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Abstract. We consider a compressible viscous fluid effected by general form external
force in R?. 1In part 1, an analysis of the linearized problem based on the weighted-L,
method implies a condition on the external force for the existence and some regularities of
the steady flow. In part 2, we study the stability of the steady flow with respect to the
initial disturbance. What we proved is: if H3-norm of the initial disturbance is small
enough, then the solution to the non-stationary problem exists uniquely and globally in
time.

1. Introduction.

The motion of a compressible viscous isotropic Newtonian fluid is formulated by
the following initial value problem of the Navier-Stokes equation for viscous com-
pressible fluid:

(pi+V - (pv) = G(x),

“+MVW-M—V0@D

UZ—F(U-V)U:%AU—F + F(x), (1.1)

\(P, U)(O> x) = (pOa UO)<X)>

where >0, x= (x1,x2,x3) € R*; p=p(t,x) (>0) and v = (v1(¢t,x),v2(t,x),v3(¢, x))
denote the density and velocity respectively, which are unknown; P(-) (P’ > 0) denotes
the pressure; 4 and u’ are the viscosity coefficients which satisfy the condition: u >0
and u' 4+2u/3 > 0; F(x) = (Fi(x), F>(x), F3(x)) is a given external force and G(x) is a
given mass source. The stationary problem corresponding to the initial value problem
(1.1) is

V- (pv) = G(x),

/ 1.2
R RO 4 U0 IR (1.2)

(U'V)U:EAU—F
p

where x = (x1,X2,x3) € R*; p=p(x) (>0) and v = (v;(x),v2(x),v3(x)) are unknown
functions; F(x),G(x) and the other symbols are the same as in (1.1). Here and
hereafter, we use the standard notation in the vector analysis. For example, we put for

scalar u, vectors v = (v1,v2,v3),w = (w1, w2, w3) and matrix f = (fj),<; ;<3
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((0-V)wi, (- V)wa, (v-V)w3),
= (0%ulla| = k), VFv=(0%;||a| =k,i=1,2,3),

3 v o 3 ofy 3 of-
et (BN RR)
>

where o = (o, 00,03) is multi-index, |a| = oy +on + a3 and 0% = d*l /ox7" Ox32OxP.
Before stating our results, we introduce some function spaces. We put for scalars
up,up and vectors v = (vy,...,05), W= (Wi,...,wy)

1/p n 1/p
nwmz(Lymnww), Mm=<§]mm) (1< p <o),
’ i=1

ol = suplu (], el = max ()l (o) = | wind

) 1/2

v..2

(v,w) = (i, wi), o]l = ( > v ) A =1,
i=1 0<v<k

Let L, denote the usual L, space, ' the set of all tempered distributions both on
R’ and

= {ue Ly llully < o0} = {ue |71+ &) a]| < oo},

HY ={ue L jpe|Vue H"}, H* = () H",
k>0

where u is either vector or scalar. Further we put
A ={(o,v)|ce H  ve H'}, #%' ={(0,0)|cec H" ,ve H'},
AL = (g, 0,w) |oe H ,ve H* we H'},

and
(o, )k, = llall, + vl (oo, w)ll; ., = llall; + ol + [wll,-

DEerFINITION 1.1.
={oceH"||ollx <&}, Jf={ueH"||jv]|l,x <e},

where

k
g VY7V 2
ol = lloll ., + HWH ) I+ [x)V ol + (11 + [x) el .
y=1

k 1
v _
[oll e = llvll ., + HMH Y N+ )T+ D+ )Yl
v=1 v=0
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Moreover we put

IR =L(o,0) |celF vel},

fzk’/ = {(a,v) efgk"”]V-v:V- i + V> for some Vi, V5
such that [[(1+[x) Vil + 11+ [x)) " all,, < e},
(e, )| ywr = llall e + vl -

In this paper, we consider the case where the external force F is given by following
form

F=V .- F+F, (13)

where Fy = (F1,;(x));<; ;<3 and F» = (F2,i(x));<;<3- The first theorem is concerning
the existence of stationary solution of (1.2) and its weighted-L,, L., estimates.

TueoreM 1.1.  Let p be any positive constant and P(-) is smooth (at least C?) in a
neighborhood of p. Then, there exist small constants cy > 0 and & > 0 depending on p
such that if (F,G) satisfies the estimate:

3
SN+ ) VUE] A+ [[(1+ |x]) F]
v=0

L, A+ XD FL, + L,

4
1+ XDGI+ DI+ [x)'V G|
v=1

1
+ DN+ ) PVG L, + 111+ [x) G, < o
v=0

for some ¢ <&y, then (1.2) admits a solution of the form: (p,v) = (p+ a,v) where
(o,v) e,ﬂ:‘*s . Furthermore the solution is unique in the following sense:

There exists an ¢ with 0 < ¢y <& such that if (p+ o1,v1) and (p+ 02,0v2) satisfy (1.2)
with the same (F,G), and |(a1,v1)| 3.4, |/(g1,01)| 34 < &1, then (o1,v1) = (02, 02).

Next we consider the stability of the stationary solution of (1.2) with respect to
initial disturbance. Let (p*,v*) be the solution of (1.2) obtained in [Theorem I.1. The
stability of (p*,v*) means the solvability of the non-stationary problem (1.1). Let us
introduce the class of functions which solutions of (1.1) belong to.

DEFINITION 1.2.
(0, T; #%") = {(0,0) |a(t,x) e C°(0, T; H YN C'(0, T; H* 1),
w(t,x) e C°0,T; H YN CY(0, T; H ~2)}.
Then, we have the following theorem.

THEOREM 1.2.  There exist C >0 and 6 > 0 such that if ||[(py — p*,v0 — v")[l3 3 <6
then (1.1) admits a unique solution: (p,v) = (p* + a,v* +w) globally in time, where
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(a,w) € 6(0, 00; #>3), Va,w, € Ly(0, 00; H?), Vw € Ly(0, 00; H?).  Moreover the (o,w)
satisfies the estimate:

t
1) ()12 + j (Vo Vw, w) (112 5 2 ds < Cll(po — 00 — 0°)]2

for any t > 0.

REMARK 1.1. When [Theorem 1.2 holds, we shall say that the stationary solution
(p*,v*) of (1.2) is stable in the H3-framework with respect to small initial disturbance.

Matsumura and Nishida [13], first proved the stability of a constant state (p,0)
in H3-framework with respect to initial disturbance, namely they proved in
the case where (p*,v*) = (p,0). When the external force is given by the potential:
F=-V& F,=G=01in (1.2) and , where @ is a scalar function, the stationary
solution (p*,v*)(x) of (1.2) in a neighborhood of (5,0) in #*? has the form:

*(x) pt
Jp | )P—(n)diyjL D(x) =0, v*(x)=0.
i n

In this case, Matsumura and Nishida proved the stability of (p*(x),0) in the H3-
framework with respect to initial disturbance in an exterior domain. Recently, even in
the large potential force case, the stability theorem was studied by Feireisl and Pet-
zeltova [7]; Matsumura and Yamagata within a class of weak solutions.

