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Abstract. The Goursat problem for certain types of second order linear equations is
considered. The Goursat problem for those second order equations is not &-wellposed in
general. For a certain type homogeneous equations, the Goursat problem is &-wellposed.
Necessary or sufficient conditions on lower order terms for &-wellposedness are given.
Wellposedness in Gevrey class is discussed.

§1. Introduction.

We shall study the Goursat problem for the following second order linear partial
differential operator:

(11) P = alax - a(t)b(x)@i - Fl (tv X, y>8y - F2<t7 X, y)at - F3(t7 X, y)ax - F4(t7 X, y)7
where a(t), b(x), and Fi(t,x,y), i =1,2,3,4 are real valued C*-functions, a(t) > 0,
b(x) =0 and 0, =0/0t, 0y = 0/0x, 0y = 0/0y.
For given f, g,h with compatibility condition, the Goursat problem is to find a
function u(¢,x, y) which satisfies
Pu=f, in Ry xRl x R,
(12) u(O,x,y) :g(x,y),
u(t7 0, y) = h(la y)’
9(0,y) = h(0, y).
By changing the unknown function, can be reduced to
Pu=f, in R xRl xR,
(1.3) u(0, %, ) = 0,
u(t,0,y) = 0.
In [1], we dealt with the Goursat problem:
(0:0x — at’x02)u=f, in R} x R} x Ry,
(1.4) u(0,x,y) =0,
u(t,0, ) =0,
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where a is a positive constant. This is a special case of [1.3), that is, the case that
a(t)b(x) = at’x? and F; =0, i=1,2,3,4. In we showed that the Goursat problem
has a unique solution in C* class. The Goursat problem:

(0,0x — a(t)b(x)ayz)u =f, inR X R xR,
(15) u(0,x, y) =0,
u(t,0,y) =0,

is generalization of [1.4). We know that has a unique solution in C* class. In
this paper, we shall deal with lower order terms.

At first, let us consider a prototype P = 0,0, — 0,, which is (1.1) with a(#)b(x) =0,
Fi=1and F; =0, i =2,3,4. Then, the Goursat problem

(atax - ay)u =f,
u(0,x, y) = g(x, y),
u(Z,O, y) = h(la y),
9(0,y) = h(0, y),

is not &-wellposed, which can be proved in a similar way to the proof of [Theorem 2.3 in
[1], p. 649. Hence, cannot be &-wellposed without any assumption on lower order
terms. We shall study conditions on lower order terms that make be solvable.
Now we introduce the Gevrey class of s > 1 with respect to y. Denote by F(ix),
the set of C* functions f(¢,x,y) such that for every compact set K = R x R} x R,,
there exist constants M, C satisfying the following inequalities for fixed i, j € N U {0},
and for all ke NU{0}:
(1.7) max |0;00) f| < MC*(k!)".

(t,x,)eK

(1.6)

Denote by 17 . (resp. F(fyo)), the set of functions f e I}; ., which are independent of
(resp. Xx).

The Goursat problem is said to be Gevrey-wellposed if for any data {f,g,h} €
) X Ilg o X I3 o) there exists a unique solution u(z,x, y) of belonging to I7; ).
Our main result is the following:

I"S

(t,x

MAIN THEOREM. If 1 <5< 3/2, then (1.2) is Gevrey wellposed.

REMARK. In [1], we considered the Goursat problems in the half-spaces, that
is, RS x R(QXJ) or R, x R(ZL ;- In this paper we discuss the Goursat problems in the
quarter-space R} x RY x R,.

Other results will be given in the section 2 and those proofs will be given in the

subsequent sections.

§2. Other results.

In this section we give other results. Under extra conditions on lower order terms,
we have more concrete results.

THEOREM 2.1. Assume that 0,F, = 0.F3, F;e F(f’x), i=1,2,3,4 and 1 <s<2.
Then the Goursat problem (1.2) is Gevrey wellposed.
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THEOREM 2.2. Assume that F,=0, i=273, F(t,x,y)=a(t)b(x)q(y) and
q(y) e C*, then the Goursat problem (1.2) is &-wellposed.

