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Abstract. We discuss the behaviour of (transfinite) dimension functions, in partic-
ular, Cmp and trInd, on finite and countable unions of closed subsets in separable
metrizable spaces.

1. Introduction.

It is well known that there exist (transfinite) dimension functions d such that
d(X; U Xy) > max{dX;,dX,} even if the subspaces X; and X, are closed in the union
XU Xo.

Let # be a class of topological spaces, f,« be ordinals such that f < «, and
X be a space from # with dX = o which is the union of finitely many closed sub-
sets with d < f. Define m(X,d,f,a) = min{k: X = Ulkzl X;, where X; is closed in
X and dX; < B}, my(d,p,0) = min{m(X,d,p,a): X € # and m(X,d,f, ) exists} and
My (d,p,0) =sup{m(X,d,p,0) : X € # and m(X,d,f, o) exists}.

We will say that m (d, f,o) and M (d, f,a) do not exist if there is no space X from
A" with dX = o which is the union of finitely many closed subsets with d < f. It is
evident that either my (d,[f,o) and M (d,p,a) satisfy 2 <my(d,p,a) < My (d,p,a) <
oo or they do not exist.

Two natural problems arise.

PrOBLEM 1. Determine the values of my (d,f,«) and My (d,p,«) for given A,
d,p,o.

ProBLEM 2. Find a (transfinite) dimension function ¢ having for given pair 2 <
k<l<oo, my(d,f,0) =k and My (d,f,o) = 1.

Let  be the class of metrizable compact spaces and 2 be the class of separable
completely metrizable spaces. By trind (trInd) we denote Hurewicz’s (Smirnov’s)
transfinite extension of ind (Ind) and Cmp is the large inductive compactness degree
introduced by de Groot. We shall recall their definitions in the next section. Let o =
A(a) + n(o) be the natural decomposition of the ordinal o > 0 into the sum of a limit
ordinal A(x) (observe that A(an integer > 0) =0) and a nonnegative integer n(u).
Let f <a be ordinals, put p(f,a) = (n(e)+1)/(n(f)+1) and ¢(f,«) = the smallest
integer > p(f, ). In section 2 of this article we prove

THEOREM 1. (i) Let 0 < f < o be finite ordinals. Then
nw(Cmp,ﬂ, OC) = q(ﬁv O() and My(Cmp,ﬁ, OC) = 0.
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(i) Let p < o be infinite ordinals. Then we have

q(p, ), if A(p) = i),

does not exist, otherwise.

o0, if A(p) = i),

does not exist, otherwise.

me(trlnd, B, o) = {

My (trInd, f,0) = {

THEOREM 2. (i) For every finite o > 1 there exists a space X, € # such that
(a) CmpX, = o;
(b) X, = Uzl Y;, where each Y; is closed in X, and Cmp Y; < 0;
() X, # UZI Z;, where each Z; is closed in X, and CmpZ; <o — 1, and m is
any integer > 1.
(i) For every infinite o with n(a) > 1 there exists a space X, € € such that
(a) trInd X, = o;
(b) X, = Uzl Y, where each Y; is closed in X, and finite-dimensional,
() X, #\J., Zi, where each Z; is closed in X, and trInd Z; < oo — 1, and m is
any integer > 1.

In sections 3 and 4, we introduce and study new dimension functions: the additive
compactness degree Cmp and the transfinite additive inductive dimension functions
indy and Indy. In connection with the previous part we prove

THEOREM 3. (i) Let 0 < ff < o be finite ordinals. Then

m?(cmpwﬁ? OC) = M?(Cmpwﬁa OC) = q(ﬁv OC)'

(i) Let f < o be infinite ordinals. Then we have my(indy, f, o) = me(Indy, B, o) =
My (indy, B, a) = Mg(Indy, f,0) = q(f, o), if A(f) = A(a) and they do not exist otherwise.

Our terminology follows and [AN].

2. Evaluations of m (d,f,a) and M, (d,p, ).

All spaces in this paper are separable and metrizable except those considered in
Remark 3. Hence, outside Remark 3, a space means a separable metrizable space.
The notation X' ~ Y means that the spaces X and Y are homeomorphic. At first we
consider the following construction.

Step 1. Let X be a space without isolated points and P a countable dense subset
of X. Consider Alexandroff’s dublicate D = X U X' of X, where each point of X! is
clopen in D. Remove from D those points of X! which do not correspond to any point
from P. Denote the obtained space by L(X,P). Observe that L(X,P) is the disjoint
union of X with the countable dense subset P' of L(X,P) consisting of points from X'
corresponding to the points from P. The space L(X, P) is separable and metrizable. It
will be compact if X is compact. Put L;(X,P) = L(X,P). Assume that X is a com-
pletely metrizable space (recall that the increment hX'\ X in any compactification bX of
X is an F,-set in bX). Observe that L(bX, P) is a compactification of L(X, P) and the
increment L(bX,P)\L(X,P) (~bX\X) is an Fs-set in L(bX,P). Hence L(X,P) is also
completely metrizable.
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Step 2. Let X be a space with a countable subset R consisting of isolated points.
Let Y be a space. Substitute each point of R in X by a copy of Y. The obtained set
W has the natural projection pr: W — X. Define the topology on W as the smallest
topology such that the projection pr is continuous and each copy of Y has its
original topology as a subspace of this new space. The obtained space is denoted by
L(X,R,Y). It is separable and metrizable and it will be compact (completely met-
rizable) if X and Y are the same. Moreover L(X,R,Y) is the disjoint union of the
closed subspace X\R of X (which we will call basic for the space L(X,R,Y)) and
countably many clopen copies of Y.

