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Abstract. In this note, we will study Delta link homotopy, which is an equivalence

relation of ordered and oriented link types. Previously, a necessary condition was given

by a pair of numerical invariants derived from the Conway polynomials for two link types

to be Delta link homotopic. In this note, we will show that, for two component links, if

their pairs of numerical invariants coincide then the two links are Delta link homotopic.

1. Introduction.

For two link diagrams K and L which di¤er only in one place as in Figure 1.1.1, a

local move between K and L is called a D move. Furthermore, for two links k and l

represented by K and L, k and l are said to be transformed into each other by a D

move.

D

Figure 1.1.1.

It is known the following result by Matveev [M] and by Murakami and the first

author [MN].

Proposition 1. Two knots (or links) can be transformed into each other by a finite

sequence of D moves if and only if the two knots (or links) have the same number of

components, and, for properly chosen orders and orientations, they have the same linking

numbers between the corresponding components.

In the case that all arcs illustrated in the Figure 1.1.1 are contained in the same

component, the above move is called a self D move (cf. [S]). For two links k and l, if

k can be transformed into l by a finite sequence of self D moves, k and l are said to be

D link homotopic (or self D-equivalent). For a m-component link k ¼ k1 U � � �U km, let

d1ðkÞ ¼ am�1ðkÞ, and d2ðkÞ ¼ amþ1ðkÞ � am�1ðkÞ � ð
Pm

i¼1 a2ðkiÞÞ, for the coe‰cient aiðkÞ

of the term z i in the Conway polynomial of k. It is known the following result by the

preceding work [N], which is a generalization of a work of Okada in [O].

Proposition 2. If two links are D link homotopic, then their d2 coincide.
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From Propositions 1 and 2, we have the following Corollary.

Corollary. If two 2-component links are D link homotopic, then their pairs of d1
and d2 coincide.

From the Corollary, we have classified all prime 2-component links with seven

crossings or less in [N] up to D link homotopy. There the following question is raised:

Question. Is a pair of d1 and d2 a faithful invariant of D link homotopy for 2-

component links?

For the Question above, we will give an a‰rmative answer as follows:

Theorem 3. Two 2-component links are D link homotopic if and only if their pairs

of d1 and d2 coincide.

The proof of Theorem 3 will be given in Section 3. For m-component links, it is

still open whether the set of d1 and d2 of all sublinks is a faithful invariant of D link

homotopy or not.

2. Cn-move and Cn-link.

In this section, we will recall the techniques of Murakami and the first author

in [MN] and of Taniyama and Yasuhara in [TY] and [TY2]. Habiro introduced a

sequence of his Cn-moves (nb 1) in [H2] to show that two oriented knots have the

same Vassiliev invariants of order less than or equal to n if and only if they can be

transformed into each other by a finite sequence of Cnþ1-moves. We remark that an

ordinary unknotting operation is a C1-move, and that a D move is a C2-move. A C3-

move is formerly called a clasp-pass move in [H]. Taniyama and Yasuhara introduced

their Cn-links (nb 1) to show that a Cn-move can be realized by the result of fusion with

a Cn-link (cf. [TYO]). Furthermore, they showed that a finite sequence of Cnþ1-moves

can unlink, unknot, and untwist fusion-bands with a Cn-link to be trivial fusion-bands

(possibly with half-twists). And a finite sequence of Cnþ1-moves can make a root of

a fusion-band which connects a Cn-link slide along the original link and pass through a

root of a fusion-band which connects another Cm-link. We remark that a C1-link is

a Hopf-link, and that a C2-link is Borromean rings. In this note, we use the mark in

figures of fusion-bands to mean a half-twist as in Figure 2.0.1, where the circle with a

slash in (1) means a right-handed half-twist of a band as in (2), and the circle with a

back slash in (3) means a left-handed half-twist of a band as in (4).

Figure 2.0.1.
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2.1. D move and Borromean rings.

We recall a D move (or C2-move) as in Figure 1.1.1. The following claims are

known in [MN] and [TY]. Another aspect of a D move can be seen in Figure 2.1.1,

which illustrates Claim 1.1 in [MN]: ‘‘A clasp can leap over a hurdle.’’

D D

Figure 2.1.1.

Claim 2.1.1. A local move as in Figure 2.1.1 can be realized by a single D move.

As a special case of Claim 2.1.1, we have the following Claim 2.1.2.

Claim 2.1.2. The number of half-twists of a fusion-band with a Hopf-link can be

changed by G2 by a single D move as (1) to (6) in Figure 2.1.2.

D

Figure 2.1.2.

Claim 2.1.3. A D move can be realized by the result of fusion with Borromean rings

as in Figure 2.1.3.

Figure 2.1.3.

2.2. Clasp-pass move and C3-link.

A clasp-pass move (or C3-move) is shown in Figure 2.2.1, which is a replacement of

4-string trivial tangles.

