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Abstract. We denote by HPðRÞ and (HBðRÞ, resp.) the class of positive (bounded,

resp.) harmonic functions on a Riemann surface R. Consider an open Riemann surface

W possessing a Green’s function and a p-sheeted ð1 < p < yÞ unlimited covering surface
~WW of W with projection map j. We give a necessary and su‰cient condition, in terms of

Martin boundary, for HXðWÞ � j ¼ HXð ~WWÞ ðX ¼ P;BÞ. We also give some examples

illustrating the above result when W is the unit disc.

1. Introduction.

Let W be an open Riemann surface possessing a Green’s function. Consider a p-

sheeted unlimited covering surface ~WW of W with projection map j. It is easily seen that
~WW also possesses a Green’s function (cf. e.g. [AS]). We denote by HPðRÞ (HBðRÞ,

resp.) the class of positive (bounded, resp.) harmonic functions on an open Riemann

surface R. It is obvious that the inclusion relation

HX ðWÞ � j :¼ fh � j : h A HX ðWÞgHHX ð ~WWÞ

holds for X ¼ P;B. The main purpose of this paper is to give a necessary and su‰cient

condition, in terms of Martin boundary, in order that the relation HX ðWÞ � j ¼

HX ð ~WWÞ holds for X ¼ P;B.

For an open Riemann surface R, we denote by R�, DR and DR
1 the Martin com-

pactification, the Martin boundary and the minimal Martin boundary of R, respec-

tively. It is known that the projection map j of ~WW to W has the unique continuous

extension to ~WW �, which is also denoted by j, and jðD
~WW Þ ¼ DW (cf. [MS2]). For each

z A DW , put

D
~WW
1 ðzÞ ¼ D

~WW
1 V j�1ðzÞ ¼ f~zz A D

~WW
1 : jð~zzÞ ¼ zg;

which is the set of minimal boundary points of ~WW lying over z A DW . Our main results

are the followings.

Theorem 1. In order that the relation HPðWÞ � j ¼ HPð ~WWÞ holds, it is necessary

and su‰cient that D
~WW
1 ðzÞ consists of a single point for every z A DW

1 .

Theorem 2. In order that the relation HBðWÞ � j ¼ HBð ~WWÞ holds, it is necessary

and su‰cient that D
~WW
1 ðzÞ consists of a single point for oW

z —almost all z A DW
1 , where oW

z

is a harmonic measure on DW with respect to W and z A W .
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Proofs of Theorems 1 and 2 will be given in §3 and §4, respectively.

Let D be the unit disc fjzj < 1g. In §5, we will be concerned with p-sheeted

unlimited covering surfaces of D which illustrate Theorems 1 and 2. We will prove

the following.

Proposition. Set A ¼ fð1� 2�n�1Þe i2pk=2
nþ2

: n ¼ 1; 2; . . . ; k ¼ 1; . . . ; 2nþ2g. If ~DD

is a p-sheeted unlimited covering surface of D with projection map j such that there is

a branch point of ~DD of order p� 1 (or multiplicity p) over every z A A and there are no

branch points of ~DD over DnA, then HPðDÞ � j ¼ HPð ~DDÞ.

We will show a bit more (cf. Theorem 5.1). Modifying the above ~DD, we will also

give a p-sheeted unlimited covering surface ~DD1 of D with projection map j such that

HBðDÞ � j ¼ HBð ~DD1Þ and HPðDÞ � j0HPð ~DD1Þ.

2. Martin boundary of p-sheeted unlimited covering surfaces.

Let W be an open Riemann surface possessing a Green’s function and ~WW a p-

sheeted unlimited covering surface of W with projection map j. Since the pullback of

a Green’s function on W by j is a nonconstant positive superharmonic function on
~WW , we see that ~WW possesses a Green’s function (cf. e.g. [AS], [SN]). For the Martin

compactifications, Martin boundaries and minimal Martin boundaries, we follow the

notation in Introduction. We first note the following (cf. [MS2]).

Proposition 2.1. The projection map j of ~WW onto W has the unique continuous

extension to the Martin compactification ~WW � of ~WW , which is also denoted by j, and

jðD
~WW Þ ¼ DW .