Step 3. Let X be a space without isolated points and P be a countable dense
subset of X. Define L,(X,P)=L(L(X,P),P',L, 1(X,P)), n>2. Observe that
for any open subset O of L,(X,P) meeting the basic subset X of L,(X,P) there is a
copy of L, i(X,P) contained in O. Put L,(X,P)={x}U@ "~ L,(X,P). (Here by
{*}U@P,2, X; we mean the one-point extension of the free union P, X; such that
a neighborhood base at the point * consists of the sets {+}UP~, X;, k=1,2,...).
Observe that L,(X, P) is separable and metrizable, and it contains a copy of L,(X,P)
for each ¢q. L.(X,P) will be compact (completely metrizable) if X is the same.

All our dimension functions d are assumed to be monotone with respect to closed
subsets and d(a point) < 0.

LEMMA 1. Let d be a dimension function and X be a space without isolated points
which cannot be written as the union of k > 1 closed subsets with d < a, where o is an
ordinal. Let also P be a countable dense subset of X. Then

(a) for every q we have L,(X,P) # Ulq:kl Xi, where each X; is closed in L,(X,P)
and dX; < o

(b) L.(X,P)#\J., X, where each X; is closed in L.(X,P) and dX; < o, and m
is any integer > 1.

Proor. (a) Apply induction. Suppose that L, (X,P)=(X;U---UX;)U
(Xkr1U---UXy), where each X; is closed in L,(X, P) and dX; < a. Consider the open
set O=L,(X,P)\(X1U---UXy). Observe that O c Uggl)k Xk+i, O meets the basic
subset X of L,(X,P) and so contains a copy of L, (X,P). This implies that
L, 1(X,P)= Uggl)k Y:, where each Y; is closed in L,(X,P) and dY; <«. This con-
tradiction proves (a).

(b) follows directly from (a). O

All our classes #" of topological spaces are assumed to be monotone with respect
to closed subsets and closed under operations L(,) and L(, ,).

LEMMA 2. Let " be a class of topological spaces, a be an ordinal > 0 and d be a
dimension function such that dL(L(S,P),P',T) <« for any S, T from A with dS < a,
dT < o and any P. Let X € A" be such that X = Ul.k:l X;, where each X; is closed in X,
without isolated points and dX; < o. Let also P; be a countable dense subset of X; for
each i. Then for each q the space L,(X, U,k:1 P)) exists and is the union of k9 closed
subsets with d < o.
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Proor. Observe that X is a space without isolated points and the countable
set P= UleP,- is dense in X. Hence the space L,(X,P) exists for each q. We
prove by induction. Consider the case ¢ =1. Observe that L;(X,P)=
U;; Li(X;, P;), where each Li(X;, P;) is closed in L;(X,P). Moreover for each i,
Li(X;, P) = L(L(X;,P,),P!,Y), where Y is a singleton with dY <0 <o By the
property of d, dLi(X;,P,) <a. Assume now that L, (X,P)=Y,U---UY,
where each Y; is closed in L, (X,P) and dY; <a. Observe that L, (X,P)=
L(L(X,,P), P!, Y\) U ---UL(L(Xg, P), PL, Y\) U--- U L(L(X,, P1), P}, Y ') U --- U
L(L(Xx, Px), P}, Yii1). Note that all k¢ terms in the right side of this representation
of L,(X,P) are closed in L,(X,P) and with d < a because of the property of d. [

We will say that a dimension function d satisfies the sum theorem of type A if for
any X being the union of two closed subspaces X; and X, with dX; < o;, where each
o; 1s finite and >0, we have dX < o; +ax+ 1. A space X is completely decomposable
in the sense of the dimension function d if dX = o, where o is an integer > 1, and
X = Ufjll X;, where each X; is closed in X and dX; = 0. Observe that if this space X
belongs to a class " of topological spaces then my (d,f,a) <m(X,d,p,a) <o+ 1 for
each f with 0 < f < a.

We will say that a transfinite dimension function d satisfies the sum theorem of type
A, 1f for any X being the union of two closed subspaces X; and X, with dX; < «; and
o > o we have dX < ap, if A(oy) < A(o2), and dX < ar +n(oy) + 1, if A(oy) = A(a2).
A space X is completely decomposable in the sense of the transfinite dimension function
d if dX = o, where o is an infinite ordinal with n(o) > 1, and X = U?:(T)H X;, where
each X; is closed in X and dX; = A(a). Observe that if this space X belongs to a
class " of topological spaces then my (d,f,a) < m(X,d,p,a) <n(x)+ 1 for each f
with A(a) < f < o.

To every space X one assigns the large inductive compactness degree Cmp as
follows.

