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Abstract. A well-known conjecture states that the kernel of representation asso-
ciated to a modular fusion algebra is always a congruence subgroup. Assuming this
conjecture, Eholzer studied modular fusion algebras such that the kernel of representation
associated to each of them is a congruence subgroup using the fact that all irreducible
representaions of SL(2,Z/p*Z) are classified. He classified all strongly modular fusion
algebras of dimension two, three, four and the nondegenerate ones with dimension < 24.
In this paper, we try to imitate Eholzer’s work. We classify modular fusion algebras such
that the kernel of representation associated to each of them is a noncongruence normal

1 6
subgroup of [I':= PSL(2,Z) containing an element <0 1). Among such normal

subgroups, there exist infinitely many noncongruence subgroups. In a sense, they are the
classes of near congruence subgroups. For such a normal subgroup G, we shall show
that any irreducible representation of degree not equal to 1 of I'/G is not associated to a
modular fusion algebra.

1. Introduction.

In mathematical physics, it is known that for each conformal field theory
(CFT) there is an associated fusion algebra which is an associative and commutative
algebra over C of finite dimension and has a representation of SL(2,Z) (ref. [9]). In
order to investigate CFT, the classification problem of fusion algebras is a very impor-
tant research. There are some partial results for this. For example, Eholzer classified
all strongly modular fusion algebras of dimension two, three and four. He was able to
classify all nondegenerate strongly modular fusion algebras of dimension less than 24.
The term ‘strongly’ means the kernel of representation associated to fusion algebra is
a congruence subgroup. The term ‘nondegenerate’ is defined in the next section.
A representation p: SL(2,Z) — GL(n,C) is called admissible if there exists a fusion
algebra A such that (4, p) is a modular fusion algebra. These notions were introduced
by Eholzer. Refer to for strongly modular fusion algebras. In this classification,
he used Nob’s classification of irreducible representations of the finite group SL(2,Z),:)
where p is a prime and A is a positive integer (ref. [16], [I7]). One reason of his
classification is based on the following conjecture.

THE CONJECTURE (ref. [8]). The kernel of representation associated to a modular
fusion algebra is always a congruence subgroup.
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One purpose of this paper is to start attacking such conjecture. In this paper, we
will imitate Eholzer’s work in the following situation. This problem was suggested by
professor Eiichi Bannai.

THE PrROBLEM. Let I':= PSL(2,Z) and G be a normal subgroup with the finite
6). Then,
1

(1) Decide all irreducible representations of I"'/G.

(2) Is the irreducible representation of I'/G admissible?

We want to find a counter example for this conjecture, that is, an irreducible
representation (of I”) associated to a modular fusion algebra whose kernel is a non-
congruence subgroup. It is our one wish to find a counter example in view of this
problem since there exist infinitely many noncongruence subgroups among the normal
subgroups of the problem and they are the classes like congruence subgroups in a sense.
But the answer to this problem is negative. Namely, we prove the following theorem.

1
index of I' containing ( 0

THEOREM 1.1. Let G be a normal subgroup with finite index of I containing
1 6
< 0 1). Then, all irreducible representations of degree not equal to 1 of I'/G are not
admissible.

REMARK. Though the representation associated to a modular fusion algebra is a
representation of SL(2,Z), we consider PSL(2,Z) in this paper to make the proof easy.
But the result does not change much even if we consider SL(2,Z), since only the same
representations appear. For the reducible representations, representations of degree <4
are classified in since any of the kernels of the representations of degree 2 is a
congruence subgroup. The reducible representations of degree >5 are too complicated
to compute.

2. Fusion algebra and modular fusion algebra.

This section depends basically on [8]. We will adopt the following definition of
fusion algebra in this paper (ref. [8], [1], [9]).

