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Nonexistence of modular fusion algebras whose kernels are

certain noncongruence subgroups
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Abstract. A well-known conjecture states that the kernel of representation asso-

ciated to a modular fusion algebra is always a congruence subgroup. Assuming this

conjecture, Eholzer studied modular fusion algebras such that the kernel of representation

associated to each of them is a congruence subgroup using the fact that all irreducible

representaions of SLð2;Z=pl
ZÞ are classified. He classified all strongly modular fusion

algebras of dimension two, three, four and the nondegenerate ones with dimensiona 24.

In this paper, we try to imitate Eholzer’s work. We classify modular fusion algebras such

that the kernel of representation associated to each of them is a noncongruence normal

subgroup of G :¼ PSLð2;ZÞ containing an element
1 6

0 1

� �

. Among such normal

subgroups, there exist infinitely many noncongruence subgroups. In a sense, they are the

classes of near congruence subgroups. For such a normal subgroup G, we shall show

that any irreducible representation of degree not equal to 1 of G=G is not associated to a

modular fusion algebra.

1. Introduction.

In mathematical physics, it is known that for each conformal field theory

(CFT) there is an associated fusion algebra which is an associative and commutative

algebra over C of finite dimension and has a representation of SLð2;ZÞ (ref. [9]). In

order to investigate CFT, the classification problem of fusion algebras is a very impor-

tant research. There are some partial results for this. For example, Eholzer classified

all strongly modular fusion algebras of dimension two, three and four. He was able to

classify all nondegenerate strongly modular fusion algebras of dimension less than 24.

The term ‘strongly’ means the kernel of representation associated to fusion algebra is

a congruence subgroup. The term ‘nondegenerate’ is defined in the next section.

A representation r : SLð2;ZÞ ! GLðn;CÞ is called admissible if there exists a fusion

algebra A such that ðA; rÞ is a modular fusion algebra. These notions were introduced

by Eholzer. Refer to [8] for strongly modular fusion algebras. In this classification,

he used Nob’s classification of irreducible representations of the finite group SLð2;Zp lÞ

where p is a prime and l is a positive integer (ref. [16], [17]). One reason of his

classification is based on the following conjecture.

The Conjecture (ref. [8]). The kernel of representation associated to a modular

fusion algebra is always a congruence subgroup.
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One purpose of this paper is to start attacking such conjecture. In this paper, we

will imitate Eholzer’s work in the following situation. This problem was suggested by

professor Eiichi Bannai.

The Problem. Let G :¼ PSLð2;ZÞ and G be a normal subgroup with the finite

index of G containing
1 6

0 1

� �

. Then,

(1) Decide all irreducible representations of G=G.

(2) Is the irreducible representation of G=G admissible?

We want to find a counter example for this conjecture, that is, an irreducible

representation (of G ) associated to a modular fusion algebra whose kernel is a non-

congruence subgroup. It is our one wish to find a counter example in view of this

problem since there exist infinitely many noncongruence subgroups among the normal

subgroups of the problem and they are the classes like congruence subgroups in a sense.

But the answer to this problem is negative. Namely, we prove the following theorem.

Theorem 1.1. Let G be a normal subgroup with finite index of G containing

1 6

0 1

� �

. Then, all irreducible representations of degree not equal to 1 of G=G are not

admissible.

Remark. Though the representation associated to a modular fusion algebra is a

representation of SLð2;ZÞ, we consider PSLð2;ZÞ in this paper to make the proof easy.

But the result does not change much even if we consider SLð2;ZÞ, since only the same

representations appear. For the reducible representations, representations of degreea4

are classified in [8] since any of the kernels of the representations of degree 2 is a

congruence subgroup. The reducible representations of degreeb5 are too complicated

to compute.

2. Fusion algebra and modular fusion algebra.

This section depends basically on [8]. We will adopt the following definition of

fusion algebra in this paper (ref. [8], [1], [9]).

Definition 2.1 (Fusion algebra). Let A be an associative and commutative

algebra over C (complex number field), and have a distinguished basis fx0; x1; . . . ; xng

with multiplication defined by

xi � xj :¼
X

n

k¼0

N k
ij xk:

N k
ij are called structure constants of A. Then, A is called fusion algebra if the following

conditions are satisfied.