(i) CmpX = —1 if and only if X is compact;

(i) CmpX = 0 if and only if there is a base # for the open sets of X such that the
boundary Bd U is compact for each U in %;

(i) Cmp X < o, where o is an integer > 1, if for each pair of disjoint closed
subsets A and B of X there exists a partition C between 4 and B in X such that
CmpC<ua-—1;

(iv) CmpX =o if CmpX <o and Cmp X >a—1;

(v) CmpX = oo if Cmp X > a for every positive integer o.

Recall also the definitions of the transfinite inductive dimenions trind and trlnd.

(i) trind X = —1 if and only if X = &;

(i) trlnd X’ <o, where o is an ordinal > 0, if for each pair of disjoint closed
subsets A and B of X there exists a partition C between 4 and B in X such that
trlnd C < «;

(iii) trInd X =« if trInd X < o and trind X < f holds for no f < «;

(iv) trInd X = co if trInd X < « holds for no ordinal o.

The definition of trind is obtained by replacing the set A in (ii) with a point
of X.
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ReEMARK 1. (i) Note that Cmp satisfies the sum theorem of type 4 ([ChH, The-
orem 2.2]) and for each integer o« > 1 there exists a separable completely metrizable
space C, with Cmp C, = o which is completely decomposable in the sense of Cmp
((ChH, Theorem 3.1]). For the convenience of the reader, we recall that C, = {0} x
(10, 11\ (0, "YU J.Z {xi} x [0, 1]* = I**!, where {x;}°, is a sequence of real numbers
such that 0 < x;,; < x; <1 for all i and lim; ., x; = 0. Note that the closed subsets
in the decomposition of C, can be assumed without isolated points.

(i) Note also that trInd satisfies the sum theorem of type A4, ([E, Theorem 7.2.7])
and for each infinite ordinal o« with n(x) > 1 there exists a metrizable compact space
S* (Smirnov’s compactum) with trlnd S* = « which is completely decomposable in the
sense of trInd ([Ch, Lemma 3.5]). Recall that Smirnov’s compacta S° S' ... §% ...,
a < w1, are defined by transfinite induction: S is the one-point space, S* = S# x [0, 1]
for o =+ 1, and if « is a limit ordinal, then S* = {*Q}U@ﬁw SP is the one-point
compactification of the free union of all the previously defined S#’s, where x, is the
compactifying point. Note that the closed subsets in the decomposition of S* can be
assumed without isolated points.

(i) Observe that trind satisfies another sum theorem. Namely, for any X being
the union of two closed subspaces X; and X, with trind X; < o; and o, > o; we have
trind X < o, if A(a1) < A(02), and trind X < ap + 1, if A(a;) = A(o2) [Ch, Theorem 3.9].

ProposITION 1. (i) Let " be a class of topological spaces, d be a dimension func-
tion satisfying the sum theorem of type A, o be an integer > 1 and X be a space from A~ with
dX = o which is completely decomposable in the sense of d. Then for any integer 0 < ff < o
we have my (d,f,0) = m(X,d,f,a) = q(f, ).

(i) Let A" be a class of topological spaces, d be a transfinite dimension function
satisfying the sum theorem of type A, o be an infinite ordinal with n(o«) > 1 and X be a
space from K" with dX = o which is completely decomposable in the sense of d. Then for
any infinite ordinal f < o we have my (d,p,a) = m(X,d,f,0) = q(f,o) if A(f) = A(a) and
my(d,f,o) does not exist otherwise.

ProOF. We prove only (ii) as (i) is similar. The case A(f) < A(«) is clear from the
properties of d, and we assume A(f) = A(a). Observe that if a space Z from % with
dZ = o can be written as the union Ui:l Y;, where each Y; is closed in Z and dY; < f5,
by the properties of d, o < A(f)+kn(f)+k—1 so that k > (n(a) +1)/(n(f) +1) =
p(p,o). Hence m(Z,d,f,0) > q(f,o) and thereby m(d,p, o) > q(f,2). Now observe
that the space X can be written as the union of ¢(f,o)(n(f) + 1) closed sets each with
d = A(x). Hence, by the properties of d, X can be written as the union of ¢(f,«) closed
subsets each with d < A(a) +n(f) =p. Thus my(d,p,a) <m(X,d,f,o) < q(f,«) and,
therefore, my (d,p,0) = m(X,d,p, o) = q(f, ). ]

The deficiency def is defined in the following way: For a space X,
def X = min{dim(Y\X): Y is a metrizable compactification of X}.
Recall that Cmp X < def X' and def X =0 if and only if Cmp X = 0.

Lemma 3. (i) def L(L(X,P),P',Y) = max{def X, def Y} for any, X,P,Y. In
particular, we have Cmp L(L(X,P),P',Y) <0 if CmpX <0 and Cmp Y < 0.
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(i) trInd L(L(X, P), P!, Y) = max{trInd X, trInd Y} for any compacta X,Y and
any P.

