Mod p truncated configuration spaces

By Kohhei YAMAGUCHI

(Received Jan. 10, 2001) (Revised Aug. 16, 2002)

Abstract. In this paper we study the homotopy types of mod p truncated configuration spaces. In particular, we investigate a finite dimensional configuration space model for the based loop space of mod p lens space as an application.

1. Introduction.

Let $SP^d(X) = X^d/\Sigma_d$ denote the d-th symmetric product of a space X, where the symmetric group Σ_d of d letters acts on X^d by the coordinates permutations. Each element $\alpha \in SP^d(X)$ may be represented as a finite formal sum $\alpha = \sum_{j=1}^s d_j x_j$ $(x_j \in X, x_i \neq x_j \text{ if } i \neq j, \sum_{j=1}^s d_j = d)$.

If $* \in X$ is a basepoint, one has inclusions $SP^d(X) \subset SP^{d+1}(X)$ given by adding a basepoint, $\alpha \mapsto \alpha + *$. We denote by $SP^{\infty}(X)$ the union $\bigcup_{d \geq 0} SP^d(X)$ and it is called the infinite symmetric product. For an integer $p \geq 2$, let $TP_p^{\infty}(X)$ denote the mod p truncated symmetric product defined by $TP_p^{\infty}(X) = SP^{\infty}(X)/\sim_p$, where the equivalence relation " \sim_p " is defined by $\sum_j d_j x_j \sim_p \sum_j d_j' x_j$ if $d_j \equiv d_j' \pmod p$ for any j. Recall the following result.

THEOREM 1.1 (A. Dold and R. Thom, [2]). If X is a connected CW-complex, there are natural homotopy equivalences

$$\begin{cases} SP^{\infty}(X) \xrightarrow{\simeq} \prod_{j\geq 1} K(H_j(X, \mathbf{Z}), j), \\ TP_p^{\infty}(X) \xrightarrow{\simeq} \prod_{j\geq 1} K(H_j(X, \mathbf{Z}/p), j) \end{cases}$$

such that the diagram

$$SP^{\infty}(X) \xrightarrow{\simeq} \prod_{j\geq 1} K(H_j(X, \mathbf{Z}), j)$$

$$\downarrow q \qquad \qquad \prod_{j \neq 1} \pi_p^j \downarrow$$

$$TP_p^{\infty}(X) \xrightarrow{\simeq} \prod_{j\geq 1} K(H_j(X, \mathbf{Z}/p), j)$$

is homotopy commutative, where $q: SP^{\infty}(X) \to TP_p^{\infty}(X)$ denotes the natural projection and let $\pi_p^j: K(H_j(X, \mathbf{Z}), j) \to K(H_j(X, \mathbf{Z}/p), j)$ be the map induced from mod p reduction.

Hence the space $TP_p^{\infty}(X)$ can be regarded as a mod p version of $SP^{\infty}(X)$. In this

²⁰⁰⁰ Mathematics Subject Classification. Primary 55P10; Secondary 55P35, 55P15. Key Words and Phrases. Symmetric product, configuration space.

194 K. Yamaguchi

paper, we shall study the corresponding result for certain type of labelled configuration spaces.

Let J be any collection of subsets of $\{1, 2, ..., n\}$ with $\operatorname{card}(\Lambda) \geq 2$ for all $\Lambda \in J$. We denote by $E_J^d(X)$ the configuration space of type J defined by

$$E_J^d(X) = \left\{ (\xi_1, \dots, \xi_n) \in SP^d(X)^n : \bigcap_{j \in \Lambda} \xi_j = \emptyset \text{ for all } \Lambda \in J \right\}.$$

For an integer $p \ge 2$, let $E_J^d(X; \mathbf{Z}/p)$ be the mod p truncated configuration space of $E_J^d(X)$ defined by $E_J^d(X; \mathbf{Z}/p) = E_J^d(X)/\equiv_p$, where the equivalence relation " \equiv_p " is defined by $(\xi_1, \ldots, \xi_n) \equiv_p (\eta_1, \ldots, \eta_n)$ if $\xi_j \sim_p \eta_j$ for any $1 \le j \le n$. Similarly, let $\vee^J X$ be the generalized wedge of type J defined by

$$\vee^J X = \{(x_1, \dots, x_n) \in X^n : \text{ for each } \Lambda \in J, x_j = * \text{ for at least one } j \in \Lambda\}.$$

