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Abstract. We denote by HP(R) and (HB(R), resp.) the class of positive (bounded,
resp.) harmonic functions on a Riemann surface R. Consider an open Riemann surface
W possessing a Green’s function and a p-sheeted (1 < p < c0) unlimited covering surface
W of W with projection map ¢. We give a necessary and sufficient condition, in terms of

Martin boundary, for HX(W)ogp=HX(W) (X = P,B). We also give some examples
illustrating the above result when W is the unit disc.

1. Introduction.

Let W be an open Riemann surface possessing a Green’s function. Consider a p-
sheeted unlimited covering surface W of W with projection map ¢. It is easily seen that
W also possesses a Green’s function (cf. e.g. [AS]). We denote by HP(R) (HB(R),
resp.) the class of positive (bounded, resp.) harmonic functions on an open Riemann
surface R. It is obvious that the inclusion relation

HX(W)og:={hop:he HX(W)} c HX(W)
holds for X = P, B. The main purpose of this paper is to give a necessary and sufficient
condition, in terms of Martin boundary, in order that the relation HX(W)o ¢ =
HX (W) holds for X = P, B.

For an open Riemann surface R, we denote by R*, 4% and AIR the Martin com-
pactification, the Martin boundary and the minimal Martin boundary of R, respec-
tively. It is known that the projection map ¢ of W to W has the unique continuous
extension to W*, which is also denoted by ¢, and p(4”) = A" (cf. [MS2]). For each
Led”, put

AV =4V N () ={CedV : p(0) =},
which is the set of minimal boundary points of W lying over { € 4.  Our main results
are the followings.

THEOREM 1. In order that the relation HP(W) o9 = HP(W) holds, it is necessary
and sufficient that ATV(C) consists of a single point for every CeAIW.

THEOREM 2. In order that the relation HB(W) o9 = HB(W) holds, it is necessary
and sufficient that A ({) consists of a single point for w! —almost all { € A", where »!¥
is a harmonic measure on A" with respect to W and z e W.
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Proofs of Theorems 1 and 2 will be given in §3 and §4, respectively.

Let D be the unit disc {|z| < 1}. In §5, we will be concerned with p-sheeted
unlimited covering surfaces of D which illustrate Theorems 1 and 2. We will prove
the following.

PROPOSITION.  Set A = {(1 =27 Ne2 /2" .y — 12 .. k=1,...,2"2}. If D
is a p-sheeted unlimited covering surface of D with projection map ¢ such that there is
a branch point of D of order p — 1 (or multiplicity p) over every z € A and there are no
branch points of D over D\A, then HP(D)o ¢ = HP(D).

We will show a bit more (cf. Theorem 5.1). Modifying the above D, we will also
give a p-sheeted unlimited covering surface D; of D with projection map ¢ such that
HB(D) o ¢ = HB(D,) and HP(D) o ¢ # HP(D,).

2. Martin boundary of p-sheeted unlimited covering surfaces.

Let W be an open Riemann surface possessing a Green’s function and W a p-
sheeted unlimited covering surface of W with projection map ¢. Since the pullback of
a Green’s function on W by ¢ is a nonconstant positive superharmonic function on
W, we see that W possesses a Green’s function (cf. e.g. [AS], [SN]). For the Martin
compactifications, Martin boundaries and minimal Martin boundaries, we follow the
notation in Introduction. We first note the following (cf. [MS2]).

PROPOSITION 2.1. The projection map ¢ of W onto W has the unique continuous
extension to the Martin compactification W* of W, which is also denoted by ¢, and
p(A4") = 4"

We recall the definition of A?(C) (e 4") in Introduction:

AV =47 o () = {CedV ol =)

We denote by vj;,({) the (cardinal) number of A?/(C). We next fix a point a € W and a
point a € W with

(2.1) p(a) = a.

We consider the Martin kernel kgV (+) (kg/ (-), resp.) on W (W, resp.) with pole at ¢ (,
resp.) and with reference point a (a, resp.), that is,

[N}

w
9 )
W

%, resp.>

w _QW( 9 W(z) —
el () =2 (k() e

Z,
W@, 0) \'*

R

IS

for (e W ((e W, resp.), where 9" (-,0) (g"(-,0), resp.) is a Green’s function on W
(W, resp.) with pole at { (£, resp.). Note that

(2.2) k' (a) = k(@) = 1.

