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Abstract. Given a quasi-subaditive operator T : L0ðmÞ ! L0ðnÞ, we want to study

mapping properties of interpolation type for which the following modular inequality holds

ð

N

PðjTf ðxÞjÞ dnðxÞa

ð

M

Qðj f ðxÞjÞ dmðxÞ

where P and Q are modular functions. These results generalize the classical Marcin-

kiewicz interpolation theorem.

§1. Introduction.

Let ðM; mÞ and ðN; nÞ be two s-finite measure spaces and L0ðmÞ and L0ðnÞ the

sets of measurable functions defined on M and N respectively. Given two operators

S : L0ðmÞ ! L0ðnÞ and T : L0ðmÞ ! L0ðnÞ, we say that T is S-subaditive if

jTð f þ gÞðxÞjaSf ðxÞ þ SgðxÞ:

If S ¼ jT j then T is said to be subaditive. If f �
m is the decreasing rearrangement

of f defined by f �
m ðtÞ ¼ inffs > 0; lm

f ðsÞa tg, where l
m
f ðsÞ ¼ mfx; j f ðxÞj > sg is the dis-

tribution function of f , then Tf ðtÞ ¼ f �
m ðtÞ is S-subaditive, where Sf ðtÞ ¼ f �

m ðt=2Þ.

A function Q : ½0;yÞ ! ½0;yÞ is called a modular function if Q is an increasing

(non-decreasing) right-continuous function and Qð0þÞ ¼ 0. Given a modular function

Q, we set

LQðmÞ ¼ LQ ¼ f A L0ðmÞ; k f kQ ¼

ð

M

Qðj f ðxÞjÞ dmðxÞ < y

� �

;

and given two modular functions P and Q, we say that T satisfies a ðP;QÞ modular

inequality if the following inequality holds

ð

N

PðjTf ðxÞjÞ dnðxÞa

ð

M

Qðj f ðxÞjÞ dmðxÞ:ð1Þ

Such modular inequalities have been studied previously by many authors (cf. [KK],

[CH], [L]) and in a great number of contexts since many problems in Analysis deal with
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the question of determining the relation between the integrability property of a function

and of its image Tf .

In particular, the theory of interpolation (see [BS], [BL]) is an extremely useful tool

to deal with such kind of problem. Also the theory of Orlicz spaces (see [KR]) deals

with this type of modular inequalities since an operator T, satisfying (1), satisfies that

T : LðQÞ ! LðPÞ is bounded, where in this case LðQÞ and LðPÞ represent the associate

Orlicz spaces endowed with the Luxemburg norm. However, unlike the case we treat

here, the functions P and Q are typically Young’s or N-functions.

In [CH], the authors studied modular inequalities for the Hardy operator

Tf ðtÞ ¼
1

t1=a

ð t

0

f ðsÞsð1=aÞ�1 ds;

and also for the conjugate operator. In the case a > 1, they had to use some kind

of interpolation result (see Theorem 3.5, [CH]) for which the concept of admissible

function (see Definition 1.2 below) was introduced.

The purpose of this paper is to further investigate on these type of interpolation

results by analyzing the minimum hypothesis needed on the operator T, the optimality

of the obtained results and giving concrete examples.

The two following concepts are fundamental for our purpose:

Definition 1.1. A subset DHL0ðmÞ is said to be upper-stable if

Ef A D; Ea > 0; f wfj f j>ag A D;

and it is lower-stable if

Ef A D; Ea > 0; f wfj f jaag A D:

Finally, we say that D is stable if it is upper-stable and lower-stable simultaneously.

Obviously the set D of decreasing (or increasing) functions in L0ðR
þÞ is upper-

stable. The sets D ¼ f f ; k f k
y
a 1g (or in general the unit ball of any lattice space),

D ¼ fwE ; E is m-measurableg, D ¼ fradial functions in L0ðR
NÞg, or D a lattice are stable

sets. Finally, the set D ¼ fg ¼ f wð0; rÞ; f is increasing and r > 0g is lower stable.

Definition 1.2. A function A : ½0;yÞ ! ½0;yÞ is said to be D-admissible for an

operator T, if Að0Þ ¼ 0, Aðt=yÞ is measurable on ½0;yÞ � ½0;yÞ and, for every f A D,

lnTf ðyÞa

ð

M

A
j f ðxÞj

y

� �

dmðxÞ:

If D ¼ L0ðmÞ, we simply say that A is admissible.

Examples.

(1) Obviously if T is any operator of weak type ðp; pÞ, then AðtÞ ¼ tp is

admissible.