DerFiNITION 2.1 (Fusion algebra). Let A4 be an associative and commutative
algebra over C (complex number field), and have a distinguished basis {xq, x1,...,X,}
with multiplication defined by

n
o k
X+ Xj = g Nz’ixk'
k=0

Ni]k are called structure constants of 4. Then, 4 is called fusion algebra if the following
conditions are satisfied.
(i) Nj =09, (where § is Kronecker’s d),

N,,k € Z>y, A
There exists an involution " of {0, 1,...,n} such that Nj) =J; and Nl]k = Nj.

ExamMPLE. Let G be any finite group and let {y, = 1¢ (the principal character),
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Xi>---,),} be the irreducible characters of G. Put 4:={f:G— C|f(h~'gh) = f(g)
Vg,he G}. A is an associative and commutative algebra over C whose addition,
multiplication and inner product are respectively defined as follows: for ¢,y € 4, g € G,

(@ +¥)(9) == dlg) +¥(9), (¢-¥)(g) = d(g) - ¥(9), (9¥)g:= ﬁiﬁ(g)m,

ge@G

where ¢ denotes the complex conjugate of ¢ for any element ¢ of C. It is known
that {xo,x;,---,x,} 18 an orthonormal basis of A. An involution "~ is defined by
#(g) := ¢(g). Then A is a fusion algebra with a distinguished basis {yg,x1,---»Xu}-

0 —1
Next, we shall define modular fusion algebra (ref. [8]). Let S:= ( {0 ),

11
T:= (0 1). Then we know that SL(2,Z)=<(S,T|S*=1, S = (ST)*>.

DEFINITION 2.2 (Modular fusion algebra). Let A be a fusion algebra with structure
constants Ni;‘ and p be a unitary representation of SL(2,Z). (A4,p) is called modular
fusion algebra if the following conditions are satisfied:

(i) p(S) is symmetric and p(7") is diagonal,

(ii) ]vyo = p(SZ)i]_’

(iii) (Verlinde’s formula)

Y m=0 P (S)Om

From this point onwards, we denote modular fusion algebra as MFA. MFA of
dimension 1 is called a trivial MFA. Next, we introduce a very important example of
MFA. This example is called finite group modular data (ref. [9], [II]).

ExampLE. Let G be any finite group. We take the Grothendieck ring F of
G-equivalent complex vector bundles over G (where we take conjugation as the action
of G) as a fusion algebra and the modular data p of G as a representation of SL(2,Z).
Then (F,p) is a modular fusion algebra. It is known that the kernel of finite group
modular data is a congruence subgroup (For this fact, refer to [10]).

The following nondegeneracy of MFA was introduced by Eholzer (ref. [8]).

DEerINITION 2.3 (Nondegenerate). Let (A4,p) be a MFA. When the characteristic
polynomial of p(7T) does not have multiple root, (4,p) is called nondegenerate MFA
and so is p(7T).

Let us introduce two lemmas to investigate nondegenerate MFA. These two
lemmas are due to [8].

LemMma 2.1 (Eholzer). Let (A,p) be a nondegenerate MFA. Then p is irreducible.

LemMma 2.2 (Eholzer). Let p and p’' be equivalent, irreducible, and unitary repre-
sentations of SL(2,Z) such that p(T) = p'(T) is diagonal and nondegenerate. Then,
there exists a unitary diagonal matrix D such that p= D~'p'D.
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REMARK. (i) Note that from [Lemma 2.1, it is enough to find nondegenarate MFA
in finding MFA from the irreducible representations of 7.

Take an irreducible unitary representation p of I such that p(7') is diagonal
and nondegenerate. Let p’ be any equivalent unitary representation of p such that
p(T)=p'(T). Then, by [Lemma 2.2, there exists a unitary diagonal matrix D =

do
d

d
such that p’ = D~!pD. Thus p'(S); :ip(s)y-

dn
Apply Verlinde’s formula for each representation p and p’.

m=0 p(S)(;m a didf m=0 p<S)Om

zn:p<S)llmp(S)1/mp<S>llcm dk . p(S)zmp(S)]mp(S)km

Since |d;| =1, if p’ is associated to a MFA, for any i, j,k,

€ Z hold.

