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Abstract. Let G be a connected reductive algebraic group defined over a global field
k and Q a maximal k-parabolic subgroup of G. The constant y(G, Q,k) attached to
(G, Q) is defined as an analogue of Hermite’s constant. This constant depends only on
G, Q and k in contrast to the previous definition of generalized Hermite constants ([W1]).
Some functorial properties of y(G, Q, k) are proved. In the case that k is a function field
of one variable over a finite field, y(GL,, Q,k) is computed.

Let k£ be an algebraic number field of finite degree over Q and let G be a con-
nected reductive algebraic group defined over k. In [WI], we introduced a constant
yC attached to an absolutely irreducible strongly k-rational representation 7: G —
GL(V,) of G. More precisely, if G(4) denotes the adele group of G and G(A)' the
unimodular part of G(A), it is defined by

yY = max min ||7T(9V)xn‘|2/kg]

geG(A)' veG(k
where x, is a non-zero k-rational point of the highest weight line in the representation
space V, and || - || is a height function on the space GL(V,(A4))V,(k). This constant is
called a generalized Hermite constant by the reason that, in the case when k = Q,
G = GL, and 7 = n; is the d-th exterior representation of GL,, ynGdL" 1s none other than

the Hermite-Rankin constant ([R]):

L etz
Yud = geGL,(R) x1,....,xq€Z" |detg|2d/”
XIAAXg#0
When GL, is defined over a general k, then ynGdL" coincides with the following gen-
eralization of y, ;, due to Thunder ([T2]):

2
k) = ma min Hy(X )
yn,d( ) geGL)E A) X eGry(k™) |det |2 nlk:QJ)
where Gry(k”) is the Grassmannian variety of d-dimensional subspaces in k" and H,
a twisted height on Gry(k"). In a general G, y¢ has a geometrical representation
similarly to y, ,(k). In order to describe this, we change our primary object from a
representation 7 to a parabolic subgroup of G. Thus, we first fix a k-parabolic sub-
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group Q of G, and then take a representation z such that the stabilizer Q, of the highest
weight line of # in G is equal to Q. The mapping g +— n(g~')x, gives rise to a k-
rational embedding of the generalized flag variety Q\G into the projective space PV7.
Taking a k-basis of V,(k), we get a height H, on PV,(k), and on Q(k)\G(k) by
restriction. In this notation, y¢ is represented as

7S¢ = max min  Hy(xg)".

geG(A) x€Q(k)\G(k)

In this paper, we investigate y¢ more closely when Q is a maximal k-parabolic
subgroup of G. Especially, we shall show that = and H, are not essentials of the
constant ¢, to be exact, there exists a constant y(G, Q,k) depending only on G, Q and
k such that the equality y¢ = y(G, Q,k)“ holds for any = with Q, = Q, where ¢, is
a positive constant depending only on n. This y(G, Q,k) is called the fundamental
Hermite constant of (G, Q) over k. We emphasize that there is a similarity between
the definition of y(G, 0, k) and a representation of the original Hermite’s constant y, | as
the maximum of some lattice constants. Remember that y,; is represented as

ynl/lz = gergle}j%R) min{7 > 0: B7NgZ" # {0}},
|det g|=1
where B/ stands for the ball of radius 7" with center 0 in R". Corresponding to R", we
consider the adelic homogeneous space Yy = 0(A)'\G(A)" as a base space. The set X, 0
of k-rational points of Q\G plays a role of the standard lattice Z". In addition, there is
a notion of “the ball” Br of radius 7" in Yy, whose precise definition will be given in
Section 2. Then y(G, Q,k) is defined by

7(G,0,k) = max min{7 > 0:BrNXpg # J}.
geG(a)'

Independency of y(G,Q,k) on n and H, allows us to study some functorial
properties of fundamental Hermite constants. For instance, the following theorems will
be verified in Section 4.

THEOREM. If f: G — G' is a surjective k-rational homomorphism of connected
reductive groups defined over k such that its kernel is a central k-split torus in G, then

(G, Q. k) = p(G', p(Q), k).

THEOREM. If Ry, denotes the functor of restriction of scalars for a subfield ¢ < k,
then V(Rk//<G)> Rk//(Q)v /> - y<G> Q7 k)

THEOREM. If both Q and R are standard maximal k-parabolic subgroups of G and
My is a standard Levi subgroup of R, then one has an inequality of the form

V(G, Q7 k) < V(MRa Mg N QJC)MV(G» R7k)w2>
where | and w, are rational numbers explicitly determined from Q and R.

These theorems are including the duality theorem: 7y, ;(k) =7, ,_;(k) for 1 <j <
n—1 and Rankin’s inequality ([R], [T2]): 7, (k) <y, ;(k)y, (k) Wforl<i<j<n—1
as a particular case.
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Since no any serious problem arises from replacing k with a function field of one
variable over a finite field, we shall develop a theory of fundamental Hermite constants
for any global field. In the case of number fields, the main theorem of gives a
lower bound of y(G, Q,k). An analogous result will be proved for the case of function
fields in the last half of this paper. The case of G = GL, is especially studied in detail
because this case gives an analogue of the classical Hermite-Rankin constants. When k
is a function field, it is almost trivial from definition that y(G, Q,k) is a power of the
cardinal number ¢ of the constant field of k. Thus, the possible values of y(G, Q, k) are
very restricted if both lower and upper bounds are given. This is a striking difference
between the number fields and the function fields. For example, it will be proved that
y(GL,, Q,k) =1 for all maximal Q and all n > 2 provided that the genus of k is zero,
1.e., k i1s a rational function field over a finite field.

