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Abstract. We discuss the behaviour of (transfinite) dimension functions, in partic-

ular, Cmp and trInd, on finite and countable unions of closed subsets in separable

metrizable spaces.

1. Introduction.

It is well known that there exist (transfinite) dimension functions d such that

dðX1 UX2Þ > maxfdX1; dX2g even if the subspaces X1 and X2 are closed in the union

X1 UX2.

Let K be a class of topological spaces, b; a be ordinals such that b < a, and

X be a space from K with dX ¼ a which is the union of finitely many closed sub-

sets with da b. Define mðX ; d; b; aÞ ¼ minfk : X ¼6k

i¼1
Xi, where Xi is closed in

X and dXia bg, mKðd; b; aÞ ¼ minfmðX ; d; b; aÞ : X A K and mðX ; d; b; aÞ existsg and

MKðd; b; aÞ ¼ supfmðX ; d; b; aÞ : X A K and mðX ; d; b; aÞ existsg.

We will say that mKðd; b; aÞ and MKðd; b; aÞ do not exist if there is no space X from

K with dX ¼ a which is the union of finitely many closed subsets with da b. It is

evident that either mKðd; b; aÞ and MKðd; b; aÞ satisfy 2amKðd; b; aÞaMKðd; b; aÞa

y or they do not exist.

Two natural problems arise.

Problem 1. Determine the values of mKðd; b; aÞ and MKðd; b; aÞ for given K;

d; b; a.

Problem 2. Find a (transfinite) dimension function d having for given pair 2a

ka lay, mKðd; b; aÞ ¼ k and MKðd; b; aÞ ¼ l.

Let C be the class of metrizable compact spaces and P be the class of separable

completely metrizable spaces. By trind (trInd) we denote Hurewicz’s (Smirnov’s)

transfinite extension of ind (Ind) and Cmp is the large inductive compactness degree

introduced by de Groot. We shall recall their definitions in the next section. Let a ¼

lðaÞ þ nðaÞ be the natural decomposition of the ordinal ab 0 into the sum of a limit

ordinal lðaÞ (observe that l(an integerb 0) ¼ 0) and a nonnegative integer nðaÞ.

Let b < a be ordinals, put pðb; aÞ ¼ ðnðaÞ þ 1Þ=ðnðbÞ þ 1Þ and qðb; aÞ ¼ the smallest

integerb pðb; aÞ. In section 2 of this article we prove

Theorem 1. (i) Let 0a b < a be finite ordinals. Then

mPðCmp; b; aÞ ¼ qðb; aÞ and MPðCmp; b; aÞ ¼ y:
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(ii) Let b < a be infinite ordinals. Then we have

mCðtrInd; b; aÞ ¼
qðb; aÞ; if lðbÞ ¼ lðaÞ;

does not exist; otherwise:

�

MCðtrInd; b; aÞ ¼
y; if lðbÞ ¼ lðaÞ;

does not exist; otherwise:

�

Theorem 2. (i) For every finite ab 1 there exists a space Xa A P such that

(a) CmpXa ¼ a;

(b) Xa ¼ 6y

i¼1
Yi, where each Yi is closed in Xa and CmpYia 0;

(c) Xa 06m

i¼1
Zi, where each Zi is closed in Xa and CmpZia a� 1, and m is

any integerb 1.

(ii) For every infinite a with nðaÞb 1 there exists a space Xa A C such that

(a) trIndXa ¼ a;

(b) Xa ¼ 6y

i¼1
Yi, where each Yi is closed in Xa and finite-dimensional;

(c) Xa 06m

i¼1
Zi, where each Zi is closed in Xa and trIndZia a� 1, and m is

any integerb 1.

In sections 3 and 4, we introduce and study new dimension functions: the additive

compactness degree CmpU and the transfinite additive inductive dimension functions

indU and IndU. In connection with the previous part we prove

Theorem 3. (i) Let 0a b < a be finite ordinals. Then

mPðCmpU; b; aÞ ¼ MPðCmpU; b; aÞ ¼ qðb; aÞ.

(ii) Let b < a be infinite ordinals. Then we have mCðindU; b; aÞ ¼ mCðIndU; b; aÞ ¼

MCðindU; b; aÞ ¼ MCðIndU; b; aÞ ¼ qðb; aÞ, if lðbÞ ¼ lðaÞ and they do not exist otherwise.

Our terminology follows [E] and [AN].