We recall the definition of D
~WW
1 ðzÞ ðz A DW Þ in Introduction:

D
~WW
1 ðzÞ ¼ D

~WW
1 V j�1ðzÞ ¼ f~zz A D

~WW
1 : jð~zzÞ ¼ zg:

We denote by n ~WW ðzÞ the (cardinal) number of D
~WW
1 ðzÞ. We next fix a point a A W and a

point ~aa A ~WW with

jð~aaÞ ¼ a:ð2:1Þ

We consider the Martin kernel kWz ð�Þ (k
~WW
~zz
ð�Þ, resp.) on W ( ~WW , resp.) with pole at z (~zz,

resp.) and with reference point a (~aa, resp.), that is,

kWz ðzÞ ¼
gW ðz; zÞ

gW ða; zÞ
k

~WW
~zz
ð~zzÞ ¼

g
~WW ð~zz; ~zzÞ

g ~WW ð~aa; ~zzÞ
; resp:

 !

for z A W (~zz A ~WW , resp.), where gW ð� ; zÞ (g
~WW ð� ; ~zzÞ, resp.) is a Green’s function on W

( ~WW , resp.) with pole at z (~zz, resp.). Note that

kWz ðaÞ ¼ k
~WW
~zz
ð~aaÞ ¼ 1:ð2:2Þ

We also note that the proof of Proposition 2.1 yields the following.
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Proposition 2.2. Let ~zz be a point of D
~WW and jð~zzÞ ¼ z. Then there exists a

constant c depending only on ~zz and z such that

X

~zz A j�1ðzÞ

mð~zzÞk
~WW
~zz
ð~zzÞ ¼ ckWz ðzÞ

on W, where mð~zzÞ is multiplicity of j at ~zz.

In our previous paper [MS2], we proved the following.

Proposition 2.3. Suppose z A DW . Then

(i) If z A DWnDW
1 , then n ~WW ðzÞ ¼ 0;

(ii) If z A DW
1 , then 1a n ~WW ðzÞa p;

(iii) If z A DW
1 and D

~WW
1 ðzÞ ¼ f~zz1; . . . ; ~zzng, then there exist positive numbers c1; . . . ; cn

such that

kWz � j ¼ c1k
~WW
~zz1
þ � � � þ cnk

~WW
~zzn
:ð2:3Þ

In the relation (2.3) above, by (2.1) and (2.2), we have

Xn

i¼1

cn ¼ 1:ð2:4Þ

Let s be a positive superharmonic function on W and E a subset of W. We denote

by WR̂RE
s the balayage of s with respect to E on W. We here give the definitions of

minimal thinness and minimal fine neighborhood (cf. [B]).

Definition 2.1. Let z be a point of DW
1 and E a subset of W. We say that E is

minimally thin at z if WR̂RE
kW
z

0 kWz .

Definition 2.2. Let z be a point of DW
1 and U a subset of W. We say that

U U fzg is a minimal fine neighborhood of z if WnU is minimally thin at z.

The following is easily verified from Proposition 3.1 of our previous paper [MS2]

(see also [M]).

Proposition 2.4. Let ~zz be A D
~WW
1 and ~UU a subset of ~WW . Then ~UU U f~zzg is a minimal

fine neighborhood of ~zz if and only if jð ~UUÞU fjð~zzÞg is a minimal fine neighborhood of jð~zzÞ.

For z A DW
1 , we denote by MW ðzÞ the class of connected open sets M such that

WnM is minimally thin at z. Moreover, for M A MW ðzÞ and a p-sheeted unlimited

covering surface ~WW of W with projection map j, we denote by n ~WW ðMÞ the number of

connected components of j�1ðMÞ. Then n ~WW ðzÞ is characterized by n ~WW ðMÞ as follows,

which is a main result of our previous paper [MS2].

Proposition 2.5. Suppose z A DW
1 . Then n ~WW ðzÞ ¼ maxM AMW ðzÞ n ~WW ðMÞ.

3. Proof of Theorem 1.

In this section, we give the proof of Theorem 1. For the sake of simplicity, we

introduce the following notation:

D ¼ DW
; D1 ¼ DW

1 ;
~DD ¼ D

~WW
;

~DD1 ¼ D
~WW
1 ;

~DD1ðzÞ ¼ D
~WW
1 ðzÞ
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and

kz ¼ kWz ;

~kk~zz ¼ k
~WW
~zz
:

Proof of Theorem 1. Assume that HPðWÞ � j ¼ HPð ~WWÞ. Let z be an arbitrary

point in D1. We need to show that ~DD1ðzÞ consists of a single point. Take a point
~zz A ~DD1ðzÞ. By Proposition 2.3 (iii), there exists a positive constant c such that

c~kk~zza kz � jð3:1Þ

on ~WW . By assumption, there exists an h A HPðWÞ such that

~kk~zz ¼ h � jð3:2Þ

on ~WW . Hence, by (3.1), we see that cha kz on W. This with minimality of kz implies

that there exists a positive constant c1 such that

h ¼ c1kzð3:3Þ

on W. Hence, by (3.2), we see that ~kk~zz ¼ c1kz � j on ~WW . From this with (2.1) and

(2.2), it follows that c1 ¼ 1. Therefore we obtain

~kk~zz ¼ kz � jð3:4Þ

on ~WW . This yields that ~DD1ðzÞ ¼ f~zzg.