The paper is organized as follows. In Section 1, we recall the Tamagawa mea-
sures of algebraic groups and homogenous spaces. In Sections 2 and 3, the constant
(G, Q,k) is defined, and then a relation between y(G, Q,k) and yC is explained. The
functorial properties of y(G, Q,k) is proved in Section 4. In Section 5, we will give
a lower bound of y(G,Q,k) when k is a function field, and compute y(GL,, Q,k) in
Section 6.

NoTATION. As usual, Z,Q,R and C denote the ring of integers, the field of
rational, real and complex numbers, respectively. The group of positive real numbers is
denoted by R.

Let k& be a global field, i.e., an algebraic number field of finite degree over Q or an
algebraic function field of one variable over a finite field. In the latter case, we identify
the constant field of k& with the finite field F, with ¢ elements. Let 8B be the set of all
places of k. We write B, and B, for the sets of all infinite places and all finite places
of k, respectively. For ve B, k, denotes the completion of k at v. If v is finite, O,
denotes the ring of integers in k,, p, the maximal ideal of O,, j, the residual field O,/p,
and ¢, the order of f,. We fix, once and for all, a Haar measure y, on k, normalized so
that x,(O,) =1 if ve By, w1, ([0,1]) =1 if v is a real place and u,({aek,:aa <1}) =
27 if v is an imaginary place. Then the absolute value |- |, on k, is defined as |a|, =
1,(aC)/u,(C), where C is an arbitrary compact subset of k, with nonzero measure.

Let A be the adele ring of k, |- |, = [[,cq ||, the idele norm on the idele group 4™
and sy =[[,.q & an invariant measure on A. The measure u, is characterized by

1 (AJk) = \Dy|'*  (if k is an algebraic number field of discriminant Dy).
8 q/%)~1 (if k is a function field of genus g(k)).

In general, if u, and uz denote Haar measures on a locally compact unimodular

group A and its closed unimodular subgroup B, respectively, then uz\z, (resp. 1 /1p)

denotes a unique right (resp. left) 4-invariant measure on the homogeneous space B\A4
(resp. A/B) matching with u, and pp.

1. Tamagawa measures.

Let G be a connected affine algebraic group defined over k. For any k-
algebra 4, G(A) stands for the set of A-rational points of G. Let X*(G) and X, (G) be
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the free Z-modules consisting of all rational characters and all k-rational characters of
G, respectively. The absolute Galois group Gal(k/k) acts on X*(G). The repre-
sentation of Gal(k/k) in the space X*(G)®, Q is denoted by os and the corre-
sponding Artin L-function is denoted by L(s,06) = [],cq, Lo(s,06). We set ox(G) =
limg_ (s — 1)"L(s,06), where n=rank X;(G). Let @ be a nonzero right invariant
gauge form on G defined over k. From ¢ and the fixed Haar measure x, on k,,
one can construct a right invariant Haar measure o on G(k,). Then, the Tamagawa
measure on G(A) is well defined by

of = w(A/k)™ " ol of,

where

0l = H »® and wf:ak(G)*l H L,(1,06)0C.
veB,, ve By,

For each ge G(4), we define the homomorphism 36(g): X;(G) — R} by
36(9)(x) = x(g)|4 for ye X[ (G). Then Ys is a homomorphism from G(A4) into
Homz(X;(G),R7). We write G(A)' for the kernel of ;. The Tamagawa measure
1 on G(A)' is defined as follows:

The case of ch(k)=0. If a Z-basis y,...,x, of X[ (G) is fixed, then
Homyz(X;(G),RY) is identified with (R})" and J; gives rise to an isomorphism
from G(4)'\G(4) onto (RY)". Put the Lebesgue measure df on R and the invari-
ant measure dt/t on R}. Then Wg(4) 1s the measure on G(A)" such that the quotient
measure wg A)I\CUAG is the pullback of the measure ], dt;/t; on (RY)" by 3¢. The
measure @, is independent of the choice of a Z-basis of X L (G).

The case of ch(k) > 0. The value group of the idele norm |- |, is the cyclic
group g% generated by ¢ (cf. [We2]). Thus the image Im 3¢ of 9 is contained in
Homz (X} (G),q%) and G(A)' is an open normal subgroup of G(A4). Since the index of
Im 96 in Homz(X;(G),q?) is finite ((Oe, 1, Proposition 5.6]),

D6 4)

(1.1) d; = (logq)™™ *9Homy (X} (G),¢%) : Im 9]

is well defined. The measure W 4)! is defined to be the restriction of the measure
(dg) ' w§ to G(A)'.

In both cases, we put the counting measure wgy) on G(k). The volume of
G(k)\G(A)" with respect to the measure wg = WG(k) \Wg 4y 18 called the Tamagawa
number of G and denoted by 7(G).

In the following, let G be a connected reductive group defined over k. We
fix a maximally k-split torus S of G, a maximal k-torus S; of G containing S, a
minimal k-parabolic subgroup P of G containing S and a Borel subgroup B of P
containing S;. Denote by @, and 4, the relative root system of G with respect to S
and the set of simple roots of @; corresponding to P, respectively. Let M be the
centralizer of S in G. Then P has a Levi decomposition P = MU, where U is the
unipotent radical of P. For every standard k-parabolic subgroup R of G, R has a
unique Levi subgroup My containing M. We denote by Ug the unipotent radical of
R. Throughout this paper, we fix a maximal compact subgroup K of G(A) satisfying
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the following property; For every standard k-parabolic subgroup R of G, KN Mg(A)
is a maximal compact subgroup of Mgp(A4) and Mg(A) possesses an Iwasawa decom-
position (Mg(A)NU(A))M(A)(KN Mg(A)). We set KMt = KN Mg(A), PR= MzxNP
and UR = MzxNU.