(2) In [BP], the authors study a generalization of the Hardy-Littlewood maximal

function as follows: let F be a Young function and let us define
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MFf ðxÞ ¼ sup
x AQ

inf l > 0;

ð

Q

Fðj f ðyÞj=lÞ dya jQj

� �

;

where Q is a cube in R
N . Then, they prove that F is an admissible function for this

operator.

(3) Let ~TT be a subaditive operator such that ~TT : L pðmÞ ! Lq;yðnÞ, that is,

ln~TTf
ðyÞ1=qya

ð

M

j f ðxÞjp dmðxÞ

� �1=p

:

Therefore, ln~TTf
ðyÞp=qa

Ð

M
Aðj f ðxÞj=yÞ dmðxÞ with AðtÞ ¼ tp. Now, simple com-

putations show that ln~TTf
ðyÞp=q ¼ lTf ðyÞ, where Tf ðtÞ ¼ ð ~TTf Þ�nðt

q=pÞ. Consequently,

AðtÞ ¼ tp is an admissible function for this operator T.

The paper is organized as follows: in Section 2, we develop our interpolation

theorems for bounded operators on Ly. In Section 3, we deal with distribution con-

trolled operators, and Section 4 is devoted to study interpolation results when two

admissible functions are known.

The notation used is standard: if f =g is bounded above and below by positive

constants we write f Ag and we say that f and g are equivalent functions. Constants,

denoted by C, are assumed to be positive and independent of the functions involved and

may be di¤erent at di¤erent places. wE is the characteristic function of the set E.

Finally, inequalities, such as (1), are interpreted in the sense that if the right side

is finite, so is the left side and the inequality holds and we assume that P and Q are

modular functions.

§2. Modular interpolation results for bounded operators on Ly.

The main result of this section is the following.

Theorem 2.1. Let T be an S-subaditive operator and let DHL0ðmÞ be an upper-

stable set. Assume that S : LyðmÞ ! LyðnÞ is bounded with constant M and that A is D-

admissible for S. Then T satisfies a ðP;QÞ modular inequality on D, for every P and Q

such that, for some 0 < ca 1,

ðMt=ð1�cÞ

0

A
t

cy

� �

dPðyÞaQðtÞ:ð2Þ

Proof. Let f A D and let us write f ¼ f1 þ f2, where

f1 ¼ f ðxÞwfx; j f ðxÞj>ð1�cÞy=Mg;

with 0 < ca 1 as in (2) and y > 0 fixed. Then,

lnTf ðyÞa lnS f1ðcyÞ þ lnS f2ðð1� cÞyÞ:

Now, since kSf2kyaMk f2kya ð1� cÞy, we obtain that lnS f2ðð1� cÞyÞ ¼ 0 and

hence, since D is upper-stable, f1 A D and we get by (1) that
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ð

N

PðjTf ðxÞjÞ dnðxÞ ¼

ð

y

0

lnTf ðyÞ dPðyÞa

ð

y

0

lnS f1ðcyÞ dPðyÞ

a

ð

y

0

ð

M

A
j f1ðxÞj

cy

� �

dmðxÞdPðyÞ

a

ð

y

0

ð

fx; j f ðxÞj>ð1�cÞy=Mg

A
j f ðxÞj

cy

� �

dmðxÞdPðyÞ

¼

ð

M

ðj f ðxÞjM=ð1�cÞ

0

A
j f ðxÞj

cy

� �

dPðyÞ

" #

dmðxÞ:

Using (2), we get that the above expression can be majorized by
Ð

Qðj f ðxÞjÞ dmðxÞ

and the result follows. r

Remark 2.2.

(a) If we choose PaðyÞ ¼ wða;yÞ, we get that dPaðyÞ ¼ dda and hence

ð

y

0

A
t

y

� �

ddaðyÞ ¼ Aðt=aÞ:

Consequently, if T satisfies a ðP;QÞ modular inequality on D, for every P and Q

satisfying (2), we obtain that A is a D-admissible for T. That is, the previous result

characterizes the admissible functions in terms of modular inequalities for subaditive

operators ðS ¼ TÞ.

(b) From Theorem 2.1, one can easily see that the result remains true for

operators T such that

jTð f þ gÞðxÞjaS1 f ðxÞ þ S2gðxÞ;

where S2 : L
yðmÞ ! LyðnÞ is bounded with constant M and A is D-admissible for

S1. This can be useful in the following situation: let us consider Tf ðtÞ ¼ ðSf Þ�ðtÞ for

some appropriate subaditive operator S. Then Tð f þ gÞa ðSf Þ�ðatÞ þ ðSgÞ�ðð1� aÞtÞ

for every 0a aa 1. Sometimes, the conclusion of Theorem 2.1 can be improved by

choosing in a proper way this constant a.