The purpose of this paper is to consider the case where the external force is given
by the general formula and also mass source G appears. In this case, the sta-
tionary solution (p*,v*)(x) is non-trivial in general, especially v* # 0. We are inter-
ested only in strong solutions. Then, when F is small enough in a certain norm
and G =0, Matsumura and Nishida [16]; Novotny and Padula proved a unique
existence theorem of solutions to (1.2) in an exterior domain. In the proof of Novotny
and Padula [19], they decomposed the equations into the Stokes equation, transport
equation and Laplace equation. Since we consider the problem in R®, that is, the
boundary condition is not imposed, we can solve (1.2) without any such decomposition
technique. In fact, in §2 we establish the corresponding linear theory to (1.2) in the
L,-framework by the usual Banach closed range theorem, after obtaining some
weighted-L, estimates for solutions. On the other hand, Matsumura and Nishida
used a regularization method. More precisely, for an approximation of the linearized
equation of the continuum equation: V -v+ (a-V)o =g, they used not only ¢(1 — 4)o
but also &'c to control (a-V)o and they consider the limit ¢ | 0 and &' | 0 after
obtaining the suitable estimates. But in this paper we only use &(1 — 4)a.

Another purpose of this paper is to prove the stability of the stationary solution
(p*,v*)(x) of (1.2) in H3-framework. Matsumura and Nishida mentioned a pos-
sibility of proof of the stability, but they did not give any proof. We shall give a proof
of the stability of (p*,v*)(x) in §3. The main step of our proof of Theorem 1.2 is to
obtain a priori estimates for solutions of (1.1) as usual. We shall obtain a priori
estimates by choosing several multipliers and using the integration by parts. Compared
with the case where v* = 0, we have to give more consideration to choice of multipliers.
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Recently, Benabidallah [1], [2], Kawashita [9] and Danchin [3], [4] considered the
optimal class of initial data regarding the regularity. We think that our result will be
improved in this direction.

It is interesting to investigate the convergence rate of non-stationary solutions when

time goes to infinity. So far, this problem has been studied when F=G =0 or
F=-V® and F, = G=0. In fact, Ponce [20]; Deckelnick [5], [6]; Hoff and Zumbrun

[8]; Wang [21]; Kobayashi and Shibata [12]; Kobayashi [10], obtained a rate of con-
vergence. These works have been done in the small strong solution case. But to

obtain the rate of convergence in our case, we need more delicate argument to treat the
term: (v*-V)w(?) in (3.4). We consider this problem in a fore-coming paper.

ACKNOWLEDGMENTS. We wish to express our sincere gratitude to the referee for
his/her pointing out a paper due to Matsumura and Nishida and finding many
typographical errors in the first manuscript.

2. Stationary problem.

We study the stationary problem (1.2). Take any constant p > 0. Substituting
p=p+o into (1.2) and putting y = P'(p), (1.2) is reduced to the equation:

( v G
Voot (/5+6'V>6: p+a’

—udv — (u+p" WV -v)+Wo=—(p+o)(v-V)u

| —[P'(p+0a)—P'(p)Va+ (p+0)F.

Our goal in this part is to prove [Theorem 1.1 by application of weighted-L, method to
the linearized problem for (2.1).

(2.1)

2.1. Weighted-L, theory for linearized problem.
In this section, let & be an integer fixed to kK =3 or Kk =4. We shall consider the
linearized equation of (2.1):

{V-v—I—(a-V)a:g, (2.2)
—pdv — (u+ WV -v) +Wao=—(b-V)c+f, (2.3)

where a = (a1(x),a2(x),a3(x)), b= (b1(x),b2(x),b3(x)), ¢ = (c1(x),c2(x),e3(x)) and
(f,g) € #* 1% are given. Throughout this section, we assume that

4
aeHY (14 |xDal,, +> I+ x)""'V'a| <5, bcef, (2.4)
y=1
k—1 | k
DO+ XD VA 1+ IxDgll + ) I+ |x) 'V gl < oo (25)
v=0 v=1

2.1.1. Solution to approximate problem.
First, we solve the approximate problem:
{V-v—ir(a-V)a—gAa—i—ga:g, (2.6)
—pdv — (u+ @' WV -v)+Wo+ev=h (2.7)
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in #%2, where h is defined by
h=—0b-V)c+f.
It immediately follows from (2.4) and the Sobolev inequality that

k—1
1L+ XAl + VAl < C|6* + D11+ X)W F | < oo (2.8)
v=0

In the next lemma, we shall prove some fundamental a priori estimate needed later.

LEMMA 2.1.  There exists dp = 0o(y,u, ') > 0 such that if 0 in (2.4) satisfies 0 < dy
then we have the following estimates:
(i) If0<e<1 and (o,v) € #*% is a solution to (2.6)—(2.7), then

IVoll§ + IVall® + eflloll® + lo]* + IV?a]} < C7'|(hg)lIP. (29)
i) If0<e<l1 and (o,v) € #** is a solution to (2.6)—(2.7), then
1(Va, Vo)l < C{llo]l + (B, Vg)I}- (2.10)
Here, C >0 is a constant depending only on u,u’ and .

Proor. (i) Multiplying (2.6) and (2.7) by o and v respectively; using integration by
parts, we have

(h,0) = w[Vol® + (u+ )|V - 0| +9(Vo,v) + &]|o])?,
(9:0) = —(v,Vo) + (a-Vo,0) +&|Vol|* + &l|a]|.
Canceling the term of (Va,v) in the above two relations, we obtain
ulVoll* + elloll® +elloll> < 9l(a- Vo, o) + [(h,v)] + (g, 0)]. (2.11)
Differentiating (2.6) and (2.7), and employing the same argument, we have
UVl + ey|V2ol> < 9|V (a - Vo), Vo) + |(Vh, Vo) +9I(Vg, Vo). (2.12)
Adding and (2.12), we have
ulIvoll§ + efllvll® + vllall* + 71V o)|*}

1
< Y WIV'(a-Va),V'a)| +|(V'h,V"0)| +|(V'g, Vo). (2.13)
v=0

Since
IVal* < Cppuu{IIVZ0l* + &llol|* + [|7]]*} (2.14)

as follows from (2.7), it follows from [2.13) that

2 2 2 2 2
Vol + [IVall” + e{lloll” + llo]l* + Vo]l "}

1
<C ) |(V'(a-Vo),V'o)|
v=0

1
+ G A1+ (VA V) +|(V'g,V'o)|} | = I + b, (2.15)
v=0
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where the constants C; > 0 (j =1,2) depend only on x,u’ and y. Now, integration by
parts and the Hardy inequality imply that

(-7 2| 34| (2 w2 2 (- 22

< G{lI(1 + [xall,, +IVall,, YVl

L <

< G30||Va||* (Cs depends only on ' and ), (2.16)

whereas

1
L < Glla)” + 5 {ellol]” + IV20]* + llo* + V2o )

3, _ _ .
+ 5 {e AN + 1A+ 2l + &gl ) (2.17)

Combining (2.15)—(2.17), we have (2.9) if 6 < 1/4C;.

(ii) Using the Friedrichs mollifier (cf. Mizohata [18], p. 313), we may assume that
(o,v) € #**. Employing the same argument as in the beginning of proof for (i), we
have (2.12) and (2.14). Adding (2.12) and (2.14), we have

1(Vo, V20)lI* < Cilllol|* + [|2]* + |(V(a - Vo), Vo)
+{|(VA. V)| +|(Vg,Vo)[}] = Ci{llo|* + IA1* + 1 + B}, (2.18)

where the constant C; > 0 depends only on u,u' and p. By the same calculation as
n (2.16)

I < Gd||Va||*> (C, depends only on u,u' and 7), (2.19)

whereas integration by parts implies that
I < 2C = {IV?0))* + [Vol|? }+—{|Ih|| +[IVglI*}. (2.20)

Combining (2.18)—(2.20), we have (2.10) if 6 < 1/4C>. O

Now, we employ the closed range theorem to prove the existence of solution. We
introduce the operator A defined on D(A) = L, into L, by

A(a,0) = (4i(g,v), 42(a,0)),
where D(A4) = #** and
Ai(o,0) =V v+ (a-V)o—edo + ¢o,
Ay(a,0) = —udv — (u+ WV -v) + Vo + ev.