EXAMPLE. (i) If we take the collection $I(n) = \{\{1, 2, ..., n\}\}$ as J, then

$$\begin{cases} E_{I(n)}^{d}(X) = \{(\xi_{1}, \dots, \xi_{n}) \in SP^{d}(X)^{n} : \bigcap_{j=1}^{n} \xi_{j} = \emptyset\}, \\ \vee^{I(n)}X = \{(x_{1}, \dots, x_{n}) \in X^{n} : x_{j} = * \text{ for some } 1 \leq j \leq n\}. \end{cases}$$

Hence, $\vee^{I(n)}X = W_n(X)$ is the *n*-th fat wedge of X.

(ii) If $J(n) = \{\{i, j\} : 1 \le i < j \le n\},\$

$$\begin{cases} E^d_{J(n)}(X) = \{(\xi_1, \dots, \xi_n) \in SP^d(X)^n : \xi_i \cap \xi_j = \emptyset \text{ if } i \neq j\}, \\ \vee^{J(n)}X = \vee^n X = X \vee \dots \vee X \quad (n \text{ times}). \end{cases}$$

Let $q_p^d: E_J^d(X) \to E_J^d(X; \mathbf{Z}/p)$ be the natural projection and let $E_J^d(\mathbf{R}^k) \to E_J^{d+1}(\mathbf{R}^k)$ (resp. $E_J^d(\mathbf{R}^k; \mathbf{Z}/p) \to E_J^{d+1}(\mathbf{R}^k; \mathbf{Z}/p)$) be the stabilization map defined by adding the point from the edge. Then the main results of this paper are as follows.

THEOREM 1.2. Let $p, n \ge 2$, $k \ge 1$ be integers, and let J any collection of subsets of $\{1, 2, ..., n\}$ with $\operatorname{card}(\Lambda) \ge 2$ for all $\Lambda \in J$.

(1) There are natural homotopy equivalences

$$\begin{cases} S: \lim_{d\to\infty} E_J^d(\boldsymbol{R}^k) \stackrel{\simeq}{\to} \Omega_0^k \vee^J K(\boldsymbol{Z}, n), \\ S': \lim_{d\to\infty} E_J^d(\boldsymbol{R}^k; \boldsymbol{Z}/p) \stackrel{\simeq}{\to} \Omega_0^k \vee^J K(\boldsymbol{Z}/p, n), \end{cases}$$

where the limits are taken from stabilization maps.

(2) There is a homotopy commutative diagram

$$\lim_{d o \infty} E^d_J(\boldsymbol{R}^k) \xrightarrow{\simeq} \Omega^k_0 \vee^J K(\boldsymbol{Z}, n)$$
 $\lim_{d o \infty} E^d_J(\boldsymbol{R}^k; \boldsymbol{Z}/p) \xrightarrow{\simeq} \Omega^k_0 \vee^J \pi^n_p \downarrow$

Theorem 1.3. If $n \ge 3$, there is a map $E^d_{I(n)}(\mathbf{R}; \mathbf{Z}/2) \to \Omega_0 \mathbf{R} \mathbf{P}^{n-1} \simeq \Omega S^{n-1}$, which is a homotopy equivalence up to dimension D(d,n) = (d+1)(n-2) - 1. Here we say that

a map $f: X \to Y$ is a homotopy equivalence up to dimension D if the induced homomorphism $f_*: \pi_i(X) \to \pi_i(Y)$ is bijective when j < D and surjective when j = D.

We conclude with some comments on the wider significance of these results. Theorem 1.2 can be regarded as giving a simple "homotopy model" for the k-fold loop space $\Omega^k \vee^J K(G,k)$ $(G=\mathbf{Z} \text{ or } \mathbf{Z}/p)$, and it also may be considered as one of the generalizations of the results given in [3]. The mod p configuration space was first studied in [1]. In this paper, we study another mod p labelled configuration spaces. For example, we show that $E^d_{I(n)}(\mathbf{R};\mathbf{Z}/p)$ gives the finite dimensional homotopy model for the loop space of the mod p lens space (Corollary 3.2), and we also give an improvement of the stability theorem due to J. Mostovoy [8] in Theorem 1.3.