Figure 2.2.1.
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The following claims are known in [TY2]. Another aspect of a C3-move can be

seen in Figure 2.2.2, which illustrates Claim 2.2.1.

Figure 2.2.2.

Claim 2.2.1. A fusion-band with Borromean rings can ‘‘leap’’ over a sub-arc of the

link by a single clasp-pass move as in Figure 2.2.2.

As special cases of Claim 2.2.1, we have the following Claims 2.2.2 and 2.2.3.

Claim 2.2.2. The number of half-twists of a fusion-band with Borromean rings can

be changed by G2 by a single clasp-pass move as in Figure 2.2.3.

Claim 2.2.3. A half-twist of a fusion-band with Borromean rings can be moved to

an adjacent fusion-band with the same Borromean rings by twice clasp-pass moves as in

Figure 2.2.4.

Figure 2.2.3. Figure 2.2.4.

Claim 2.2.4. A clasp-pass move can be realized by the result of fusion with a C3-

link as in Figure 2.2.5.

Figure 2.2.5.

2.3. C4-move.

A C4-move is shown in Figure 2.3.1, which is a replacement of 5-string trivial

tangles. Another aspect of a C4-move can be seen in Figure 2.3.2.
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Claim 2.3.1. A fusion-band with a C3-link can ‘‘leap’’ over a sub-arc of the link by

a single C4-move as in Figure 2.3.2.

As a special case of Claim 2.3.1, we have the following Claim 2.3.2.

Claim 2.3.2. The number of half-twists of a fusion-band with a C3-link can be

changed by G2 by a single C4-move as in Figure 2.3.3.

A C4-move can be realized by the result of fusion with a C4-link, which is a

Brunnian link with five components.

2.4. Cn-move and self D move.

The definition of self D move implies the following Claim 2.4.1.

Claim 2.4.1. If all of the three fusion-bands with the same Borromean rings are

connected to the same component, the fusion-bands can be removed by a single self D

move.

A clasp-pass move is a local move to replace 4-string trivial tangles as in Figure

2.2.1, and it can be realized by twice D moves for arbitrary three strings. (Cf. Figures

2.1.1 and 2.2.1.) That implies the following Claim 2.4.2.

Claim 2.4.2. If three of the four fusion-bands with the same C3-link are

connected to the same component, the fusion-bands can be removed by twice self D

moves.

A C4-move is a local move to replace 5-string trivial tangles as in Figure 2.3.1, and

it can be realized by twice C3-moves for arbitrary four strings. (Cf. Figures 2.2.1 and

2.3.1.) Furthermore, it can be realized by at most four times D moves for arbitrary

three strings. If three of the five fusion-bands with the same C4-link are connected to

the same component, the fusion-bands with a C4-link can be removed by at most four

Figure 2.3.1.
Figure 2.3.2.

Figure 2.3.3.
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times self D move. In the case of a C4-move for a 2-component link, three of the five

fusion-bands with the same C4-link are connected to the same component. That implies

the following Claim 2.4.3.

Claim 2.4.3. The fusion-bands with the same C4-link for a 2-component link can be

removed by a finite sequence of self D move.

The observation above is based on Habiro’s observation, and some part can be seen

in [OTY].

2.5. Generating Borromean rings.

A ð2; 2d1Þ-torus link can be realized by the result of fusions with d1 Hopf-links as

in the upper-left of Figure 2.5.1. Grasp and twist once the right part, and we have the

upper-right. By clasp-pass moves at suitable ð1=2Þd1ðd1 � 1Þ crossings of fusion-bands,

we have the lower-left. By D moves at the d1 fusion-bands (Claim 2.1.2), we have the

lower-right, which is the same as the original. We remark that none of the last d1 times

D moves is self D move. This observation can be seen in the proof of Theorem 1.5 in

[TY2].

Claim 2.5.1. A ð2; 2d1Þ-torus link can be realized by the result of fusions for a

ð2; 2d1Þ-torus link with d1 sets of Borromean rings (each triple of whose fusion-bands is not

connected to the same component) and with a finite number of C3-links.

D

Figure 2.5.1.

3. Proof of Theorem 3.

In this section, by a finite sequence of self D moves, we will transform a given 2-

component link into the result of fusion for the ð2; 2d1Þ-torus link with at most one set

of Borromean rings and with a finite number of C3-links. From the numbers of sets of

Borromean rings and C3-links, we will calculate their d2. The coincidence of their d2
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implies the coincidence of the numbers of sets of Borromean rings and C3-links. This

implies the proof of Theorem 3.