Clearly A4 is closed operator. Furthermore, [Lemma 2.1 (i) implies that for each
0 <& <1 the range of A4 is closed.
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PROPOSITION 2.1.  There exists oy = 0o(y, u, it') > 0 such that if 0 in (2.4) satisfies
5 <dg then for 0 <e<1, (2.6)-(2.7) has a solution (c,v) € #*>2, which satisfies

1, )22 < Ce)[[ (9, (2.21)
where the constant C(e) depends on p,p',y,e and C(e) — o0 as ¢ | 0.
ProOF. Let (0,w) e #*2. Then for any (o,v) € #%2, integration by parts implies
that
(A(o,v),(0,w)) =V -0,0)+ (a-Va,0) —e(40,0) + &(o, 0)
— (Ao, w) = (e + 1)V (Y - 0), ) + Ve, ) + (v, )
= (g,—yV -w—=V - (al) — ed0 + £0)
+ (v, —pdw — (u+ 1" WV -w) = VO +ew).
Therefore #*% = D(A*) and for (0,w) e #*>%, A*(0,w) = (A4} (0,w), A;(0,w)) where
A{(O,w) =—yV -w—=V - (al) — 40 + &0,
A5(0,w) = —pudw — (u+ 1 WV -w) —=VO + ew.
Employing the same argument as in the proof of (i), we have
IVWIIT + [VOI* + e{llwl® + 161> + [V20]*} < Ce '] 470, )|

for (0,w) e #*%. Hence the closed range theorem implies the existence of solution.
The estimate is given by (2.9) directly. O

By the regularity theorem of the properly elliptic operator, we have

COROLLARY 2.1. Let (0,v) € #*? be solution to (2.6)—(2.7) obtained in Proposition
2.1. Then (o,v) € A and

(o, )1 101 < CEN -1 115 (2.22)

where the constant C(g) > 0 depends on u,u',y,e and C(e) — o0 as ¢ | 0.

2.1.2. Solution to linearized problem (2.2)—(2.3) and its L, estimate.
Next, we shall discuss the estimate for solution to (2.6)—(2.7) independent of
0<e<l.

LemMa 2.2. Let 0 <e<1 and (o,0) € A"V be solution to (2.6)—(2.7) which
satisfies (2.22). Then, there exists oy = do(y,pu,p') >0 such that if o in (2.4) satisfies
0 <0y, then we have the estimate:

Ve, Vo)lleor e < CLUIA+ XD g + 1VA VI iz k-1 (2.23)
where the constant C depends only on u,u’ and y.

Proor. By aid of the Friedrichs mollifier, we may assume that (o,v) € # ™ *.
The same argument as in the proof of [Cemma 2.1 (i) implies that

1
IVoll} + IVall® < ClIIAI* + Y _{I(V'hV"0)+[(V'g,V o)} |.
v=0
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For the right hand side, using the Hardy inequality, we have

1
v v v v 1
SRV + |7,V "0} < 5= {IVell} + Vo)
v=0

+ UL+ DA + 1L+ [xDgll* + Vg%

So we obtain
[(Va, Vo)l < C{II(L+ [x)(h, )| + [Vyll}, (2.24)

where the constant C depends only on u,u’ and j.
Moreover, for any multi-index o with 1 < |«| <k — 1, applying 0% to (2.6)—(2.7),
we have

V-0iv+(a-V)iio—¢eddio+edio = 0rg — I, (225)
—ud02v — (u+ @ W (V- 0%0) +yVlo + edZv = 0%h, '
where I, is defined by the formula:
I, = Z(“)(a;;—ﬁa V)ébs.
f<a ﬁ
Employing (ii) for (2.25), we have
1(Voie. V2aio)|l < C{llo%v]l + [1(93h, V(939 — L)1},
where the constant C > 0 depends only on u,u’ and yp. Since
VL] < Co||[Vall
as follows from (2.4) and by the Sobolev inequality, we obtain
IV o, VIE2o) | < CUIV ol + [Vally_y + (PR, V) 1}, (2.26)
if 6 > 0 is small enough. Combining and [2.26), we obtain [(2.23). H

Now using (2.23), we shall show the existence of solution to linearized problem
(2.2)—(2.3).

PROPOSITION 2.2.  There exists 3o = oo(y,u, 1t') > 0 such that if 6 in (2.4) satisfies
5 < g then for 0 < i < 1, (2.2)—(2.3) admits a solution (o,v) € #** ' which satisfies the
estimate:

(0, 0)

[ X]

||<a,v>||L6+H H+||<ch,w>ml,ksC{uu+|x|><h,g>|r+||<\7h,\7g>||kz,k1}, (2.27)

where the constant C > 0 depends only on u,u’ and y.
ProOF. We put
K= [|(1+ X)) (B, )l + (VA V)52 5-1-

From [Proposition 2.1|, [Corollary 2.1 and [Lemma 2.2, it follows that for each 0 < & < 1,
(2.6)—(2.7) admits a solution (c¢ v*) e #**15+1 such that

[(Va®, Vo)1, < CK.
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The Gagliard-Nirenberg inequality and the Hardy inequality imply that
(o, v°)
|X]

Choosing an appropriate subsequence, there exist (o,v) € Ls, (0,w)€ Lo,
(0", w') e #* 1% such that

(@ 0 s + < C||(Va®, V)| < CK.

(0, 0)

x|

(80 ov ) — (0",w") weakly in s#*-1K

(o°,0°) — (g,v) weakly in Lg, — (6,w) weakly in L,,

as ¢ | 0. Then we can easily check that

(0.0 = (0, Jxbw), - (52.50) = @',

(o,v)

x|

(e, 0)l., +

H 1V, Vo)l ¢ < CK.

On the other hand, we have
V-v'+(a-V)o® —edo®+ec® -V v+ (a-V)o,
—pdv® — (u+ WV - 0%) + Wa' + ev® — —pdv — (u+ @ )V(V -v) +Va

in distribution sense. This completes the proof of [Proposition 2.2, ]

2.1.3. Weighted-L, estimate for solution to the linearized equation (2.2)—(2.3).
At last, we shall give weighted-L, estimate for the solution to (2.2)—(2.3).

LemMa 2.3. Let (o,v) € 5 be solution to (2.2)-(2.3) which satisfies (2.27).
Then, there exists 09 = 0o(y, t, it') > 0 such that if o in (2.4) satisfies 0 < g then for any
integer with 1 </ <k, we have the estimate:

4 4
DA+ ) Vo,V o) < C bl e llell e + IVoll + DI+ XDV, V)l |,

y=1 v=1

(2.28)
where C is a constant depending only on u,u’ and y.