Proor. (i) Let bX and bY be metrizable compactifications of X and Y respec-
tively such that dim(bX\X) = def X and dim(bY\Y) =def Y. Observe that the space
L(L(bX,P),P',bY) is a compactification of L(L(X,P), P!, Y) and the increment Z =
L(L(bX,P),P,bY)\L(L(X,P),P!,Y) is the union of countably many closed subsets,
one of which is homeomorphic to »X\X and the others are homeomorphic to Y\ Y.
So by the countable sum theorem for dim we get that dimZ = max{dim(bX\X),
dim(bY\Y)} = max{def X,def Y}. Hence def L(L(X,P),P',Y) < max{def X,def Y},
thereby def L(L(X,P),P',Y) = max{def X, def Y}.

(i) At first let us prove the statement when Y is a singleton. Observe that in this
case L(L(X,P),P',Y)=L(X,P). Consider two disjoint closed subsets 4 and B of
L(X,P). Recall that L(X,P) contains a copy of X. Choose a partition C between
ANX and BNX in X. Extend the partition to a partition C; between 4 and B in
L(X,P). Consider another partition C, between 4 and B in L(X,P) which is “thin”
(ie. Intyx pyCr = ) and is in C;. Observe that C; = C. Hence trind L(X,P) =
trind X

Now let us consider the general case. Assume that 4 and B are disjoint closed
subsets in L(L(X,P),P',Y). Recall that there is the natural continuous projection pr :
L(L(X,P),P'Y) — L(X,P). Consider the closed subsets pr4 and prB of L(X,P).
If they are disjoint, choose a partition C, between pr A4 and pr B in L(X, P) like in the
previous part. Observe that pr~! C, is a partition between A4 and B in L(L(X,P),
P!, Y) such that pr~! C, is homeomorphic to a closed subset of C. Assume now that
prANprB # . Note that Q! = prANprB is finite and L(L(X,P),P',Y) is the free
union of L(L(X,(P\Q)),P'\Q!, Y), where Q is the finite subset of P corresponding to
Q' and finitely many copies of Y. Choose a partition between 4 and B in X and a
partition between 4 and B in each of the copies of Y corresponding to points of Q. It
follows from the foregoing discussion that the free union of these partitions constitutes a
partition in L(L(X,P),P'!,Y) between A4 and B. We conclude that trInd L(L(X, P),
P'.Y) = max{trInd X, trInd Y}. [

PROOF OF THEOREM 1.

(i) Because of Remark 1 and |Proposition 1, we need only establish that
M5»(Cmp, f,a) = co. Consider the space C, = Uf:ll X;, where each X; is closed in X,
without isolated points and Cmp X; = 0, from Remark 1. Let P, be a countable dense
subset of X;. Put P = Uf:rll P,. Recall that def C, = « ((ChH, Theorem 3.1]). So by
for any integer ¢ we have def L,(C,, P) = o and hence CmpL,(C,, P) = .
Observe that by Lemmas 2 and 3, we get that the completely metrizable space L,(C,, P)
is the union of (o + 1)? many closed subspaces with Cmp < 0. Hence m(L,(C,, P),
Cmp, f,2) < (x+1)?. Since Cmp satisfies the sum theorem of type A,C, cannot
be represented as a-many closed subsets with Cmp <0. By Lemma 1 we have
m(Ly(C,, P),Cmp, f,a) > go. > q. Since lim, .., g = oo we get M»(Cmp,f,a) = oo.

(i) By similar arguments as in the proof of (i) one can prove My(trInd, 8, ) = oo,
if A(B) = A(«); and does not exist otherwise. O
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PrOOF OF THEOREM 2. (i) Put X, = {+}U@P”, L;(C,, P). Observe that X, is com-
pletely metrizable and is the union of countably many closed subspaces with Cmp < 0.
Since def X, = «, we have Cmp X, = a. Now observe that lim,_ ., m(L;(C,, P), Cmp,
o—1,0) = c0. Hence X, cannot be written as the finite union of closed subsets with
Cmp<oa-1

(i) Put X, ={x}UEP, L(S* P). Observe that X, is compact and is the union
of countably many finite-dimensional closed subspaces (recall that S* and therefore
L;(S* P) have the same property). Since for each 7, trlnd L;(S* P) =o, we have
trind X, = . Now observe that lim;_ . m(L;(S* P),trInd,a — 1,) = c0. Hence X,
cannot be written as the finite union of closed subsets with trInd < o — 1. ]

REMARK 2. Let Q be the set of rational numbers of the closed interval [0, 1].
Recall that for the spaces X = Q x [0,1]" and Y = ([0,1]\Q) x I" we have Cmp X =
def X =Cmp Y =def Y =n ([AN, p.18 and p.56]). It is easy to observe that X
satisfies points (a)—(c) of (i). However, X is not completely metrizable.
Note that Y is completely metrizable and satisfies points (a) and (c) of Theorem 2 (i) but
not (b). Observe that Smirnov’s compactum S* with n(x) > 1 satisfies points (a) and
(b) of (ii) but not (c¢). Note also that any Cantor manifold Z with
trind Z = o, where « is an infinite ordinal with n(«) > 1, (see for such spaces for example

in [O]) satisfies points (a) and (c) of (i) but not (b).

Let d be a (transfinite) dimension function. A space X with dX # oo is said to
have property (x), if for every open nonempty subset O of the space X there exists a
closed in X subset F < O with dF = dX.