3.1. Torus link with Borromean rings.

We recall Proposition 1. If d1 of two 2-component links coincide, then they can

be transformed into each other by a finite sequence of D moves. In other words, an

arbitrary 2-component link can be realized by the result of fusion for the ð2; 2d1Þ-torus

link with a finite number of Borromean rings as in Figure 3.1.1. If all of the three

fusion-bands with the same Borromean rings are connected to the same component, a

single self D move removes it by Claim 2.4.1. Now we count the number of sets of

fusion-bands with Borromean rings each one of which is connected to distinct com-

ponents. If the number is odd, and if the d1 is odd, the number can be changed into

even by Claim 2.5.1. Therefore, in the case that d1 is odd, the number is assumed to be

even. In the case that d1 is even, the number is even or odd.

Figure 3.1.1.

3.2. Sliding a fusion-band with Borromean rings by clasp-pass moves.

The following Claim 3.2.1 can be seen essentially in [TY2].

Claim 3.2.1. A root of a fusion-band with Borromean rings can pass through a root

of a fusion-band with another Borromean rings or C3-link by a finite sequence of clasp-pass

moves.

Proof of Claim 3.2.1. Slide the root of the left fusion-band with Borromean rings

along the original link and another fusion-band from the upper-left to the upper-right

in Figure 3.2.1. By Claim 2.1.1, the crossings of the fusion-band and a sub-arc of

Borromean rings can be changed by twice clasp-pass moves, from the upper-right to the

lower-left. Pulling the fusion-band by an isotopy, we have the lower-right from the

lower-left. In the case of C3-link, the parallel argument can be applied. The proof of

Claim 3.2.1 is complete. r
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Figure 3.2.1.

A crossing-change of fusion-bands can be realized by twice clasp-pass moves from

Claim 2.2.1. Therefore, a finite sequence of clasp-pass moves can unlink, unknot, and

untwist fusion-bands with Borromean rings to be trivial fusion-bands (possibly with

half-twists). We can transform all the sets of fusion-bands with Borromean rings by

a finite sequence of clasp-pass moves so that the 2-component link is realized by the

result of fusion for the ð2; 2d1Þ-torus link with a finite number of Borromean rings and

C3-links as in Figure 3.2.2, where all the fusion-bands with Borromean rings are suitably

arranged.

Figure 3.2.2.

3.3. Removing fusion-bands with Borromean rings.

From the argument above, all the fusion-bands with Borromean rings are assumed

to be suitably arranged. We can add a single half-twist on each one of fusion-bands

with the same Borromean rings by the following operation, which can be seen in the

proof of Theorem 1.4 in [TY2]. We consider that as in Figure 3.3.1 (1). We perform

the p-rotation for the part of the Borromean rings by the horizontal axis to deform

(1) to (2) in Figure 3.3.1. The left lower fusion-band can pass over fusion-bands with

another Borromean rings and C3-links downwards along the left component to come

back to the top by a finite sequence of clasp-pass moves as in (2) to (3). Then we

Y. Nakanishi and Y. Ohyama648



can add a single half-twist on each one of the fusion-bands. Moreover, the sum of the

numbers of half-twists of fusion-bands with the same Borromean rings can be reduced

by two from Claims 2.2.2 and 2.2.3 by a finite sequence of clasp-pass moves.

Figure 3.3.1.

Claim 3.3.1. Two sets of suitably arranged fusion-bands with Borromean rings can

be removed by a finite sequence of clasp-pass moves.

Proof of Claim 3.3.1. Suppose that the link is realized by the result of fusion

for the ð2; 2d1Þ-torus link with two or more sets of Borromean rings and with a finite

number of C3-links, where all the fusion-bands with Borromean rings are suitably

arranged. We remark that any two sets of suitably arranged fusion-bands with

Borromean rings are isotopic regardless of connection of fusion-bands for the ð2; 2d1Þ-

torus link, as in Figure 3.3.2.

Figure 3.3.2.

From the transformation above, we can assumed that, for the adjacent two sets

of suitably arranged fusion-bands with Borromean rings, the numbers of half-twists

of fusion-bands are 0 and 1 as in Figure 3.3.3 (1), where the pair of fusion-bands with

Borromean rings is removed by twice self D moves, as (1) to (6) in Figure 3.3.3. The

proof is complete. r

D D

Figure 3.3.3.
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Hence, the number of sets of suitably arranged fusion-bands with Borromean rings

can be reduced by two by a finite sequence of clasp-pass moves. In the case that d1 is

odd, the number can be reduced to 0. In the case that d1 is even, the number can be

reduced to 1 or 0.

3.4. Sliding a fusion-band with a C3-link by C4-moves.

The following Claim 3.4.1 can be seen essentially in [TY2] as well as that of Claim

3.2.1.

Claim 3.4.1. A root of a fusion-band with a C3-link can pass through a root of a

fusion-band with another Borromean rings or C3-link by a finite sequence of C4-moves (and

so by a finite sequence of self D moves).