PrOOF. Let (g,v) € #%*! be a solution to (2.2)-(2.3) satisfying (2.27). We shall
prove the lemma by induction on /. Let / be any integer with 1 </ < k and if 7/ > 2,
we assume that

/-1 /1
S A+ (Vo v o) | < CllIblLwllell i + Vol + D11+ )" (V1 V)l |-

y=1 v=1

(2.29)
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Using the Fiedrichs mollifier and a cut-off function, we may assume that (o,v) €
CSC(R3). For any multi-index o with |¢| =/, applying 0; to (2.3) and multiplying
(14 |x|)* %, we have (after using integration by parts)

all (1 + <)) Vol +u(va;‘v, 2(1 + ) |—j§|a§z‘v)
+ (u+ )1+ X))V - 0% + (u+ i) (\7 0%, 20(1 + |x|)¥ ! % : a;w)
T V0%a, (11 |x)¥ %) = (@2 {~(b - V)e 41}, (1 + |x)* o).

Also applying 07 to (2.2) and multiplying (1 + \x|)2/6;0, we have (after using integration
by parts)

- (aj;u, (1+ |x)¥Voe +2£(1 + |x) ! %a;v)

+ (03 {(a- V)o}, (1 +|x))* 0%0) = (379, (1 + |x))* &)

Summing up the above two relations, canceling the term of (Vé%a, (1 + |x|)*8%v) and
taking summation with respect to «, we obtain

(L + 1) Vol < CUV el (1 + )V o)
+ (V7 ol, (1+ [x)* 7 Va)) +|(V/(a- Vo), (1 + |x))* Vo)
VA (L XDV )|+ [(V g, (1 + [x))*V o)
V{5 V)ek, (1 + 1x)*V o)), (2.30)
where the constant C depends only on u,u’ and y. Since
1+ 1) VGl < G (1 + [x]) 77+l
[+ )V 4 (VB V)e) (1 + [x) Vo))
as follows from (2.3), combining this with [2.30), we have
(1 + [x)) (V" o,V/a)||* < Ci|(V/(a- Vo), (1 + |x])*V o)
+ Cofl| (14 b))Vl (1 )V
IV (L4 DXV 0) [+ (V9. (1+ XDV o)
+ GV {(b-V)e}, (1 +|x)*V o)
+ G|V H{(b V)t (1+ X))V o)
=L+ 5L+ 15+ 1 (2.31)

where the constants C; (j =1,2,3) depend only on u,u’ and .
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Now, we estimate the right hand side of respectively. Integration by parts
and the Sobolev inequality imply that

/
I < Cez (14 |x|)'V"o||* in the same way as in (2.16),
v=1

1
< 2|1+ ) (Vo v o) (2.32)

F O+ )TV I+ ) (VL V)|
Moreover, noting that
(1 + x| 02p) (8P e] || < €| et || €]l oo (2.33)

for multi-index o, f with |¢| <1 or || <1 (and |af,|f] <k + 1), we can show that

Jk+1

1 ‘
L+ L <[|l(1+ ) (Vo v/ o)

(=1t 112 2 2 _
+C{||(1+|x|> V7ol 4+ (1] e [l 30 (=123, 53y

11+ D) 2o, VA 1P+ 116G el e £ = 4.

Indeed, 5 is estimated as follows: If /=1 or 2, since (1 + |x|)"'V/{(h-V)c} € L, as
follows from [2.33), we have

/-1 2 2 2
I< C{I(1+ ) V70l ™ + (1811w llell a3

If /=3 or / =4, reforming I3 into the following two parts:

—aY [ T (;>(a§-ﬁb Wb+ Y (;) (0% Pb-v)obe, (1 + |x)¥ 0%

o=\ B<a p<a

Bl=¢-2 B=1

<D EOIEI DY ( ) (027b-v)ole, (1 +|x)¥ 0%
|oe|=¢ f<a f<a p<a
IBI=0 |Bl=/=1 |p|=¢
= I3 + In. (2.35)

Using integration by parts for I3;, we have
2 (=2~ (ot
Iy < C|[(1+|x[)7Vh ., [II(1 + 1) TV e I+ (X)) VO
/-1

+ A+ )V (1 [xl) TV o
v={—-2

+ (the same term except for the exchange of b and c¢)

—H( + )Vl S+ )TV 0l 180 G llellen b
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and for 3 we can use ((2.33) directly as in the case /=1 or 2,

(=17t 112 2 2
Ly < C{I(L4 X)) 'Vl 4 (1817601 €l 7o }s

where the constant C depends only on u,u' and yp. Further, as for I: If /=1,2,
or 3, since (1 + |x|)'V/~'{(b-V)c} e L, as follows from [2.33), we have

1 / 2 2 2
Iy < §||(1 + X))V al|* + ClIBI| e [l cllFee-

If / =4, integration by parts implies that

L<GY [|(v (b V)e}, (1 + |x])%0%)| + ‘<6§{(b V)e), 8(1 + |x|)7%8_§o)

2 ] }

Then, decomposing each term as in (2.35) (the first term same as /3 with / =4 and the
second term same as /3 with /= 3) and using integration by parts, we have

1
Iy < S+ 1)l + CLIL+ ) V0l + bl e el

where the constant C depends only on u,u’ and y.

Combining (2.31), (2.32), (2.34) and (2.29) if / > 2, we obtain

4
2 2 2 Vo v— v 2
1Bl 7os llell e + IVOll* + D1+ X)) (V17 v ).

v=1

11+ |x)) (V/a, Vo) < €

This completes the proof of [Lemma 2.3. O
Now combining [Proposition 2.2] and [Lemma 2.3, we have the following theorem.

THEOREM 2.1.  There exists g = oo(y, i, 1t') > 0 such that if ¢ in (2.4) satisfies 6 < 9y,
then (2.2)—(2.3) admits a solution (o,v) € #**' which satisfies the estimate:

k k+1
o, Yy v y— v
|MM@+%R+ZW+MVﬂ+ZW+Mlﬁm
=1 y=1
5 k—1 . k
< C{IBl2es + ST+ )™ WA+ 1+ gl + 3N+ )Vl |
y=0 y=1

where the constant C > 0 is depending only on u,u’ and y. Furthermore the uniqueness is
held in #%N L.

ProoF. The existence and the estimate follows from [Proposition 2.2 and [Cemmal
2.3 directly. The uniqueness follows from an argument similar to (ii).
L]

2.2. A Proof of Theorem 1.1.
In this section, we shall construct a solution to (2.1), by use of the contraction
mapping principle in ,]84’5 . We employ the following system of equations:
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( v G
V. v = , 2.36
U+(,5—|—& )a to ( )

—udo — (u+ WV -0)+yWo=—(p+a)v-V)o
—[P'(p+a)—P(p)Vé+ (p+6)F, (2.37)

\
where (&,7)(x) efj5 is given.

2.2.1. Introduction of the solution map 7" for (2.36)—(2.37).
First and foremost, we put

v G
= b:’:_1/2~ =
N LR 9T
f=-6(-V)o—[P(p+6)— P (p)Vé+ (p+6)F. (2.38)

If we assume that ¢ < p/2 and

3 4
Ko= (14 XDGI+ DY A+ )™ VF + > 111+ [x)'V'Gl| < oo, (2.39)
v=0 v=1

then we can check (2.4)—(2.5) easily and additionally we have

3 4
I+ IxDgll+ D I+ D) VA + DI+ )"Vl < Cfe® + Ko} (2.40)

v=0 v=1
for some constant C = C(p,u, u'). Applying with k = 4 for [2.36Y-{2.37),

we have the following lemma.

LemMmA 2.4. Let (F,G)e #>* satisfies (2.39). Then, there exists &y such that if
e < &y then (2.36)—(2.37) with (6,0) € .£*° has a solution (,v) € #*> which satisfies the
estimate:

(0, 0)

[x]

where the constant C > 0 depends only on p,p' and p.