We also note that the proof of Proposition 2.1 yields the following.
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ProPOSITION 2.2. Let C~~be a point of A" and (p(f) =/{. Then there exists a
constant ¢ depending only on { and { such that

= mEKY (E) =kl (2)

Zep~1(2)
on W, where m(f) is multiplicity of ¢ at (.
In our previous paper [MS2|, we proved the following.

PROPOSITION 2.3.  Suppose { € A". Then
(i) If (e A"\A, then vy ({) = 0;
(i) If Cedy, then 1 <vy(0) < p;

(iii) IfCedY and AV () =1{(, ... ,fn}, then there exist positive numbers cy, ..., c,
such that
w _ W w
(23) kc O¢— clkél —'—'..—i—cnkfn .

In the relation (2.3) above, by (2.1) and (2.2), we have

(2.4) icn =1.
i=1

Let s be a positive superharmonic function on W and E a subset of W. We denote
by WRSE the balayage of s with respect to E on W. We here give the definitions of
minimal thinness and minimal fine neighborhood (cf. [B]).

DerFINITION 2.1, Let { be a point of 4" and E a subset of W. We say that E is
minimally thin at { if "RE, # k.

DEerINITION 2.2. Let { be a point of AlW and U a subset of W. We say that
UU{{} is a minimal fine neighborhood of { if W\U is minimally thin at (.

The following is easily verified from Proposition 3.1 of our previous paper [MS2]
(see also [M]).

PROPOSITION 2.4.  Let { be e Alff/ and U a subset of W. Then UU{l} is a minimal
fine neighborhood of ¢ if and only if p(U)U{p(l)} is a minimal fine neighborhood of ¢({).

For (e A, we denote by .y ({) the class of connected open sets M such that
WA\M is minimally thin at {. Moreover, for M € .#w({) and a p-sheeted unlimited
covering surface W of W with projection map ¢, we denote by ny;, (M) the number of
connected components of ¢~!(M). Then vy ({) is characterized by ny (M) as follows,
which is a main result of our previous paper [MS2|.

PROPOSITION 2.5. Suppose { € A]'. Then vy ({) = maxyc g, ny(M).

3. Proof of Theorem 1.

In this section, we give the proof of [Theorem 1. For the sake of simplicity, we
introduce the following notation:

A=d", m=A7, d=4% d=4a% £ =4"Q
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and

| w

ke =k, k~:kc~ :

PROOF OF THEOREM 1. Assume that HP(W)o ¢ = HP(W). Let { be an arbitrary

point in A4;. We need to show that 4;({) consists of a single point. Take a point
(e 41({). By |Proposition 2.3 (iii), there exists a positive constant ¢ such that

(3.1) cky < kgop

on W. By assumption, there exists an h e HP(W) such that
(3.2) ki =hog

on W. Hence, by [3.1), we see that c¢h < k; on W. This with minimality of k; implies
that there exists a positive constant ¢; such that

(3.3) h = cike

on W. Hence, by [3.2), we see that lgé:: cik;op on W. From this with and
[2.2), it follows that ¢; = 1. Therefore we obtain

(3.4) ki=keoy

on W. This yields that 4,(¢) = {C}.
Conversely, assume that v ({) =1 for every {e4;. We only need to show

HP(W) = HP(W) o g, since the reversed inclusion is trivial. By assumption, we set
41(¢) = {{} for each (e 4,. By [Proposition 2.3 (iii) and [2.4), we have

(3.5) ki=kiog

for every (e A,. Take an arbitrary A in HP(W). By the Martin representation
theorem (cf. e.g. [CC], and [B]), there exists a Radon measure g on 4 with
f(4\4,) =0 such that

(3.6) h = J ks di(&).
Choose arbitrary two points Z; and Z, in W with ¢(z)) = ¢(%,). In view of and
(3.6), we obtain

) = | Rea) da® = | ko(z2) dié) = iz

Therefore we deduce that s e HP(W) o ¢ for every he HP(W), and hence HP(W) <
HP(W) o p.
The proof is herewith complete. []

In view of [Theorem 1, we obtain the following.

COROLLARY 3.1. In order that the relation HP(W) oo = HP(W) holds, it is nec-
essary and sufficient that ¢~'({) consists of a single point for every { e A (=4").
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PrROOF. Assume that ¢~ (C) consists of a single point for every (€ 4. Then
|Propos1t10n 2.3 (i) yields that 4;({) consists of a single point for every { € 4,, since
4(0) < 97 '((). Hence, by Theorem 1, we have HP(W)o g = HP(W).