Conversely, assume that n ~WW ðzÞ ¼ 1 for every z A D1. We only need to show

HPð ~WWÞHHPðWÞ � j, since the reversed inclusion is trivial. By assumption, we set
~DD1ðzÞ ¼ f~zzg for each z A D1. By Proposition 2.3 (iii) and (2.4), we have

~kk~zz ¼ kz � jð3:5Þ

for every z A D1. Take an arbitrary ~hh in HPð ~WWÞ. By the Martin representation

theorem (cf. e.g. [CC], [Hl] and [B]), there exists a Radon measure ~mm on ~DD with

~mmð ~DDn ~DD1Þ ¼ 0 such that

~hh ¼

ð
~kk~xx d ~mmð

~xxÞ:ð3:6Þ

Choose arbitrary two points ~zz1 and ~zz2 in ~WW with jð~zz1Þ ¼ jð~zz2Þ. In view of (3.5) and

(3.6), we obtain

~hhð~zz1Þ ¼

ð
~kk~xxð~zz1Þ d ~mmð

~xxÞ ¼

ð
~kk~xxð~zz2Þ d ~mmð

~xxÞ ¼ ~hhð~zz2Þ:

Therefore we deduce that ~hh A HPðWÞ � j for every ~hh A HPð ~WWÞ, and hence HPð ~WWÞH

HPðWÞ � j.

The proof is herewith complete. r

In view of Theorem 1, we obtain the following.

Corollary 3.1. In order that the relation HPðWÞ � j ¼ HPð ~WWÞ holds, it is nec-

essary and su‰cient that j�1ðzÞ consists of a single point for every z A D ð¼DW Þ.
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Proof. Assume that j�1ðzÞ consists of a single point for every z A D. Then

Proposition 2.3 (ii) yields that ~DD1ðzÞ consists of a single point for every z A D1, since
~DD1ðzÞH j�1ðzÞ. Hence, by Theorem 1, we have HPðWÞ � j ¼ HPð ~WWÞ.

Conversely, assume HPðWÞ � j ¼ HPð ~WWÞ. Let z A D and take an arbitrary point
~zz A j�1ðzÞ. Then, by assumption, there exists an h A HPðWÞ such that ~kk~zz ¼ h � j on
~WW . Hence, in view of Proposition 2.2 and (2.2), we see that ~kk~zz ¼ kz � j on ~WW . This

means that j�1ðzÞ consists of a single point ~zz. r

4. Proof of Theorem 2.

In this section, we give the proof of Theorem 2. Let ozð�Þ ( ~oo~zzð�Þ, resp.) be the

harmonic measure on D ( ~DD, resp.) with respect to W ( ~WW , resp.) and z A W (~zz A ~WW ,

resp.). It is well-known that harmonic measure is a Radon measure (cf. e.g. [CC]).

It is also well-known that ozð�Þ ( ~oo~zzð�Þ, resp.) can be extended to the outer measure on

D ( ~DD, resp.) by

ozðEÞ ¼ inffozðBÞ: B is an open set with EHBg

ð ~oo~zzð ~EEÞ ¼ inff ~oo~zzð ~BBÞ: ~BB is an open set with EHBg; resp:Þ

for a subset E ( ~EE, resp.) of D ( ~DD, resp.). By definition, hðzÞ ¼ ozðEÞ is a nonnegative

harmonic function on W for every EHD. By minimum principle, it is obvious that,

for an arbitrary E ðHDÞ ( ~EEH
~DD, resp.), ozðEÞ ¼ 0 ( ~oo~zzð ~EEÞ ¼ 0, resp.) for a z A W

(~zz A ~WW , resp.) if and only if ozðEÞ ¼ 0 ( ~oo~zzð ~EEÞ ¼ 0, resp.) for all z A W (~zz A ~WW , resp.).

Let f be a real-valued function on the Martin boundary DR of an open Riemann

surface R. We denote by H R
f (H R

f , resp.) the solution (upper solution, resp.) of

Dirichlet problem on R ð¼W or ~WWÞ with boundary values f in the sense of Perron-

Wiener-Brelot. We first prove the following.