THEOREM 2.3.  Assume that P has no lower order terms, namely F; =0, i=1,2,3,4,
g(x,») =0, h(t,y) =0, and f € C* (resp. I}; ,)), then the Goursat problem (1.2) has a
unique solution ue C* (resp. F(ix)) and u can be represented in the form:

1 f(xE y 4 o0)
2.1 = dodtd
21 ! JOJOJ—I V1l — a2 oduds,
where

Il
2
Q
—~
)
N—
QU
=~
>
—~
“
N—
Il
| ——
=
S
—~
Ay
N—
N
AN

(22)  0=2y/(A(1) - A(7))(B(x) - B(&)), A(1)
Moreover, the dependence domain of u(t,x,y) is

(2.3) D(t,x,y)

={m&n|0<t<t,0<E<x[y—nl <0=2/(4(1) - A(0)(B(x) — B(&))}.
This dependence domain has the following property:
CoroLLARY 2.1. If (t,x,y) € D(to,x0, yo), then D(t,x,y) < D(ty, X0, yo)-

In the subsequent sections, we shall give proofs in the following way. First we
prove [Theorem 2.3. Secondly we prove Theorem 2.2 Thirdly we prove [Theorem 2.1..
At the last, we prove Main Theorem.

For the simplicity, after now we denote

(2.4) & = 0,0, — a(t)b(x)d;, a(r) > 0,b(x) > 0.

§3. Proof of Theorem 2.3.
By the assumptions in [Theorem 2.3, [1.2) can be reduced to
{ffuf, in R x R xR,

(3.1) u(0,x, y) =0,

u(t,0,y) = 0.
ProrosiTION 3.1. Let define an operator K by

IR es

where 0 is in (2.2). Then Kf € C* and Kf satisfies (3.1).

(3.2) (KF)(1,x, y) = j

0

dodtd&, f(t,x,y)e C”,

ProposITION 3.2. If ue C* satisfies Lu=0, u(0,x,y) =0 and u(t,0,y) =0, then
u=0.

These propositions can be shown by the same way as in the proof of [Theorem 2.2
(p. 646) in [1].

By these propositions, Kf is the unique solution of [3.1]. The dependence domain
(2.3) follows from the right hand-side of (3.2).
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§4. Proof of Theorem 2.2.

When F, = F3 =0 and F; = a(t)b(x)q(y), by changing the unknown function, (1.2)
can be reduced to

Lu=G(t,x, y)u+ f(t,x,y),
(4.1) u(0,x, y) =0,
u<t7 07 y) = O

Now, we fix 7,X,Y >0 and define Q2 by
(4.2) Q={(xy)[(t,x,y) € DT, X,n),|n| <Y}.
Hereafter we fix 2. Because of [Corollary 2.1, we can study in €.

Let us assume
(4.3) lf(t,x, y)| <M, |Gtx,y)| <K, (t,x,)eR.

where M and K are positive constant. We constract a formal solution » 7, u,(t,x, y)
of by the following recurrence equations:

gul :f(taxay) Eﬁ)’
(4.4) ur(0,x, ) =0,
ul(lu()’ y) =0.

Lu, = Guy,_ = fH_1,
(45) up(07x7 y) - 07
up(t707y):()7 p22

We want to show that Y- 7, u,(z,x, y) converges in Q. By [Theorem 2.3, we have the
following:

t rx rl
f*l(T7é7y+O-0)
4.6 u :JJ J L dodtdg, > 1.
(4.6) r 0Jo J-1 1 — a2 P
We have
t px rl M
47 | < “ J M edvac = ixm,
(4.7) |u1| Ao q

Then by induction we obtain

P
(4.8) |u,| < MK (x)” p>1.

2
()
This shows that Z;C: | U, converges absolutely and uniformly on Q.
We set w=3_",u, Itis obvious that w is the solution of and we C*.

Next, we shall show the uniqueness. Let u be a solution of with / =0. And
let

(4.9) M; = max |u(t,x,)|
(t,x,y)eQ



Goursat problem in the Gevrey class 673

By Theorem 2.3, we have

t px pl
(410) u:J J J G(T7£7y+ae>u(r7éay_‘_o-g)do_drdé‘

0Jo J-1 V1 — g2
Therefore
(4.11) lu| < M Ktx.
By induction we have

p
(4.12) lul < M K? ijizv for Vp > 1.
p!

Then u =0 in Q.
Thus we complete the proof of Theorem 2.2.

§5. Proof of Theorem 2.1.
When 0,F, = 0.F3, by changing the unknown function, can be reduced to

SLu = F(lax7 y)ay”"‘ G([,X, y)”+f(lvx7 y)a
(51) u(07x7y):07
u(t,0,y) =0.

Hereafter we fix © (defined in §4) and assume
(5.2) 0F1,[0,G| < MIH @), Jolf] < 3M) (Y

where M is positive constant and i, j e NU{0}.
We construct a formal solution 2;011 uy(t,x,y) of by the following recurrence
equations:
Lu :f(tax7y) EfO7
(53) 23] (O,X, y) = 07
ui(¢,0,y) =0.

Lu, = (Foy, + Glup_1 = fy_1,
(54) UP(O, )C, y) = 07
ul)(t>07y):0> pZZ

We want to show that 377 u,(f,x,p) converges in Q. From we have the
following lemma.

