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Abstract. In this paper we study the homotopy types of mod p truncated config-
uration spaces. In particular, we investigate a finite dimensional configuration space
model for the based loop space of mod p lens space as an application.

1. Introduction.

Let SPY(X) = X?/X, denote the d-th symmetric product of a space X, where the
symmetric group Xy of d letters acts on X by the coordinates permutations. Each
element o € SPY(X) may be represented as a finite formal sum o = Y1 diyy (v e X,
xi#x i i # 50, d = d). |

If *+ € X is a basepoint, one has inclusions SPY(X) = SP?!(X) given by adding a
basepoint, « — o+ . We denote by SP*(X) the union | ), ,SP?(X) and it is called
the infinite symmetric product. For an integer p > 2, let TFH* (X) denote the mod p
truncated symmetric product defined by TP (X) = SP*(X)/~,, where the equivalence
relation “~,” is defined by > djx; ~, >, d/x; if dj = d] (mod p) for any j. Recall the
following result.

THEOREM 1.1 (A. Dold and R. Thom, [2]). If X is a connected CW-complex, there
are natural homotopy equivalences

SPOC(X) iszlK(I—Ij(XJZ)vj)J
TR (X) = [1,21 K(H(X, Z/p), J)
such that the diagram

SP*(X) —— [[ K(H)(X,Z),))

Jj=1

TP (X) —— [[K(H)(X,Z/p), ))
j=1

is homotopy commutative, where q: SP*(X) — TP (X) denotes the natural projection
and let n] : K(H;(X, Z), j) — K(H;(X,Z/p), ) be the map induced from mod p reduction.

Hence the space TF,°(X) can be regarded as a mod p version of SP*(X). In this
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paper, we shall study the corresponding result for certain type of labelled configuration
spaces.

Let J be any collection of subsets of {1,2,...,n} with card(A4) >2 for all 4€J.
We denote by EJd (X) the configuration space of type J defined by

Ejl(X):{(fl,... &) eSPUX)": (V&= for all/leJ}.

jea

For an integer p >2, let E¢(X;Z/p) be the mod p truncated configuration space of
E¢(X) defined by E¢(X;Z/p) = E¢(X)/=,, where the equivalence relation “=,” is
defined by (&y,...,&,) =, (ny,...,n,) if & ~,n; for any 1 < j <n. Similarly, let v/X
be the generalized wedge of type J defined by

vIX ={(x1,...,x,) € X": for each A4 eJ,x; = for at least one je A}.

ExampLE. (i) If we take the collection I(n) = {{1,2,...,n}} as J, then
{E;’(n)(X) ={(&,. &) e SPAX)" (V& =

v’(”)X:{(xl,...,xn)eX”.xj—* for some lS]gn}.

Hence, v!"WX = W,(X) is the n-th fat wedge of X.
(i) If J(n)={{i,j}:1<i<j<n},

E.?’(n)(X):{<éla7én)eSPd( ) f,méj Qlfl?é]}
vIOXY =v'X =Xv---vX (n times).

Let ¢¢: EJ(X) — EJ(X;Z/p) be the natural projection and let E¢(R") — EJ™'(R")
(resp. Ed (R*; Z/p) — E{*'(R*; Z/p)) be the stabilization map defined by adding the
point from the edge. Then the main results of this paper are as follows.

THEOREM 1.2. Let p,n> 2, k > 1 be integers, and let J any collection of subsets of
{1,2,...,n} with card(A) =2 for all A€ J.
(1) There are natural homotopy equivalences

S: lim EY(R*) S QK v/K(Z,n),

d— oo

S’ lim EJ(R;Z/p) = Q5 v/ K(Z/p,n),

where the limits are taken from stabilization maps.
(2) There is a homotopy commutative diagram

lim E{(R*)  —— QFV/K(Z,n)

d— oo

lim, q,;’l folaval n}jl

lim E(R";Z/p) S QkVIK(Zp,n)
—00 ~

THEOREM 1.3, If n = 3, there is a map Ejj, (R;Z/2) — QoRP"! ~ QS which is
a homotopy equivalence up to dimension D(d,n) = (d 4+ 1)(n—2) — 1. Here we say that
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a map f: X — Y is a homotopy equivalence up to dimension D if the induced homo-
morphism f. : nj(X) — n;(Y) is bijective when j < D and surjective when j = D.