2. Scanning maps.

From now on, we assume that J is a fixed collection of subsets of $\{1, 2, ..., n\}$ such that $card(\Lambda) \ge 2$ for any $\Lambda \in J$.

Let $s_d: E_J^d(\boldsymbol{R}^k) \to E_J^{d+1}(\boldsymbol{R}^k)$ be the stabilization map given by adding a point from the edge ([3], [4], [5], [9]). We denote by $\lim_{d\to\infty} E_J^d(\boldsymbol{R}^k)$ the limit of stabilization maps, $E_J^1(\boldsymbol{R}^k) \xrightarrow{s_1} E_J^2(\boldsymbol{R}^k) \xrightarrow{s_2} E_J^3(\boldsymbol{R}^k) \xrightarrow{s_3} \cdots$. We can define the stabilization map $s_d: E_J^d(\boldsymbol{R}^k; \boldsymbol{Z}/p) \to E_J^{d+1}(\boldsymbol{R}^k; \boldsymbol{Z}/p)$ and $\lim_{d\to\infty} E_J^d(\boldsymbol{R}^k; \boldsymbol{Z}/p)$ in a similar way.

If $A \subset X$ is a closed subspace, let $E_I^d(X, A)$ denote the quotient space $E_J^d(X)/\sim_A$, where the equivalence relation " \sim_A " is given by

$$(\xi_1,\ldots,\xi_n) \sim_A (\eta_1,\ldots,\eta_n) \Leftrightarrow \xi_j \cap (X-A) = \eta_j \cap (X-A)$$
 for any $1 \leq j \leq n$.

If $A \neq \emptyset$ and $* \in A$ is a fixed basepoint, there is a natural inclusion $E_J^d(X,A) \stackrel{\subseteq}{\to} E_J^{d+1}(X,A)$ given by $(\xi_1,\ldots,\xi_n) \mapsto (\xi_1+*,\ldots,\xi_n+*)$. We denote by $E_J(X,A)$ the union $E_J(X,A) = \bigcup_{d \geq 1} E_J^d(X,A)$. We can define $E_J(X,A;\mathbf{Z}/p)$ in a similar way. Next, we define the scanning map $s_J^d: E_J^d(\mathbf{R}^k) \to \Omega^k E_J(S^k,\infty)$ as follows (cf.

Next, we define the scanning map $s_J^d: E_J^d(\mathbf{R}^k) \to \Omega^k E_J(S^k, \infty)$ as follows (cf. [3], [4], [9]). For each $w \in \mathbf{R}^k$, let $U(w) = \{x \in \mathbf{R}^k : ||x - w|| < \varepsilon\}$, where $\varepsilon > 0$ is fixed. Then for $\alpha = (\xi_1, \dots, \xi_n) \in E_J^d(\mathbf{R}^k)$, we define the map $s_J^d(\alpha) : S^k = \mathbf{R}^k \cup \infty \to E_J(S^k, \infty)$ by

$$z \mapsto (\xi_1 \cap \overline{U}(z), \dots, \xi_n \cap \overline{U}(z)) \in E_J(\overline{U}(z), \partial \overline{U}(z)) \cong E_J(S^k, \infty).$$

As $E_J^d(\mathbf{R}^k)$ is connected, the image of s_J^d lies in a connected component of $\Omega^k E_J(S^k,\infty)$, which we denote by $\Omega_d^k E_J(S^k,\infty)$. Hence we have a map $s_J^d: E_J^d(\mathbf{R}^k) \to \Omega_d^k E_J(S^k,\infty)$. Since s_J^J is compatible with s_d 's, we have the scanning map $S: \lim_{d\to\infty} E_J^d(\mathbf{R}^k) \to \Omega_0^k E_J(S^k,\infty)$. We can define the scanning map $S': \lim_{d\to\infty} E_J^d(\mathbf{R}^k; \mathbf{Z}/p) \to \Omega_0^k E_J(S^k,\infty)$; $S_J^d(\mathbf{Z}/p)$ in a similar way.

The basic result is as follows.

THEOREM 2.1. Let $k \ge 1$ and $n, p \ge 2$ be integers and let J be any collection of subsets of $\{1, 2, ..., n\}$ such that $\operatorname{card}(\Lambda) \ge 2$ for each $\Lambda \in J$.