Lemma 5.1. If 1 <s, then for any ke NU{0}, we have

(5.5) |0 uy| < M(3M>’<+2P—‘((k +p—DD, p>1.

P
(ph)
We can prove this lemma by induction. implies the following
proposition.

ProposITION 5.1.  If 1 <5 < 2, then the series Z;il 6;“ u, converges uniformly on Q
for any ke NU{0}.
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We set
(5.6) W= Zup(t, X, ).
p=1

It is obvious that w is the solution of and we I}; . Next, we shall show the
uniqueness.

PRrOPOSITION 5.2 Ifu € I;  satisfies Lu = Fo,u+ Gu, u(0,x, y) =0, u(1,0, y) =0,
then u = 0.
Proor. Let uelj; , be a solution of with f=0. Setting f =
F(t,x,y)0,u+ Gu, we can assume
O'F|,|0'G| < ML),
5 B4FLIGG < b i)
|0,/1 < BM)™ ()7,

where M is a positive constant and i € N U {0}. By the same way as in [Lemma 5.1, we
have

(5.8) lu| < EZ;Z GBMT W (p=1D, (,x,y)eQ,p>1.

By the assumption s < 2, this implies that u =0 in Q.
Thus we complete the proof of [Theorem 2.1.

§6. Proof of Main Theorem.
Recall that Q is fixed. By the change of unknown function, can be reduced to
("g - F(I,X, y)af - G(t7x7 J’)ay - H(lvx7 y))u = f7

(6.1) u(0,x,y) =0,
u(t,0,y) =0.

We assume that for any ke NU{0}
|05 F|, |05 G, |0y H| < N*(k!)”,

(6.2) |05 /| < N2 (k!)*,
0<a(n)b(x) <M, (1,x,y)eQ,

where M and N are positive constants. We construct a formal solution Z;O: L Up(t,x, )
of by the following recurrence equations:

Luy = f = an
(6.3) ui(0,x, y) =0,
u;(¢,0,y) =0.

Ly = (Fo,+ GOy, + H)uy, = fy,
(64) up+1(07 X, y) = 07
up+1([707y)207 le

By [6.2), we have the following estimate:
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Lemma 6.1. If 1 <s, then for any k we have

P xP+V1

(p — rz) (p - rl) (N2)2r1+r3+k<<2rl 1 +k>|)s, > 1,

(6.5) wm<y§fmﬂ

="
where r = (ry,r2,13,74).

We shall prove this lemma in the section 7. The solution of 18

t px pl T o
(6.6) it = Jo Jo J1 ﬁ’(n,\/é% g dodrde,
where 0 = 2./(A(t) — A(7))(B(x) — B(¢)) = [ya(r)dt, B(x) = [} b(

Lemma 6.1 implies the following lemma

LEMMA 6.2. If 1 <s, then for any k e N\ J{0} we have
2p)) (KY)?
(67) ‘a)lfup+l| < Cipczkwa fOV (t7x7 J’) EQ,

where Cy,C, are positive constants.
By this lemma, we have the following:

PropoSITION 6.1. If 1 <5 <3/2, then the series )~ é‘fup(t, X,y) converges uni-
formly on Q.

We set
(6.8) w=3"ut.x,).
p=1

It is obvious that w belongs to If; ., and satisfies [6.1]. The uniqueness in I7; ) can be
shown by the same way as in the proof of Mheorem 2.1. Thus we complete the proof of
Main Theorem.

§7. Proof of Lemma 6.1.

We prove this lemma by induction. Let us recall the definition of u, and f,.

(7.1) Jp = (Fo;+ GO, + H)uy,
0,05ty = a(1)b(x)0 1y + fo-1,
(7.2) u,(0,x,y) =0,

ul)([70>y):07 le

For simplicity, we use the notations:

t

(7.3) D;lu = J u(t, &, y)dé, D;lu = J u(t,x,y)dr, ueC”.
0 0



676

By and [7.2), we obtain

(7.4) o,

By [Theorem 2.3, we have

Y. HASEGAWA

= D, (a(1)b(x)05up + fo1),

(7.5) 0¥ (8mp)| <MD (25 uy)| + 1D (0} fo1)]-

2 )
0J0 J-1

(7.6)

By [7.6), implies

AVA

k —1n-17k
|ayul7| < Dt 1Dx1|8yfl‘7—1|'

(7.7) 05 (6y)] < MD; (D105 | + DY Syl

Using we have

k

(7.8) G :Z( )(a F) (0} o) +§k:( ) (0,G) (05" uy)
=0

=0

+Z( ) (0LH) (05 "uy).
By [7.6), [7.7) and [7.8], we have

k P _ Ak
79 1l = () D, (0, VI 4 Do )

1=0

=0

k 1ol Ak—
() )iiain, .ok 17

Let us consider p =1 in [7.9).