2. Evaluations of mKðd; b; aÞ and MKðd; b; aÞ.

All spaces in this paper are separable and metrizable except those considered in

Remark 3. Hence, outside Remark 3, a space means a separable metrizable space.

The notation X@Y means that the spaces X and Y are homeomorphic. At first we

consider the following construction.

Step 1. Let X be a space without isolated points and P a countable dense subset

of X . Consider Alexandro¤ ’s dublicate D ¼ X UX 1 of X , where each point of X 1 is

clopen in D. Remove from D those points of X 1 which do not correspond to any point

from P. Denote the obtained space by LðX ;PÞ. Observe that LðX ;PÞ is the disjoint

union of X with the countable dense subset P1 of LðX ;PÞ consisting of points from X 1

corresponding to the points from P. The space LðX ;PÞ is separable and metrizable. It

will be compact if X is compact. Put L1ðX ;PÞ ¼ LðX ;PÞ. Assume that X is a com-

pletely metrizable space (recall that the increment bXnX in any compactification bX of

X is an Fs-set in bX ). Observe that LðbX ;PÞ is a compactification of LðX ;PÞ and the

increment LðbX ;PÞnLðX ;PÞ ð@bXnXÞ is an Fs-set in LðbX ;PÞ. Hence LðX ;PÞ is also

completely metrizable.
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Step 2. Let X be a space with a countable subset R consisting of isolated points.

Let Y be a space. Substitute each point of R in X by a copy of Y . The obtained set

W has the natural projection pr : W ! X . Define the topology on W as the smallest

topology such that the projection pr is continuous and each copy of Y has its

original topology as a subspace of this new space. The obtained space is denoted by

LðX ;R;YÞ. It is separable and metrizable and it will be compact (completely met-

rizable) if X and Y are the same. Moreover LðX ;R;YÞ is the disjoint union of the

closed subspace XnR of X (which we will call basic for the space LðX ;R;YÞ) and

countably many clopen copies of Y .

Step 3. Let X be a space without isolated points and P be a countable dense

subset of X . Define LnðX ;PÞ ¼ LðL1ðX ;PÞ;P1
;Ln�1ðX ;PÞÞ, nb 2. Observe that

for any open subset O of LnðX ;PÞ meeting the basic subset X of LnðX ;PÞ there is a

copy of Ln�1ðX ;PÞ contained in O. Put L�ðX ;PÞ ¼ f�gU0y

n¼1
LnðX ;PÞ. (Here by

f�gU0y

i¼1
Xi we mean the one-point extension of the free union 0y

i¼1
Xi such that

a neighborhood base at the point � consists of the sets f�gU0y

i¼k
Xi, k ¼ 1; 2; . . .).

Observe that L�ðX ;PÞ is separable and metrizable, and it contains a copy of LqðX ;PÞ

for each q. L�ðX ;PÞ will be compact (completely metrizable) if X is the same.

All our dimension functions d are assumed to be monotone with respect to closed

subsets and dða pointÞa 0.

Lemma 1. Let d be a dimension function and X be a space without isolated points

which cannot be written as the union of kb 1 closed subsets with da a, where a is an

ordinal. Let also P be a countable dense subset of X. Then

(a) for every q we have LqðX ;PÞ06qk

i¼1
Xi, where each Xi is closed in LqðX ;PÞ

and dXia a;

(b) L�ðX ;PÞ06m

i¼1
Xi, where each Xi is closed in L�ðX ;PÞ and dXia a, and m

is any integerb 1.

Proof. (a) Apply induction. Suppose that LqðX ;PÞ ¼ ðX1 U � � �UXkÞU

ðXkþ1 U � � �UXqkÞ, where each Xi is closed in LqðX ;PÞ and dXia a. Consider the open

set O ¼ LqðX ;PÞnðX1 U � � �UXkÞ. Observe that OH6ðq�1Þk

i¼1
Xkþi, O meets the basic

subset X of LqðX ;PÞ and so contains a copy of Lq�1ðX ;PÞ. This implies that

Lq�1ðX ;PÞ ¼ 6ðq�1Þk

i¼1
Yi, where each Yi is closed in LqðX ;PÞ and dYia a. This con-

tradiction proves (a).

(b) follows directly from (a). r

All our classes K of topological spaces are assumed to be monotone with respect

to closed subsets and closed under operations Lð ; Þ and Lð ; ; Þ.