Lemma 4.1. Let ~EE be a subset of ~DD. Then ~oo~zzð ~EEÞ ¼ 0 if and only if ozðjð ~EEÞÞ ¼ 0.

Proof. Suppose that ~oo~zzð ~EEÞ ¼ 0. By definition, there exists a Borel set ~BBH
~DD

with ~EEH
~BB such that

~oo~zzð ~BBÞ ¼ H
~WW

1 ~BB
ð~zzÞ ¼ 0;ð4:1Þ

where 1 ~BB is the characteristic function of ~BB on ~DD. Let ~ss be an arbitrary positive

superharmonic function on ~WW such that lim inf
~zz! ~zz

~ssð~zzÞb 1 for every ~zz A ~BB. Set

sðzÞ :¼
X

~zz A j�1ðzÞ

mð~zzÞ~ssð~zzÞ;

where mð~zzÞ is multiplicity of j at ~zz. Then sðzÞ is a positive superharmonic function on

W and lim inf z!z sðzÞb 1 for every z A jð ~BBÞ. Hence sðzÞbHW
1jð ~BBÞ

ðzÞ. From this and

the fact HW
1jð ~BBÞ

ðzÞbozðjð ~BBÞÞ (cf. e.g. [CC]), it follows that

sðzÞbozðjð ~BBÞÞbozðjð ~EEÞÞ:

Therefore, by letting sðzÞ arbitrarily small in view of (4.1), we obtain ozðjð ~EEÞÞ ¼ 0.
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Suppose ozðjð ~EEÞÞ ¼ 0. By definition, there exists a Borel set BHD with BI jð ~EEÞ

such that

ozðBÞ ¼ HW
1B
ðzÞ ¼ 0:ð4:2Þ

Let s be an arbitrary positive superharmonic function on W such that lim inf z!z sðzÞb 1

for every z A B. Then s � jð~zzÞ is a positive superharmonic function on ~WW and

lim inf
~zz!~zz

s � jð~zzÞb 1

for every ~zz A j�1ðBÞ. Hence s � jð~zzÞbH
~WW
1
j�1ðBÞ

ð~zzÞ. From this and the fact H
~WW
1
j�1ðBÞ

ð~zzÞb

~oo~zzðj
�1ðBÞÞ, it follows that

s � jð~zzÞb ~oo~zzðj
�1ðBÞÞb ~oo~zzðj

�1ðjð ~EEÞÞÞb ~oo~zzð ~EEÞ:

Therefore, letting s � jð~zzÞ arbitrarily small in view of (4.2), we obtain ~oo~zzð ~EEÞ ¼ 0.

The proof is herewith complete. r

We next consider the sets

N1 :¼ fz A D1 : n ~WW ðzÞ ¼ 1g

and

N2 :¼ D1nN1 ¼ fz A D1 : n ~WW ðzÞb 2g:

Put ~NN1 ¼ j�1ðN1ÞV ~DD1 and ~NN2 ¼ j�1ðN2ÞV ~DD1. By means of Proposition 2.3, it is

easily seen that ~NN1 U ~NN2 ¼ ~DD1 and jð ~NNiÞ ¼ Ni ði ¼ 1; 2Þ. We denote by ~ddð� ; �Þ the

metric on ~WW � defined by

~ddð~zz; ~zzÞ ¼
X

y

n¼1

1

2n

~kk~zzð~zznÞ

1þ ~kk~zzð~zznÞ
�

~kk~zzð~zznÞ

1þ ~kk~zzð~zznÞ

�

�

�

�

�

�

�

�

�

�

;

where f~zzn : n ¼ 1; 2; . . .g is a dense subset of ~WW . Set ~UUrð~zz0Þ ¼ f~zz A ~WW �
: ~ddð~zz; ~zz0Þ < rg

for ~zz0 A ~WW � and r > 0.

Lemma 4.2. Suppose ozðN2Þ > 0. Then there exists a ~zz0 A ~NN2 such that

~oo~zzð ~NN2 V ~UUrð~zz0ÞÞ > 0

for every r > 0.

Proof. By virtue of Lemma 4.1, we have ~oo~zzð ~NN2Þ > 0, since jð ~NN2Þ ¼ N2.