(c) The result of Theorem 2.1 is optimal in the sense that, if

QA;PðtÞ :¼

ð2Mt

0

A
2t

y

� �

dPðyÞ;

there is no R so that RðtÞaQA;PðtÞ with LR 0LQA;P
and such that every T satisfying

the hypothesis of the theorem satisfies a ðP;RÞ modular inequality. To see this, it is

enough to consider the average Tf ðxÞ ¼ ð1=xÞ
Ð x

0 f , AðtÞ ¼ t and PðyÞ ¼ yp.

(d) If T : LyðmÞ ! LyðnÞ is bounded with norm M and T : L pðmÞ ! Lq;yðnÞ

is bounded with norm 1, then, using Example (3), Theorem 2.1 and Remark 2.2-(b),

we can conclude that, for every r > p, T : LrðmÞ ! L rq=p; rðnÞ with norm less than or

equal to

rrþ1

ppþ1
q

M r�p

ðr� pÞr�pþ1

 !1=r

:
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Corollary 2.3. Let T be an S-subaditive operator so that T : LyðmÞ ! LyðnÞ is

bounded with norm M and let us assume that, for some ab 0, AðtÞ ¼ tqð1þ ðlogþ tÞaÞ is

D-admissible for T, with D an upper-stable set. Then, T is bounded on DVL p for every

q < p < y with constant

p2p M p�q

p� q
þ

1

ð p� qÞaþ1

ðy

ð p�qÞ logþð1=MÞ

e�ssa ds

" #

:

In many cases, it is also important to consider the weak-type spaces

LP;yðnÞ ¼ f ; sup
y>0

PðyÞln
f ðyÞ < y

( )

:

We shall say that T : DVLQðmÞ ! LP;yðnÞ is bounded if the following inequality

holds, for every f A D,

sup
y>0

PðyÞlnTf ðyÞa

ð

M

Qðj f ðxÞjÞ dmðxÞ:

The weak type version of Theorem 2.1 is the following:

Theorem 2.4. If T satisfies the hypothesis of Theorem 2.1, then T : DVLQðmÞ !

LP;yðnÞ is bounded for every P and Q such that, for some 0 < ca 1,

sup
yaMt=ð1�cÞ

A
t

cy

� �

PðyÞ

� �

aQðtÞ:ð3Þ

Proof. Let f A D and let us write f ¼ f1 þ f2 as in the proof of Theorem 2.1.

Then,

sup
y

lnTf ðyÞPðyÞa sup
y

lnS f1ðcyÞPðyÞa sup
y

ð

M

A
j f1ðxÞj

cy

� �

dmðxÞPðyÞ

a

ð

M

sup
y

A
j f1ðxÞj

cy

� �

dmðxÞPðyÞ

¼

ð

M

sup
yaj f ðxÞjM=ð1�cÞ

A
j f ðxÞj

cy

� �

PðyÞ dmðxÞ;

and using (3), one immediately obtains that the above expression can be majorized by
Ð

M
Qðj f ðxÞjÞ dmðxÞ. r

Similarly to Corollary 2.3, we obtain the following:

Corollary 2.5. Let T be an S-subaditive operator such that T is bounded on

Ly with norm M and let us assume that, for some ab 0, AðtÞ ¼ tqð1þ ðlogþ tÞaÞ is

a D-admissible function with D upper-stable. Then, for every q < p < y, T is bounded

from L p VD into L p;y, with constant

2p M p�q þ
a

eðp� qÞ

� �a� �

;
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if Mb 1 or e�a=ð p�qÞ < Ma 1, and

2pM p�q 1þ log
1

M

� �a� �

;

if M < minð1; e�a=ð p�qÞÞ.