Proof of Claim 3.4.1 is given by the parallel argument to that of Claim 3.2.1.

From Claim 2.3.1, a crossing-change of fusion-bands can be realized by twice C4-

moves (and so by a finite sequence of self D moves). Therefore, a finite sequence of C4-

moves (and so a finite sequence of self D moves) can unlink, unknot, and untwist fusion-

bands with a C3-link to be trivial fusion-bands (possibly with half-twists). We can

transform all the sets of fusion-bands with a C3-link by a finite sequence of C4-moves

(and so by a finite sequence of self D moves) so that the 2-component link is realized

by the result of fusion for the ð2; 2d1Þ-torus link with at most one set of Borromean

rings and a finite number of C3-links as in Figure 3.4.1, where all the fusion-bands with

Borromean rings and with a finite number of C3-links are suitably arranged.

Figure 3.4.1.

By Claim 2.4.2, two of the four fusion-bands with the same C3-link are assumed to be

connected to one component and the other two to the other component. If a fusion-

band with a C3-link is half-twisted as in Figure 3.4.2 (1), the fusion-band can be

deformed by an isotopy through the adjacent fusion-band into that in Figure 3.4.2 (2).

A C4-move (and so a finite sequence of self D moves) and an isotopy transform (2) into

(3), where the crossings of C3-link are changed. Therefore, we can remove half-twists

on all fusion-bands with C3-links by a finite sequence of C4-moves (and so by a finite

sequence of self D moves). In other words, we have the following Claim 3.4.2.

Claim 3.4.2. The di¤erence of hooking can be realized by a single half-twist of an

incident fusion-band by a finite sequence of C4-move (and so by a finite sequence of self D

moves).
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Figure 3.4.2.

3.5. Removing fusion-bands with C3-links.

Any suitably arranged set of fusion-bands with C3-links can be deformed and/or

transformed into two types of suitably arranged set of fusion-bands with C3-links as

(A) and (B) in Figure 3.5.1, where the crossings of C3-links have several possibilities.

That is because the flip for the right part as in Figure 3.5.2 can assure that two pairs of

fusion-bands which are connected to the same components are adjacent.

Figure 3.5.1.

Figure 3.5.2.

For the type (A), a suitably arranged set of fusion-bands with a C3-link can be

removed by a finite sequence of self D moves. The left (or right) part can be deformed

by an isotopy into a kind of Whitehead double like as in Figure 3.5.3 (1). Therefore,

the set can be deformed by an isotopy into a kind of iterated Whitehead double as in

Figure 3.5.3 (2), which can be removed by a finite sequence of self D moves.
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Figure 3.5.3.

For the type (B), there are eight patterns of crossings of C3-links (see Figure 2.8

in [NO]). The eight patterns can be transformed into two patterns by a finite sequence

of self D moves. For example, the pattern (a) in Figure 3.5.4 is transformed into the

D

D

D

Figure 3.5.4
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pattern (k) in Figure 3.5.4. By a finite sequence of self D moves, (a) is transformed into

(b) by Claim 3.4.2. (b) is deformed into (c) and into (d) by an isotopy. The central

part of (d) is deformed into (e) and into (f ) by an isotopy. (f ) is transformed into (g)

by a finite sequence of self D moves, and so we have (h). (h) is deformed into (i) and

into ( j) by an isotopy. ( j) is transformed into (k) by a finite sequence of self D moves

by Claim 3.4.2.

By the parallel argument, the eight patterns can be transformed into the two

patterns in Figure 3.5.5 by a finite sequence of self D moves.

Figure 3.5.5.

A pair of both patterns can be removed by a finite sequence of C4-moves (and so by a

finite sequence of self D moves) as (1) to (4) in Figure 3.5.6.

D

Figure 3.5.6.

Therefore, an arbitrary 2-component link can be transformed into the result of fusion for

the ð2; 2d1Þ-torus link with at most one set of Borromean rings and with a finite number

of C3-links, where all the fusion-bands with at most one set of Borromean rings and

with a finite number of C3-links of patterns in Figure 3.5.5 are suitably arranged.

3.6. E¤ect on d2.

In the case that d1 is even, a suitable arranged set of fusion-bands with Borromean

rings changes d2 of the link byGðd1 þ 1Þ. We remark thatGðd1 þ 1Þ is an odd integer.
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Adding a suitable arranged set of fusion-bands with a C3-link of pattern (1) (or (2),

respectively) in Figure 3.5.5 changes d2 of the link by �2 (or 2, respectively). And d2

depends only on the numbers of the set of fusion-bands with Borromean rings and the

sets of fusion-bands with C3-links. If the pairs of d1 and d2 coincide, the pairs of the

above numbers should coincide. Therefore, the two 2-component links can be trans-

formed into each other by a finite sequence of self D moves. The proof of Theorem 3 is

complete. r
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