(i) N
j
i0 ¼ dij (where d is Kronecker’s d),

(ii) N k
ij A Zb0,

(iii) There exists an involution ^ of f0; 1; . . . ; ng such that N 0
ij ¼ diĵj and N k̂k

îiĵj
¼ N k

ij .

Example. Let G be any finite group and let fw0 ¼ 1G (the principal character),

M. Tagami682



w1; . . . ; wng be the irreducible characters of G. Put A :¼ f f : G ! C j f ðh�1ghÞ ¼ f ðgÞ

Eg; h A Gg. A is an associative and commutative algebra over C whose addition,

multiplication and inner product are respectively defined as follows: for f;c A A, g A G,

ðfþ cÞðgÞ :¼ fðgÞ þ cðgÞ; ðf � cÞðgÞ :¼ fðgÞ � cðgÞ; ðf;cÞG :¼
1

jGj

X

g AG

fðgÞcðgÞ;

where c denotes the complex conjugate of c for any element c of C . It is known

that fw0; w1; . . . ; wng is an orthonormal basis of A. An involution ^ is defined by

f̂fðgÞ :¼ fðgÞ. Then A is a fusion algebra with a distinguished basis fw0; w1; . . . ; wng.

Next, we shall define modular fusion algebra (ref. [8]). Let S :¼
0 �1

1 0

� �

,

T :¼
1 1

0 1

� �

. Then we know that SLð2;ZÞ ¼ hS;T jS4 ¼ I ; S2 ¼ ðSTÞ3i.

Definition 2.2 (Modular fusion algebra). Let A be a fusion algebra with structure

constants N k
ij and r be a unitary representation of SLð2;ZÞ. ðA; rÞ is called modular

fusion algebra if the following conditions are satisfied:

(i) rðSÞ is symmetric and rðTÞ is diagonal,

(ii) N 0
ij ¼ rðS2Þij ,

(iii) (Verlinde’s formula)

N k
ij ¼

X

n

m¼0

rðSÞimrðSÞjmrðSÞkm
rðSÞ0m

:

From this point onwards, we denote modular fusion algebra as MFA. MFA of

dimension 1 is called a trivial MFA. Next, we introduce a very important example of

MFA. This example is called finite group modular data (ref. [9], [11]).

Example. Let G be any finite group. We take the Grothendieck ring F of

G-equivalent complex vector bundles over G (where we take conjugation as the action

of G) as a fusion algebra and the modular data r of G as a representation of SLð2;ZÞ.

Then ðF ; rÞ is a modular fusion algebra. It is known that the kernel of finite group

modular data is a congruence subgroup (For this fact, refer to [10]).

The following nondegeneracy of MFA was introduced by Eholzer (ref. [8]).

Definition 2.3 (Nondegenerate). Let ðA; rÞ be a MFA. When the characteristic

polynomial of rðTÞ does not have multiple root, ðA; rÞ is called nondegenerate MFA

and so is rðTÞ.

Let us introduce two lemmas to investigate nondegenerate MFA. These two

lemmas are due to [8].

Lemma 2.1 (Eholzer). Let ðA; rÞ be a nondegenerate MFA. Then r is irreducible.

Lemma 2.2 (Eholzer). Let r and r 0 be equivalent, irreducible, and unitary repre-

sentations of SLð2;ZÞ such that rðTÞ ¼ r 0ðTÞ is diagonal and nondegenerate. Then,

there exists a unitary diagonal matrix D such that r ¼ D�1r 0D.
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Remark. (i) Note that from Lemma 2.1, it is enough to find nondegenarate MFA

in finding MFA from the irreducible representations of G .

(ii) Take an irreducible unitary representation r of G such that rðTÞ is diagonal

and nondegenerate. Let r 0 be any equivalent unitary representation of r such that

rðTÞ ¼ r 0ðTÞ. Then, by Lemma 2.2, there exists a unitary diagonal matrix D ¼
d0

d1

.
.

.

.
.

.

dn

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

such that r 0 ¼ D�1rD. Thus r 0ðSÞij ¼
dj

di
rðSÞij .

Apply Verlinde’s formula for each representation r and r 0.