Contrary to the assertion, assume that, for every ~zz A ~NN2, there exists an r~zz > 0

such that ~oo~zzð ~NN2 V ~UUr~zz
ð~zzÞÞ ¼ 0. Then, by the Lindelöf covering theorem, there exists a

sequence f~zzjg
y

j¼1 in ~NN2 such that ~NN2 H6y

j¼1
~UUr~zzj

ð~zzjÞ. Hence we have

~oo~zzð ~NN2Þa
X

y

j¼1

~oo~zzð ~NN2 V ~UUr~zzj
ð~zzjÞÞ ¼ 0;

which is a contradiction. r
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Here, we again recall the definition of ~DD1ðzÞ:

~DD1ðzÞ ¼ ~DD1 V j�1ðzÞ ¼ f~zz A ~DD1 : jð~zzÞ ¼ zg:

Lemma 4.3. Let ~xx be a point in ~NN2. Then there exists a r > 0 such that
~DD1ðzÞn ~UUrð~xxÞ is not empty for every z A N2 V jð ~UUrð~xxÞÞ.

Proof. Set jð~xxÞ ¼ x. Then, by definition, x A N2. Assume that the assertion is

false. Then there exists a sequence fzjg
y

j¼1 in N2nfjð~xxÞg such that

max
~hh A ~DD1ðzjÞ

~ddð~hh; ~xxÞ < 1= j:ð4:3Þ

From this and Proposition 2.2 it follows that

lim
j!y

kzj ¼ kx:ð4:4Þ

For each j, put ~DD1ðzjÞ ¼ f~zzj1; . . . ; ~zzjnjg. By Proposition 2.3 and (2.4), there exist positive

constants cj1; . . . ; cjnj with
Pnj

i¼1 cji ¼ 1 such that

kzj � j ¼
Xnj
i¼1

cji ~kk~zzji
:ð4:5Þ

On the other hand, in view of (4.3), we see that

lim
j!y

~kk~zzjij
¼ ~kk ~xx

independently of choice of ij in f1; . . . ; njg. This with (4.4) and (4.5) implies that

kx � j ¼ ~kk~xx:

Therefore, by means of Proposition 2.3, we obtain ~DD1ðxÞ ¼ f~xxg, which contradicts

x A N2. This completes the proof. r

We can restate Theorem 2, in terms of the set N2, as follows: The relation

HBðWÞ � j ¼ HBð ~WWÞ holds if and only if ozðN2Þ ¼ 0.

Proof of Theorem 2. We first prove ‘if ’ part. Suppose ozðN2Þ ¼ 0. Then, by

Lemma 4.1,

~oo~zzð ~NN2Þ ¼ 0:ð4:6Þ

Take an arbitrary ~hh A HBð ~WWÞ. We only need to show ~hh A HBðWÞ � j. Adding a

constant to ~hh, we may assume that ~hh > 0 on ~WW . Let c ð>0Þ be the supremum of ~hh on
~WW . By the Martin representation theorem, there exist Radon measures ~mm and ~ww on ~DD

with ~mmð ~DDn ~DD1Þ ¼ 0 and ~wwð ~DDn ~DD1Þ ¼ 0 such that

~hhð~zzÞ ¼

ð
~kk~zzð~zzÞ d ~mmð

~zzÞð4:7Þ

and

1 ¼

ð
~kk~zzð~zzÞ d~wwð

~zzÞ:ð4:8Þ
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Then

c

ð
~kk~zzð~zzÞ d~wwð

~zzÞ ¼ cb ~hhð~zzÞ ¼

ð
~kk~zzð~zzÞ d ~mmð

~zzÞ:

Hence, by uniqueness of representing measure, we have

c~wwb ~mm:ð4:9Þ

Note that ~kk~zzð~zzÞ d~wwð
~zzÞ ¼ d ~oo~zzð~zzÞ (cf. [CC, p. 140]). From this and (4.9) it follows that

ð
~NN2

~kk~zzð~zzÞ d ~mmð
~zzÞa c

ð
~NN2

~kk~zzð~zzÞ d~wwð
~zzÞ ¼ c

ð
~NN2

d ~oo~zzð~zzÞ ¼ c ~oo~zzð ~NN2Þ:

This with (4.6) yields that

ð
~NN2

~kk~zzð~zzÞ d ~mmð
~zzÞ ¼ 0:

Therefore, by (4.7) and the fact ~NN1 U ~NN2 ¼ ~DD1, we have

~hhð~zzÞ ¼

ð
~NN1

~kk~zzð~zzÞ d ~mmð
~zzÞ:ð4:10Þ

By Proposition 2.3 (iii) and (2.4), we see that ~kk~zz A HPðWÞ � j for every ~zz A ~NN1. Hence,

by (4.10) and the same argument as in the proof of Theorem 1, we obtain

~hh A HPðWÞ � jVHBð ~WWÞHHBðWÞ � j:

We next prove ‘only if ’ part. Suppose ozðN2Þ > 0. Then, by Lemma 4.2, there

exists a ~xx A ~NN2 such that

~oo~zzð ~NN2 V ~UUrð~xxÞÞ > 0ð4:11Þ

for every r > 0. Moreover, by Lemma 4.3, there exists r > 0 such that

~DD1ðzÞn ~UUrð~xxÞ0qð4:12Þ

for every z A N2 V jð ~UUrð~xxÞÞ. Set

~EE1 ¼ ~NN2 V ~UUr=2ð~xxÞ:

Then, by (4.11) and Lemma 4.1, we have

ozðjð ~EE1ÞÞ > 0:ð4:13Þ

Set

~EE2 ¼ ~NN2 V j�1ðjð ~UUr=2ð~xxÞÞÞn ~UUrð~xxÞ:

In view of (4.12), we find that

jð ~EE1Þ ¼ jð ~EE2Þ:ð4:14Þ

Put ~hhð~zzÞ ¼ ~oo~zzð ~EE1Þ. Then ~hhð~zzÞ is a bounded harmonic function on ~WW . We only need

to show ~hh B HBðWÞ � j. By the Fatou-Naı̈m-Doob theorem (cf. [CC, p. 152]), ~hhð~zzÞ has
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the minimal fine limit 1 (0, resp.) at almost all ~zz in ~EE1 ( ~EE2, resp.) with respect to ~oo~zz,

since ~EE1 V ~EE2 ¼ q. Accordingly there exists a subset ~FF1 ( ~FF2, resp.) of ~EE1 ( ~EE2, resp.)

with ~oo~zzð ~FF1Þ ¼ 0 ( ~oo~zzð ~FF2Þ ¼ 0, resp.) such that, for every ~zz in ~EE1n ~FF1 ( ~EE2n ~FF2, resp.),

F� lim
~zz!~zz

~hhð~zzÞ ¼ 1 ðF� lim
~zz!~zz

~hhð~zzÞ ¼ 0; resp:Þð4:15Þ

where we denote by F� lim minimal fine limit. Then, by Lemma 4.1,

ozðjð ~FF1ÞU jð ~FF2ÞÞ ¼ 0. Hence, by (4.13) and (4.14), there exist points ~zz1 A ~EE1n ~FF1 and
~zz2 A ~EE2n ~FF2 with jð~zz1Þ ¼ jð~zz2Þ. This with (4.15) implies that there exists an open subset
~OO1 ( ~OO2, resp.) of ~WW such that ~OO1 U f~zz1g ( ~OO2 U f~zz2g, resp.) is a minimal fine neighbor-

hood of ~zz1 (~zz2, resp.) and that

inf
~zz A ~OO1

~hhð~zzÞb
2

3
ð sup
~zz A ~OO2

~hhð~zzÞa
1

3
; resp:Þ:ð4:16Þ

Then, by virtue of Proposition 2.4, we see that ðjð ~OO1ÞV jð ~OO2ÞÞU fjð~zz1Þg is a mini-

mal fine neighborhood of jð~zz1Þ ¼ jð~zz2Þ, and hence jð ~OO1ÞV jð ~OO2Þ0q. Therefore, by

(4.16), there exists a subset ~UUj of ~OOj ð j ¼ 1; 2Þ with jð ~UU1Þ ¼ jð ~UU2Þ such that

inf
~zz A ~UU1

~hhð~zzÞb
2

3
ð sup
~zz A ~UU2

~hhð~zzÞa
1

3
; resp:Þ:

This means that ~hh B HBðWÞ � j.

The proof is herewith complete. r

Corollary 4.1. In order that the relation HBðWÞ � j ¼ HBð ~WWÞ holds, it is

necessary and su‰cient that j�1ðzÞ consists of a single point for oW
z —almost all z A D

ð¼DW Þ.

Proof. Note that oW
z ðDnD1Þ ¼ 0 (cf. [CC]). Hence, by virtue of Theorem 2, it

su‰ces to show that, for each z A D1, ~DD1ðzÞ consists of a single point if and only if j�1ðzÞ

consists of a single point.