Conversely, assume HP(W)ogp= HP(W). Let (€4 and take an arbitrary point
Cep'(¢). Then, by assumption, there exists an h e HP(W) such that k =hog on
W. Hence, in view of [Proposition 2.2 and |(2 2), we see that k =krogp on W. This
means that ¢~ '({) consists of a single point 4 ]

4. Proof of Theorem 2.

In this section, we give the proof of Mheorem 2. Let w.(-) (@s(-), resp.) be the
harmonic measure on A (4, resp.) with respect to W (W, resp.) and ze W (Ze W,
resp.). It is well-known that harmonic measure is a Radon measure (cf. e.g. [CC]).
It is also well-known that w.(-) (@s(-), resp.) can be extended to the outer measure on

A (4, resp.) by
w.(E) = inf{w.(B): B is an open set with E — B}
(@:(E) = inf{@:(B): B is an open set with E — B}, resp.)

for a subset E (E, resp.) of A (4, resp.). By definition, /(z) = w.(E) is a nonnegative
harmonic function on W for every E < 4. By minimum principle, it is obvious that,
for an arbitrary E (cA) (E < 4, resp.), w-(E) =0 (@:(E) =0, resp.) for a ze W
(e W, resp.) if and only if w.(E) =0 (@:(E) =0, resp.) for all ze W (e W, resp.).
Let f be a real-valued function on the Martin boundary A% of an open Riemann
surface R. We denote by H; R (H R resp.) the solution (upper solution, resp.) of
Dirichlet problem on R (=W or W) with boundary values f in the sense of Perron-
Wiener-Brelot. We first prove the following.

LeEmMMA 4.1.  Let E be a subset of A. Then @:(E) =0 if and only if w-(p(E)) = 0.

PrOOF. Suppose that @:(E) =0. By definition, there exists a Borel set B < A
with E c B such that
(4.1) @:(B) = H"(2) =0,

where 15 is the characteristic function of B on 4. Let § be an arbitrary positive
superharmonic function on W such that liminf;  ;5(2) > 1 for every {eB. Set

sz) =) m(2)s(),
zep ()

where m(Z) is multiplicity of ¢ at Z. Then s(z) is a positive superharmonic function on
W and liminf._;s(z) > 1 for every { e ¢(B). Hence s(z) > HW< )(z) From this and
the fact H 1W(3> (z) = w-(p(B)) (cf. e.g. [CC)), it follows that

4

5(z) = w:(p(B)) = w:(p(E)).

Therefore, by letting s(z) arbitrarily small in view of [4.1), we obtain w.(p(E)) = 0.
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Suppose w.(p(E)) = 0. By definition, there exists a Borel set B = 4 with B > ¢(E)
such that

(4.2) w-(B)=H/"(z) = 0.

Let s be an arbitrary positive superharmonic function on W such that liminf._;s(z) > 1
for every { € B. Then so¢(Z) is a positive superharmonic function on W and

liminf so¢(2) > 1

z—(

for every { € 9~'(B). Hence so ¢(2) > H!
@:(p~1(B)), it follows that

sop(2) = @:(p” ' (B)) = @:(¢ ' (9(E))) = @:(E).

Therefore, letting so ¢(Z) arbitrarily small in view of [4.2), we obtain @:(E) = 0.
The proof is herewith complete. O

TS

(2). From this and the fact H” o () >

~1(8)

We next consider the sets

N] = {CE Al : fo,(C) = 1}
and

N, = Al\Nl = {C e : VW(C) > 2}

Put Ny =¢~ (Nl)ﬂAI and Nz—(/) '(N,)N4;. By means of [Proposition 2.3, it is
easily seen that NyUN, =4; and ¢(N;)=N; (i=1,2). We denote by d(-,-) the
metric on W* defined by

e N | k) R

where {Z, :n=1,2,...} is a dense subset of W. Set U(z) ={ze W*:d(z,z) <r}
for Zoe W* and r > 0.
LemMmA 4.2. Suppose w.(N;) > 0. Then there exists a fo e N, such that
@:(N2N U (&) > 0
for every r > 0.