Let us now consider an example in the setting of the so-called Yano extrapolation

theory (see [Y]). Let T be such that, for every 1 < pa 2,

lTf ðyÞa
1

p� 1

k f kp
p

yp
;

and let us assume that k f k
y
a 1. Then,

lTf ðyÞa inf
1<pa2

1

p� 1

k f k1
yp
a jð1=yÞk f k1;

where jðtÞ ¼ tð1þ logþ tÞ. Therefore, for every f such that k f k
y
a 1, we have that

lTf ðyÞa jð1=yÞ

ð

Aðj f ðxÞjÞ dmðxÞ;ð4Þ

with AðtÞ ¼ t. This estimate does not imply that the function A is D-admissible for T,

with D ¼ fk f k
y
a 1g, but, with the obvious changes the above developed theory can be

extended to the case of admissible triples:

Definition 2.6. Let A, B and W be three positive functions so that A1 1 or

Að0Þ ¼ 0 and the same for B. We say that the triple ðA;B;WÞ is D-admissible for T

if, for every f A D,

lnTf ðyÞaWðyÞ

ð

M

A
j f ðxÞj

y

� �

Bðj f ðxÞjÞ dmðxÞ:

In this context of triples, Theorem 2.1 (for example) reads as follows:

Theorem 2.7. Let T be an S-subaditive operator and let DHL0ðmÞ be an

upper-stable set. Assume that S : LyðmÞ ! LyðnÞ is bounded with constant M and that

ðA;B;WÞ is D-admissible for S. Then T satisfies a ðP;QÞ modular inequality on D, for

every P and Q such that, for some 0 < ca 1,

BðtÞ

ðMt=ð1�cÞ

0

WðcyÞA
t

cy

� �

dPðyÞaQðtÞ:

In particular, if T satisfies (4) for every function in D where D ¼ fk f k
y
a 1g,

then T satisfies a ðP;QÞ modular inequality on D for every P and Q such that

t

ðMt=ð1�cÞ

0

1

cy
1þ logþ

1

cy

� �

dPðyÞaQðtÞ:

From this, it follows that we cannot take PðyÞ ¼ y, but if we take PðyÞ ¼ ðy� aÞþ :¼

maxðy� a; 0Þ, with aa 1=ðM þ 1Þ, we get the following corollary.
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Corollary 2.8. Let T be a subaditive bounded operator on Ly with constant M

and such that, for every 1 < pa 2,

lnTf ðyÞa
1

p� 1

k f kp

L pðmÞ

yp
:

Then there exists a positive constant CM depending only on M such that for every

aaminð1=ðM þ 1Þ; eÞ and every f such that k f k
y
a 1,

ð

N

ðjTf ðxÞj � aÞþ dnðxÞaCM

1

a
log

1

a

� �2ð

M

j f ðxÞj 1þ log
1

j f ðxÞj

� �

dmðxÞ:

Remark 2.9. Although all the results presented in this paper can be stated in

the context of triples, we have preferred, for simplicity in the presentation, to use only

the concept of admissible function, since the general extension follows with the obvious

changes.

§3. Modular interpolation results for distribution controlled operators.

A second type of interpolation result that was also considered (for a particu-

lar cases) in [CH] deals with S-subaditive operators such that T : L0ðmÞ ! L0ðnÞ is

bounded, in the sense that nðsuppSf ÞaMmðsupp f Þ. In this section, we shall consider

a closely related class of operators; those that we call distribution controlled operators

on D and satisfy that there exists a constant M > 0 so that, for every f A D

lnS f ð0ÞaMl
m
f ð0Þ:

Examples of distribution controlled operators are the following:

(1) Pointwise multipliers: Tf ðxÞ ¼ mðxÞ f ðxÞ with n ¼ m.

(2) If T1aT2 and T2 is distribution controlled, then T1 is also a distribution

controlled operator. In particular, using (1), we obtained that if D ¼ f f increasingg

and kðx; tÞ is a positive function such that
Ð x

0 kðx; tÞ dt < y a.e. xðmÞ, then

Tf ðxÞ ¼

ð x

0

f ðtÞkðx; tÞ dt;

is distribution controlled on D with n ¼ m.

(3) If D is the set of decreasing functions, then any type of the so called gen-

eralized Hardy conjugate operator

Tf ðxÞ ¼

ð

y

x

kðx; tÞ f ðtÞ dt

is distribution controlled on D, with n ¼ m.

(4) Let j be a change of variable on R. Then, the operators T : L1ðRÞ !

L1ðdj�1Þ defined by Tf ðxÞ ¼ f ðjðxÞÞ and Tf ðtÞ ¼ f �ðjðtÞÞ are distribution controlled.

(5) Tf ðtÞ ¼ fð f �
m ðtÞÞ where f is subaditive is also distribution controlled with n

equals the Lebesgue measure on R
þ.

Theorem 3.1. Let T be an S-subaditive operator.
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(i) If D is upper-stable, S is a distribution controlled operator on D and A is

admissible for S, or

(ii) D is lower-stable, S is a distribution controlled operator, and A is D-admissible

for S,

then T satisfies a ðP;QÞ modular inequality on D for every P and Q such that

MPðtÞ þ

ð

y

t

Aðt=zÞ dPðzÞaQðtÞ:

Proof. Let f A D and let us write f ¼ f1 þ f2 where f1ðxÞ ¼ f ðxÞwfx; j f ðxÞj>yg.

