du(x).

Using (2), we get that the above expression can be majorized by [ O(|f(x)]) du(x)
and the result follows. ]

REMARK 2.2.

(a) If we choose P,(y) = x we get that dP,(y) = do, and hence

o, 00)>

[ (;) d6,(y) = A(1/2)

0

Consequently, if 7 satisfies a (P, Q) modular inequality on D, for every P and Q
satisfying (2), we obtain that A4 is a D-admissible for 7. That is, the previous result
characterizes the admissible functions in terms of modular inequalities for subaditive
operators (S =T).

(b) From [Theorem 2.1, one can easily see that the result remains true for
operators 7 such that

IT(f +9)(x)] < Si1f(x)+ S29(x),

where S»: L*(u) — L*(v) is bounded with constant M and A4 is D-admissible for
S). This can be useful in the following situation: let us consider Tf(¢) = (Sf)"(¢) for
some appropriate subaditive operator S. Then T(f + g) < (Sf)" () + (Sg)"((1 — 2)¢)
for every 0 <o < 1. Sometimes, the conclusion of can be improved by
choosing in a proper way this constant .

(c) The result of Theorem 2.1 is optimal in the sense that, if

0..4(1) = sztA (%) dP (),

there is no R so that R(z) < Q4 p(f) with Lg # Ly, , and such that every T satisfying
the hypothesis of the theorem satisfies a (P, R) modular inequality. To see this, it is
enough to consider the average Tf(x) = (1/x) [y f, A(f) =t and P(y) = y”.

(d) If T:L*(u) — L*(v) is bounded with norm M and T : L?(u) — L% (v)
is bounded with norm 1, then, using Example (3), Theorem 2.1 and Remark 2.2-(b),
we can conclude that, for every r >p, T :L"(u) — L™P"(v) with norm less than or

equal to
rr+1 M 1r
pp+1 q(y_p)r—er] ’
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COROLLARY 2.3. Let T be an S-subaditive operator so that T : L™ (y) — L*(v) is
bounded with norm M and let us assume that, for some o >0, A(t) = t4(1 + (log" 1)*) is
D-admissible for T, with D an upper-stable set. Then, T is bounded on DN L? for every
q <p < oo with constant

MP—1 1 o ,
p2? + P J e ’s*ds|.
P—q9 (p—q)" Jp—glog(1/m)

In many cases, it is also important to consider the weak-type spaces

»>0

Lp o (v) = {f; sup P(y)As(y) < OO}-

We shall say that 7 : DN Lo(u) — Lp,»(v) is bounded if the following inequality
holds, for every f € D,

sup ()7 (1) < | otreonduco.

The weak type version of is the following:

THEOREM 2.4. If T satisfies the hypothesis of Theorem 2.1, then T : DN\ Lo(u) —
Lp o (v) is bounded for every P and Q such that, for some 0 < c <1,

6) L ()P < o0

ProOF. Let f e D and let us write f = f; + f» as in the proof of Theorem 2.1.
Then,

sup P (y)P(y) < sup s (ey)P(y) < sup Jﬂ 4 (%yx)’) dCOP)
|f1(x)]
= J// Slylp A( cy ) du(x)P(y)
= /()] .
_J-ffysfg)lfﬁg/(]_c)/l( o )P(y) du(x),

and using (3), one immediately obtains that the above expression can be majorized by

J.0 QU (X)) du(x). O

Similarly to [Corollary 2.3, we obtain the following:

COROLLARY 2.5. Let T be an S-subaditive operator such that T is bounded on
L* with norm M and let us assume that, for some o >0, A(t)=1t4(1+ (log" 1)%) is
a D-admissible function with D upper-stable. Then, for every q < p < oo, T is bounded
from L? N D into L?*, with constant

7o () |
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if M>1 or e(r=9 < M <1, and
ZPMp_q 1+ logi ’
M b

Let us now consider an example in the setting of the so-called Yano extrapolation
theory (see [Y]). Let 7 be such that, for every 1 <p <2,

A
i <——p
() < 5

if M < min(1,e*/(r=4)),

and let us assume that ||f]|, < 1. Then,

L

I () < inf <o(1/)/ -

l<p<2p—1 y?

where ¢(7) = t(1 +log™ 7). Therefore, for every f such that ||f]|,, <1, we have that

4) hy(3) < p(1/) jA<|f<x>|> dp(x),

with A(¢) =t. This estimate does not imply that the function 4 is D-admissible for T,
with D = {||f||., < 1}, but, with the obvious changes the above developed theory can be
extended to the case of admissible triples:

DerINITION 2.6. Let A, B and W be three positive functions so that 4 =1 or
A(0) = 0 and the same for B. We say that the triple (4, B, W) is D-admissible for T
if, for every f e D,

() < W) j/(’f Sl

a(lft )B<|f<x>\>dﬂ<x>.

In this context of triples, Theorem 2.1 (for example) reads as follows:

THEOREM 2.7. Let T be an S-subaditive operator and let D < Lo(u) be an
upper-stable set. Assume that S : L*(u) — L*(v) is bounded with constant M and that
(A, B, W) is D-admissible for S. Then T satisfies a (P, Q) modular inequality on D, for
every P and Q such that, for some 0 < c <1,

Mt/(1—c)

B | wena(L)aro) < o0,

0

In particular, if T satisfies (4) for every function in D where D = {||f]|_, <1},
then T satisfies a (P, Q) modular inequality on D for every P and Q such that

Mt/(1—c) 1 1
tJ — (1 + log™ —) dP(y) < O(1).
0 cy cy

From this, it follows that we cannot take P(y) =y, but if we take P(y) = (y —a), :=
max(y —,0), with « < 1/(M + 1), we get the following corollary.
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COROLLARY 2.8. Let T be a subaditive bounded operator on L* with constant M
and such that, for every 1 <p <2,

y 1 ||f||£p(ﬂ)

Then there exists a positive constant Cy; depending only on M such that for every
o <min(l/(M +1),e) and every f such that | f]_, <1,

1 1\ 1
T (x)| — o), dv(x SCM—(log—>J f(x <l—|—log )d,ux.
| amreor=a, avs) < e (1065) | 1ol 7o) o)
REMARK 2.9. Although all the results presented in this paper can be stated in
the context of triples, we have preferred, for simplicity in the presentation, to use only
the concept of admissible function, since the general extension follows with the obvious
changes.