5 4
3 N )TV 4+ DI+ )V < C{e® + Ko}, (2:41)
v=1 v=1

I(a, o), +

Hence, we can consider the solution map 7 :(d,d)— (o,v);. %> — #*3 for

236} [237)

Next, we have to show that (&,?) ejf’s leads to (o,v) eﬂf’s. The following
lemma plays an important role when we estimate the solution by L. -norm.

LEmMMA 2.5. Let E(x) be a scalar function satisfying

[0:E(x)] < W (

lo| = 0,1,2).

(i) If ¢(x) is a smooth scalar function of the form: ¢ =V - ¢, + ¢, satisfying

Li(¢) = |1+ 1xD) @l + 11+ D il + 1oz, < oo,



Steady flow and its stability of compressible viscous fluid 811

then we have for any multi-index o with || = 0,1

0%(E + 4)(x)] < Mfﬁmm

(i) If ¢(x) is a smooth scalar function of the form: ¢ = ¢ ¢, satisfying

Lo(d) = (L + 5@l + 11+ XD (Vo) ball, + 11+ x]) ¢y (Vy)ll; < o0,

then we have for any multi-index o with |o| =1,2
. &
|0 (E % 9)(x)] < WLz(cé)-

Here, C, denotes a constant depending only on o.

The proof is by direct calculation and here we may omit it.
Now, with aid of the Helmholtz decomposition and the Fourier transform, we shall

estimate L,,-norm of the solution to [2.36)2.37).
LemMmA 2.6. Let (F,G) satisfy following estimate (for Ky defined by (2.39)):

1
K =Ko+ [|(1L+ X °Fllp, + 10+ D2Fill, + 1B, + DI+ [x) V6, <.
v=0
Then, if (o,v) € #*3 is a solution to (2.36)—(2.37) with (6,7) € ,]'84’5 and satisfies (2.41)
then (o,v) satisfies the estimate:
1
2 v+l y
I+ Dol + DI+ )™V oll,, < C{e® + K}, (2.42)
v=0
where the constant C > 0 depends only on u,u’ and p.
PrOOF. In view of the Helmholtz decomposition, v is written of the form:
v=w+Vp (weLsVpe Ms). (2.43)

Here and hereafter

M6 = {Vp | JZAS L67100,Vp € L6}, L6 = {W = CSO |V W= O}HHLG7

where ='lzc means the completion of - with respect to the Lg-norm. Substituting (2.43)

into [(2.36)-(2.37), we have

( ~
Ap+(_“~.v>o-:_G~, (2.44)
p+o p+ao
—udw + VD = h, (2.45)
(@ = y0 — (2u+u')4p, (2.46)

where 4 is defined by
h=—p@®-V)o+f (f is what we put at [2.38))
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and @ is introduced by (2.46) for the first time. Calculating the divergence of [2.45),
we get

AD =V -h.

Thus we have the representation for @:

& — f:aE‘)*h Eo(x) = — x| (2.47)
T Lox O T an ' ‘
Again from |2.45), we have
0D 0
—udw; =hj ——=hj ——(47'V - h
HAW) = 1 6xj j ij( V-h)

= h— 7! [Z fﬂ% h,(é)] :

i=1

So we get the representation for w:

23: 7! K'Z’z — Ef > ] ZE,, « hy(x (2.48)

where

By = | n 2 g me b ) =g (22— 228
v 4 |x| 8= ax,ax] ~ 8au \ ] Ix|? )

We shall apply (i) to estimate @ and w. Therefore, in order to estimate
and (2.48), we need to take a look at h. By (a,0) ejj’s, there exist ¥} =
(M,i)1<i<3 and V5 such that

V-o=V-Ti+ Vs [[(L+[x) Vil + 11+ XD Pall, <e (2.49)

and so we can calculate

b= —(p+3)(E- V)i~ [P'(p+ ) - P'(ﬁ)]s—;+ (7 +8)F,

_ _ ) 06 _
+{—ﬁ(I/I-V)Ei+p‘I/26i—&(ﬁ-V)v, 0(c )0—67"—\70 Fii+ (p-+a)F2,,}
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By (a,0) ef:m and (2.49) using the Sobolev inequality, we obtain
I+ XD Al + 1+ (XDl + 18511, < C{e* + Ko}
where K is defined by
K = (LX) Fll, + 10+ XD R, + 1B,
and C > 0 is a constant depending only on p. Thus, applying (i) to (2.47)
and (2.48), we have
2 1 1
x|* @)+ > |x["H IV w(x)| < CK;. (2.50)
y=0

As for p, we have from

3 3
v; G .
= F E = —F E gl + E
P 0*< llp—i—a@x p—i—&) 0* N2 0xr

. (2.51)
i=1
Since (,0) € f:"s, it follows from (2.41) and the Sobolev inequality that

1L+ IxD)*aigdll,, + 1+ D) (VaDasl, + 1L+ |x])°
1

(V)i < C{e* + Ko},
1

SN+ )2V, < N1+ [x) VG, = K,
v=0

v=0

where the constant C > 0 depends only on p. Applying (i1) to each term of
(2.51) respectively, we also have

2
> X' Vp(x)
v=1

Now, we are ready to estimate v and ¢. First, we consider the case where |x| > 1
Returning to and combining (2.50) and (2.52), we obtain

| < C{e* + Ko + K>} (2.52)

1

S 1+ )™V o(x)] < C{e? + Ko + Ky + Ky}
v=0

(2.53)
Besides by (2.46) we have
o=y {Qu+p)4p + ®}.
Combining (2.50) and (2.52), we get
(1 + |x])?|o(x)] < C{e* + Ko + K1 + K>} (2.54)

Next, we consider the case where |x| <1

The Sobolev inequality and the Hardy
inequality imply that
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1
(1+ XD e ()] + > (1 + x|V o(x)|
v=0

v

1+ |x|

=

+4(|Vv||, + 4H
2

o 5
- < < + Kol 2.
1+ ’X’ 5 = C||(VO-7 VU)HI,Z = C{S 0} ( 55)

Consequently by (2.53), (2.54) and (2.55), we have

1 2
I+ 1)V, + 3101+ )™ V70l = €|+ 3 K| < cle + K.
v=0 j=0
This completes the proof of [Cemma 2.6. O

We combine Lemmas 2.4 and to prove that the solution (o,v) € .ﬂ;“.
PROPOSITION 2.3.  There exist ¢ >0 and ¢ > 0 such that if (F,G)e #>* satisfies
K+|(1+ |x\)_1GHL] < coe (K is defined in Lemma 2.6), (2.56)
then (2.36)—(2.37) with (6,0) € jf"s admits a solution (o,v) = T(6,0) € fj’s.