- p(S)zm (S)jm (S)km
Z p(S>0m

m=0

There are many equivalent representations of p. But as soon as we find i, j,k such
that | 320 2(8)inP(S)inP(S)im/ (P(S)on)| ¢ Z, we do not need to investigate many other
equivalent representations of p. From the above, we see that nondegeneracy simplifies
the classification of MFA.

1 -1 = 1 0
ExampPLE. Let p(S) := 3 (_\/% \/?), p(T) = (0 _1>. Then p is a unitary

and irreducible representation of I.
ip(s)lmp(s)lmp(‘g)lm
m=0 p(S)Om

So, we can see that any equivalent unitary representation p’ of p such that p'(T) =

1
( 0 _01> 1S not admissible.

. .. 1 6
Next, we shall consider the normal subgroups of I" containing ( 0 1).

3. Certain normal subgroups of I'.

This section is based on [13]. Let I':= PSL(2,Z),

(0 -1 (0 -1 1
Yoo )P 0 o1 ) T 0 1)

1 1 )
a::[x,y]:xyxyzz(l 1), b::[x,yz]:xyzxy:(l 2) mn I
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Let I’ and I'” denote the first commutator subgroup and the second commutator
subgroup, respectively. Then,

I'={x,y|x*=y»>=1) (the free group generated by
two elements of order 2 and 3),

I'" = <{a,b) (the free group generated by a and b),

5
r=>» :r,
r=0

and

r'= Z a'b’T" (I'/T"" is the free abelian group of rank 2).
i,jeZ

1 6
We also note that [a,b7!] = (O 1) = z5.

Let A(m) denote the minimal normal subgroup containing z”. Then, it is
shown that A(m) = I'(m) for 1 <m <5 by Brenner [3], and A(6)=T" for m=6
by Newman where I'(n) :={Ael'|A=1 (modn)}. So, the problem comes to
consider normal subgroups which contain I'”. Take any normal subgroup G contain-
ing z6. Since A(2) =TI(2) and A(3) =I(3),

?2eG=G>oTI(2),
eG=G>oI(3).

In [8], it is shown that any irreducible representation (of degree not equal to 1) of
I'/T’(2) ~ S5 (the symmetric group of degree 3) and I'/I"(3) ~ A4 (the alternating group
of degree 4) is not admissible. Next, we shall assume that the order of z in I'/G is
equal to 6. In this case, we have the following lemma by Newman (ref. [13]).

Lemma 3.1 (Newman). Let I'> G. Assume that the order of z in I'/G is equal to
6. Then, I' >G>TI".

From now on, we consider only the normal subgroup G such that I'' > G> I'”.
Such subgroups were classified by Newman.

THEOREM 3.1 (ref. [13]). There is a 1-1 corespondence between normal subgroups G
such that I'' > G I'", G#T" and the ordered triplets of integers (p,m,d) where

p>0, 0<m<d—1, m>*+m+1=0 (modd).
(p,m,d) corresponds to the normal subgroup G such that
G= Z A'B'T", where A :=a’b"™ B :=b?.
ijeZ

Newman showed in that the group (p,m,d) in is a congruence
subgroup if and only if (p,m,d)=(1,0,1),(1,1,3),(2,0,1),(2,1,3). So, we obtain
infinitely many noncongruence subgroups.
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Let G = Zi’jGZA"BfF“, where A4 :=a?’b", B:=b%. Then,

i=0,...,p—1
Jj=0,...,dp—1
and so
I = E E Zla/bkG
i=0,...,5 j=0,...,p—1
k=0,...,dp—1
From this,

I')G~Z/6Z % (Z/pZ x Z|dpZ).