Let R be a standard k-parabolic subgroup of G and Zy be the greatest central k-
split torus in M. The restriction map X, (Mg) — X[ (Zg) is injective. Since X, (Mp)
has the same rank as X, (Zg), both indexes

dr = [X{(Zr) : X;(Mp)] and dr = [X;(Zr/Zc) : X;(Mr/Z3)]

are ﬁnite We define another Haar measure vy (4 of Mg(A4) as follows. Let wy!
and oY * be the Tamagawa measures of M (A4) and UR(A), respectively. The modular
character 0% of PR(A) is a function on M(A) which satisfies the integration formula

[ oy dof" ) = opaom | ) dof )

UR(4) UR(4)

Let v, be the Haar measure on K™ normalized so that the total volume equals one.
Then the mapping

fHJ S (nmh)opr(m) " deof " (w)deog! (m)dviwe (h),  (f € Co(Mg(A)))
UR(A)x M (A)x K MR

defines an invariant measure on Mpg(A4) and is denoted by vyg(4). There exists a
positive constant Cg such that

Ct)/iuR = CRVMR(A)-
We have the following compatibility formula:

Ce
12| redeio) =

J £ (umh)or(m) ' do¥*dam ' (m)dvi (h)
R UR(A)XMR(A)XK

for f e Co(G(A)), where d3' is the modular character of R(A).
On the homogeneous space Yz = R(A4)'\G(A)', we define the right G(4)'-invariant
measure Wy, by wp 41 \@g 41 We note that both G(A)' and R(A)' are unimodular.

2. Definition of fundamental Hermite constants.

Throughout this paper, Q denotes a standard maximal k-parabolic subgroup of
G. There is an only one simple root o € 4; such that the restriction of « to Zy is non-
trivial. Let np be the posmve integer such that ng Lo 7, 18 @ Z-basis of X;(Zo/Zg).
We write ap and ap for ng oc|Z and a’QnQ o 75 respectlvely Then dp is a Z-basis
of the submodule Xk(MQ/ZG) of X (Zo/Zg). If we set egp =npdim Uy and ép =
no dim UQ/C?Q, then

do(2) = lao(2)[? and  do(m) = |ég(m)[3?

hold for ze Zp(A) and m e My(A).
Define a map zp: G(A) — Zg(A)Mp(A)' \Mp(A) by zo(g) = Z(A)Mp(A)'m
if g=umh, ue Uy(A), me Mp(A) and he K. This is well defined and a left
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Z;(A)Q(A) -invariant. Since Zg(4)' = Zs(4) N G(A)' = My(A)", Zp gives rise to a
map from Yy, = 0(A)"\G(4)' to MQ(A)I\(MQ(A) NG(4)"). Namely, we have the fol-
lowing commutative diagram:

Yo — Mo(A)'\(Mp(4)N G(4)")

l l

Zo(A)Q(A)\G(A) ——  ZG(A)Mo(A)"\Mg(A)

In this diagram, the vertical arrows are injective, and in particular, these are bijective if
ch(k) = 0. We further define a function Hy : G(4) — R} by Hp(g) = |<5cQ(zQ(g))|;l for
g € G(A). This has the following property:

The case of ch(k) =0. Let Z; and Z}, be the subgroups of Zg(A4) and Zp(4),
respectively, deﬁned as in [W1]. Then Hyp glves a bijection from Z;\Z), onto RY. 1If
(Ho| Zg\z+) denotes the inverse map of this bijection, then the map

ip : Ri xK— Yp:(t,h)— Q(A)I(HQ|ZE\ZE)71(Z)}Z

1S surjective.

The case of ch(k) > 0. The value group |ag(Mp(A) NG(A)")|, is a subgroup
of ¢%. Let qo = qo(Q) be the generator of |ap(Mp(A)N G(A)Y)| 4 that is greater than
one. Then Hy gives a surjection from Yy onto the cyclic group ¢Z.

We set Xop = Q(k)\G(k), which is regarded as a subset of Y,. Let Br =
{yeYp:Hpo(y)<T} for T >0. The volume of Br is given by

)
Cadp
T h(k) =0
o (ch(k) = 0)
COYQ (BT) - C d [IngIO }
G
. —— (ch(k) > 0)

where [log, T7] is the largest integer which is not exceeding log, 7 (cf. [W1, Lemma 1]

and in §5).

ProrosiTioN 1. For T > 0 and any g € G(A)l, Br N Xgg is a finite set. Hence, one
can define the function

I'p(g) =min{T > 0: Br N Xpg # &} = fell}(ngHQ(y)

on G(A)'. Then the maximum

(G, Q,k) = max Tp(g)
geG(A)'

exists.

will be proved in the next section.

DEerFINITION.  The constant y(G, Q, k) is called the fundamental Hermite constant of
(G, Q) over k.
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We often write y, for (G, Q,k) if k and G are clear from the context. The
constant y, is characterized as the greatest positive number 7y such that By N Xogr =
@ for any T < T and some g7 € G(A)l. It is obvious by definition that y, e qf if
ch(k) > 0.

REMARK. Let Yy = Zs(A)O(A)'\G(4). Then, for any g € G(A), Xog is regarded
as a subset of Yp. In some cases, it is more convenient to consider the constant
(G, 0, k) = max min H, )
7(G.0.0) = max min Ho(y)
In general, y(G,Q0,k) <y(G,0Q,k) holds. If ch(k)=0 or G is semisimple, then
(G, 0,k) =7(G, Q,k) because of Yy = Y.

ReEMARK. If ch(k) =0, one can consider the more general Hermite constant
defined by

(G, Q,D, k) = max min{7 > 0:ip((0,T] x D)N Xpg # &}
geG(A)

for an open and closed subset D of K.