ProOF. By Lemmas 2.4, and (2.56), it follows that [2.36)-(2.37) has a solution
(o,v) € #*°, which satisfies

| (a,v)]] 45 < C{e2 +K} < C{s2 + coe},

where the constant C > 0 depends only on x, ' and p. Thus if we take ¢y < 1/2C and
¢ > 0 sufficiently small, it follows that (g,v) € %4,5 . At last, we define 7; and V> by

; ; G
Vi=———2 o V2:<V-_v~)a+_ _
pto p+6)’ T h+a

Then immediately from
V.oo=V -+ "
Moreover, by (a,7) efj’s and (2.42), using Sovolev inequality, we have

(1 + 1) A

o HIA+ D), < ClE K+ (14 [x) 716, b

further by (2.56)

sC{a2 + coe} < Ce? —l—% <e,

if co < 1/2C and ¢ > 0 is sufficiently small. This completes the proof of [Proposition 2.3
[

2.2.2. Contraction of the solution map 7.
Finally, we shall sh(ivsg that the solution map T for (2.36)(2.37) is contract. We
suppose that (6/,0/) € £~ and (¢/,v/) = T(6/,0/) for j=1,2. Then it immediately

follows from (2.36)—(2.37) that
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( 51
s (55 ¥)e oo

A — ) — (W (0 — )} V(e — ) (2:57)
\ =—p@@"' - V)o' +p(e*-V)i* +/,

where (f,g) € #>3 is defined by

( o! 2 ) V2+( G G >
= — — — — . g — — —
g p+al p+a? p+a6l p+a

) —

f=-¢'@" V' +6°@-V)e*— [P(p+é') — P(p)Vé'

+[P'(p+6%) — P'(p)Vé? + (6! — 6°)F.

Since

2

3
DA+ D)L+ xDgl+ DN+ [x

v=0 v=1

)Vl

< Cle+ Ko}|(6" — 6%,5" — #%)|| e

as follows from the Sobolev inequality for K, defined in (2.39), by application of
MTheorem 2.1 with k =3 to (2.57), we obtain

(0.1 o 0’2,1)1 _ 02)

x|

(6" —a? 0" = 0?)|l, +

3 4
+ > A+ XDV =)+ DA+ [x) V(! =)
v=1 v=1

< C{e + Ko}||(6" — 62,5 — &%) jae. (2.58)

Next, we decompose (2.57) as in the proof of Lemma 2.6: Putting v' —v? =
w+Vp (weLs, Vpe M), we have

r 61 . 5
Ap‘l'(mV)(O' —O’):g7

—pdw +V® = —p(&' - V)i + p(e* - V)5* +f = h,

(@ = (0" — %) — (2u+u')4p.

The same argument as in the proof of [Lemma 2.6 implies that

1L+ 1xD)* (0" = ™), +ZH + )V = o)

Lo

< Cle+ KM|(6" — 625" — )| s

+ Celll(1+ 1) (A = P, + I+ )T = P)), (2:59)
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where I7lj , 172j (j=1,2) are functions satisfying
Voo =V VL I+ 3D N, + 1+ )T, < (2.60)
Moreover, if we define Vlj , sz (j=1,2) as

o/

A : . o/ : G
Vljz_p_Jr&jJJ’ V2]:<V'p—igj)aj+p+&i’ (2.61)

then
1+ DAV = PR, + 1+ )™ (1 = V),
< Cle+ (1 + [x]) G, I — 628" — )]0 (2.62)

Combining [2.58), (2.59) and [2.62), we obtain

(6" = 0% 0" = o)l s + 1L+ D OR = WD), + I+ 1) (7 = VR,

< Cle+ K}||(6" — &%, 8" — 8?)]| /24
- CElll(1+ 17 = P, + I+ 1xl) ™ (7 = )L, )

Therefore, we have the following proposition.

PROPOSITION 2.4. There exist co >0 and & > 0 such that if (F,G)e #>* satisfies

K < coe (K is defined in Lemma 2.6),

then for (67,v7) € fj’s and (a/,v/) = T(67,0’/) (j=1,2) we have the following estimate:

le" = 0" = %)l s + L+ 16D 4 = PR, + I+ )T (5 = V),

2[||( = ) e A N+ 1D A = P, + 1A+ )70 = DI

where (17' 172/) (j=1,2) is a function satisfying (2.60) and (Vlj, sz) (j=1,2) is defined
by (2.61).

Hence, by Propositions and 2.4, the contraction mapping principle implies the
existence and uniqueness of solution to (1.2) which we have stated in Theorem 1.1.

3. Non-stationary problem.

In this part, we consider stability of the stationary solution with respect to the initial
disturbance (p,,v9). Let p be a positive constant and let (F, G) be small in the sense of
Mheorem 1.1. We denote the corresponding stationary solution obtained in [Theoreml
1.1 by (p*,v*). Putting

p(t,x) =p*(x)+o(t,x), v(t,x)=0v"(x)+ w(t,x)

into (1.1), we have the system of equations for (o,w):
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(0,(t) +V - {(p* +a()w(1)} = =V - (v"a(1)), (3.1)
wi(t) — % [udw(1) + (u+ 1V (V- w(1))] + A(1)Va (1) = f(2), (3.2)
((9,)(0,%) = (po — p", 00 — v") (x), (3-3)

J(0) = =@ -V)w(t) = (w(t) - V)(0" + w(1))

L : a(1)
C{P(p () - P (p N - — T
p*{ (p" +a(1)) = P'(p7)}Vp o+ o(0) i
X [ud(v* +w(0) + (u+ WAV - (0" +w(0)} = P(p” +a(t)Vp7],
(o + (1)
A(t) = ————=.
(2 pr+a(1)
Our goal in this part is to give a proof of [Theorem 1.2. The proof consists of the

following two steps. One is local existence:

PrROPOSITION 3.1.  If (a,w)(0) € #>3, then there exists ty >0 such that the initial
value problem (3.1)—(3.2) with initial data (a,w)(0) admits a unique solution (o,w)(t) €
%(0,t9; #>3).  Moreover, (o,w)(t) satisfies

l(@ w155 < 2o, W) (O)]]3,5

for any te [0, 1)].
And the other is a priori estimate:

PrROPOSITION 3.2. Let (a,w)(f) € 6(0,t1; #%3) be a solution to (3.1)—(3.2). Then
there exists &y > 0 such that if ¢ < ey and supy_,,, ||(a,w)(D)|l5 3, [|(p* = p,v")[| j45 <,
then

l(e. w)@)II3 5 + JO Vo, Vw, w)()]13.3, 2 ds < Cll(a,w)(O)]3 5 (3:5)

for any te0,t], where C >0 is a constant depending only on u and p'.

Concerning the local existence, we can apply the Matsumura-Nishida [14] method
directly. So we shall devote the following sections to the proof of Proposition 3.2.

RemARK 3.1. In the following lemmas and these proofs, small number ¢ is at least
taken in such a way that

RN

(@ w)Oll3,3: (" = p,v7) | s <& <

Y

so that we have 3p/4 < p* <5p/4, p/2 < p* +a(t) <3p/2 etc.
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3.1. Some estimates for f(7) and its derivatives.
LemMa 3.1.  Let o be a multi-index with 0 < |o| < 3 and let us write 0.f(t) of the

form:

(1) = = P ) WAV - 02 (0)] + 1)

Then, there exists &> 0 such that if |(o,w)(?)||5 3, [|(p™ = P,v")|| s45s <& then F,(1)
satisfies

(Vo w(O)] + (0" + [wODIVw (@) + (Vp*| + V20" ])]a(2)]

if a=0,
o] +1 o] +1
|Fa(l)| <C |V|O¢\—Hv*| |W(l)’ + Z |VVW<[>‘ + Z<‘va*| + ‘VV+IU*|)|O'(I)| (36)
v=1 v=1

|
+ Va(1)| +R|a‘(l> if |o|=1,2,3.

v=1

Here, C > 0 is a constant depending only on u,p'; R\ (t) =0 and Ry (t) (k = 2,3) satisfies
the following estimates:

IRe(D)ll.,,, < Cell(V2o,V2w)(Olkaja  (k=2,3),

IR2(1)]] < CellV3w(0)]].