X

n

m¼0

rðSÞ 0imrðSÞ
0
jmrðSÞ

0
km

rðSÞ 00m
¼ dk

didj

X

n

m¼0

rðSÞimrðSÞjmrðSÞkm
rðSÞ0m

:

Since jdij ¼ 1, if r 0 is associated to a MFA, for any i; j; k,

X

n

m¼0

rðSÞimrðSÞjmrðSÞkm
rðSÞ0m

�

�

�

�

�

�

�

�

�

�

A Z hold:

There are many equivalent representations of r. But as soon as we find i; j; k such

that j
Pn

m¼0 rðSÞimrðSÞjmrðSÞkm=ðrðSÞ0mÞj B Z, we do not need to investigate many other

equivalent representations of r. From the above, we see that nondegeneracy simplifies

the classification of MFA.

Example. Let rðSÞ :¼ 1

2

�1 �
ffiffiffi

3
p

�
ffiffiffi

3
p

1

� �

, rðTÞ :¼ 1 0

0 �1

� �

. Then r is a unitary

and irreducible representation of G .

X

1

m¼0

rðSÞ1mrðSÞ1mrðSÞ1m
rðSÞ0m

�

�

�

�

�

�

�

�

�

�

¼ 2
ffiffiffi

3
p

3
B Z:

So, we can see that any equivalent unitary representation r 0 of r such that r 0ðTÞ ¼
1 0

0 �1

� �

is not admissible.

Next, we shall consider the normal subgroups of G containing
1 6

0 1

� �

.

3. Certain normal subgroups of G .

This section is based on [13]. Let G :¼ PSLð2;ZÞ,

x :¼ 0 �1

1 0

� �

; y :¼ 0 �1

1 1

� �

; z :¼ xy ¼ 1 1

0 1

� �

;

a :¼ ½x; y� ¼ xyxy2 ¼ 2 1

1 1

� �

; b :¼ ½x; y2� ¼ xy2xy ¼ 1 1

1 2

� �

in G :
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Let G
0 and G

00 denote the first commutator subgroup and the second commutator

subgroup, respectively. Then,

G ¼ hx; y j x2 ¼ y3 ¼ 1i ðthe free group generated by

two elements of order 2 and 3Þ;

G
0 ¼ ha; bi ðthe free group generated by a and bÞ;

G ¼
X

5

r¼0

z rG 0;

and

G
0 ¼

X

i; j AZ

a ib j
G

00 ðG 0=G 00 is the free abelian group of rank 2Þ:

We also note that ½a; b�1� ¼
1 6

0 1

� �

¼ z6.

Let hðmÞ denote the minimal normal subgroup containing zm. Then, it is

shown that hðmÞ ¼ GðmÞ for 1ama 5 by Brenner [3], and hð6Þ ¼ G
00 for m ¼ 6

by Newman [14] where GðnÞ :¼ fA A G jA1 I ðmod nÞg. So, the problem comes to

consider normal subgroups which contain G
00. Take any normal subgroup G contain-

ing z6. Since hð2Þ ¼ Gð2Þ and hð3Þ ¼ Gð3Þ,

z2 A G ) GIGð2Þ;

z3 A G ) GIGð3Þ:

In [8], it is shown that any irreducible representation (of degree not equal to 1) of

G=Gð2ÞFS3 (the symmetric group of degree 3) and G=Gð3ÞFA4 (the alternating group

of degree 4) is not admissible. Next, we shall assume that the order of z in G=G is

equal to 6. In this case, we have the following lemma by Newman (ref. [13]).

Lemma 3.1 (Newman). Let GwG. Assume that the order of z in G=G is equal to

6. Then, G
0
IGIG

00.

From now on, we consider only the normal subgroup G such that G
0
IGIG

00.

Such subgroups were classified by Newman.

Theorem 3.1 (ref. [13]). There is a 1-1 corespondence between normal subgroups G

such that G
0
IGIG

00, G0G
00 and the ordered triplets of integers ðp;m; dÞ where

p > 0; 0ama d � 1; m2 þmþ 11 0 ðmod dÞ:

ðp;m; dÞ corresponds to the normal subgroup G such that

G ¼
X

i; j AZ

A iB j
G

00; where A :¼ apbmp;B :¼ bdp:

Newman showed in [15] that the group ðp;m; dÞ in Theorem 3.1 is a congruence

subgroup if and only if ðp;m; dÞ ¼ ð1; 0; 1Þ; ð1; 1; 3Þ; ð2; 0; 1Þ; ð2; 1; 3Þ. So, we obtain

infinitely many noncongruence subgroups.
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Let G ¼
P

i; j AZ A iB jG 00, where A :¼ apbmp, B :¼ bdp. Then,

G 0 ¼
X

i¼0;...;p�1
j¼0;...;dp�1

a ib jG

and so

G ¼
X

i¼0;...;5

X

j¼0;...;p�1
k¼0;...;dp�1

z ia jbkG:

From this,

G=GFZ=6Zy ðZ=pZ � Z=dpZÞ.