3. A relation between y, and a generalized Hermite constant.

We recall the definition of generalized Hermite constants (W1, §2]). Let }; be a
finite dimensional k-vector space defined over k and 7 : G — GL(V;) be an absolutely
irreducible k-rational representation. The highest weight space in V), with respect to B
is denoted by x,. Let Q, be the stabilizer of x, in G and A, the rational character of
0, by which Q, acts on x,. In the following, we assume Q = Q, and = is strongly
k-rational, i.e., x, is defined over k. Then A, is a k-rational character of Q,. It is
known that such 7 always exists (cf. [Til], [W1]). We use a right action of G on V,
defined by a- g = n(g~")a for ge G and a € V,. Then the mapping g — X, - g gives rise
to a k-rational embedding of Q\G into the projective space PV,. We fix a k-basis
ey,...,e, of the k-vector space V;(k) and define a local height H, on V,(k,) for each
ve B as follows:

(lar)? + -+ |an|H)V?  (if v is real).
Hy(arey + -+ aney) = < ay|, + - + |ay|, (if v is imaginary).
sup(aify, - -, lanl,) — (if ve By).
The global height H, on V,(k) is defined to be a product of all H,, that is, H,(a) =
[1,c4 Ho(a). By the product formula, H, is invariant by scalar multiplications. Thus,

H, defines a height on PV,(k), and on X, by restriction. The height H, is extended to
GL(V(A)PV(k) by

Hy(éa) = [ Ho(éa)

vedB
for & = (&,) e GL(VR(A)) and a = ka e PVy(k), ae Va(k) —{0}. Put

Dy e(9) = He(E(xr - 9))/ Hr(Sxz), (9 € G(A)).
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Since this satisfies

D, :(99") = 42(9) 4 Prc(g)), (g€ 0(A),g' € G(A)),

&, ¢ defines a function on Yy. We can and do choose a & € GL(V;(A4)) so that @, ¢
is right K-invariant. Then, in the case of ch(k) = 0, the generalized Hermite constant
attached to n is defined by

(3.1) y; = max min q5m¢(xg)2/[k:Q].
geG(A)' ¥eXo

Let us prove [Proposition 1. We take positive rational numbers e, and é, such that
[42(2)] 4 = [0 (2)
for ze Zp(A4)N G(A)' and me Mp(A4)N G(A)'. Then, by definition,

@, :(y) = Ho(»)™, (v e Yp).

€rn

G and | 2(m)|, = lag(m)|

Therefore, one has
BrNXg = {xe Xg: Hy(Ex) < Hy(Exy) T

Since #{x € PV, (k) : H,({x) < ¢} is finite for a fixed constant ¢ (cf. [S]), Br N Xy is
a finite set. If ge G(A)1 is given, then there is a 7, > 0 depending on g such that
Brg~' < Br,. This implies that #(Br N Xog) = #(Brg ' N Xp) is also finite. Further-
more, we obtain
Tolg) = min D¢ (xg) /.

In [W1, Proposition 2], we proved in the case of ch(k) = 0 that the function in g € G(4)"
defined by the right hand side attains its maximum. The same proof works well for the
case of ch(k) > 0 by using the reduction theory due to Harder ((H]). We mention its
proof for the sake of completeness. If necessary, by replacing G with G/(Ker n)o, we
may assume Kerrn is finite. Let

S(A), = {ze S(A) : |p(z)|; <c for all fe 4}
and
S(A), ={zeS(A4): ' < |p)|, <c for all e 4;}

for a sufficiently large constant ¢ > 1. By reduction theory, there are compact subsets
Q) < P(A) and 2, < G(A) such that K = ©, and G(A4) = G(k)Q21S(A).£2,. Set S(c) =
Q2,5(4) 2N G(A)' and S(c)' = Q15(4).2,N G(A)'. There is a constant ¢’ such that
mi)}l Dy o (x012007) < Dy e(12007) < ¢! |In(2)] ]
XE 0]
holds for all w; € 2y, z € S(A4),. and w; € 2,. The highest weight A, can be written as
a Q-linear combination of simple roots modulo X;(Zs) ®; 0, i.e.,

Inlg = Z cgf mod X;(Zg) ®z 0.

ﬂEA/c
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A crucial fact is ¢g > 0 for all f e 4, (cf. [W1, Proof of Proposition 2]). From this and
the above inequality, it follows

sup min @, ¢(xg) = sup min @, #(xg).

geS(c) XGXQ ge‘S(c)/ XGXQ

This implies that the function g +— min,cy, @ ¢(xg) attains its maximum since S(e) is
relatively compact in G(A4)' modulo G(k). Therefore, the maximum

(3.2) Yo = max min @n,é(xg)l/é”

geG(4)! x€Xo

exists. This completes the proof of [Proposition 1.
Next theorem is obvious by [3.1), [3.2), e, = dpéx, ep = dpép and [W1, Theorem 1].

THEOREM 1. If ch(k) =0, then the Hermite constant attached to a strongly k-
rational representation m is given by

y. = yZQén/[k:Q].
One has an estimate of the form
CQdGeQT(G))l/éQ
33 — <70
3 (Gaiar) =7

ExampLE 1. Let V be an n dimensional vector space defined over an algebraic
number field k and e;,...,e, a k-basis of V(k). We identify the group of linear
automorphisms of V' with GL,. For 1 <j<n—1, Q; denotes the stabilizer of the
subspace spanned by ey, ...,e; in GL, and 7; : GL, — GL( Aj V) the j-th exterior rep-
resentation. A k-basis of V (k) = /\' V (k) is formed by the elements e; = e;, A--- Ae;
with /= {1 <i; <i» <---<i;<n}. The global height H, is defined similarly as
above with respect to the basis {e;};. By definition and Hy (e; A---Ae;) =1, we have

n. i k) = = max min H, (x- 2/ k0l
yiv]( ) ynj gEGLn(A)l XEQ/(k)\GLn(k) nj( g)

Hyy(gx1 A -+ A gxg) 2 2

= max min -
geGL,(A) x1,...,x;€ V (k) |degg|j//(n[k:Q])
xl/\m/\xj;éO

Let ged(j,n — j) be the greatest common divisor of j and n — j. It is easy to see that
; j(n—j) 5 . - )

34 do, = —————, ép, =ged(j,n—j), &, ="—"""=.