ProOF. By virtue of [Lemma 4.1, we have @:(N,) >0, since ¢(N2) = Na.
Contrary to the assertion, assume that, for every (e N,, there exists an re >0
such that @:(N2N U, ({)) =0. Then, by the Lindeldf covering theorem, there exists a

sequence {C]} ~, in Nz such that N, ¢ U U CJ) Hence we have

i {(N2N T, (§) =0,

which is a contradiction. ]
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Here, we again recall the definition of 4,(():
L) =4Ng Q) ={led:p0) =0}

LEMMA 4.3. Let & be a point in N. Then there exists a p>0 such that
A1 (O\U, (&) is not empty for every { e N>Ne(U,(&)).

Proor. Set ¢(&) =¢. Then, by definition, ¢ € N>. Assume that the assertion is
false. Then there exists a sequence {{;},2; in N2\{gp(&)} such that

(4.3) max d(7,&) < 1/.
e (&)

From this and |Proposition 2.2 it follows that

(4.4) hm kgj = ké.
J—00
For each j, put 4;({;) = {fjl, . ,fjn/.}. By [Proposition 2.3 and [2.4), there exist positive
constants ¢ji,...,¢p, with 377, ¢; =1 such that
n; _
(45) k(/ op = Z Cj,'kgﬁ.
i=1 ‘

On the other hand, in view of [4.3], we see that

independently of choice of #; in {1,...,n;}. This with (4.4) and [4.5) implies that

kcf op = lgé
Therefore, by means of [Proposition 2.3, we obtain 4,(¢) = {&}, which contradicts
¢ e N,. This completes the proof. O
We can restate [Theorem 2, in terms of the set N,, as follows: The relation

HB(W)op= HB(W) holds if and only if w.(N;) = 0.

PrOOF OF THEOREM 2. We first prove ‘if’ part. Suppose w.(N,) =0. Then, by
Lemma 4.1,

(4.6) @:(N>) = 0.

Take an arbitrary s e HB(W). We only need to show he HB(W)o¢p. Adding a
constant to /, we may assume that # >0 on W. Let ¢ (>0) be the supremum of 4 on
W. By the Martin representation theorem, there exist Radon measures g and y on 4
with g(4\4;) =0 and y(4\4,) =0 such that

(47) ) = [ k(2) i)

and

(48) = j (2 di(©).
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Then

| k@) az@) = e = o) = | 2 da@).
Hence, by uniqueness of representing measure, we have

(4.9) cx = [
Note that 135(2) dy(§) = di=(C) (cf. [CC, p. 140]). From this and it follows that

J~ ke(2) di({) < CJN ke(2)dz(l) = CJN dé: () = cz(Ny).

N

This with yields that

| k@ aud) o,

N>
Therefore, by and the fact N;UN, = 4;, we have
(4.10) o) = | k(@) dad).

N

By [Proposition 2.3 (iii) and [(2.4), we see that l%g e HP(W) o ¢ for every { € N;. Hence,
by [4.10) and the same argument as in the proof of [Theorem 1, we obtain

he HP(W)opNHB(W) = HB(W) o g.

We next prove ‘only if” part. Suppose w.(N;) > 0. Then, by [Lemma 4.2, there
exists a & € N, such that

(4.11) @:(N2NT,(E)) >0
for every r > 0. Moreover, by [Lemma 4.3, there exists p > 0 such that
(4.12) AO\G(E) # &
for every (e N, ﬂ(p(f]p(g)). Set

E = NN T,pu(é).
Then, by (4.11) and [Cemma 4.1, we have
(4.13) w-(p(Er)) > 0.
Set

Ey = NaNo ' (0(G,p(E)D\Gy(€)-

In view of [4.12], we find that
(4.14) 9p(Er) = p(E>).

Put A(2) = @:(E;). Then h(Z) is a bounded harmonic function on W. We only need
to show h ¢ HB(W) o ¢. By the Fatou-Naim-Doob theorem (cf. [CC, p. 152]), A(Z) has
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the minimal fine limit 1 (0, resp.) at almost all  in E; (E,, resp.) with respect to c:,
since E{NE, = (. Accordingly there exists a subset F1~(F2, resp.) of E; (E», resp.)
with @:(F;) =0 (@:(F,) =0, resp.) such that, for every { in E|\F1 (E>\F,, resp.),

(4.15) F — nr% hz) =1 (7 - 1ing~ h(z) =0, resp.)

where we denote by % —lim minimal fine limit. Then, by [Lemma 4.1,
a)7((/)(F1) Ug(F>)) =0. Hence, by (4.13) and (4.14), there exist points ; € E{\F, and
Cz € Ez\Fz with go(Cl) = ¢(,). This with (4.15) implies that there exists an open subset
01 (0, resp.) of W such that O,U{{;} (0, U{5,}), resp.) is a minimal fine neighbor-
hood of ¢ (Cz, resp.) and that

(4.16) inf A(Z) >

2601

W

(sup h(z) < %, resp.).