PrOOF. By combination of the Leibniz rule and the Sobolev embedding: H> < L,
we can easily check with

0 if k=1,

@ = V2w(1)| V2a(1)] if k =2,
CETN IV IV3a(0)] + (IV2w(0)] + [V3w(0)]) |V 3a(1)]

+ (V3 [+ VR DIVa(n)| + (IVp* | + V2w DIVw(o)|  if k = 3.

(3.7)

Using the Gagliard-Nirenberg inequality, we have
1R ()], < IV2w(O)]l Ve ()]l < Cel|V2a(0)]),
1R (1)ll,,, < V2w IV a(0)] + V2wl Ve (D)l
+ V2, VA HIVa()l, + 11V V2w IV ()],
< Cel|(V20. VW) (O],
moreover using the Sobolev inequality, we also have
IR < IV2w()ll, Ve (@)l < CellV2w(D)ll;.
This completes the proof of [Lemma 3.1 O
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3.2. Estimates for Vw(¢) and its derivatives up to V*w(r).

LemMa 3.2. Let (a,w)(f) € 6(0,t1; #>3) be a solution to (3.1)—(3.2).
exist &y, >0 and ox >0 such that if ¢ <&y and ||(a,w)(1)|5 3, [I(p*
then

%HIG(I)H2 + (BOw(1), w(0)] + 0| IVw(0)|* < Cel| Vo),

and for 1 <k <3 and any 1 with 0 < 2 < A
d
7 (IV¥a()]1> + (B)V*w(2), VEw(2))] + o [VF (1))
< Cle+ AV, w) (O ot + CA VW@,

where C >0 is a constant depending only on p,u’ and

(p* + (1))’

R O]

819

Then, there

— 0"y <6

(3.8)

(3.9)

Proor. Using the Friedrichs mollifier, we may assume that (o,w)(?) € €(0,1;

A**). For any multi-index « with 0 < |o| <3, applying 0 to (3.

1) and (3.2);

multiplying the resultant equation by d7o(¢) and (p* —l—a(t))A(t)_lafC‘w(t) respectively,

we have

4
di

N —

B(1)

103a(0)1* = ((p" + a(0))23w(1), VOla(r)) = (=03 (v 0 (1)) — L(1),VO}a(1)),

(B(1)awi(1), 0xw(1)) — (7 O{udw(t) + (u+u YV (V- w(n)}, 5§‘W(l)>

+((p" +0())Vaia(1),03w(1)) = (037 (1) + Ja(1), B()Iw(1))

by integration with respect to x, where I,(z) and J,(¢) are defined by

Lt =) ( a) (0 (p" + (1) aw(2),

p<a ﬁ

L0 =3 (5)] (2L ottumt) + (e w1 i)

+ (a;‘ﬁA(t))Va_{fg(z)} .

Canceling the term of ((p*+ a(¢))0;w(?),Viia(t)) by the above two
writing the first term of second formula as follows:

(B0)2wi (1), 20(0)) = 5 T (BO(0), 2w(0)) — 5 (B((1), 2w

and using integration by parts for the second term of second formula,

formulas and

(1)),

we have
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|

4Bolu o 2
5 [Vasw(o)ll

< [(03(va(1)),Vaia(0))] + [(03S (1), B(t)oxw(1))]

{ll0%a(n)1* + (B(1) 23w (1), o3w(1)} +

N —
Y

t

+ [[(1(0), Vaia ()| + |(1a(2), B(1)axw(0))]] + % |(Bi(1)05w(1), 0w (2))]

+ [dl (vewto (v22) et | + et | ( (72227 otmion vt |

EK1+K2+K3—|—K4—|—K5, (310)

where B() = minﬁ/ZSSgﬁ/z Sz/P/(S).
Now, we estimate the right hand side of [3.10), using the Sobolev inequality and the
Gagliard-Nirenberg inequality. If « =0, employing the Hardy inequality, we have

a(1)

X IVa(0)] < Ce|Va(o)]. (3.11)

Ky < [[(1+ [x[)o,

w0

If 1 <o <3, by integration by parts, we can show that
K1 < Cel|Va(D)iy- (3.12)
To use [Lemma 3.1, we divide K, into the following two parts:
a(1)
p(p*+a(D)
= Koi + Koo (3.13)

Ka < |(Falt), 0%w(0))| + \ ( [dOw(t) + (e + W)V (T - 3w(0)], af;w<z>) \

Concerning Kj,, using integration by parts, we have

Ky < ﬂ‘ (\7 {% a;‘w(z)},vai‘w(ﬁ)'

< Clllo)ll, IVow()I* + (Ve Vo), 0wl IVazw(n)]}

+ (u+u')

< Ce|Vorw(n)||>. (3.14)
To estimate K>, we use (3.6). If =0,

w(?)

Ry

2
Ky < C{ 11+ X)) Vo7l ..

Fla+ |x|>v*||Loc||vW<r>||H%

+wO L, IVwO Iw(D)l

||W([)||L6}

< Ce||(Va,Vw) ()|, (3.15)

a(1)

1+ XNV, V2o, X
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and if 1 < |of <3,
o] +1

Ky < C{IIV'“'“U*II W@ IV w(@) ], + Y IV w@l V(o)

v=1

o)+1

|
+ > 1@, Vo) | o (@) V(D)
v=1

o
+ IV IV hw()]| + HRa|(l)HL3/2HV'“'W(Z)IIL3}
v=1

< C(e+1)|(Va, Vw)(t)|]|21‘717|a| + CA Y VPhw()]? (3.16)
For 1 < |« <2, we can easily check that
K3 < Cel|(Va, Vw)(D)liy-1. - (3.17)
It also turns out to be true for |x| =3, using the following inequality:

[

< Clvw(l;,

Ly

which follows from combination of the Sobolev inequality and the Hardy inequality. In
order to estimate K4, we use (3.1). Then

2K, = |(B(1)o(1)0m(1), &2w(1))
— (V- {(p" + o()w(t) + v"a(0)}, B)Ow(1) - 32(2))|
< Cl(w(r) + v*o(0), V{2w(1) - 2w(0)} + {VB()} 2w (r) - 92w(0))
< L), + 101l o) 17w @) | 102w,
v, )OIl V" VoIl e2w(0)]12,}
< Ce|[varn(n)|, (3.18)

where B(f) is defined by

_ P'(p* +olt)) , .
) R ) R
We also have
Ks < C|(Vp*, Vo)), IVorw(@)|[ |0;w(1)ll,, < Cel|Voiw(2)]|. (3.19)

Combining (3.10)—(3.19), we obtain and [3.9), if we choose ¢ A >0 small
enough. L]
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3.3. Estimates for w,(7) and its derivatives up to V2w,(7).
Lemma 3.3. Let (a,w)(t) € 6(0,t;; #°3) be a solution to (3.1)—(3.2). Then, there

exist &9 >0 and B > 0 such that if ¢ < ey and ||(a,w)(1)|5 3, |(p* = p,v")|| so5s < & then
we have

L w(0),Vol0) + B w0 < Vo> + CIVw@I}, (3.20)
L0, V50 () + BV w0l < CIVo, Vi V) (DI e (321)

for 2 <k <3, where C >0 is a constant depending only on u and p'.