B4 ° = ged(n—p) o T EdIn ) n

Therefore,

Y(GLy, Q) k) = p, (k) @/ 2eedln=)

and in particular, y(GL,, O, Q)z/ " is none other than the classical Hermite’s constant
Ym1- BY and [W1, Example 2], we have

D=2 H?:n_- 1 Zk(0)
Res,—1 {i(s) 122 Zk(J)

l/ng(jvnfj)
> < y(GLmijk)a
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jn/ged(j,n—j)

2r1+r2 D 1/2 r[/}’l o p

where (;(s) denotes the Dedekind zeta function of k, I'(s) the gamma function, Z;(s) =
(/20 (s/2))" (27) ™ I'(s))2¢(s), r and r, the numbers of real and imaginary places
of k, respectively. When j =1, the next inequality was proved in [O-W]:

110 "(GLyjk.g), O1, Q)

V<Gan Qlak) < ’Dk‘ [k Q]

4. Some properties of fundamental Hermite constants.

First, we consider the exact sequence
B~
l-Z—-G—-G —1

of connected reductive groups defined over a global field k. We assume the following
two conditions for Z:

(4.1) Z is central in G.

(4.2) Z is isomorphic to a product of tori of the form Ry, (GL1), where each k' /k
is a finite separable extension and Ry denotes the functor of restriction of scalars from
k' to k.

By [B, Theorem 22.6], the assumption (4.1) implies that P’ = B(P), S’ = f(S) and
Q' = p(Q) give a minimal k-parabolic subgroup, a maximal k-split torus and a maximal
standard k-parabolic subgroup of G’, respectively, and furthermore, the homomorphism
(Blg)" : X (S") — X/ (S) induced from S maps bijectively the relative root system @,
of (G',S’) onto @;. From the assumption (4.2), it follows that f gives rise to the
isomorphisms G(k)/Z(k) = G'(k), G(A)/Z(A) = G'(A) and Xy = Xy (cf. [Oe, III 2.2]).
By the commutative diagram

Z(4)! s G(A)' BN G'(A)
Z(4) — G(4) L G'(4)
97 96 91

Homz(X;(Z),R*) —— Homz(X;(G),R%) 21 Homz(X}(G"),R?)

we obtain the isomorphisms G(4)'/Z(4)' = G'(A4)', 0(A)'/Z(4)' =~ Q'(4)' and
Yo =~ Yy. Since ZNZg is the greatest k-split subtorus of Z, the character group
X (Z/ZNZg) is trivial. Therefore, f induces an isomorphism X;(My//Zg)—
X;(Mp/Zs) and maps dg' to dp. The next proposition is now obvious.

THEOREM 2. If the exact sequence

1—>Z—>G£>G/—>1
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of connected reductive groups defined over k satisfies the conditions (4.1) and (4.2), then
(G, Q,k) equals y(G', f(Q), k).

ExampLe 2. If f:GL, — PGL, denotes a natural quotient morphism, then
Y(GLy, Q,k) = y(PGLy, B(Q), k).

ExAaMPLE 3. Let D be a division algebra of finite dimension m? over k and D°
the opposition algebra of D. There are inner k-forms G and G’ of GL,, such that
G(k) = GL,(D) and G'(k) = GL,(D°). We put

0O 0 --- 0 1
0 0 1 0
wo=| 1 e oL,
o1 --- 0 0
1 0 --- 0 O

Then the morphism f: G — G’ defined by B(g) = wo(‘g~")wy! yields a k-isomorphism.
If we take a maximal k-parabolic subgroup Q; of G as

0;(k) = { (g Z) tae GLi(D),be GL,,,»(D)}
for 1 < j<n-—1, then f(Q;(k)) equals
0, (k) = { (‘(‘) ;‘) ca' € GL,_;(D°),b' GLj(DO)}.
Therefore,

V(G, Qjak> - V(Gla Qr/lfja k)

This relation was first proved in [W3]. Particularly, if m = 1, this is none other than the
duality relation

V(GLna Qj?k) = y(Gan Qn—jak)-

REMARK. When ch(k) =0, for a given connected reductive k-group G, there exists
a group extension

1 -Z—-G—-G—1

defined over k such that Z satisfies (4.1) and (4.2), and in addition, the derived group of
G is simply connected. Such an extension of G is called z-extension (cf. [K, §1]).

Second, we consider a restriction of scalars. Take a subfield / of k such that k//
is a finite separable extension and put G' = Ry/,(G), P' = Ry;,(P) and Q' = Ry,(Q).
The adele ring of 7 is denoted by A,. Since the functor R/, yields a bijection from
the set of k-parabolic subgroups of G to the set of /-parabolic subgroups of G’ ([B-
Ti, Corollaire 6.19]), P’ and Q' give a minimal /-parabolic subgroup and a maximal
standard /-parabolic subgroup of G’, respectively. Although the torus Ry, (S) does not
necessarily split over /, the greatest /-split subtorus S’ of Ry /,(S) gives a maximal /-split
torus of G’. For an arbitrary connected k-subgroup R of G and R’ = Ry, (R), we
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introduce a canonical homomorphism f*: X;(R) — X;(R'). If A4 is an /-algebra,
there is a canonical identification R'(4) with R(4 ®, k). Then, for y € X (R), f*(x) is
defined to be