The action of Z/6Z (={z)) on Z/pZ x Z/dpZ is given as follows. For any (i, /) €
Z/pZ x Z]dpZ,

S, j) = (i, J),

S(i, j) =27 (i, )z = (=mi — j, (m* + m+ 1)i + (m + 1)),
S(i, j) =z (i, j)2* = (=(m + )i — j, (m® + m+ 1)i +mj),
S0, j) =270, )2 = (=i, =),

S, j) =274, )2t = =S ),
S3(i, j) =271, ))2° = =S2(i, J)

4. Review of the little group method.

In this section, we review the little group method (ref. [6]). It enables us to
compute the irreducible representations of a group with the form H <X A where 4 is
an abelian group. In this paper we denote Irr(G) as the set of all irreducible rep-
resentations of G. Consider G := H X A where A is abelian. H acts on Irr(A4) as
follows. For he H, pelrr(A4), ae A,

(hp)(a) = p(a"),

where a” denotes the action of H on A. Then,

Irr(4) = | A; (the orbit decomposition by the action of H).
=1

Fix p; € A;.
Hi:={heH|hp;=p;}, G;:=H; A
For any y e Irr(H;), we extend y to an element of Irr(G;) as follows.

For (he H;, ae A, y(ha) := y(h)).
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Put

pi(ha) := p;(a).
Then, we can regard p; as p; € Irr(G;).

Opi == (x ® p;)°

where (y ® p,»)G denotes the induced representation of y ® p;. Then 0, € Irr(G) and
Irr(G) = {0, |1 <i<n,yeH}.

5. The irreducible representations of the quotient group of degree 2 and 3.

We now compute the irreducible representations of Z/6Z X (Z/pZ x Z/dpZ)
using the little group method. Let

G:=Z/6Z % (Z|pZ x Z|dpZ), H:=Z[6Z, A:=Z/pZ x Z/dpZ.

For (i, ), (k,l) e Z/pZ x Z|dpZ, ¢;(k,]) := é;ﬁ‘”ﬂ where ¢, is a primitive n-th root of
1. Then,
Ire(A) = {¢; | (i,)) € Z/pZ x Z]dpZ}.
Fix ¢; e Irr(4). H acts on Irr(4) as follows:
For (I,m) € A,
(Zk%')(lam) = ¢ij(Sk<lam>>'
Let Hj:={he H|(h¢;) = ¢;}, G;:=H;-A. Then we obtain the following lemma

using some elementary computations.

LemMA 5.1. zeHj<i=j=0,
22eH;3/=0, id=(m—1)j (moddp),
P eH; < 2i=0 (modp), 2/ =0 (moddp).

Take y € Irr(Hy). 0Oy = (¢®¢U)G is an irreducible representation by the little
group method. Since Hj; is an abelian, degy = 1. So,

From this, we see that the degrees of the irreducible representations are 1, 2, 3, or 6.
We investigate if each of the irreducible representations of degrees 2 and 3 is admissible.
Note that x = z35%(0,1) in G.

(i) Degree 2.
The irreducible representations of degree 2 appear in the case of |H : Hy| =2, i.e.
H; = {z*). Then,

Gy =<{z*y-4, G=Gy+:Gy.
For 0 < k,l <2, let (%) := " where w:=&, and O := (Y4 ® 4;)°. Then,

id—mj
0 wk 0 @*
Orii(z) = (1 0 ), Orij(x) = ook gid=lmt1)] 0
dp
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By Lemma 5.1, z>e H; < 3j =0, id = (m—1)j (moddp). So,

0 2k =
Hkij(x) = ( ké—2j w Oédp>.

ok
Put o« :=¢g, and f:=¢,. Take a conjugate of 0i; with P := (1/\/_)( loc ),
k ¥ g
-1 _ (@ 0 -1 B +p7 /-
P Qk,'j(Z)P— ( 0 —o(k)’ P QkU(X)P (ﬁ_zj ﬁ_J B —J —{—ﬂ 2]

Since 3j =0 (moddp), we have f7/ =cw' for /=1 or 2. (If /=0, j=0. Since
id =(m—1)j (moddp), we have i =0. This contradicts z ¢ H;.) So, the possibilities
of P~10;(x)P are only

oc3k< —1 —\/§> 06_3]‘(—1 \/§>
2\-v3 1) 2\v3 1)
The above two representations are isomorphic to Ni(x;) ® pr and Ni(x;) ® pris,
respectively where p, (x) := (—=1)* and p,(z) := «*. We can refer to for Ni(x).