(7.10) |0 fi] < Zko( )

100

iy

k
[

k
() )iesmio; et

By [6.2), [6.3)] and [7.9), we have

{Mr2 (N2 — 14 2)1)° 4 (N2 (ke — 1)’

Nk +2— 1)
(k +2)!

Nk — DY

)

+ ox(ND N (e = 1+ 1)) + (N (ke — 1)!)3}

)ATMﬁEﬂN5“%&+2H

i ) NIxX(ND* (k)
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# () () vy e 1y

+ (f) <W>SN"tx(N2)k(k!)S] :
Assuming s > 1 and N > 2, we have [7.11) and [7.12) for any i e N U{0}.
.11) (/;) (ll(l(ckt—ii;!l)!y B (1;) (n(klCT 1)!) _ (ll(kk‘ I)! ) 1< L

k
N
7.12 N < 2.
(7.12) ; <1—1/N N1

Then (7.10) implies
(7.13)
0% £ <2(Mt2 (N2 ((k+2))* —|—x(N2)k(k!)S—|—tx(N2)k+l((k—l—1)!)S—|—tx(N2)k(k!)S>.

This shows that (6.5) holds for p = 1. Let us assume that (6.5) holds for p and any
k. By and the assumption of induction, we have

k
114 10kl = Yo () )orw

=0

1—r 2+r
(g
— 1! (pH+1=r) (p+2+nm)!

% (N2)2r1+r3+k+2—l((2r1 + 15 +hk+2— Z)')S

= xPH1+n

P!
4or M"
Z (p—r)(p+1+nr)

\rlp'

x (N2 (s + k= 1))

p' " tp+1—r2 p+1+r1
A (prl=—r) (p+1+m)

+ 27
[r|=p

« <N2)2r1+r3+k71+1((2r1 + 13 +k N l+ 1)|)3

p! " 1= P

+2P i
r! (p+1=r)(p+1+nr)

|r|=p

x (N2t =l p 4 s + k — 1)!)S> .

By (7.11) and [7.12), (7.14) implies
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(pH1-n P21

|
7.15 K| < 2rt [ ST L gy
(7.15) 10y Jpl <r|:p A ) (pr2tn)

% (N2>2r1+l‘3+k+2((2r1 +I"3+k+2)'>s

P xp+1+i’1

z: @—h)@+4+ﬁ)

rlp

x (N2 (2 + 3y + k)1

N ZE " (pH1-n2 Peansys!
— 7! (p+1=r) (p+1+nr)

% (N2)2r|+r3+k+l(<2rl 114 +k+ 1)‘)3

pt1-n xPH1+n

+
Z_p p+1—r2)! (p+1+r)!

« <N2)2r1+r3+k((2r1+ 7 —|—k)')s> ‘

Let us consider the first term in the right-hand side of (7.15) and denote it by
pr1-n xP+2+n

(P+1=r)t(p+2+n) (N2)2"1+r3+k+2(<2r1 +r+k+2)1)

(7.16) Q= Z Ml

rlp

and use the notation ry + 1 =r{, r' = (r{,r2,r3,74). If [r| =p, then |r'| =p+ 1. There-
fore, (7.16) implies
(7.17)

pr1-n xp+l+r1’

p' r
= E M"
0 (r1 = 1)Iralrslry! (p+1=r)! (p+1+r])!

[r'|=p+1,r =1

(N2)2rf+r3+k((2r{+r3+k)!>s.

Considering that r{/(r{!) =0 for r{ =0, (7.17) implies

(7.18)
l«p+1—r2 xp+l+r{

'}"1 ) o\ 2 4tk .
frnd M’ N rl r3 2/ le
°” |r|zp+1<r ™ A T e T ) (@t Y

Replacing r{ by r; and r' by r, (7.18) implies

(7.19) 0= Zp'.”

[r|l=p+1

Zerlfrg p+1+r1

(p+1=—r) (p+1+nr)!

(N2 s 4 K

The other terms in the right-hand side of (7.15) can be treated with the same way as the
above, (7.15) implies
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|
(7.20) ‘5)lfﬁ7+1‘ S21)—#1( Z plri +r+r3+r4) Mn

|
ri=pt1 "

prl-n xPHI+n

X
(p+1—=r)(p+1+r)!

+ 1)
_ 2p+1 < Z (P M
et

N2)2}’1+}’3+k((2r1+r3+k)!)s>

pr1-n xPHI+n

X
(p+1—r) (p+1+nr)!

(N2)2;~1+r3+k((2r1 17y +k)|)s>

This shows that (6.5) holds for p+ 1. Thus we complete the proof of [Lemma 6.1.
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