The action of Z=6Z ð¼hziÞ on Z=pZ � Z=dpZ is given as follows. For any ði; jÞ A

Z=pZ � Z=dpZ,

S 0ði; jÞ :¼ ði; jÞ;

Sði; jÞ :¼ z�1ði; jÞz ¼ ð�mi � j; ðm2 þmþ 1Þi þ ðmþ 1Þ jÞ;

S2ði; jÞ :¼ z�2ði; jÞz2 ¼ ð�ðmþ 1Þi � j; ðm2 þmþ 1Þi þmjÞ;

S3ði; jÞ :¼ z�3ði; jÞz3 ¼ ð�i;�jÞ;

S4ði; jÞ :¼ z�4ði; jÞz4 ¼ �Sði; jÞ;

S5ði; jÞ :¼ z�5ði; jÞz5 ¼ �S2ði; jÞ:

4. Review of the little group method.

In this section, we review the little group method (ref. [6]). It enables us to

compute the irreducible representations of a group with the form HyA where A is

an abelian group. In this paper we denote IrrðGÞ as the set of all irreducible rep-

resentations of G. Consider G :¼ HyA where A is abelian. H acts on IrrðAÞ as

follows. For h A H, r A IrrðAÞ, a A A,

ðhrÞðaÞ :¼ rðahÞ;

where ah denotes the action of H on A. Then,

IrrðAÞ ¼ 6
n

i¼1

ÂAi ðthe orbit decomposition by the action of HÞ:

Fix ri A ÂAi.

Hi :¼ fh A H j hri ¼ rig; Gi :¼ Hi � A:

For any w A IrrðHiÞ, we extend w to an element of IrrðGiÞ as follows.

For ðh A Hi; a A A; wðhaÞ :¼ wðhÞÞ:
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Put

riðhaÞ :¼ riðaÞ:

Then, we can regard ri as ri A IrrðGiÞ:

ywi :¼ ðwn riÞ
G

where ðwn riÞ
G denotes the induced representation of wn ri. Then ywi A IrrðGÞ and

IrrðGÞ ¼ fywi j 1a ia n; w A Hig:

5. The irreducible representations of the quotient group of degree 2 and 3.

We now compute the irreducible representations of Z=6Zy ðZ=pZ � Z=dpZÞ

using the little group method. Let

G :¼ Z=6Zy ðZ=pZ � Z=dpZÞ; H :¼ Z=6Z; A :¼ Z=pZ � Z=dpZ:

For ði; jÞ; ðk; lÞ A Z=pZ � Z=dpZ, fijðk; lÞ :¼ x
ikdþjl
dp where xn is a primitive n-th root of

1. Then,

IrrðAÞ ¼ ffij j ði; jÞ A Z=pZ � Z=dpZg:

Fix fij A IrrðAÞ. H acts on IrrðAÞ as follows:

For ðl;mÞ A A,

ðzkfijÞðl;mÞ :¼ fijðS
kðl;mÞÞ:

Let Hij :¼ fh A H j ðhfijÞ ¼ fijg, Gij :¼ Hij � A. Then we obtain the following lemma

using some elementary computations.

Lemma 5.1. z A Hij , i ¼ j ¼ 0,

z2 A Hij , 3j1 0, id1 ðm� 1Þ j ðmod dpÞ,

z3 A Hij , 2i1 0 ðmod pÞ, 2j1 0 ðmod dpÞ.

Take c A IrrðHijÞ. ycij :¼ ðcn fijÞ
G is an irreducible representation by the little

group method. Since Hij is an abelian, degc ¼ 1. So,

deg ycij ¼ jG : Gijj ¼ jH : Hij j:

From this, we see that the degrees of the irreducible representations are 1, 2, 3, or 6.

We investigate if each of the irreducible representations of degrees 2 and 3 is admissible.

Note that x ¼ z3S4ð0; 1Þ in G.