(1) There are natural homotopy equivalences

$$\begin{cases} S: \lim_{d \to \infty} E_J^d(\boldsymbol{R}^k) \stackrel{\simeq}{\to} \Omega_0^k E_J(S^k, \infty) \\ S': \lim_{d \to \infty} E_J^d(\boldsymbol{R}^k; \boldsymbol{Z}/p) \stackrel{\simeq}{\to} \Omega_0^k E_J(S^k, \infty; \boldsymbol{Z}/p) \end{cases}$$

196 K. Yamaguchi

(2) There is a homotopy commutative diagram

$$\lim_{d o \infty} E_J^d(\pmb{R}^k) \stackrel{S}{\longrightarrow} \Omega_0^k E_J(S^k, \infty)$$
 $\lim_{d o \infty} E_J^d(\pmb{R}^k; \pmb{Z}/p) \stackrel{S'}{\longrightarrow} \Omega_0^k E_J(S^k, \infty; \pmb{Z}/p)$

where $q_p: E_J(X,A) \to E_J(X,A; \mathbb{Z}/p)$ denotes the mod p reduction map.

PROOF. (1) Since the second assertion is analogous to the first assertion, we only give the proof of the first part. First we consider the case k = 2.

Let $B = (0,1)^2$ denote the unit open square in \mathbb{R}^2 , and let $I^2 = \overline{B} = [0,1]^2$ be the closure of B. Then we can identify $E_J^d(\mathbb{R}^2) \cong E_J^d(B)$ and $E_J(S^2, \infty) \simeq E_J(I^2, \partial I^2)$. The scanning map S may be decomposed into a composition of "horizontal" and "vertical" scanning maps S^H and S^V , each of which will be shown to be a homotopy equivalence.

In order to define S^V and S^H , let $\{V_t: 0 < t < 1\}$ be the continuous family of vertical rectangles in B defined by $V_t = \{(x,y): t-\varepsilon(t) < x < t+\varepsilon(t), 0 < y < 1\}$, where $\varepsilon(t)$ is a continuous function satisfying the conditions $\lim_{t\to 0} \varepsilon(t) = \lim_{t\to 1} \varepsilon(t) = 0$ and $\varepsilon(t) > 0$. Similarly, let $\{H_t: 0 < t < 1\}$ be the continuous family of horizontal rectangles in B defined by $H_t = \{(x,y): 0 < x < 1, t-\varepsilon(t) < y < t+\varepsilon(t)\}$.

The map S is induced (up to homotopy) from the stabilization of the map $E_J^d(B) \times I^2 = E_J^d((0,1)^2) \times I^2 \to E_J(I^2, \partial I^2)$ which is given by

$$((\xi_1,\xi_2),t,s)\mapsto (\xi_1,\xi_2)\cap V_t\cap H_s\in E^d_J(\overline{V}_t\cap \overline{H}_s,\partial(\overline{V}_t\cap \overline{H}_s))\cong E^d_J(I^2,\partial I^2).$$

For each closed rectangle X in \mathbb{R}^2 , let σX denote the side of X which are parallel to y-axis. Let $S^{H,d}: E^d_J(B) \to \Omega E_J(I^2,\sigma I^2) = \Omega E_J(I^2,\partial I \times I)$ be the map determined by $((\xi_1,\xi_2),t) \mapsto (\xi_1,\xi_2) \cap H_t \in E_J(\overline{H}_t,\sigma \overline{H}_t) \cong E_J(I^2,\partial I \times I)$. Similarly, let $S^V: E_J(I^2,\partial I \times I) \to \Omega E_J(I^2,\partial I^2)$ be the map given by $((\xi_1,\xi_2),t) \mapsto (\xi_1,\xi_2) \cap V_t \in E_J(I^2 \cap \overline{V}_t,\partial I^2) \cap V_t \in E_J(I^2,\partial I^2)$. Since S is the composition of S^V and the stabilization of $S^{H,d}$, it suffices to show that S^V and the stabilization of $S^{H,d}$ are homotopy equivalences.