B (x)(a) = Nigi/a(x(a)), (aeR'(4)=R(4Q,k))

X

for any /-algebra A4, where Nygi/4: (A ®,k)” — A denotes the norm. This f* is
bijective ([Oe, II Theorem 2.4]), and if R =S, then f* maps &, to the relative root
system @, of (G',S’) ([B-Ti, 6.21]). From the commutative diagram

R(A) — R'(4/)

. |

Homz(X;(R),R) 1. Homz(X;(R'),RY)
it follows R(A)' = R'(4,)". Accordingly, 0(4)'\G(4)' = 0'(4,)"\G'(4,)". Since Z
is the greatest /-split torus in Ry//(Zg), the natural quotient morphism My /Zg —
My /Ry//(Zg) induces an isomorphism X, (Mo /Ry//(Zg)) =X;(Mgo'/Zs'). The com-
position of this and f* yields an isomorphism between X, (My/Zs) and X; (Mo /Zg).
This maps dp to dg. Then, by definition of S,

[0 ()14, = [Naja, (%0(m))|4, = ao(m)] 4

for me My/(A,) N G’(A/)1 = Mp(4)N G(A)l. In other words, Hy' is equal to Hp on
Yo = Yp. As a consequence, we proved the following

Tueorem 3. If k// is a finite separable extension, then y(Ry;/(G), Ri//(Q),?) is
equal to (G, Q,k).

Finally, we show a generalization of Rankin’s inequality. Let R and Q be two
different maximal standard k-parabolic subgroups of G. We set QR = Mz N O, MQR =
MgrN My, U = MrN Uy and X5 = Q%(k)\Mg(k). Then QX is a maximal standard
parabolic subgroup of My with a Levi decomposition UFM. We write af for the Z-
basis dor of X;(MS/Zr), z§5 for the map zgr : Mg(A4) — ZR(A)MQR(A)I\MQR(A) and
H{ for the function Hyx : Mg(A) — R’ defined by m — \&g(zg(m))ul. The funda-
mental Hermite constants of (Mg, OR) are given by

y(Mg, 0% k) = max min Hg(y) and (Mg, 0% k)= max min Hg(y).
me Mg(A4)! yeXgm me Mr(A) yeXgm

The exact sequence
| = Zr/ZG — My |Z6 — My [Zr — 1
induces the exact sequence
I — X[ (Mg /Zg) — X; (Mg [ Z6) — X;(Zr/Zq).

From &z|,, = drog # 0, it follows that the Q-vector space X Z(MQR /Zg) ®z Q is spanned
by &5 and dg| ME and hence there are w;,w; € Q such that

(43) &Q|MQR :w1&§+a}2&R|MQR.
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THEOREM 4. Being notations as above, one has the inequality
V(G, Qa k) < ?(MR, QRa k)wly(Ga Ra k)wz‘
PrOOF. Since X, 5 is naturally regarded as a subset of Xy, the inequality

o o
Tolg) = min Ho(xg) < o Ho(xg)

holds for g€ G(A)l. By the Iwasawa decomposition, we write g = umh, where u €
Ur(A), me Mg(A)NG(A)" and he K. Then, for x € Mg(k), xux"' € Ur(4) = O(A)",
and

Ho(xg) = Ho((xux"")xmh) = Ho(xm) = |ao(zo(xm))[3".
If we write xm = wuymihy, uy € UQR(A), m eMQR(A) and h; e KM& by the Iwasawa
decomposition Mg(A) = Uy (A) Mz (A)K =, then

~ —1 A — ~ —
Ho(xm) = [ag(mi)l,; = |ag(m)l ' |ar(m)] 4

= |6y (=8 (om)) [ |aw (xom) | > = HE (xm)*or(m)|
= Hg(xm)w‘ Hg(g).

Therefore,

xeXS

I'p(g) < (min H’é(xm)) Hg(9)” < 5(Mg, Q% k) Hp(g)".

As Iy is left G(k)-invariant, the inequality

Io(g) < (Mg, QR k)* Hg(xg)"?

holds for all x € G(k). Taking the minimum, we get

Io(g) < 7(Mr, Q% k) ITr(g) ™.
The assertion follows from this. O
Notice that (Mg, QR k) = y(Mg, QR k) in the case of number fields.
CorOLLARY. If ch(k) =0, then y(G, Q,k) < y(Mg, QR k)“'»(G, R, k).

ExampLE 4. We use the same notations as in Example 1. For i,je Z with
1 <i<j<n-1,both R= Q;and Q = Q; are maximal standard k-parabolic subgroups
of GL,, Then, MR = GLJ X GLn_j, MQ = GL, X GL,,_I' and MR = GL, X GLj_i X GLn_j
We denote an element of MQR by

a 0
diag(a, b, c) = ( b ) , (aeGL;,beGL;_j,ce GL, ;).
0 c
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It is easy to see
a8 (diag(a, b, c)) = (deta)V/ /eI (det p)~"/edI=D
&RIMQR(diag(a, b,c)) = (det a)(n—j)/gcd(j,n—j) (det b)(n—j)/gcd(jm—j) (det C)—j/gcd(j,n—j)
&QIMQR(diag(a,b,c)) — (det a)(")/edi i) geg p)~i/eedlin=i) (geg oy =ilgedlin=),
Thus,

L _mged(ij—i) i ged(j,n—))
YT jeed(in—1) T jged(iin—i)

deduces
Y(GLy, 01, k) < (Mg, Q2 k) PIEI=0/dbn=0) Gr . oy esdlyn— sedlin=i),
If ch(k) =0, then, by Example 1, this reduces to Rankin’s inequality
ni(k) < Vj,i(k>Vn,j<k)i/j-
5. A lower bound of y,.