(i) Degree 2.

The irreducible representations of degree 2 appear in the case of jH : Hij j ¼ 2, i.e.

Hij ¼ hz2i. Then,

Gij ¼ hz2i � A; G ¼ Gij þ zGij :

For 0a k; la 2, let ckðz
2lÞ :¼ okl where o :¼ x3, and ykij :¼ ðck n fijÞ

G. Then,

ykijðzÞ ¼
0 ok

1 0

� �

; ykijðxÞ ¼

0

@

0 o2kx
id�mj
dp

okx
id�ðmþ1Þ j
dp 0

1

A:
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By Lemma 5.1, z2 A Hij , 3j1 0, id1 ðm� 1Þ j ðmod dpÞ. So,

ykijðxÞ ¼
 

0 o2kx
�j
dp

okx
�2j
dp 0

!

:

Put a :¼ x6, and b :¼ xdp. Take a conjugate of ykij with P :¼ ð1=
ffiffiffi

2
p

Þ ak �ak

1 1

� �

,

P�1ykijðzÞP ¼ ak 0

0 �ak

� �

; P�1ykijðxÞP ¼ a3k

2

 

b�j þ b�2j b�j � b�2j

b�2j � b�j �ðb�j þ b�2jÞ

!

.

Since 3j1 0 ðmod dpÞ, we have b�j ¼ o l for l ¼ 1 or 2. (If l ¼ 0, j ¼ 0. Since

id1 ðm� 1Þ j ðmod dpÞ, we have i ¼ 0. This contradicts z B Hij.) So, the possibilities

of P�1ykijðxÞP are only

a3k

2

�1 �
ffiffiffi

3
p

�
ffiffiffi

3
p

1

� �

;
a3k

2

�1
ffiffiffi

3
p

ffiffiffi

3
p

1

� �

:

The above two representations are isomorphic to N1ðw1Þn rk and N1ðw1Þn rkþ3,

respectively where rkðxÞ :¼ ð�1Þk and rkðzÞ :¼ ak. We can refer to [17] for N1ðw1Þ.
The kernel of N1ðw1Þ is a congruence subgroup. So, this is not what we are looking

for. Also, it is shown in [8] that any of these representations is not admissible.

(ii) Degree 3.

The irreducible representations of degree 3 appear in the case of jH : Hij j ¼ 3, i.e.

Hij ¼ hz3i. Then,

Gij ¼ hz3i � A; G ¼ Gij þ zGij þ z2Gij:

For 0a k; la 1, let ckðz3lÞ :¼ ð�1Þkl , ykij :¼ ðck n fijÞG. Then,

ykijðzÞ ¼
0 0 ð�1Þk

1 0 0

0 1 0

0

B

@

1

C

A
; ykijðxÞ ¼

b id�ðmþ1Þ j 0 0

0 b id�mj 0

0 0 b j

0

B

@

1

C

A
:

By Lemma 5.1, z3 A Hij , 2i1 0 ðmod pÞ, 2j1 0 ðmod dpÞ. Moreover, using the fact

that ykijðxÞ is not a scalar matrix and ðxzÞ3 ¼ 1, we see that the possibilities of ykijðxÞ
are only

�1 0 0

0 �1 0

0 0 1

0

@

1

A;

�1 0 0

0 1 0

0 0 �1

0

@

1

A;

1 0 0

0 �1 0

0 0 �1

0

@

1

A for k ¼ 0

and

1 0 0

0 1 0

0 0 �1

0

@

1

A;

1 0 0

0 �1 0

0 0 1

0

@

1

A;

�1 0 0

0 1 0

0 0 1

0

@

1

A for k ¼ 1:

Each of these representations is isomorphic to each of the representations N1ð1; w1Þn r

with deg r ¼ 1. We can refer to [17] for N1ð1; w1Þ. Since the kernel of N1ð1; w1Þ is a
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congruence subgroup, this is not what we are looking for, too. Also, it is shown in [8]

that any of these representations is not admissible.

Lastly, we shall consider the irreducible representations of degree 6.

6. The irreducible representations of degree 6.

Take ði; jÞ A ðZ=pZ � Z=dpZÞ such that the congruence equations in Lemma 5.1

do not hold. Then Hij ¼ 1. So, fG
ij becomes an irreducible representation by the little

group method.

fG
ij ðzÞ ¼

0

B

B

B

B

B

B

B

B

@

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

A

Take a conjugate of fG
ij with P :¼ ð1=

ffiffiffi

6
p

ÞðacdÞ where acd denotes ðc; dÞ entry.