Proor. Using the Friedrichs mollifier, we may assume that (o,w)(z) € 4(0, t;

A% *). Multiplying (3.2) by A(1)”', we have
1 1 1
t

mw,(z) +Vo(t) = 10 [uAw(t) + (p+ 1V (V - w(1))] + mf(t)-

For any multi-index o with 0 < |«| < 2, applying 07 to this formula and multiplying the
resultant equation by J;w,(f), we have

(VoZa(t),0;w(2)) + (ﬁ@i‘m(l),@;‘m(z))
o L B, (o
— (03 0+ G 7 - wl0)] 70 = L0 b 00w,
where 1,(¢) is defined by

oK (3)

p<o

The first term can be written in following form:
d .
(Vaza(t), 0cwe(1)) = = (VO,0(1), Gow(1)) + (9:0:(2),V - Ow(7))-
Therefore, putting A1 = max;;»<s<3;/2 P'(s)/s, we have

d o o 1 o
& w0000, aw(0) + 5 105m()1F
< | (02 v ) + Gt P 7w} 03000 )|+ 1140, 820)

. '(a{ ﬁ f(t)}, a;;wt@) ‘ (80,07 - 82w()]

=K + K> + K5+ Ky. (322)

Now we estimate the right hand side of [3.22), using the Sobolev inequality and the
Gagliard-Nirenberg inequality. First, we can easily check that
Ky < AVPhe (1)) + C2HIV2w(0)ly,

i (3.23)
Ky < Ce||Vwi(0)ljy-1-
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We estimate K3, using [Cemma 3.0: If « =0,
Kz < C{|[Vor]| ., [Iw(@)l ., + 1™ w@) I, [IVw(D)]]
+ Ve V2o ol + o, IVw(@)[} w.(2)]
< Ce||(Va, Vw, w) (D)[5.1.- (3.24)

If 1 <lof <2, we divide K3 as

Ko< X (5162 a0 ol 0,60m0)

p<a
+(A() 1021 (1), 0%wi(1))] = K31 + K. (3.25)
Then we have

|

Ka <CY (Vo V), Y. 1V"a,V2w)@)] L IVw(0)]
v=1

0<v S|0€‘71
0<v <Jo|+1

< Cel|(Va, Vi, V) (1151 1,00

* S P v AT P (326)
K3 < COIVOll W@l + D IV vV o) ey,
v=1

Vo, V) Ol -1 a1 + ||R|a(t)||}||V'“Wz(t)||

< AV w012 + CA Vo, V) (Dl g1 g
At last, in order to estimate K4, we substitute (3.1) into o, as in [3.18): Indeed, if o = 0,
Ky <|(V-A{(p" +a(@)w(@)},V - w(0)] + [(v7a (1), V(V - w(2)))|

< c{||<\7p*,Va<z>>||L3|rw<z>uL6||vW<r>|| V(O + 10+ o], % Hv2w<z>||}
< Cel|(Va, V3w) ()] + CIVw (0], (3.27)
and if 1 <o <2,
Ka < [(@3{(p" + o(0)w(0) +0°a(0)},V(V - 3w(1)))]
< cﬁ;{uwzﬁp*, 0 o) 108w(0) |, + 103w(0)]
10 B0, + 122 I 05
< Cll(Vo, VW) Fj-1. o1 (3.28)

Insert (3.23)—(3.28) into (3.22). Then, we have and (3.21) if we take ¢, 4 >0
small enough. []
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3.4. Estimates for Vo(7) and its derivatives up to V3a(z).

LemMa 3.4. Let (o,w)(t) € €(0,11; #°3) be a solution to (3.1)—(3.2). Then, there
exist &9 >0 and i > 0 such that if ¢ < ey and ||(a,w)(1)l5 3, |(p* = p,v")|| so5s < & then
we have

IVa()))* < [|(Vw, w) (@]} o, (3.29)

IV a(0)]I” < Cll(Va, Vi, VE w) (D11 240 (3.30)
for 2 <k <3, where C >0 is a constant depending only on u and p'.
Proor. Using the Friedrichs mollifier, we may assume that (o,w)(?) € (0, 1;
A**). For any multi-index o with 0 < || <2, applying J; to (3.2) and multiplying
the resultant equation by V0ya(z), we have

AV ()P < |(@2wi(1), VEla(n)] + (a{pi [dw(t) + (4 1)V - w(t))]},Vﬁ,i‘a(t)> ]

+ [(L(1), Voga()| + [(051 (1), Voia(1))|
= K| +K2+K3—|—K4, (331)

where Ao = min;» <, <352 P'(s)/s and

L) =Y"( 7 )@ aw)wols(r).
()

It immediately follows from the Sobolev inequality that
Ky <2V e (0)]1? + C27H V(0]
Ky < AV ()] + ANV Aw(0) iy (3.32)
K3 < Ce|Va(d)iy-

We employ to estimate K4. Using the Sobolev inequality and the Gagliard-

Nirenberg inequality, we have

|o|+1

Ky < C{HVv*||L3||w<z>||L6 =3I ) o0,

v=1
+ Ve, Vw) (Ol -1, a1 + ||R1|(Z)II}IIV“'“0(0||

< AV () + 2 Vo, V) (-1, g (3.33)

for 1 < || <2. This calculation is also true for a« =0, if we regard Ro(f) and
|Va(?)||_, as zero. Combining (3.31)—(3.33), we obtain ((3.29) and if we take
&, 4 >0 small enough. ]

3.5. A Proof of Proposition 3.2.

Let (o,w)(1)e%(0,t; #°3) be a solution to (3.1)—(3.2) locally in time. Further-
more, we suppose that supy_,,, [[(a, w)(D)ll5 3, [|(p*—p,v")|| y+5s <&, where £>0 is small
enough such that at least we can use Lemmas from 3.2 through 3.4. We use the notation:
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(0 o)’
P(p  + o)

Summing up [3.8), with k = 1, (3.20) and (after multiplying [3.9), [3.20),
with small numbers respectively), we have

[, w]5(0) = lo(O)1” + (B(O)w(2), w(z)),  B(1)

d 1
7 {Z o[V, VW] + By (w, va)} + (Vo Vw, w5 1.0 <O, (3.34)
v=0

if we take & 4 > 0 sufficiently small. Here and hereafter, ox,f; > 0 are constants
depending only on g and x'.  Similarly, summing up [3.9, (3.21), with k = 2 and
(3.34), we have

d 2 2
7 {Z ou[V'e,Vwlg+ Y B,V w, Vva>} +|(Vo, Vw, w1 <0 (3.35)
v=0

v=1

Also, by [3.9), (3.21), with k =3 and (3.35), we obtain

d 3 3
7 {Z o, [V'a, V' W], + ZﬁV(VV_IW,VVJ)} +|(Va, Vw, w35, <0,  (3.36)

y=0 v=1

for any 7€ 0,#]. Then, integration of (3.36) on [0,7] implies that
t
Nalow](0) + | 17, 7)) 5 ds < Nalor)0), (3.37
0

where Np[o,w](s) is defined by

3 3
Nolo,wl(s) = " oulV0, 7 wl5(s) + 3 B,V w(s), V7o)
v=0 v=1
for each s > 0.
Let us denote By = min; < <3;2{s>/P'(s),1} and B; = max;/»<,<352{s*/P'(s), 1}.
Since we may assume without loss of generality that o < o) and S, < ax min{By, 1} /4
for k =1,2,3, it follows from a simple calculation that

o3

2 Boll(2,)(9)135 < Nolor,wl(s) < 2B1 () (9113 (3.38)

for each s€[0,7]. Combining (3.37) and (3.38), we obtain (3.5), which completes the
proof of [Proposition 3.2, ]

Hence, by Propositions B and B.2, we finally arrive at the conclusion of

Mheorem 1.2,
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