We prove an analogous inequality to when ch(k) > 0. Thus we assume
ch(k) > 0 throughout this section.

Lemma 1. If f is a right K-invariant measurable function on Yy,
Ced}
d =2 90(&)'f(&).
J,, 10 don ) = > o&7/(8)

G My(A)' &€ Mo(4)'\(Mp(A)NG(A)")

PrROOF. Let ¢ € Cy(G(4)') be a right K-invariant function. By the definition of
invariant measures, we have

|, @)oo =@ | plo)doflo
G(A) G(A)

_ Co

- Cody; J Up(A)x(Mo(A)NG(A)")
~ Ced))
" Cod;:

$(um)dg(m)~" de (u)dey™ (m)

> 30(&) 71 (),

O Mo(A)' & e Mp(A)'\(Mp(A)NG(A)")

where

16 = PumE) ool (w)da,, g (m) = [QW $(99) darg 4 (9):

JUQ(A)XMQ(A)I
On the other hand,
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Lw $9) A6 (9) = JYQ JQ(A)1 gy) deg gy (9)dery (3)

= JY S(y)dwy,(y). O

THEOREM 5. If ch(k) > 0, one has
e
Codg1(G) ~é - jo+1
W(l_qo ) <dqy <70
where the integer jo is given by

] ) " Cod}t(G) _s
—max{ jeZ: g/ < 227G T (| _ 0

and qo = qo(Q) is the generator of the value group |6o(Mp(A) N G(A)")|, which is greater
than one.

Proor. For je Z, we define the function y; : qf — R by

w1 <))
lpf'(%)_{o (> ).

Then, by [Lemma 1,
b= Wil dor(y)
0
_ Cads

= Cod; > 00(&) Wy (Ho(E)).

o(4)' ¢e Mo(A)'\(M(A)NG(A)")

Since Hy is bijective from MQ(A)l\(MQ(A) N G(A)l) to ¢ and §Q(m)_l — HQ(m)éQ for
me Mp(A), we have

ol - g Cot_ai
T Cody =0 Codgy — gt

—o0

If j satisfies [; < 7(G)/7(Q), then

N [
7(Q) JG(k)\G(A)1 xggwj(HQ( 9)) dalg) < Q)

1
s

I =
Therefore, at least one gy € G(A)

S Wy(Ho(xgo)) < 1

xeXp

holds, and hence ;(Ho(xgo)) =0 for all x e Xp. This implies
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min Hp(xgo) = q({“,

xeXp
and
 Cody g <(G)
0 ‘10 T 1+ jo
Yo = qoSups 44 ¢ ~— — < =q
¢ { Cods 1—g 0 2(Q)f ~ P

1/é0
CQd(*;‘C (G) —é
> =5 (1-q,) ) H
(chng)( “
REMARK. In §6, Example 5, we will see an example of y, satisfying

1/éo 1/ég
Codie(G) e Codir(G) | e
<ch (g Q>) ST <@ (W“ ‘% Q>) '
If G splits over k, this lower bound is described more precisely. For ve B,, we
choose each v component K, of K as follows:
(5.1) K, is a hyperspecial maximal compact subgroup %,(D,) of G(k,), and
(5.2) K,NMp(k,) is a hyperspecial maximal compact subgroup .#p ,(O,) of
Moy(k,), where 9, and .#p , stand for the smooth affine group schemes defined over O,

with generic fiber G and M, respectively (cf. [Ti2]).
Then it is known by [Oe, I Proposition 2.5] that

0§ (K) = py(4/k)" ™o (G)" [ Lo(1,06), "™ 1%, (5,)]
Le%f
(K Mo) = g (A)Kk) ™ Mg (Mo) ™t T Lo(1, 001 ), ™ Mot o7,
ver

U —dim
w,* (KN Up(A)) = py(A/k) dimto,
In the integral formula (1.2), if we put the characteristic function of K as f, then

Co _ g (K)
Co W ?(KN Uy(A))wy(KMo)

Since G splits over k, o is the trivial representation of Gal(k/k) of dimension
rank X*(G) =dimZs. As Q is a maximal parabolic subgroup, we have

01(G)  (Resg Ci(s))tim#e B 1 _¢#®-1(g—1)logg
ar(Mg) (Res,_1 (i (s))4m#e ~ Resey Gi(s) Iy, ’

where (;(s) denotes the congruence zeta function of k and /A the divisor class number
of k. Summing up, we obtain

THEOREM 6. If ch(k) >0 and G splits over k, then

—é /éo
(1= 6y “)g 0 VMmO dia(G) 1o i gy ()]
( N Gt LI~ GG ) < e
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6. Computations of »(GL,, Q,k) when ch(k) > 0.

In this section, we assume ch(k) > 0. We concentrate our attention on G = GL,
because this case gives an analogue of classical Hermite’s constant. We use the same
notations as in Example 1 of §3. Namely, V' denotes an n dimensional vector space
defined over k, ey, ..., e, a k-basis of V'(k), O; the stabilizer of the subspace spanned by
er,...,e; in GL, and n; : GL, — GL(V7;) the j-th exterior representation of GL, for
1 <j<n—1. Wetake K as [[, .y GL,(D,). The global height H; = H, on V; (k) is
defined to be

veWYW

H (Z a1e1) =11 Sljp(lallu)«

As an analogue of the number fields case, we can define the constant

. Hi(gxi A ANgx;

7n (k) = max min (G T g ]).

geGL,(A) x1,...,x;e V(k) ’detgu
xy\---/\)g;ﬂ)

It is immediate to see that

Hi(g7lern--ngle)

. ) £ed (=) /n
detg=1]7/"