P�1fG
ij ðzÞP ¼

1

a�1

.
.

.

a�5

0

B

B

B

@

1

C

C

C

A

We note that fG
ij ðzÞ is nondegenerate. Therefore, by a remark in section 2, the

investigation becomes simpler. Furthermore, these representations are simpler than

usual. We shall talk on this fact in details, later.

P�1fG
ij ðxÞP ¼ P�1fG

ij ðz3S4ð0; 1ÞÞP ¼ ðP�1fG
ij ðzÞPÞ

3
P�1fG

ij ðS4ð0; 1ÞÞP

¼ 1

6

0

B

B

B

B

B

B

B

B

@

1

�1

1

�1

1

�1

1

C

C

C

C

C

C

C

C

A

X

5

l¼0

að�cþdÞlfG
ij ðS4þlð0; 1Þ

 !

;

where
P5

l¼0 a
ð�cþdÞlfG

ij ðS4þlð0; 1ÞÞ denotes ðc; dÞ entry. The index of S is computed with

mod 6. We define ki and xi as follows:

S 0ð0; 1Þ ¼ ð0; 1Þ k0 :¼ j;

S1ð0; 1Þ ¼ ð�1;mþ 1Þ k1 :¼ �id þ ðmþ 1Þ j;

S2ð0; 1Þ ¼ ð0; 1Þ k2 :¼ �id þmj;

S3ð0; 1Þ ¼ ð0;�1Þ k3 :¼ �j;

S4ð0; 1Þ ¼ �S1ð0; 1Þ k4 :¼ �k1;

S5ð0; 1Þ ¼ S2ð0; 1Þ k5 :¼ �k2;
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xi :¼
P5

l¼0 a
ilbklþ4 where the index of k is computed with modulo 6. Then

P�1fG
ij ðxÞP ¼

1

6

0

B

B

B

B

B

B

B

B

@

x0 x1 x2 x3 x4 x5

�x5 �x0 �x1 �x2 �x3 �x4

x4 x5 x0 x1 x2 x3

�x3 �x4 �x5 �x0 �x1 �x2

x2 x3 x4 x5 x0 x1

�x1 �x2 �x3 �x4 �x5 �x0

1

C

C

C

C

C

C

C

C

A

:

By Lemma 2.2, when r moves to any equivalent unitary representation r 0 such that

r 0ðzÞ ¼ rðzÞ, there exists some unitary diagonal matrix D ¼

d0

d1

.
.

.

d5

0

B

B

B

@

1

C

C

C

A

such

that r 0 ¼ D�1rD. So if some r 0 is associated to a MFA, xi 0 0 must hold for all i.

(If some xi is 0, it contradicts to Verlinde’s formula.) So, from now on we assume that

xi 0 0 for all i.

Lemma 6.1. ðPDÞ�1
fG
ij ðxÞPD is symmetric.

, d 2
1 ¼ �

x5

x1
; d 2

2 ¼
x4

x2
; d 2

3 ¼ �1; d 2
4 ¼

x2

x4
; d 2

5 ¼ �
x1

x5
; x1x2 ¼ x4x5; x3

2 ¼ x3
4

Proof. This follows from comparing the entries of ðPDÞ�1
fG
ij ðxÞPD. r

We note from Lemma 6.1 that there are only two choices of di respectively such that

ðPDÞ�1
fG
ij ðxÞPD is symmetric.

Lemma 6.2. There exist some diagonal unitary matrix D such that ðPDÞ�1
fG
ij ðxÞPD

is symmetric if and only if there exists i such that o ix1 ¼ x5 and x2 ¼ o ix4.

Proof. This is a consequence of Lemma 6.1. r

Lemma 6.3. (i) x1 ¼ x5, x2 ¼ x4 , id1 ðm� 1Þ j ðmod dpÞ.

(ii) ox1 ¼ x5, x2 ¼ ox4 , 2id1 ð2mþ 1Þ j ðmod dpÞ.

(iii) o2x1 ¼ x5, x2 ¼ o2x4 , id1 ðmþ 2Þ j ðmod dpÞ.