We begin with S^V . Up to homotopy this may be defined by $((\xi_1, \xi_2), t) \mapsto (\xi_1, \xi_2) \cap B_t$, where $B_t = \{(x, y) : 0 < x < 1, 2t - 1 < y < 2t\}$. Let B^* denote the rectangle $B^* = (0, 1) \times (-1, 2)$, and consider the commutative diagram

$$E_{J}(\overline{B}^{*}, \partial \overline{B}^{*}) \xrightarrow{r_{1}} E_{J}(\overline{B}^{*}, \partial \overline{B}^{*} \cup I^{2}) \xrightarrow{\cong} E_{J}(I^{2}, \partial I^{2})^{2}$$

$$\downarrow = \bigoplus_{I} \operatorname{Map}(I, E_{J}(E_{J}(I^{2}, \partial I^{2}))) \xrightarrow{r_{2}} \operatorname{Map}(\{0, 1\}, E_{J}(I^{2}, \partial I^{2})) \xrightarrow{\cong} E_{J}(I^{2}, \partial I^{2})^{2}$$

where r_1 and r_2 are induced from the restrictions and the vertical maps are both fibre preserving homotopy equivalences.

It follows from the Dold-Thom criterion [2] and [[7]; (3.3)] that r_1 is a quasi-

fibration. Clearly r_2 is a fibration. Since the map f is induced from the scanning, its restriction to the fibre is also a homotopy equivalence. Because this restriction is just the map S^V , S^V is a homotopy equivalence.

The case of $S^{H,d}$ is similar. This is homotopic to the map given by $((\xi_1, \xi_2), t) \mapsto (\xi_1, \xi_2) \cap C_t$, where $C_t = \{(x, y) : -1 < x < 2, 2t - 1 < y < 2t\}$. Let $C = (-1, 2) \times (0, 1)$, and consider the commutative diagram

$$E_J^d(\overline{C}, \sigma \overline{C}) \xrightarrow{-r_1^d} E_J(\overline{C}, \sigma \overline{C} \cup B) \xrightarrow{\cong} E_J(I^2, \sigma I^2)^2$$

$$\downarrow g^d \downarrow \simeq \qquad \qquad \downarrow =$$

$$\operatorname{Map}(I, E_J(I^2, \sigma I^2)) \xrightarrow{-r_2'} \operatorname{Map}(\{0, 1\}, E_J(I^2, \sigma I^2)) \xrightarrow{\cong} E_J(I^2, \sigma I^2)^2,$$

where the horizontal maps are induced from the restrictions and the vertical maps are fibre homotopy equivalences.

Clearly r_2' is a fibration. Using the method given in appendix of [3], we can easily see that $\pi_1(E_J^d(\mathbf{R}^2))$ is abelian if $d \geq 2$. Then it follows from the Dold-Thom criterion [2] and [[7]; (3.3)] that the stabilization of r_1^d is a quasi-fibration. Since the map g^d is induced from the scanning, its restriction to the fibre is equal to the map $S^{H,d}$. Hence $\lim_{d\to\infty} S^{H,d}$ is a homotopy equivalence. Therefore, S is a homotopy equivalence when k=2.

Next consider the general case. If k=1, the assertion easily follows from the above proof, and we may assume $k \geq 3$. We identify $E_J^d(\mathbf{R}^k) \cong E_J^d((0,1)^k)$ and $E_J(S^k, \infty) \simeq E_J(I^k, \partial I^k)$. For each $1 \leq j \leq k$, let $\{I_t(j) : 0 < t < 1\}$ be the continuous family of k-dimensional cube given by

$$I_t(j) = \{(x_1, \dots, x_k) : t - \varepsilon(t) < x_i < t + \varepsilon(t), 0 < x_i < 1 \text{ if } i \neq j\}.$$

Let $S_1^d: E_J^d((0,1)^k) \to \Omega E_J(I^k, \partial I \times I^{k-1})$ be the scanning map along the x_1 -axis determined by $((\xi_1,\ldots,\xi_n),t) \mapsto (\xi_1,\ldots,\xi_n) \cap I_t(1)$. By the similar method as above, we can prove that the stabilization of S_1^d is a homotopy equivalence. Hence, $\lim_d S_1^d: \lim_{d\to\infty} E_J^d((0,1)^k) \stackrel{\simeq}{\to} \Omega_0 E_J(I^k, \partial I \times I^{k-1})$ is a homotopy equivalence.