Then,

ln
Tf ðyÞa ln

S f1
ð0Þ þ lnS f2ðyÞ

aMl
m
f1
ð0Þ þ

ð

M

A
j f2ðxÞj

y

� �

dmðxÞ

aMl
m
f ðyÞ þ

ð

j f jay

A
j f ðxÞj

y

� �

dmðxÞ:

Therefore,

ð

N

PðjTf ðxÞjÞ dnðxÞ ¼

ð

y

0

ln
Tf ðyÞ dPðyÞ

a

ð

y

0

Ml
m
f ðyÞ dPðyÞ þ

ð

M

ð

y

j f ðxÞj

A
j f ðxÞj

y

� �

dPðyÞ

" #

dmðxÞ

a

ð

M

MPðj f ðxÞjÞ þ

ð

y

j f ðxÞj

A
j f ðxÞj

y

� �

dPðyÞ

" # !

dmðxÞ

a

ð

M

Qðj f ðxÞjÞ dmðxÞ: r

Example. Let

Tf ðxÞ ¼

ð

y

x

f ðuÞu�a�1ðu� xÞa du;

where �1 < a < 0 and let us consider D the set of decreasing functions on R
þ. Then,

one can immediately see that T is a distribution controlled on D and that AðtÞ ¼ t=ð1þ aÞ

is an admissible function for T. Therefore, T satisfies a ðP;QÞ modular inequality on D

for every P and Q such that

PðtÞ þ
t

1þ a

ð

y

t

dPðzÞ

z
aQðtÞ:

Similar result holds for the operator
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Tf ðxÞ ¼ wðxÞ

ðy

x

f ðuÞ
du

WðuÞ
;

where WðuÞ ¼
Ð u

0
wðxÞ dx.

We also have the weak type version of the previous theorem:

Theorem 3.2. Let T satisfy the hypothesis of the previous theorem. Then T :

LQ VDðmÞ ! LP;yðnÞ is bounded for every P and Q such that

MPðtÞ þ sup
ybt

Aðt=yÞPðyÞaQðtÞ:

§4. Modular interpolation results.

A third type of interpolation result is the following:

Theorem 4.1. Let T be an S-subaditive operator and let A and B be two admissible

functions for S. Then, T satisfies a ðP;QÞ modular inequality for every P and Q such

that

ðy

0

minðA;BÞð2t=yÞ dPðyÞaQðtÞ:ð5Þ

Proof. The proof follows the same ideas than in the classical Marcinkiewicz

theorem. By hypothesis,

lnS f ðyÞa

ð

M

A
j f ðxÞj

y

� �

dmðxÞ

and

lnS f ðyÞa

ð

M

B
j f ðxÞj

y

� �

dmðxÞ:

Let E ¼ ft > 0;AðtÞaBðtÞg and let us write f ¼ f1 þ f2 where f1ðxÞ ¼

f ðxÞwfx;2j f ðxÞj=y AEg. Then,

lnTf ðyÞa lnS f1ðy=2Þ þ lnS f2ðy=2Þ

a

ð

M

A
2j f1ðxÞj

y

� �

dmðxÞ þ

ð

M

B
2j f2ðxÞj

y

� �

dmðxÞ

¼

ð

M

minðA;BÞ
2j f ðxÞj

y

� �

dmðxÞ;

and the rest of the proof follows easily. r

Theorem 4.2. Under the hypothesis of the previous theorem, T : LQðmÞ ! LP;yðnÞ

is bounded for every P and Q such that

sup
y>0

minðA;BÞð2t=yÞPðyÞ½ �aQðtÞ:
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Remark 4.3.

(a) If PaðyÞ ¼ wða;yÞ, then the left hand side of (5) is equal to minðA;BÞð2t=aÞ and

therefore the converse of Theorem 4.1 is essentially true whenever S ¼ T , in the sense

that if T satisfies a ðP;QÞ modular inequality for every P and Q satisfying (5), then both

Að2tÞ and Bð2tÞ are admissible functions for T.

(b) If AðtÞ ¼ C0t
p0 and BðtÞ ¼ C1t

p1 as it happens in the classical Marcinkiewicz

case, we get that T is bounded on L p with constant

2
p

p� p0
þ

p

p� p1

� �1=p

C
p�p1=ð pð p1�p0ÞÞ
0 C

p�p0=ð pð p1�p0ÞÞ
1 :
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