The kernel of Nj(y;) is a congruence subgroup. So, this is not what we are looking
for. Also, it is shown in that any of these representations is not admissible.

Degree 3.
The irreducible representations of degree 3 appear in the case of |H : Hy| =3, i.e.
Hlj = <Z3>. Then,

Gy =<y A4, G=Gy+:G;+Gy.
For 0 <k,/ <1, let Y (%) := (-1)", Oy == (¥, ® 4;;)°. Then,

0 0 (=D pid=n+1); 0 0
Ojz)=[1 0 0 [, Olx)= 0 )
0 1 0 0 0 B’

By [Lemma 3.1, z° € H; < 2i =0 (mod p), 2j =0 (moddp). Moreover, using the fact
that Op;(x) is not a scalar matrix and (x z)* =1, we see that the possibilities of Orij(x)

are only
-1 0 0 -1 0 0 1 0 0
(O -1 O), (O 1 0), (O -1 0) for k=0
0 0 1 0 0 -1 0 0 -1
1 0 O 1 0 0 -1 0 0
(0 1 O), (O -1 0), (O 1 0) for k=1.
0 0 -1 0 0 1 0 0 1

Each of these representations is isomorphic to each of the representations Ni(1,y,) ® p
with degp =1. We can refer to for Ni(1,y;). Since the kernel of Ni(1,y,) is a

and
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congruence subgroup, this is not what we are looking for, too. Also, it is shown in
that any of these representations is not admissible.
Lastly, we shall consider the irreducible representations of degree 6.

6. The irreducible representations of degree 6.

Take (i,j) € (Z/pZ x Z/dpZ) such that the congruence equations in
do not hold. Then H; =1. So, ¢UG becomes an irreducible representation by the little
group method.

1
Take a conjugate of ¢UG with P := (1/v6)(«*/) where o’ denotes (c,d) entry.

We note that ¢UG (z) is nondegenerate. Therefore, by a remark in section 2, the
investigation becomes simpler. Furthermore, these representations are simpler than
usual. We shall talk on this fact in details, later.

Pl (x)P = PTlg7(2*S*(0,1))P = (P~ (z) P)* P ' (S*(0,1)) P

1 <i o —c+d) l¢ S4+l(0, 1)) ,

=0

AN =
|
—_

where 377, o el 7(5441(0,1)) denotes (¢, d) entry. The index of S is computed with
mod 6. We define k; and x; as follows:

5°0,1) = (0,1) ko =,

S'0,1) = (=1,m+1) ki :=—id + (m+1)],
52(0,1) = (0,1) ky := —id 4+ myj,
S%(0,1) = (0, —1) k3 := —j,
S§40,1) = =540,1) ky := =k,
§°(0,1) = §%(0,1) ks := —ks,
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x; = Y7 o o f5+ where the index of k is computed with modulo 6. Then

X0 X1 X2 X3 X4 X5
—X5 —X0 —X1 —X2 —X3 —X4
1 X4 Xs X0 X1 X2 X3
Pgg )P =
6 —X3 —X4 —X5 —X0 —X1 —X2
X2 X3 X4 X5 X0 X1
—X1 —X2 —X3 —X4 —X5 —Xy

By [Lemma 2.2, when p moves to any equivalent unitary representation p’ such that

do
. . . . . d
p'(z) = p(z), there exists some unitary diagonal matrix D = _ such
ds
that p’ = D~ 'pD. So if some p’ is associated to a MFA, x; # 0 must hold for all i.
(If some x; is 0, it contradicts to Verlinde’s formula.) So, from now on we assume that
x; # 0 for all i.