For each $2 \le j \le k$, we can define $S_j: E_J(I^k, \partial I^{j-1} \times I^{k-j+1}) \to \Omega E_J(I^k, \partial I^j \times I^{k-j})$ by the scanning along the x_j -axis. Then using the completely similar method of that for S^V , we can show that S_j is a homotopy equivalence. Because S is homotopic to the composite of the maps $\Omega^{k-1}S_k \circ \Omega^{k-2}S_{k-1} \circ \cdots \circ \Omega S_2 \circ \lim_d S_1^d$, S is a homotopy equivalence.

(2) Let $q: SP^{\infty}(X) \to TP_p^{\infty}(X)$ be the natural projection, and let $TP_p^d(X) = q^{-1}(SP^d(X))$. Because S and S' are natural and compatible with the quotient map $SP^d(X) \to TP_p^d(X)$, the diagram (2) is homotopy commutative.

Proposition 2.2. There are natural homotopy equivalences

$$\begin{cases} E_J(S^k, \infty) \xrightarrow{\simeq} \vee^J K(\mathbf{Z}, k) \\ E_J(S^k, \infty; \mathbf{Z}/p) \xrightarrow{\simeq} \vee^J K(\mathbf{Z}/p, k) \end{cases}$$

such that the diagram

198 K. Yamaguchi

$$E_J(S^k,\infty) \stackrel{\simeq}{\longrightarrow} \lor^J K(oldsymbol{Z},k) \ q_p igg| \lor^J \pi_p^k igg| \ E_J(S^k,\infty;oldsymbol{Z}/p) \stackrel{\simeq}{\longrightarrow} \lor^J K(oldsymbol{Z}/p,k)$$

is commutative up to homotopy.

PROOF. Consider the inclusion map $E_J(S^k,\infty) \xrightarrow{\subset} SP^{\infty}(S^k,\infty)^n$. For $\varepsilon > 0$, let E_{ε} denote the open subspace of $E_J(S^k,\infty)$ consisting of all n-tuples (ξ_1,\ldots,ξ_n) such that some ξ_j is disjoint from the closed disk of radius ε about the origin. Then the radial expansion defines a deformation retract $E_{\varepsilon} \xrightarrow{\simeq} \vee^J SP^{\infty}(S^k,\infty)$. However, since $E_J(S^k,\infty)$ is the union of the E_{ε} for $\varepsilon > 0$, there is a homotopy equivalence $h_J: E_J(S^k,\infty) \xrightarrow{\simeq} \vee^J SP^{\infty}(S^k,\infty)$.

Similarly, the radial expansion also defines a homotopy equivalence $\widetilde{h_J}: E_J(S^k, \infty):$ $\mathbb{Z}/p) \xrightarrow{\simeq} \vee^J TP_p^{\infty}(S^k, \infty)$. Since the radial expansions are compatible with the quotient map $q: SP^{\infty}(S^k, \infty) \to TP_p^{\infty}(S^k, \infty)$, there is a homotopy commutative diagram

$$E_J(S^k,\infty) \xrightarrow{h_J} \vee^J SP^\infty(S^k,\infty) \ q_p \downarrow \qquad \qquad \bigvee^{J} q \downarrow \ E_J(S^k,\infty; \mathbf{Z}/p) \xrightarrow{\widetilde{h_J}} \vee^J TP_p^\infty(S^k,\infty).$$

Hence it follows from Theorem 1.1 that the desired diagram is homotopy commutative.

Proof of Theorem 1.2. The assertion easily follows from Theorem 2.1 and Proposition 2.2. $\hfill\Box$

3. The proof of Theorem 1.3.

Let $L^{n-1}(p)$ denote the mod p lens space given by $L^{n-1}(p) = S^{n-1}/(\mathbb{Z}/p)$.

Lemma 3.1. For any integer $p \ge 2$, there is a fibration

$$L^{n-1}(p) \to W_n(K(\mathbf{Z}/p,1)) \to (B\mathbf{Z}/p)^{n-1}.$$

PROOF. The elementary abelian p-group $G = (\mathbf{Z}/p)^{n-1}$ acts on $L^{n-1}(p)$ by

$$[x_1:\cdots:x_n]\cdot(\varepsilon_1,\ldots,\varepsilon_{n-1})=[\zeta^{\varepsilon_1}x_1:\cdots:\zeta^{\varepsilon_{n-1}}x_{n-1}:x_n]$$