If j�1ðzÞ consists of a single point, then it instantly follows from Proposition 2.3 (ii)

that ~DD1ðzÞ consists of a single point, since ~DD1ðzÞH j�1ðzÞ. Assume that ~DD1ðzÞ consists of

a single point ~zz. Take an arbitrary point ~xx A j�1ðzÞ. Then, in view of Proposition 2.2

and Proposition 2.3 (iii), there exists a positive constant c such that ~kk~xxa c~kk~zz on ~WW .

Hence, by minimality of ~kk~zz and (2.2), we have ~kk ~xx ¼
~kk~zz. This means that j�1ðzÞ consists

of a single point ~zz. r

5. Harmonic functions on covering surfaces of the unit disc.

Let D be the unit disc fjzj < 1g. In this section, we are concerned with appli-

cation of Theorems 1 and 2 in case base surface is D. As is well-known, the Martin

compactification D� of D is identified with the closure D of D with respect to Euclidian

topology and the Martin boundary DD of D consists of only minimal points. In this

view, we regard qD ¼ fjzj ¼ 1g as the (minimal) Martin boundary of D.

To state our main result of this section, we introduce some notations. For a

discrete subset A of D, we denote by BpðAÞ the class of p-sheeted unlimited covering

surface ~DD of D such that there exists a branch point in ~DD of order p� 1 (or multiplicity
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p) over every z A A and there exist no branch points in ~DD over DnA. In addition to the

Euclidean metric, we consider the pseudohyperbolic metric on D given by

rðz;wÞ ¼
z� w

1� wz

�

�

�

�

�

�

�

�

:

For z A qD and a positive number C ð<1Þ, we also consider the Stolz type domain with

vertex z given by

SCðzÞ ¼ fz A D : Cjz� zj < 1� jzjg:

Theorem 5.1. Let A ¼ fan : n A Ng be a discrete subset of D and ~DD belong to

BpðAÞ. Suppose that there exists a positive constant C ð<1Þ satisfying the following two

conditions

(i) for every pair ðam; anÞ in A with am 0 an, rðam; anÞbC;

(ii) for every z A qD, there exists a subset Bz ¼ fbn : nb n0g ðn0 ¼ n0ðzÞÞ of A such

that bn A fz : snþ1
a jz� zja sngVSCðzÞ for every nb n0, where s is a

positive number with s < 1.

Then HPð ~DDÞ ¼ HPðDÞ � j, where j is the projection map.

For a bounded Borel subset K of C, we denote by lðKÞ the logarithmic capacity.

As a necessary condition for minimal thinness, the following is available (cf. [L], [J]).

Lemma 5.1. Let z be in qD ¼ DD
1 and E a relatively closed subset of SCðzÞ. If E

is minimally thin at z, then

X

y

n¼1

1

logð1=ðlðEnÞÞÞ
< y;

where En ¼ E V fz : tnþ1
a jz� zja tng and t is a positive number with t < 1.

Proof of Theorem 5.1. Let z be an arbitrary point in qD. By virtue of

Theorem 1, we only have to show that D
~DD
1 ðzÞ consists of a single point. Take an

arbitrary M A MDðzÞ. Our goal is to show that j�1ðMÞ is connected. In fact, in view

of Proposition 2.5, connectivity of j�1ðMÞ for all M A MDðzÞ implies D
~DD
1 ðzÞ consists of

a single point.

We first assume that there exists an an A M VA. Then, it is easily seen that

j�1ðMÞ is connected, since ~DD has a branch point of order p� 1 over an A M and M

is connected.

We next assume M VA ¼ q. Put F ¼ DnM. Note that F is minimally thin at

z and relatively closed in D. For each n ðbn0Þ, let Fn be the connected component of

F which contains bn A Bz. We first consider the case that there exists an Fn ðnb n0Þ

such that

dðFnÞ < C2snþ1;ð5:1Þ

where dðFnÞ indicates the diameter of Fn. Then there exists a closed Jordan curve gn
in M such that gn surrounds Fn and

dðFnÞ < dðgnÞ < C2snþ1:ð5:2Þ

By (i) and (ii), we have

jam � bnjbCj1� bnamjbCð1� jbnjÞbC2jbn � zjbC2snþ1;
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for every am A Anfbng. Hence, by means of (5.2), we see that gn surrounds only one

point bn in A. Therefore, j�1ðgnÞ is connected, since ~DD has a branch point of order

p� 1 over bn. This with gn A M and connectivity of M yields that j�1ðMÞ is con-

nected. Accordingly, we complete the proof if we show that there exists an Fn

ðnb n0Þ satisfying (5.1).