Lemma 6.1. (PD)71¢§(x)PD is symmetric.

X2 X1

X5 2 _ M 2 2 2 3 3
edi=-2=, &=, di=-1, di==, di=-— = =
Proor. This follows from comparing the entries of (PD)_1¢I§; (x)PD. ]

We note from [Lemma 6.1 that there are only two choices of d; respectively such that
(PD)*lqﬁi]G(x)PD is symmetric.

LEMMA 6.2.  There exist some diagonal unitary matrix D such that (PD)71¢I-IG(X)PD
is symmetric if and only if there exists i such that w'x; = x5 and x» = w'xy.
Proor. This is a consequence of [Cemma 6.1. O

LEmMA 6.3. (i) x; = x5, X =x4 < id = (m—1)j (moddp).
(il) wx) = x5, X2 = wx4 < 2id = (2m+1)j (moddp).
(iii) ?x) = x5, X2 = w’x4 & id = (m +2)j (moddp).

Proor. We will prove only (i). Proofs of [ii)] and are similar to that of (i).
Note that x; := 215:0 oc”ﬁk”“. From x; = x5, we obtain

2 2
sind—Z(l’d —mj) + sind—Zj =0.
Also, from x, = x4, we obtain
2 2
cosd—Z(z’d —mj) — cosd—Zj =0.
These equations are equivalent to id = (m —1)j (moddp). O
Let I = 64.



Modular fusion algebras related to noncongruence subgroups 691

Lemma 6.4. (1) If x1 = x5 and xy = x4 hold. Let dy=1, dy =1, dy=1, d3 =1,
d4 = 1, d5 =1. Then,

X0 Ix X Ix; X2 Ix;
le —X0 le —X2 IX3 —X2
1 I L I

(PD) '4f(pD = | 2 TS T
y 6 IX3 —X2 le —X0 le —X2

X2 Ix; X2 Ix X0 Ix;

IX] —X2 IX3 —X2 le — X

(ii) If wx; = x5 and x3 = wxy4 hold. Let dy=1, dy =p°, dy =p'°, ds = p°, dy = p*,
ds = p'

' Then,

xo fx1i % Bxs prxa gl
Bxi  —xo flxi pxa Bxs fa

1 10 ﬁll ﬁS ﬁlO ﬂ9
(PD>_1¢G(X>PD:— X2 X1 X0 X1 X2 X3

i 6 3 4 5 _ 1 10
fxs fixa px xo B x X2
Brxa  Bxs B plx xo
By By Bxs % Bl —xo

(it) If w2x) = x5 and x; = w3x4 hold. Let dy =1, di =p, dy =, ds = J*, dy = f*,
ds = B, Then,

xo Pxi Bxa Bxs Bxr Bxi
Bxi —xo B'xi Bxa Bxs pixa
1| Bxa flxi xo Bxi fPxa Bxs
6| fxs Bxa Bxi —xo Bxi Bixa
Bixa Bxs Bx2 B'xi xo B
B'xi Bxa Bxs BPxa pxi —xo

(PD)"'¢g(x)PD =

REMARK.

(i) By [Lemma 6.1, we know that there are only two choices of dy,d,,...,ds, i.e.,
the choices of +1. So, when p’ moves to any equivalent representation of p, Verlinde’s
formula of p’ is different from that of p only by +1. From now on, let Ni}‘ denote
Verlinde’s formula of the matrix of [Lemma 6.4 where index i corresponds to row i+ 1.

We now prove [Theorem 1.1. The matrices of representation are indexed by
{0,1,...,n}. There are n! ways to index the matrices of representation. We have to
consider all the cases. But, when we look at the matrices of [Lemma 6.4 carefully, we
see that how the values of Nij‘ (up to +1) appear are the same regardless of indexing,
since the matrices look like a circulant. So, we only have to investigate the integral
condition of N} by indexing the remark (i).