for $([x_1:\dots:x_n],(\varepsilon_1,\dots,\varepsilon_{n-1}))\in L^{n-1}(p)\times G$, where $\zeta=\exp(2\pi\sqrt{-1}/p)$. If Q denotes the homotopy quotient $L^{n-1}(p)/\!/G=EG\times_G L^{n-1}(p)$, there is a fibration sequence $L^{n-1}(p)\to Q\to K(\mathbf{Z}/p,1)^{n-1}$. It suffices to show that there is a homotopy equivalence $Q\simeq W_n(K(\mathbf{Z}/p,1))$. For each $1\leq j\leq n$, let $U_j\subset L^{n-1}(p)$ denote the open subset $U_j=\{[x_1:\dots:x_n]\in L^{n-1}(p):x_j\neq 0\}$. Then each U_j is G-invariant open subspace and $L^{n-1}(p)=\bigcup_{j=1}^n U_j$. Let $E_j=EG\times_G U_j$. Since U_j is G-equivariantly contractible, $E_j\simeq BG=K(\mathbf{Z}/p,1)^{n-1}$. Similarly, for each $1\leq j_1< j_2<\dots< j_m\leq n$, we can show that there is a homotopy equivalence $\bigcap_{k=1}^m E_{j_k}\simeq K(\mathbf{Z}/p,1)^{n-m}$. If we consider the above

homotopy equivalences, the inspection indicates that there is a homotopy equivalence $Q \simeq W_n(K(\mathbf{Z}/p, 1))$.

COROLLARY 3.2. If $n \ge 3$ and $p \ge 2$, there is a homotopy equivalence

$$\lim_{d\to\infty} E_{I(n)}^d(\boldsymbol{R};\boldsymbol{Z}/p) \stackrel{\simeq}{\to} \Omega S^{n-1}.$$

PROOF. The assertion follows from Lemma 3.1 and Theorem 1.2.

PROOF OF THEOREM 1.3. Let $Q_{(n)}^d(\mathbf{R})$ be the space consisting of all *n*-tuples $(p_1(z),\ldots,p_n(z))\in\mathbf{R}[z]^n$ of monic \mathbf{R} -coefficients polynomials of degree d, such that polynomials $p_1(z),\ldots,p_n(z)$ have no common real roots. We remark that there is a homotopy equivalence $f_n^d:Q_{(n)}^d(\mathbf{R})\stackrel{\simeq}{\to} E_{I(n)}^d(\mathbf{R};\mathbf{Z}/2)$ which is compatible with stabilization maps ([8]). Then the assertion follows from 3.2, [[6]; Corollary 5] and [[10]; (1.3)].

ACKNOWLEDGEMENTS. The author is indebted to M. A. Guest and A. Kozlowski for numerous helpful conversations concerning configuration spaces and their stabilities.

References

- [1] C.-F. Bödigheimer, F. R. Cohen and R. J. Milgram, Truncated symmetric products and configuration spaces, Math. Z., **214** (1993), 179–216.
- [2] A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math., 67 (1958), 239–281.
- [3] M. A. Guest, A. Kozlowski and K. Yamaguchi, The topology of spaces of coprime polynomials, Math. Z., 217 (1994), 435–446.
- [4] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math., 116 (1999), 93–117.
- [5] M. A. Guest, Instantons, rational maps and harmonic maps, Mat. Contemp., 2 (1992), 113-155.
- [6] A. Kozlowski and K. Yamaguchi, Topology of complements of discriminants and resultants, J. Math. Soc. Japan, **52** (2000), 949–959.
- [7] D. McDuff, Configuration spaces of positive and negative particles, Topology, 14 (1975), 91-107.
- [8] J. Mostovoy, Spaces of rational loops on a real projective space, Trans. Amer. Math. Soc., 353 (2001), 1959–1970.
- [9] G. B. Segal, The topology of spaces of rational functions, Acta Math., 143 (1979), 39-72.
- [10] K. Yamaguchi, Complements of resultants and homotopy types, J. Math. Kyoto Univ., **39** (1999), 675–684.
- [11] K. Yamaguchi, Spaces of holomorphic maps with bounded multiplicity, Quart. J. Math., **52** (2001), 249–259.

Kohhei Yamaguchi

Department of Information Mathematics University of Electro-Communications 1-5-1, Chofu-gaoka, Chofu Tokyo 182-8585 Japan

E-mail: kohhei@im.uec.ac.jp