Observe that the spaces X, Y from Remark 2 have property (x)

Property (*)uyng-

ProrosITION 2. Let X be a completely metrizable space with dX # oco. Then
X # Uzl X;, where each X; is closed in X and dX; < dX if and only if there exists a
closed subspace Y of X such that (i) dY =dX and (ii) Y has the property (x),.

PROOF. (<) Assume X = ()., X;, where each X; is closed in X and dX; < dX.
It suffices to obtain a contradiction. Consider Y = Ul.oil(Xiﬂ Y). Observe that each
Y;=(X;NY) is closed in Y and dY; <dX; <dX =dY. By Baire’s theorem there
exists a natural number i such that Int ¥; # ¢§. By property (x),, there is a closed in
Y (in X as well) subset F' < Int Y; with dF = dY. Now, by the monotonicity of d, we
have dF < dY; < dY, a contradiction.

(=) Let 4 be the family of all open sets of X that can be written as a countable
union of closed subsets of X with d < dX. Because X is separable metrizable, G =
|J%€9. Let Y =X\G. By the assumed property of X, we have dY =dX. Con-
sider now an open set U of Y. Then U= YNV for some open set V' of X. If U
contains no closed subset of X with d =dX then clearly V' =UU(V\Y) is the
countable union of closed subsets of X with d <dX. Hence Ve¥%, V<G and so
U= . Thus, Y has property (x),. ]

cmp and Z has

REMARK 3. This remark concerns non-metrizable compact spaces. Using the con-
struction of Lokucievskij’s example ([E, p.140]), Chatyrko, Kozlov and Pasynkov
[ChKP, Remark 3.15 (b)] presented for each n = 3,4,... a compact Hausdorff space X,
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such that ind X, = 2 and m(X,,ind, 1,2) =n. Hence it is clear that m (ind,1,2) =2
and M ,(ind, 1,2) = oo, where A" is the class of compact Hausdorff spaces. In [K]
Kotkin constructed a compact Hausdorff space X with ind X’ = 3 which is the union of
three one-dimensional in the sense of ind closed subspaces. Hence, m (ind, 1,3) = 3
and m 4 (ind,2,3) = 2. Filippov in presented for every n a compact Hausdorff space
F, with ind F,, = n, which is the union of finitely many one-dimensional in the sense
of ind closed subspaces, thereby m - (ind, k,n) < co for each 1 <k <n. By the sum
theorem from Remark 1 (iii) for ind which is valid in fact for all regular spaces, one can
get that m - (ind, 1,n) > 2""2 +1 for each n.

3. The dimension function Cmp.
We begin with the definition of the additive large compactness degree Cmp,,.

DerFiniTION 1. Let X be a space. Then we define the additive large compactness
degree Cmp,, as follows.

(i) CmpyX = —1 if and only if X is compact.

(i) CmpyX =0 if and only if CmpX = 0.

(i) CmpyX < a, where « is an integer > 1, if X = U:‘:ll Z;, where each Z; is
closed in X and Cmp Z; <0.

(iv) CmpyX = o if and only if Cmp X < « and the inequality Cmp_, X < f holds
for no f < a.

(v) CmpyX = oo if and only if CmpyX < o holds for no integer o.

The following properties of Cmp,, are evident.

(1) Cmp, is monotone with respect to closed subspaces and Cmp X < Cmp X for
any X.

(2) Cmp, satisfies the sum theorem of type A.

(3) Cmp,C, = a, where C, is described in Remark 1.

(4) Every space X with Cmpy X = o > 1 is completely decomposable in the sense
of Cmpy,.

PrOOF OF THEOREM 3 (i).

By the above properties of Cmp, and [Proposition 1, we have m(X,Cmpy,f, o) =
q(p,a) for every space X with Cmp, X = o > 1. Hence, m»(Cmpy, , o) = M»(Cmpy,

B o) = q(B; o). O

Let o be an integer > 1 and P be a countable dense subset of C,. Then it can be
proved similarly as in the proof of [Theorem 1 that for every integer ¢ > 2 we have
def L,(Cy, P) = o0 < qo. < Cmpy L, (Cy, P) < (x4 1)?. Observe also that for the spaces
X,Y from Remark 2 and L.(C,, P) we have Cmp, X = Cmp, Y = Cmp L.(C,, P) =
oo, although def X =def Y =n and def L.(C,, P) = o.

QUESTION. Is it true that def X < CmpyX for any X?

4. The dimensions ind, and Ind.

DerINITION 2. Let X be a space. Then we define the additive transfinite inductive
dimension indy as follows.
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(i) indyX = —1 if and only if X = .
(i) indyX <o, where o is an ordinal > 0, if
(a) for every point x € X and any neighborhood Ox there exists a neigh-
borhood Ux such that Ux < Ox and indyBd Ux < a (i.e. indyBd Ux < f for some
p <), if o is finite or limit; or
(b) X = Ufﬁ”l Z;, where each Z; is closed in X and indyZ; < A(a), if o is
infinite and n(x) > 1.

REMARK 4. It is easy to prove by induction the following facts.

(i) For any ordinal o, if 4 is a closed subset of a space X and indy X < o then
indy4 <.