We conclude with some comments on the wider significance of these results.
Mheorem 1.2 can be regarded as giving a simple ‘“homotopy model” for the k-fold loop
space QX V/K(G,k) (G=Z or Z/p), and it also may be considered as one of the
generalizations of the results given in [3]. The mod p configuration space was first
studied in [I]. In this paper, we study another mod p labelled configuration spaces.
For example, we show that E;‘En) (R; Z/p) gives the finite dimensional homotopy model
for the loop space of the modp lens space (Corollary 3.2), and we also give an
improvement of the stability theorem due to J. Mostovoy in [Theorem 1.3.

2. Scanning maps.

From now on, we assume that J is a fixed collection of subsets of {1,2,...,n} such
that card(4) > 2 for any 4 € J.

Let s4: E{(R*) — E4*'(R*) be the stabilization map given by adding a point
from the edge (3], [4], [5], [9]). We denote by lim, ... E{(R¥) the limit of stabiliza-
tion maps, E}(R*) 2 E2(R*) 32 E}(R¥) 2 .... We can define the stabilization map
sq: ES(RY, Z/p) — E*Y(R%: Z/p) and lim,_,, E¢(R*;Z/p) in a similar way.

If A< X is a closed subspace, let E{(X,A) denote the quotient space E¢(X)/~u4,

(13 9

where the equivalence relation “~,” is given by
(Eveee &) ~a (s sm,) & EN(X = A) =N (X = A) for any 1< j<n.

If 4+# @ and xeA4 is a fixed basepoint, there is a natural inclusion Ef(X,A4) =
EJ‘IH(X,A) given by (&,...,&) — (& +%*,...,&,+%). We denote by E;(X,A4) the
union E;(X,A) = Ud>1Ej"(X,A). We can define E;(X,A4;Z/p) in a similar way.

Next, we define the scanning map s¢: E¢(R) — Q¥E;(S*, ) as follows (cf.
[3], [4], [O]). For each weR*, let U(w)={xeR"*:|x—w| <e}, where ¢>0 is
fixed. Then for o= (&,...,&,) € E4(R"), we define the map s¢(«): S¥ =R*"U oo —
E;(S* ) by

s (ENT(2),....ENT(2) e E(U(z), 0U(2)) = Ey(S*, o).

As E¢(R¥) is connected, the image of s¢ lies in a connected component of Q%E;(S¥, o),

which we denote by QXE;(S¥ o). Hence we have a map s¢ : E¢(R*) — QXE;(S¥, «0).
Since s is compatible with s;’s, we have the scanning map S:limg_ E;’(Rk) —
QFE;(S¥,0). We can define the scanning map S’ : limy_., E{(R*; Z/p) — QFE;(S*,
00;Z/p) in a similar way.

The basic result is as follows.

THEOREM 2.1. Let k>1 and n,p > 2 be integers and let J be any collection of
subsets of {1,2,...,n} such that card(A) =2 for each A€ J.
(1) There are natural homotopy equivalences

S+ lim E4(R*) S QFE;(S*, )

S’: lim E¢(R*; Z/p) = QFE;(S*, 0, Z/p)

d— oo
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(2) There is a homotopy commutative diagram

lim E¢(RY) —>—  QFE,(S*, )

d— oo ~

limgy q,zfl qu,,l

lim EJ(R;Z/p) —— QYE(S*,%:2/p)
— 00 ~

where q, : E;(X,A) — E;(X,A; Z denotes the mod p reduction map.
qp p p p

ProoF. (1) Since the second assertion is analogous to the first assertion, we only
give the proof of the first part. First we consider the case k = 2.

Let B = (0,1)* denote the unit open square in R? and let /2 = B =[0,1]* be the
closure of B. Then we can identify E¢(R*) =~ E{(B) and E;(S? o) ~ E;(I?,0I?).
The scanning map S may be decomposed into a composition of ‘“horizontal” and
“vertical” scanning maps S and S”, each of which will be shown to be a homotopy
equivalence.