Now we may assume that

dðFnÞbC2snþ1ð5:3Þ

for every n ðbn0Þ. Set E ¼ F VSC=2ðzÞ. Note that E is minimally thin at z. We

denote by F �
n the connected component of E which contains bn. Then, in view of (ii)

and (5.3), we find that there exists a positive constant C1 ðaC2sÞ such that

dðF �
n ÞbC1s

nð5:4Þ

for every n ðbn0Þ. Set Em ¼ E V fz : s3ðmþ1Þ
a jz� zja s3mg. Note that b3mþ1 A Em.

Then, by (5.4), taking an appropriate constant C2 ð<C1Þ, we see that, for every m

with 3mþ 1b n0, Em contains a continuum whose diameter is equal to or greater than

C2s
3mþ1. From this it follows that

lðEmÞb 4�1C2s
3mþ1

for every m with 3mþ 1b n0 (cf. [T]). Hence we see that

1

logð1=ðlðEmÞÞÞ
b

1

ð3mþ 1Þ logð1=sÞ þ logð4=C2Þ

for every m with 3mþ 1b n0. Therefore we deduce

X

3mþ1bn0

1

logð1=ðlðEmÞÞÞ
b

X

3mþ1bn0

1

ð3mþ 1Þ logð1=sÞ þ logð4=C2Þ
¼ y:

By Lemma 5.1, this is absurd, since E is minimally thin at z.

The proof is herewith complete. r

Using the notation above, we restate Proposition in Introduction as follows:

Corollary 5.1. Let A ¼ fð1� 2�n�1Þe i2pk=2
nþ2

: n ¼ 1; 2; . . . ; k ¼ 1; . . . ; 2nþ2g and
~DD belong to BpðAÞ. Then HPðDÞ � j ¼ HPð ~DDÞ, where j is the projection map.

Proof. For a pair ðz;wÞ ¼ ð1� 2�n; 1� 2�n�1Þ or ð1� 2�n; ð1� 2�nÞe i2p=2
nþ1

Þ, by

a calculation, it is easily checked that there exists a positive constant C independent

of n ¼ 1; 2; . . . such that rðz;wÞbC. This implies that A and the above constant C

satisfy the condition (i) of Theorem 5.1. Let z be an arbitrary point in qD. For every

positive integer n, we can choose a positive integer kn with 1a kna 2nþ2 such that

arg z�
2pkn
2nþ2

�

�

�

�

�

�

�

�

a
p

2nþ2
:ð5:5Þ

Set

bn ¼ ð1� 2�n�1Þe i2pkn=2
nþ2

ðn ¼ 1; 2; . . .Þ:
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Then, by (5.5), we have

ð2�n�1Þ2a jbn � zj2a ð2�n�1Þ2 þ 4 sin2 p

2nþ3
:

In view of this with (5.5), it is easily seen that Bz :¼ fbn : nb 1g and a positive constant

C satisfy the condition (ii) of Theorem 5.1 for s ¼ 2�1. r

At the last, we give a p-sheeted unlimited covering surface ~DD1 of D with projection

map j such that HBðDÞ � j ¼ HBð ~DD1Þ and HPðDÞ � j0HPð ~DD1Þ. Let A be the same

as in Corollary 5.1. Set M ¼ fjz� 1=2j < 1=2g and A1 ¼ AnM. Consider a covering

surface D1 A BpðA1Þ with projection map j. We now show that HBðDÞ � j ¼ HBð ~DD1Þ

and HPðDÞ � j0HPð ~DD1Þ. As is proved in the proof of Corollary 5.1, A1 and a

positive constant C satisfy the following two conditions:

(i) for every pair ðam; anÞ in A1 with am 0 an, rðam; anÞbC;

(ii) for every z A qDnf1g, there exists a subset Bz ¼ fbn : nb n0g ðn0 ¼ n0ðzÞÞ of

A1 such that bn A fz : 2�n�1
a jz� zja 2�ngVSCðzÞ for every nb n0.

Therefore the proof of Theorem 5.1 yields that n ~DD1
ðzÞ ¼ 1 for every z A qDnf1g.

Hence, by virtue of Theorem 2, we have HBðDÞ � j ¼ HBð ~DD1Þ. On the other hand, it

is easily seen that M belongs to MDð1Þ and j�1ðMÞ consists of p components. Hence,

by Proposition 2.5 and Proposition 2.3 (ii), n ~DD1
ð1Þ ¼ p. Therefore, by Theorem 1, we

see that HPðDÞ � j0HPð ~DD1Þ.
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