(i) For any ordinal f,o with f < o, if indy X < f then indy X < .

DEFINITION 2 (continued).

(i) indy X =« if and only if indy X < o and the inequality indy X < f holds for
no f < o.

(iv) indyX = oo if and only if indy X < « holds for no ordinal number o.

Similarly one can define the function Indy, i.e., Indy is defined by replacing the
arbitrary point x € X in [Definition 2 (ii) (a) with an arbitrary closed subset 4 of X.

Observe that for any space X and o < wy, indy X = « if and only if trind X' = «,
and Indy X =« if and only if trind X = a.

ProrosiTION 3. Let X be a space. Then

(i) indyX < IndyX;

(i) indy4 <indyX, if 4 < X, and Indy4 < Indy X, if 4 is a closed subset of X;
(iii) trind X < indy X, and trlnd X < Indy X.

ProOF. Let us check only the first inequality of (iii). Apply induction on
indyX =a. Let o> awy. If o is limit, then we consider a point xe X and any
neighborhood Ox. By [Definition 2, there exists a neighborhood Ux such that Ux = Ox
and indyBd Ux < a. By induction the inequality trind Bd Ux < o holds. So we have
trind X <o. If n(e) >1 then X = UL(?H Z;, where each Z; is closed in X and
indyZ; < A(2). By induction trind Z; < A(x). Recall that trind satisfies the sum
theorem of type 4. Hence trind X < a. O

Observe that the space X = @26:1 I" has indy X = wo and Indy X = 0.
The following technical lemma can be found in [ChH, Lemma 2.1].

LeEMMA 4. Let X be a space such that X = X1 U X,, where each X; is closed in X,
and A,B be two closed disjoint subsets of X such that ANX; # & and BN X; # &,
i=1,2. Choose a partition C; in X\ between ANX; and BN X, such that X;\C| =
U, UV, where Uy, V) are open in X| and disjoint, and ANX, < U;, BNX; < 1.
Choose also a partition C, in X, between ANX, and ((C;UWV)UB)NX, such
that X>\Cy, = U, U Vs, where U,, V, are open in X, and disjoint, and AN X, < Uy,
(CUMUB)NX, < Va. Then the set C = X\((Ui\X2)UUy))U (MU (M\Xy))) is a
partition in X between A and B such that C = C;U G U (X1 NX3).

PROPOSITION 4. Let d be one of the functions indy or Indy. Let a space X be the
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union of two closed subspaces X, and X, such that dX, <oy, dXo <o and o) < o.
Then

(1)

o, i M) < Ao),

dX < {oc2+n(061)+17 if M) = Alaa).

i.e. d satisfies the sum theorem of type A,.
(i) If d(X1NXy) < Aon), then dX < aj.

PrOOF. In the proof of (i) let us consider only the case of indy. Apply induction
on op. Let ap > wy. Consider the case when oy is limit. If o <ap (ie. A(o) <
Alon) = o), one easily sees that every point of X has arbitrarily small neighborhood
U with indy(Bd UNX;) < a,. Then, by the inductive hypothesis, indyBd U < o, and
therefore indyX < on. If o = oy, then, by [Definition 2, we have indyX < oy + 1.
Now assume n(x) > 1. Then, by Definition 2, X; = UL(?)H Z? where each Z”
is closed in X and indUZl@ < AMon). If Ao) < Alon) put Y; = X, UZEZ). By induc-
tion, indy Y; < A(a,) for each i. Observe that X = ;;(01‘2”1 Y; and hence indy X < a.
If A(a;) = A(a2), then we have X; = Uli(ol")HZfl), where Zlm is closed in X and
indUZfl) < A(z1). It is clear that indy X < ap +n(oy) + 1.

In the proof of (ii), let us also consider only the case of indy. Apply induction
on ay. Let ap > wg. Consider the case when o, is limit. If x € X;\X> or x € X\ X
then one can easily find a neighborhood Ux such that Ux < Ox and indyBd Ux < a5.
Let now x € X; N X, and 4 be a closed subset of X such that x ¢ 4 and 4N X; # ¢ for
every i. Choose a partition C; in X; between the point x and the set 4 N X such that
indyC; < op. Let X;\C) = U UV, where U;, V) are open in X; and disjoint, and
x € U;. Choose a partition C, in X, between the point x and the set ((C; U ¥V;)UA)N
X, such that indy G, <op. Put Y=CiUGU(X;NX;). Observe that by (i), the
inequality indy Y < oy holds. By [Lemma 4, there exists a partition C between the point
x and the set 4 such that C < Y. So indyC < ap. Now assume n(op) > 1. Then
by Definition 2, X; = | /™" Zz® | where Z") is closed in X and indy Z* < A(2),
k=1,2. Put Y;= Zfl) UZEZ) for each i. Observe that indU(Zl(l) ﬂZfz)) < Alaz). By
induction, the inequality indy Y; < A(op) holds. Observe that X = U?Z(OIQ)H Y;. Hence
indy X < . ]

ProposSITION 5. Let X be a space. Then indyX < wy-trind X. In particular,
trind X' < oo () if and only if indy X < oo (wy).