= Ho,(g

for g e GL,(A), and hence
Vn. (k) = F(GLy, Q;, k)&,

In general, Zg; (A)GL,(A)" is not equal to GL,(A) in contrast to the number
fields case. It is obvious that Zg, (4)GL,(A)" is an index finite normal subgroup
of GL,(A4). Let Z={&} be a complete set of representatives for the cosets of
ZGr, (A)GL,(A)'\GL,(A4). If we put

Hi(gxi A -+ Agx;)

p, (k). = max min -
T e Zat (AVGLAA)E ¥y V(K) detg|4"
X1 A AX; #0
1

:—j/n max o mka Hj(gxl /\---/\ng)
|det &Y/ geGL(4)'e X1 €V (K)
xl/\---/\x,-;éo

for ¢ € =, then

ij(k) = Igleazi Vn,j(k)@

and in particular, for the unit element ¢ =1,
ymj(k)l = j/(GLn, Qjak) ng(j,nfj)/n‘
Since 1 <7, ;(k); by the definition of H;, we obtain

(6.1) 1 <y(GL,, Qj,k) < ynJ(k)n/gcd(j,n—j)_
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LEMMA 2. 9, (k) < ¢/

Proor. By [T1, §5, Corollary 1], for a given g € GL,(A), there are linearly inde-
pendent vectors xj,...,x, of V (k) with

Hi(gx))--- Hi(gx,) < ¢"%|dety] ,.
We may assume Hj(gx;) < Hi(gx2) <--- < Hi(gx,). Then,
Hj(gxi A« Agx;) < Hi(gx) - Hi(gx))
< (Hi(gx1) - Hi(gx)) """
< qjg(k)|detg|g/”.

This implies the assertion. We note that our definition of the global height H; is
slightly different from [TT]. n

THEOREM 7. We have the following estimate.

gt DUt (g — 1)(1 = g~ Ty G0) s
hk H'l‘lzz Ck(i)

< y(GL,, Qj, k) <3(GL,, Q;, k) < g9k eed(jn=j) — qo(Qj)jg(k).

ProOF. Recall that ¢o(Q;) is the generator of the value group |dag,(Mp,(A4)N
GL,(A)")|, which is greater than one. Since

0
My, = {diag(a, b) = <g b) caeGL;,be GLn_‘,-},
any diag(a,b) € My, (A) N GL,(A)" satisfies
|detal , = |deth|,".
The Z-basis ap, of X*(Mp,/Zs,) is given by
s, (diag(a, b)) = (deta)" /&m0 (et p)~//edln=)),

Hence, |dg,(diag(a,b))|, = |deta|™®/"/) holds for diag(a,b) e Mg,(4) N GL,(A)".
This and {|detal, : a € GLi(4)} = ¢Z conclude ¢o(Q;) = ¢"/24U-»=)). The upper esti-
mate is obvious from [Lemma 2 and (6.1). Since the order of the finite group GL,(f,) is
equal to (g — 1)(q —qv) -~ (g —q;""), one has

1 — .| SimGLn/MQj |GLJ(TU) X GLH—](TL)| _ Hin:n‘—j—b—l C/k(l) '
L1 =aa GL, (7)) NINAT

It is known that t(GL,) = t(GL; x GL,_;) =1 (cf. [Wel, Theorem 3.2.1] and [Oe, III
Theorem 5.2]).  From the surjectivity of 8¢y, it follows dg, =logq, dy =dg; .qr, , =
(loggq)® and
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Res_i (i(s) dpp1(Q) T
Then, the lower bound is a result of [Theorem € and ép, = ged(j, n — j). O

1 dép ©(GLy)  q90=1(g —1)

CoroLLARY 1. If g(k) =0, ie, k is a rational function field over F,, then
Y(GLy, Qj, k) = 9(GL,, Qj, k) =1 for all n and j.

It is known that the zeta function (;(s) is of the form

Li(q™*)
(I—g=)(1—q')’

where L;(¢) is a polynomial of degree 2¢g(k) with integer coefficients. If we write Lj(?)
as

Ck(s) =

Lk(l) =ag+ait+---+ azg(k)lzg(k),

then a;’s have the following properties:

1) ag = 1, Aog(k) = qg(k) and Aog(k)—i = qg(k)_iai for 1 <i< g(k)
2) ay=N(k)—(g+1), where N(k) =#{veB:[j,: F,] =1}.
3) Li(1) = Iy

In this notation, [Theorem 4 deduces the following inequality.

COROLLARY 2. If j=1, then

q*“"(q — 1)Li(q™)
hi(q" — q)

ExampLE 5. If g(k) =0, then L;(¢) =1 and A = 1. So that we have

< y(GLna Ql;k) < ?(GLna Ql;k) < qg(k)n = qO(Ql)g(k)‘

—1 —1 —1
I < )(GLw 01 k) =1 < q" L= = gy(0)) T —.
q° —q q° —q q° —q

Put

q"(q—1)L«(q7")
h(q"—q)

By [Corollary 2, if 1 < ¢,(k) holds for &, then both y(GL,, Q1,k) and y(GL,, Q1,k) must
be equal to g%,

en(k) =

ExampLE 6. If g(k) =1, then

(g — 1) (¢* + aiq" + q)
(g + a1 +1)(¢* — qq™)

en(k) =

We have the inequality:
¢ +a1q" +q

b= q*" —qq"

This is obvious by the Hasse-Weil bound |a;| <2,/q. Hence, if a; < -2, ie., Iy <
g — 1, then y(GL,, Qy,k) = 7(GL,, Q1,k) = ¢" for all n > 2.
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REMARK. In the case of number fields, the explicit values of y(GL,, Q,k) are very
little known. One knows only y(GL,, Q;, Q) for 2 <n <8 and y(GL,, Q),k) for a few
quadratic number fields k& (cf. [BCIO], [O-W]).
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