§3. Modular interpolation results for distribution controlled operators.

A second type of interpolation result that was also considered (for a particu-
lar cases) in deals with S-subaditive operators such that 7' : Lo(u) — Lo(v) is
bounded, in the sense that v(supp Sf) < Mu(supp f). In this section, we shall consider
a closely related class of operators; those that we call distribution controlled operators
on D and satisfy that there exists a constant M > 0 so that, for every f €D

Z5(0) < MAL(0).

Examples of distribution controlled operators are the following:

(1) Pointwise multipliers: 71 (x) = m(x)f(x) with v = p.

(2) If T' < T, and T, is distribution controlled, then 7} is also a distribution
controlled operator. In particular, using (1), we obtained that if D = {f increasing}
and k(x,7) is a positive function such that [J k(x,7)dr < oo a.e. x(u), then

Tf(x) = j:fa)k(x, 0 di,

is distribution controlled on D with v = .
(3) If D is the set of decreasing functions, then any type of the so called gen-
eralized Hardy conjugate operator

0

Tf (x) = J k(x,t)f(t)dt
is distribution controlled on D, with v = u.
(4) Let ¢ be a change of variable on R. Then, the operators T :L'(R) —
L'(dp™") defined by Tf(x) = f(p(x)) and Tf(t) = f*(p(t)) are distribution controlled.
(5) Tf(1) = ¢(/; (1)) where ¢ is subaditive is also distribution controlled with v
equals the Lebesgue measure on R*.

THEOREM 3.1. Let T be an S-subaditive operator.



392 M. J. CArRrO and L. NIKOLOVA

(i) If D is upper-stable, S is a distribution controlled operator on D and A is
admissible for S, or
(i) D is lower-stable, S is a distribution controlled operator, and A is D-admissible
for S,
then T satisfies a (P, Q) modular inequality on D for every P and Q such that

0

MP(1) +J A(t/z)dP(z) < Q(1).

t

Proor. Let feD and let us write f'=fi +/» where fi(x)= f(X)x(| /)

>y}
Then,
Ay () < 235, (0) + 25, (3)
< MH(0) + J/{ A ('fzix)') du(x)
. O
SM%f(yHJWyA( y )dﬂ( -
Therefore,
| Pazrnao = | 2 00dr0)
o e
< |, oy« | N[ () apo) | du
< u%<MP(|f(X)I)+ J a2 aro )du(X)
< | ourendut a
M

ExaMPLE. Let

0

1) = | - 207

X

where —1 < o < 0 and let us consider D the set of decreasing functions on R™. Then,
one can immediately see that 7T is a distribution controlled on D and that A(z) = ¢/(1 + «)
is an admissible function for 7. Therefore, T satisfies a (P, Q) modular inequality on D
for every P and Q such that

P(t) +

=T < o0

l+a), =z

Similar result holds for the operator
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where W (u) = [ w(x) dx.
We also have the weak type version of the previous theorem:

THEOREM 3.2. Let T satisfy the hypothesis of the previous theorem. Then T :
LoND(u) — Lp o (v) is bounded for every P and Q such that

MP(1) +sup A(z/y)P(y) < O(1).

y=t

§4. Modular interpolation results.
A third type of interpolation result is the following:

THEOREM 4.1. Let T be an S-subaditive operator and let A and B be two admissible
functions for S. Then, T satisfies a (P, Q) modular inequality for every P and Q such
that

5) f min(4, B)(21/) dP(y) < O(1).

Proor. The proof follows the same ideas than in the classical Marcinkiewicz

theorem. By hypothesis,
[ A(80) g
M Y

[ () e

Let E={t>0;4(t) <B(t)} and let wus writt f=fi+f, where fi(x)=
S tgsiaisoryery Then,

1 (V) < Agp (9/2) + 257,(1/2)

< L A (@) dpu(x) + LZ B(2|fzy(x)|) du(x)

_ J  min(4, B) (ﬂfT(x)U du(x),

and the rest of the proof follows easily. ]

o2
<
—
N—
IA

and

‘.)S‘f(y)

IA

THEOREM 4.2.  Under the hypothesis of the previous theorem, T : Lo(u) — Lp o (V)
is bounded for every P and Q such that

Slilg[min(A,B)(%/y)P(y)] < Q(1).
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REMARK 4.3.
(@) If Py(¥) = X(s,), then the left hand side of (5) is equal to min(4, B)(2¢/«) and
therefore the converse of is essentially true whenever S = T, in the sense

that if 7 satisfies a (P, Q) modular inequality for every P and Q satisfying (5), then both
A(2t) and B(2t) are admissible functions for T.

(b) If A(¢) = Cot?’® and B(t) = C#' as it happens in the classical Marcinkiewicz
case, we get that 7 is bounded on L? with constant

1
2( p X P ) /pcgm/(p(mpo))Clppo/(p(mpo))_
pP—DPo P—Di
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