Proor. We need to prove only the inequality indy X < wg - trind X. Apply induc-
tion on trind X = o. Let o > wo and 4 = {U;}2, be a countable base for the space X
such that trind Bd U; = o; < o for every i. By induction we have indyBd U; < wg - o; <
wo - o« for every i. Observe that the ordinal number wg - o is limit. Hence, by Def-
inition 2, we have indy X < wy - o. O

PrROPOSITION 6. Let X be a space such that trind X < co. Then, Indy X = indy X.

ProOOF. We need to prove only the inequality indy X > Indy X. Apply induction
on indyX =a. Assume that o > wo. By [E, Theorem 7.1.25] there is a compact
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subspace K of X such that trlnd K < oo and Ind F < oo for each closed subspace F of
X disjoint from K. If « is limit then there exists a countable base # = {U;}”, for X
such that indyBd U; = o; < o for every i. Consider a pair 4, B of closed disjoint subsets
of X. If one of them is disjoint from K then we can easily choose a partition C
between 4 and B which is disjoint from K and hence Ind C < oo. Suppose now that
ANK # & and BNK # . Choose a finite covering {U;, },_, of ANK by elements
from % such that Cl(U; ) N B = ¢ for every k. Observe that the set D = A\(J,_, Uj, is
disjoint from K. So we can find a neighborhood O of D such that CI(O)N
(KUB) = . Hence IndBdO < oo. Observe that the set U=O0U(J," U, is a
neighborhood of A such that CI(U)NB = and BdU = BdOU| " ,BdU,. By
IProposition 4| (i), we have indyBd U < «. Hence by the inductive assumption and
Definition 2, Indy X < a.

Now assume n(x) > 1. Then X = U?:(?)H Z;, where each Z; is closed in X and
indyZ; < A(«). By induction we have that IndyZ; < A(x). Hence IndyX <o by
Definition 2. ]

COROLLARY 1. For every compact space X, Indy X = indy X.

Proor. It suffices to check this equality when trInd X = co. Then trind X = o
too ([E, Corollary 7.1.32]). By Proposition 3, we have indyX = co. Hence
Il’lduX = indU X. O]

Recall that the notation «(+)f means the natural sum of the ordinals [KM].

ProrosiITiION 7. Let X; be a space with indyX; <o, >0, i=12. Then
indy(Xi x X2) < oy (+)az + n(ag) - n(az).

ProOF. Let y=ua(+)xn. Apply induction on . Assume that y >wo. If p
is limit then both «; and o, are limit (recall that 0 is limit). Consider a point p and the
rectangular neighborhood U x V' of p such that indyBd U = f; < o; and indyBd V' =
f, < op. Observe that BA(U x V) = (BdU x CI(V))U(CI(U) x Bd V') and f,(+)o2 +
n(py) -n(on) <y, ay(+)py +n(u) -n(f,) <y. By the induction and (i),
we have indyBd(U x V) <y. Hence indy(X; X X2) <y =o1(+)a.

Now let n(y) > 1. Observe that n(y) = n(o;) +n(on). Let n(o;) > 1. Then X =
U?:(?')H Zfl), where each Zlm is closed in X7 and indUZlm < Aoy). If n(az) =0, then
by induction we have indU(Zl(l) x X3) < A(o)(+)a2.  Observe that A(o)(+)on is limit
and X, x X, = (" (ZW % Xy). So indy(X) x X2) < A(ou) () + n(e) = o (+)oa.
If n(ay) > 1, then X5 = U;’Z(O;Z)H Zl@, where each Zl@ is closed in X, and indUZfz) <
A(o). Observe that in this case we have X] x X, = Ul.":(T‘)H U]fqz(fz)H(Zfl) X Z}Z)) and
(n(oq) +1) - (n(or) + 1) = n(oy) + n(ax2) + n(oy) - n(x2) + 1, and we can apply induction.

[

Recall that Smirnov’s compactum S* described in Remark 1, where « is an infinite
ordinal < wy, is the union UL(OIC)H Z;, where each Z; is closed in S*, and for any k& with

0 <k < n(a) we have trInd(Ufjl1 Z;) = M) + k ([Ch, Lemma 3.5]). Moreover we can
assume that each Z; is the disjoint union of [0,1]"® (a point in the case n(a) = 0) and
countably many clopen compacta S#%, i=1,2,..., with f; < A(«) such that for any

point x € [0,1]"® we have ind,Z; < oo. Then we have the following.
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PROPOSITION 8. For any o and any k with 0 < k < n(a) we have lndU(Ul:1 Z) =
Ao) + k, where each Z; is the subspace of S* described above. In particular, indy S* = o.

Proor. It suffices to prove the inequality indyZ; < A(«) for every infinite o <
and each 7. If o is limit, then by induction we have ind, S* <«. If n(x) > 1, then for
each i the inequality indyZ; < A() is valid by induction and the construction of Z;.
Now by [Definition 2, we get the inequality indU(Uf:Lll Z;) < Aa) + k for any o and any
k with 0 <k < n(a). ]

COROLLARY 2. For any infinite ordinal number o, with n(o) > 1 there exists a compact
space X, with indyX, = a such that for any non-negative integers p,q with p+q =
n(a) — 1 there exist closed subsets X, , and X, , of X, with X, = X, ,UX, 4, indy X, , =
() + p and indy X, , = A(a) + q.