Proof. We will prove only (i). Proofs of (ii) and (iii) are similar to that of (i).

Note that xi :¼
P5

l¼0 a
ilbklþ4 . From x1 ¼ x5, we obtain

sin
2p

dp
ðid �mjÞ þ sin

2p

dp
j ¼ 0:

Also, from x2 ¼ x4, we obtain

cos
2p

dp
ðid �mjÞ � cos

2p

dp
j ¼ 0:

These equations are equivalent to id1 ðm� 1Þ j ðmod dpÞ. r

Let I ¼ x4.
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Lemma 6.4. (i) If x1 ¼ x5 and x2 ¼ x4 hold. Let d0 ¼ 1, d1 ¼ I , d2 ¼ 1, d3 ¼ I ,

d4 ¼ 1, d5 ¼ I . Then,

ðPDÞ�1
fG
ij ðxÞPD ¼

1

6

0

B

B

B

B

B

B

B

B

@

x0 Ix1 x2 Ix3 x2 Ix1

Ix1 �x0 Ix1 �x2 Ix3 �x2

x2 Ix1 x0 Ix1 x2 Ix3

Ix3 �x2 Ix1 �x0 Ix1 �x2

x2 Ix3 x2 Ix1 x0 Ix1

Ix1 �x2 Ix3 �x2 Ix1 �x0

1

C

C

C

C

C

C

C

C

A

:

(ii) If ox1 ¼ x5 and x2 ¼ ox4 hold. Let d0 ¼ 1, d1 ¼ b5, d2 ¼ b10, d3 ¼ b3, d4 ¼ b4,

d5 ¼ b11. Then,

ðPDÞ�1
fG
ij ðxÞPD ¼

1

6

x0 b5x1 b10x2 b3x3 b4x2 b11x1

b5x1 �x0 b11x1 b4x2 b9x3 b4x2

b10x2 b11x1 x0 b5x1 b10x2 b9x3

b3x3 b4x2 b5x1 �x0 b11x1 b10x2

b4x2 b9x3 b10x2 b11x1 x0 b11x1

b11x1 b4x2 b9x3 b10x2 b11x1 �x0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

:

(iii) If o2x1 ¼ x5 and x2 ¼ o2x4 hold. Let d0 ¼ 1, d1 ¼ b, d2 ¼ b2, d3 ¼ b3, d4 ¼ b4,

d5 ¼ b11. Then,

ðPDÞ�1
fG
ij ðxÞPD ¼

1

6

x0 bx1 b2x2 b3x3 b8x2 b7x1

bx1 �x0 b7x1 b8x2 b9x3 b8x2

b2x2 b7x1 x0 bx1 b2x2 b9x3

b3x3 b8x2 bx1 �x0 b7x1 b2x2

b8x2 b9x3 b2x2 b7x1 x0 b7x1

b7x1 b8x2 b9x3 b2x2 b7x1 �x0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

:

Remark.

(i) By Lemma 6.1, we know that there are only two choices of d0; d1; . . . ; d5, i.e.,

the choices of G1. So, when r 0 moves to any equivalent representation of r, Verlinde’s

formula of r 0 is di¤erent from that of r only by G1. From now on, let N k
ij denote

Verlinde’s formula of the matrix of Lemma 6.4 where index i corresponds to row i þ 1.

(ii) We now prove Theorem 1.1. The matrices of representation are indexed by

f0; 1; . . . ; ng. There are n! ways to index the matrices of representation. We have to

consider all the cases. But, when we look at the matrices of Lemma 6.4 carefully, we

see that how the values of N k
ij (up to G1) appear are the same regardless of indexing,

since the matrices look like a circulant. So, we only have to investigate the integral

condition of N k
ij by indexing the remark (i).

We shall show that the integral condition for each case in Lemma 6.4 does not hold.

(i) The case of x1 ¼ x5 and x2 ¼ x4.

Explicitly, put c :¼ cosð2pj=dpÞ, s :¼ sinð2pj=dpÞ. Then, we can write

x0 ¼ 2ð2c2 þ 2c� 1Þ; x1 ¼ �2sIð1þ 2cÞ; x2 ¼ 2ð2cþ 1Þðc� 1Þ; x3 ¼ 4sIð1� cÞ:
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By the above remark, �N 3
12 þN 4

13 ¼ 2c must be an integer. Since �1a ca 1, we have

c ¼ �1;�1=2; 0; 1=2; 1. Also, since

N 1
11 ¼ �s

16c5 � 24c4 � 82c3 þ 5c2 þ 36c� 5

6ð1þ 2cÞðc� 1Þð2c2 þ 2c� 1Þðcþ 1Þ
;

we have c0 1=2; 1; 0; 1.