In order to define S” and S#, let {V;:0 <1< 1} be the continuous family of
vertical rectangles in B defined by V; = {(x, ) : t —&(t) < x < t+¢&(1),0 < y < 1}, where
&(t) is a continuous function satisfying the conditions lim,_&(z) = lim,_; &(z) = 0 and
¢(t) > 0. Similarly, let {H,:0 < ¢ <1} be the continuous family of horizontal rect-
angles in B defined by H, ={(x,y): 0<x<1l,t—e(t) < y<t+e(t)}.

The map S is induced (up to homotopy) from the stabilization of the map
E{(B) x I* = EJ((0,1)*) x I* — E;(I,aI%) which is given by

((&1,E),t,8) v (&, E)NV,NHy e ES(V,N Hy, 8(V, N Hy)) = EY(I?,017).

For each closed rectangle X in R?, let X denote the side of X which are parallel
to y-axis. Let S¥4:E{(B) — QE;(I* 61*) = QE;(I%,0I x I) be the map determined
by ((&1,E),8) — (&,E)NH, € Ej(H,,0H,) ~ E;(I?,0I x I). Similarly, let S : E;(I?,
oI x I) — QE;(I%,0I*) be the map given by ((&,&),0) — (&,&)NV, e E;(IPNV,
o(I*’NV;)) =~ E;(I?,0I%). Since S is the composition of S” and the stabilization of
SH.d it suffices to show that S” and the stabilization of S7¢ are homotopy equiv-
alences.

We begin with S¥. Up to homotopy this may be defined by ((&,&,),1) —
(&1,&)N B, where B, ={(x,y):0<x<1,2t—1< y<2t}. Let B* denote the rect-
angle B* = (0,1) x (—=1,2), and consider the commutative diagram

r

E;(B*,3B) M, E,(B*,0B*UIY)  —=— E;(I?0I??

Map(l, E;(E;(I?,01%))) —— Map({0, 1}, E;(I*,01%)) —— E,(I*,0I*)?,
where r; and r, are induced from the restrictions and the vertical maps are both fibre

preserving homotopy equivalences.
It follows from the Dold-Thom criterion and [[7]; (3.3)] that r; is a quasi-
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fibration. Clearly r, is a fibration. Since the map f is induced from the scanning, its
restriction to the fibre is also a homotopy equivalence. Because this restriction is just
the map S, S is a homotopy equivalence.

The case of S7:¢ is similar. This is homotopic to the map given by ((&,&,), 1) —
(&1,&)NCy, where Cr={(x,y): -1 <x<2,2t—1<ypy<2t}. Let C=(-1,2)x(0,1),
and consider the commutative diagram

d

EY(C,6C)  — E;(C,eCUB) = Ey(I%0l?)?

Map<I7EJ<1270-12)) L) Map({071}7EJ<1270-12)) ; EJ<127012)27

where the horizontal maps are induced from the restrictions and the vertical maps are
fibre homotopy equivalences.

Clearly r} is a fibration. Using the method given in appendix of [3], we can easily
see that 7 (EJ(R?)) is abelian if d > 2. Then it follows from the Dold-Thom criterion
and [[7]; (3.3)] that the stabilization of r{ is a quasi-fibration. Since the map ¢¢ is
induced from the scanning, its restriction to the fibre is equal to the map S*¢. Hence
lim,_ ., S7¢ is a homotopy equivalence. Therefore, S is a homotopy equivalence when
k=2.

Next consider the general case. If k=1, the assertion easily follows from the
above proof, and we may assume k >3. We identify EY(R*)=~ E?((0,1)") and
E;(S* o) ~ E;(1%,0I%). For each 1 < j <k, let {I,(j):0 < t< 1} be the continuous
family of k-dimensional cube given by

L(j)={(x1,...,xk) st —e(t) < x; < t+¢&(1),0 < x; <1 if i #j}.

Let S¢: EZ((0,1)%) — QE;(I*,I x I*"') be the scanning map along the x;-axis de-
termined by ((&,...,&,),t) — (&,...,&,)NI(1). By the similar method as above, we
can prove that the stabilization of S{ is a homotopy equivalence. Hence, lim,S{ :
limy o, ES((0,1)%) 5 QuE;(I*,81 x I*"') is a homotopy equivalence.

For each 2 < j <k, we can define S; : E;(I*,017~1 x I*/*Y) — QFE;(I*, 017 x 1*7/)
by the scanning along the xj-axis. Then using the completely similar method of that
for SV, we can show that S; is a homotopy equivalence. Because S is homotopic to
the composite of the maps Q% 'S, 0 Q¥2S;_10---0QS, olimy Sd, S is a homotopy
equivalence.