PROOF OF THEOREM 3 (ii).

Observe that every space X with indy X = «, where o is an infinite ordinal with
n(o) > 1, is completely decomposable in the sense of indy. So by [Proposition 1, we have
m(X,indy, f,0) = q(f,o) for every space X with indy X = oa. Hence mg(indy, f, o) =
My (indy, f,a) = q(B,2). Observe that by [Corollary 1, we have also my(Indy, o) =
M (Indy, B, o) = q(B, o). =

Recall the definition of D-dimension D introduced by Henderson [HJ.

One assigns D(F) = —1, and for every space X one defines D(X) as the smallest
ordinal number o such that there exists a closed cover {Ag};_,,) of the space X
satisfying the following conditions:

(i) The union (J{d4p:d < B < A(a)} is closed for every d < A(«).

(ii) For every xe X the set {ff < A(a):x e Az} has a largest element.

(iif) dimAg < oo for every f < A(x), and dim 4., < n(x).

If no such ordinal exists, one assigns D(X) = oo.

Recall also that D(S*) = o, « < w;, and for any X which is the union of two closed

subspaces X; and X, we have D(X) = max{D(X)),D(X2)}.

REMARK 5. Write S®0*4 = ()°  Z, as in the paragraph preceding '
By the sum theorem for D we can assume that D(Z;) =wo+4. Put Y = U:1 Z;.

Observe that D(Y) = wo +4. By the sum theorem for trind (Remark 1 (iii)), trind ¥ <
wo + 2. Furthermore, in view of [Proposition §, trind ¥ = indy ¥ = wo + 3. Note that
the first example of a compact space with different transfinite dimensions trind, trInd
and D was presented by Luxemburg [L].

REMARK 6. Let n(x) >1 and S* = Ul.n:(f)ﬂ Z;, as in the paragraph preceding

[Proposition 8.  We can assume that each Z; is without isolated points. Choose a dense
subset P, of Z; for each i. Put P = UL(OIC)H P,. Then for every integer g >2 we
have trInd L,(S* P) = o < A(a) + gn(a) < indy L, (S*, P) < A(a) + (n(2) + 1)?.  Indeed,
the equality follows from (i), the second inequality follows from
and [Proposition §. The last inequality follows from because the analogue of
(ii) for indy is readily seen to be valid in the case of limit ordinals.

Note also that trInd L, (S®°*!, P) = wo + 1, but IndyL.(S*!, P) = wq + wo.



The behaviour of dimension functions on unions of closed subsets 501

ACKNOWLEDGEMENT. The results of this paper were obtained during visits of the
second named author to Shimane University, Japan, and the University of the Aegean,
Greece. The second visit was supported by Nato Fellowship granted by the Gov-
ernment of Greece. He is grateful to the Departments of Mathematics of both uni-
versities for hosting him.

References

[AN] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland Math. Library, 48,
North-Holland, Amsterdam, 1993.

[Ch] V. A. Chatyrko, On finite sum theorems for transfinite inductive dimensions, Fund. Math., 162
(1999), 91-98.

[ChH] V. A. Chatyrko and Y. Hattori, On a question of de Groot and Nishiura, Fund. Math., 172
(2002), 107-115.

[ChKP] V. A. Chatyrko, K. L. Kozlov and B. A. Pasynkov, On an approach to constructing compacta with
different dimensions dim and ind, Topology Appl., 107 (2000), 39-55.

[E] R. Engelking, Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics, 10,
Heldermann Verlag, Lemgo, 1995.

[F] V. V. Filippov, On compacta with unequal dimensions ind and dim, Soviet Math. Dokl., vol. 11
(1970), 687-691.

[H] D. W. Henderson, D-dimension, I. A new transfinite dimension, Pacific J. Math., 26 (1968), 91—
107.

K] S. V. Kotkin, Summation theorem for inductive dimensions, Math. Notes, vol. 52 (1992), 938—
942.

[KM] K. Kuratowski and A. Mostowski, Set Theory, Stud. Logic Found. Math., 86, PWN, Warszawa;
North-Holland, Amsterdam, 1976.

[L] L. A. Luxemburg, On compact metric spaces with noncoinciding transfinite dimensions, Pacific J.
Math., 93 (1981), 339-386.
O] W. Olshewski, Cantor manifolds in the theory of transfinite dimension, Fund. Math., 145 (1994),
39-64.
Michael G. CHARALAMBOUS Vitalij A. CHATYRKO
Department of Mathematics Department of Mathematics
University of the Aegean Linkeping University
83 200, Karlovassi, Samos 581 83 Linkeping
Greece Sweden
E-mail: mcha@aegean.gr E-mail: vitja@mai.liu.se

Yasunao HATTORI

Department of Mathematics
Shimane University

Matsue, Shimane, 690-8504

Japan

E-mail: hattori@math.shimane-u.ac.jp



	1. Introduction.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...

	2. Evaluations of $m_{\mathscr{K}}(d,\beta, ...
	3. The dimension function ...
	4. The dimensions $ind_{\cup}$ ...