€0,

Then, by virtue of [Proposition 2.4, we see that (¢ ((?) o( 2))U{¢(C1)} is a mini-
mal fine neighborhood of ¢({;) = ¢({,), and hence (/)(01) 0(0,) # Therefore, by
(4.16), there exists a subset U; of O; (j = 1,2) with ¢(U;) = ¢(Us) such that
2 1
inf h(z) > = (sup h(Z) < =, resp.).
zZe U] 3 Ze U2 3
This means that i ¢ HB(W) o g.
The proof is herewith complete. O]

COROLLARY 4.1. In order that the relation HB(W)oqp= HB(W) holds, it is

necessary and sufficient that ¢='({) consists of a single point for ! —almost all { e 4
(=a").

Proor. Note that @) (4\4,) =0 (cf. [CC]). Hence, by virtue of Theorem 2, it
suffices to show that, for each { € 4;, 4,({) consists of a single point if and only if ¢~ ()
consists of a single point.

If 9~ 1({) consists of a single point, then it instantly follows from [Proposition 2.3 (ii)
that 4,(¢) consists of a single point, since 4, 1(0) =g '(¢).  Assume that 4,({) consists of
a single point {. Take an arbitrary point & € ¢~ 1(¢). Then, in view of |Prop051t10n 2.2
and [Proposition 2.3 (iii), there exists a positive constant ¢ such that k < ck on W.
Hence, by minimality of k and [2.2), we have k = k This means that @ (C) consists

of a single point C. O

5. Harmonic functions on covering surfaces of the unit disc.

Let D be the unit disc {|z] < 1}. In this section, we are concerned with appli-
cation of Theorems 1 and 2 in case base surface is D. As is well-known, the Martin
compactification D* of D is identified with the closure D of D with respect to Euclidian
topology and the Martin boundary A” of D consists of only minimal points. In this
view, we regard 0D = {|z| = 1} as the (minimal) Martin boundary of D.

To state our main result of this section, we introduce some notations. For a
discrete subset A4 of D, we denote by #,(A) the class of p-sheeted unlimited covering
surface D of D such that there exists a branch point in D of order p — 1 (or multiplicity
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p) over every z € A and there exist no branch points in D over D\4. In addition to the
Euclidean metric, we consider the pseudohyperbolic metric on D given by

zZ—Ww

p(z,w) =

I —wz
For { € 0D and a positive number C (<1), we also consider the Stolz type domain with
vertex { given by

Sc()={zeD:Clz-{| <1 —z|}.

THEOREM 5.1. Let A= {a,:ne N} be a discrete subset of D and D belong to
B,(A). Suppose that there exists a positive constant C (<1) satisfying the following two
conditions

(i) for every pair (am,a,) in A with ay, # a,, p(am,a,) = C;

(i) for every { € 0D, there exists a subset By = {b, :n >no} (no =no({)) of 4 such

that b,e{z:0" <|z—{ <o"}NSc() for every n=ny, where o is a
positive number with o < 1.

Then HP(D) = HP(D) o ¢, where ¢ is the projection map.

For a bounded Borel subset K of C, we denote by A(K) the logarithmic capacity.
As a necessary condition for minimal thinness, the following is available (cf. [L], [J]).

LEMMA 5.1. Let { be in 0D = AP and E a relatively closed subset of Sc({). If E
is minimally thin at {, then

< o0,

- 1
; log(1/(4(En)))

where E, = EN{z:t""! < |z—{| <"} and t is a positive number with t < 1.

Proor oF THeorREM 5.1. Let { be an arbitrary point in dD. By virtue of
Theorem 1, we only have to show that AP({) consists of a single point. Take an
arbitrary M € ./p({). Our goal is to show that ¢~'(M) is connected. In fact, in view
of [Proposition 2.3, connectivity of ¢~ (M) for all M e .4y ({) implies 4P ({) consists of
a single point.

We first assume that there exists an a,e M N A. Then, it is easily seen that
¢ '(M) is connected, since D has a branch point of order p — 1 over a, e M and M
is connected.