Furthermore, since N 4
11 ¼ ðc� 1Þ=ð2ð2c2 þ 2c� 1ÞÞ, we have c0 1=2.

Thus, these representations are not admissible.

(ii) The case of ox1 ¼ x5 and x2 ¼ ox4.

We consider two cases i.e., when p is odd and p is even.

Here, we note that d is not even. (If d is even, it contradicts to m2 þmþ 11 0

ðmod dÞ.)

(1) p:odd.

Put c :¼ cosð2p=dpÞð2�1jÞ, s :¼ sinð2p=dpÞð2�1jÞ. (Where 2�1 denotes the inverse

element of 2 in Z=dpZ.) Then, we can write

x0 ¼ 2ð2c2þ 2c�1Þ; x1 ¼�2sað1þ 2cÞ; x2 ¼�2a2ð2cþ 1Þðc� 1Þ; x3 ¼�4sIð1� cÞ:

By the above remark, �N 3
12 þN 4

13 ¼ �2c must be an integer. So, c ¼ �1;�1=2; 0;

1=2; 1. Also, since

N 1
11 ¼ �s

16c5 � 24c4 � 82c3 þ 5c2 þ 36c� 5

6ð1þ 2cÞðc� 1Þð2c2 þ 2c� 1Þðcþ 1Þ
;

we have c0�1=2;�1; 0; 1.

Furthermore, since N 4
11 ¼ ðc� 1Þ=ð2ð2c2 þ 2c� 1ÞÞ, we have c0 1=2.

Therefore, these representations are not admissible.

(2) p:even.

In this case, from 2id1 ð2mþ 1Þ j ðmod dpÞ, id1mj þ j=2þ k dp=2 ðmod dpÞ,

k ¼ 0; 1. k ¼ 0 is similar to the case when p is odd.

Let k ¼ 1. Put c :¼ cosð2p=dpÞð2�1jÞ, s :¼ sinð2p=dpÞð2�1jÞ. Then, we can write

x0 ¼ 2ð2c2þ 2c�1Þ; x1 ¼ 2sb4ð�1þ2cÞ; x2 ¼�2b2ð2c�1Þðcþ 1Þ; x3 ¼ 4sIð1þ cÞ:

By the above remark, �N 3
12 þN 4

13 ¼ 2c must be an integer. So c ¼ �1;�1=2; 0; 1=2; 1.

Also, since

N 1
11 ¼ s

16c5 þ 24c4 � 82c3 � 5c2 þ 36cþ 5

6ð�1þ 2cÞðc� 1Þð2c2 � 2c� 1Þðcþ 1Þ
;

we have c0 1=2;�1; 0; 1.

Furthermore, since N 4
11 ¼ ðc� 1Þ=ð2ð2c2 þ 2c� 1ÞÞ, we have c0�1=2.

Thus, these representations are not admissible.

(iii) The case of o2x1 ¼ x5 and x2 ¼ o2x4.

Put c :¼ cosð2p=dpÞ j, s :¼ sinð2p=dpÞ j. Then, we can write x0 ¼ 2ð2c2 þ 2c� 1Þ,
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x1 ¼ 2sb5ð1þ 2cÞ, x2 ¼ 2b4ð2cþ 1Þðc� 1Þ, x3 ¼ 4sIð1� cÞ: By the above remark,

N 3
12 þN 4

13 ¼ �2c must be an integer. So, c ¼ �1;�1=2; 0; 1=2; 1. Also, since

N 1
11 ¼ s

16c5 � 24c4 � 82c3 þ 5c2 þ 36c� 5

6ð1þ 2cÞðc� 1Þð2c2 þ 2c� 1Þðcþ 1Þ
;

we have c0�1=2;�1; 0; 1.

Moreover since N 4
11 ¼ ðc� 1Þ=ð2ð2c2 þ 2c� 1ÞÞ, we have c0 1=2.

Therefore, these representations are not admissible. This completes the proof of

Theorem 1.1. r
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