(2) Let g:SP*(X)— TP*(X) be the natural projection, and let Tde(X ) =
¢ '(SPY(X)). Because S and S’ are natural and compatible with the quotient map
SPY(X) — TP{(X), the diagram (2) is homotopy commutative. ]

PrROPOSITION 2.2.  There are natural homotopy equivalences

{E,(Sk, 0) > VIK(Z,k)
E;(S¥,0;Z/p) = v/ K(Z/p,k)

such that the diagram
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E;(Sk, 0) —— V/K(Z,k)

qpl VJT[[])(J/

E;(S¥,00;Z/p) —— V'K(Z/p,k)
is commutative up to homotopy.

Proor. Consider the inclusion map Ej;(S*,o0) = SP*(S*,0)". For &> 0, let
E, denote the open subspace of E;(S* o) consisting of all n-tuples (&i,...,&,) such
that some ¢; is disjoint from the closed disk of radius & about the origin. Then the
radial expansion defines a deformation retract E, — v’/SP*(S* c0). However, since
E;(S*, o) is the union of the E, for &> 0, there is a homotopy equivalence #; :
E;(S¥,00) = v/ SP* (S, 0).

Similarly, the radial expansion also defines a homotopy equivalence hy: E 7(SK, o0 :
Z/p) = v’ T]ifc‘(Sk ,00). Since the radial expansions are compatible with the quotient
map ¢ : SP*(S* o) — T I}OO(S’“, o0), there is a homotopy commutative diagram

Es(Sk, ) 2 vISPP(SK, c0)

qu/ VJ(]J/

hj

E;(S*, 0;Z/p) — v/ TP (S*, ).

Hence it follows from [Theorem 1.1 that the desired diagram is homotopy commutative.

[

ProorF oF THEOREM 1.2. The assertion easily follows from and
IProposition 2.2, ]

3. The proof of Theorem 1.3.

Let L"!(p) denote the mod p lens space given by L""!(p) = S""'/(Z/p).

LemMmA 3.1.  For any integer p > 2, there is a fibration

L' (p) — WalK(Z/p,1)) — (BZ/p)"".
Proor. The elementary abelian p-group G = (Z/p)""' acts on L"'(p) by
[xp s ox) (e, s8nm1) = [ s s C g

for ([x;:---:x4],(e1,...,80-1)) € L" Y(p) x G, where (=exp(2nv/—1/p). If QO de-

notes the homotopy quotient L"~!(p)//G = EG x¢ L"™'(p), there is a fibration sequence
L™ Y(p) — Q0 — K(Z/p,1)""". It suffices to show that there is a homotopy equivalence
Q ~ W,(K(Z/p,1)). Foreach 1 < j<n,let Uy = L""!(p) denote the open subset U; =
{[x1:---:x,) e L"'(p) : x; #0}. Then each U; is G-invariant open subspace and
L (p) = U]I'1:1 U;. Let E; = EG xg U;. Since U; is G-equivariantly contractible, E; ~
BG =K(Z/p, 1)"71. Similarly, for each 1 < j; < j, <--- < j,, <n, we can show that
there is a homotopy equivalence (), E;, ~ K(Z/p,1)"™™. If we consider the above
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homotopy equivalences, the inspection indicates that there is a homotopy equivalence
0~ W,(K(Z/p,1)). L]

COROLLARY 3.2. If n>3 and p > 2, there is a homotopy equivalence

lim Ef, (R;Z/p) — Q5"
d— oo

Proor. The assertion follows from [Lemma 3.1 and [Theorem 1.2l OJ

Proor oF THEOREM 1.3. Let Q(“L)(R) be the space consisting of all n-tuples
(p1(2),..., pu(2)) € R[z]" of monic R-coefficients polynomials of degree d, such that
polynomials p;(z),..., p,(z) have no common real roots. We remark that there is a
homotopy equivalence f : Q(‘i)(R) i>EI“zn)(R;Z /2) which is compatible with stabili-
zation maps ([8]). Then the assertion follows from 3.2, [[6]; Corollary 5] and [[10];

(1.3)]. O
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