We next assume M NA=¢. Put F=D\M. Note that F is minimally thin at
{ and relatively closed in D. For each n (>ny), let F, be the connected component of
F which contains b, € B;. We first consider the case that there exists an F, (n > ny)
such that

(5.1) d(F,) < C*¢""

where d(F,) indicates the diameter of F,. Then there exists a closed Jordan curve y,
in M such that y, surrounds F, and

(5.2) d(F,) < d(y,) < C?¢"L.

By (i) and (ii), we have
|y — by| = C|1 = bya,| = C(1 — |b,|) = C*|b, — | = C?c"'!,



Harmonic functions on finitely sheeted unlimited covering surfaces 333

for every a, € A\{b,}. Hence, by means of [5.2), we see that y, surrounds only one
point b, in 4. Therefore, ¢p~'(y,) is connected, since D has a branch point of order
p—1 over b,. This with y, € M and connectivity of M yields that ¢~!(M) is con-
nected. Accordingly, we complete the proof if we show that there exists an F,

(n > ny) satisfying [5.1).
Now we may assume that

(5.3) d(F,) = C*¢""!

for every n (=ng). Set E = FNSc;({). Note that E is minimally thin at {. We
denote by F," the connected component of E which contains b,. Then, in view of (ii)
and [5.3), we find that there exists a positive constant C; (<C?c¢) such that

(5.4) d(E}) > Cyo”

for every n (=ng). Set E,=EN{z:c*") < |z -] <o¥}. Note that bz € E,.
Then, by [5.4), taking an appropriate constant C, (<Cj), we see that, for every m
with 3m + 1 > ny, E,, contains a continuum whose diameter is equal to or greater than
C,a¥*1 From this it follows that

ME,) =471 Cyg*m !
for every m with 3m+ 1 >ng (cf. [T]). Hence we see that

1 1
log(1/(A(En))) = (m + D log(1/0) + log(d/Cy)

for every m with 3m + 1 > ny. Therefore we deduce

1 1
3m;>”0 log(1/(4 3m;>n (3m+1)log(1/0) + log(4/C2)
By [Cemma 5.1, this is absurd, since E is minimally thin at (.
The proof is herewith complete. O]

Using the notation above, we restate in Introduction as follows:

COROLLARY 5.1. Let A= {(1—2"""1e2™*/2"" . p =12 ..  k=1,...,2"2) and
D belong to B,(A). Then HP(D)o ¢ = HP(D), where ¢ is the projection map.

ProOF. For a pair (z,w) = (1 =271 =271 or (1 =277 (1 —2)e2/2"") by
a calculation, it is easily checked that there exists a positive constant C independent
of n=1,2,... such that p(z,w) > C. This implies that 4 and the above constant C
satisfy the condltlon (i) of Mheorem 5.1. Let { be an arbitrary point in dD. For every
positive integer n, we can choose a positive integer k, with 1 <k, <2"*? such that

2k,

T
arg{ — ni2 <

(5.5) et

Set
by = (1 —27"" e /2" (n=12,..).
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Then, by [5.5), we have
2" N2 < |b, —* < (27" + 4sin?

on+3"

In view of this with [(5.5), it is easily seen that B; := {b, : n > 1} and a positive constant
C satisfy the condition (ii) of for ¢ =271 O

At the last, we give a p-sheeted unlimited covering surface D; of D with projection
map ¢ such that HB(D) o9 = HB(D;) and HP(D)o ¢ # HP(D,). Let A be the same

as in [Corollary 5.1. Set M = {|z—1/2] < 1/2} and 4, = A\M. Consider a covering
surface Dy € %,(A;) with projection map ¢. We now show that HB(D) o ¢ = HB(D;)

and HP(D)o ¢ # HP(Dy). As is proved in the proof of [Corollary 5.1, 4; and a
positive constant C satisfy the following two conditions:

(i) for every pair (an,a,) in A with a,, # a,, p(am,a,) = C;

(ii) for every { € dD\{1}, there exists a subset B: = {b, : n >no} (no =no({)) of

Ay such that b, e{z:27" 1 <|z—{] <27"}NSc({) for every n > ny.

Therefore the proof of Mheorem 5.1 yields that vj ({) =1 for every (e dD\{l1}.
Hence, by virtue of [Theorem 2, we have HB(D) o ¢ = HB(D;). On the other hand, it
is easily seen that M belongs to .#p(1) and ¢~'(M) consists of p components. Hence,
by [Proposition 2.5 and [Proposition 2.3 (ii), vp, (1) = p. Therefore, by Theorem 1, we
see that HP(D) o ¢ # HP(D,).
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