We shall show that the integral condition for each case in [Lemma 6.4 does not hold.

(i) The case of x| = x5 and x; = x4.

Explicitly, put ¢ := cos(2nj/dp), s:=sin(2znj/dp). Then, we can write
xo=202c*+2c—1), x;1=-25I(142c), x2=22c+1)(c—1), x3=4sI(1—c).
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By the above remark, — N, + N/} = 2c must be an integer. Since —1 < ¢ < 1, we have
c=-1,-1/2,0,1/2,1. Also, since

E 16¢° — 24¢* — 82¢3 + 5¢2 +36¢— 5
6(1+2c)(c—1)2c2+2¢c—1)(c+1)’

L
Nll_

we have ¢ #1/2,1,0,1.
Furthermore, since N = (¢ —1)/(2(2¢* +2¢ — 1)), we have ¢ # 1/2.
Thus, these representations are not admissible.

11) The case of wx; = x5 and x; = wx4.

We consider two cases i.e., when p is odd and p is even.

Here, we note that d is not even. (If d is even, it contradicts to m?> + m+1 =0
(modd).)
(1) p:odd.

Put ¢ := cos(2n/dp)(27Yj), s :=sin(2n/dp)(27'j). (Where 27! denotes the inverse
element of 2 in Z/dpZ.) Then, we can write
xo=22c*+2c—1), x1=-2s0(1+2¢), x2=-20*Qc+1)(c—1), x3=—4sI(1—-c).
By the above remark, —N2 + N\ = —2¢ must be an integer. So, ¢=—1,-1/2,0,
1/2,1. Also, since
16¢° — 24¢* — 82¢ + 5¢% +36¢ — 5

Mii = 61+ 20)(c— )22 +2¢— D)(c+ 1)’

we have ¢ # —1/2,-1,0, 1.
Furthermore, since N/} = (¢ —1)/(2(2¢? +2¢ — 1)), we have ¢ # 1/2.
Therefore, these representations are not admissible.

(2) p:even.

In this case, from 2id = (2m+1)j (moddp), id =mj+j/2+ kdp/2 (moddp),
k=0,1. k=0 is similar to the case when p is odd.

Let k =1. Put c¢:= cos(2n/dp)(27"j), s:=sin(2n/dp)(2~'j). Then, we can write

x0 =222 +2c—1), x;=25*(—=142¢), x2=-2p*Qc—1)(c+1), x3=4sI(1+c).

By the above remark, —NJ + N} = 2¢ must be an integer. So ¢= —1,-1/2,0,1/2,1.
Also, since

] 16¢° +24c* — 82¢3 — 5¢2 +36¢+ 5
6(—1+2¢)(c—1)2c%2 —2¢c—1)(c+1)’

1
Nll_

we have ¢ #1/2,—1,0, 1.
Furthermore, since N{i = (¢ —1)/(2(2¢* +2¢ — 1)), we have ¢ # —1/2.
Thus, these representations are not admissible.

The case of w?x; = x5 and x; = ®w?xy.

Put c¢:=cos(2n/dp)j, s:=sin(2n/dp)j. Then, we can write xq=2(2c?+ 2c— 1),
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x1=25B°(1 +2¢), x3=2B*Q2c+1)(c—1), x3=4s[(1—c¢). By the above remark,
N3, + Ny = —2¢ must be an integer. So, ¢ =—1,-1/2,0,1/2,1. Also, since

16¢° — 24¢* — 82¢3 + 5¢2 +36¢— 5
6(1+2c)(c—1)2c2+2¢c—1)(c+1)’

1 _
Ny =s

we have ¢ # —1/2,-1,0, 1.
Moreover since Nt = (¢ —1)/(2(2¢* +2¢ — 1)), we have ¢ # 1/2.
Therefore, these representations are not admissible. This completes the proof of
eOI¢ . ]
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