Lemma 2. Let K be a class of topological spaces, a be an ordinalb 0 and d be a

dimension function such that dLðLðS;PÞ;P1
;TÞa a for any S;T from K with dSa a,

dTa a and any P. Let X AK be such that X ¼ 6k

i¼1
Xi, where each Xi is closed in X,

without isolated points and dXia a. Let also Pi be a countable dense subset of Xi for

each i. Then for each q the space LqðX ;6k

i¼1
PiÞ exists and is the union of k q closed

subsets with da a.
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Proof. Observe that X is a space without isolated points and the countable

set P ¼6k

i¼1
Pi is dense in X . Hence the space LqðX ;PÞ exists for each q. We

prove Lemma 2 by induction. Consider the case q ¼ 1. Observe that L1ðX ;PÞ ¼

6k

i¼1
L1ðXi;PiÞ, where each L1ðXi;PiÞ is closed in L1ðX ;PÞ. Moreover for each i,

L1ðXi;PiÞ ¼ LðLðXi;PiÞ;P
1
i ;Y Þ, where Y is a singleton with dYa 0a a. By the

property of d, dL1ðXi;PiÞa a. Assume now that Lq�1ðX ;PÞ ¼ Y1 U � � �UYk q�1 ,

where each Yi is closed in Lq�1ðX ;PÞ and dYia a. Observe that LqðX ;PÞ ¼

LðLðX1;P1Þ; P
1
1 ; Y1Þ U � � � U LðLðXk; PkÞ; P

1
k ; Y1Þ U � � � U LðLðX1; P1Þ; P

1
1 ; Yk q�1Þ U � � � U

LðLðXk; PkÞ; P
1
k ;Yk q�1Þ. Note that all k q terms in the right side of this representation

of LqðX ;PÞ are closed in LqðX ;PÞ and with da a because of the property of d. r

We will say that a dimension function d satisfies the sum theorem of type A if for

any X being the union of two closed subspaces X1 and X2 with dXia ai, where each

ai is finite andb0, we have dXa a1 þ a2 þ 1. A space X is completely decomposable

in the sense of the dimension function d if dX ¼ a, where a is an integerb 1, and

X ¼6aþ1

i¼1
Xi, where each Xi is closed in X and dXi ¼ 0. Observe that if this space X

belongs to a class K of topological spaces then mKðd; b; aÞamðX ; d; b; aÞa aþ 1 for

each b with 0a b < a.

We will say that a transfinite dimension function d satisfies the sum theorem of type

Atr if for any X being the union of two closed subspaces X1 and X2 with dXia ai and

a2b a1 we have dXa a2, if lða1Þ < lða2Þ, and dXa a2 þ nða1Þ þ 1, if lða1Þ ¼ lða2Þ.

A space X is completely decomposable in the sense of the transfinite dimension function

d if dX ¼ a, where a is an infinite ordinal with nðaÞb 1, and X ¼6nðaÞþ1

i¼1
Xi, where

each Xi is closed in X and dXi ¼ lðaÞ. Observe that if this space X belongs to a

class K of topological spaces then mKðd; b; aÞamðX ; d; b; aÞa nðaÞ þ 1 for each b

with lðaÞa b < a.

To every space X one assigns the large inductive compactness degree Cmp as

follows.

(i) CmpX ¼ �1 if and only if X is compact;

(ii) CmpX ¼ 0 if and only if there is a base B for the open sets of X such that the

boundary BdU is compact for each U in B;

(iii) CmpXa a, where a is an integerb 1, if for each pair of disjoint closed

subsets A and B of X there exists a partition C between A and B in X such that

CmpCa a� 1;

(iv) CmpX ¼ a if CmpXa a and CmpX > a� 1;

(v) CmpX ¼ y if CmpX > a for every positive integer a.

Recall also the definitions of the transfinite inductive dimenions trind and trInd.

(i) trIndX ¼ �1 if and only if X ¼ q;

(ii) trIndXa a, where a is an ordinalb 0, if for each pair of disjoint closed

subsets A and B of X there exists a partition C between A and B in X such that

trIndC < a;

(iii) trIndX ¼ a if trIndXa a and trIndXa b holds for no b < a;

(iv) trIndX ¼ y if trIndXa a holds for no ordinal a.

The definition of trind is obtained by replacing the set A in (ii) with a point

of X .
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Remark 1. (i) Note that Cmp satisfies the sum theorem of type A ([ChH, The-

orem 2.2]) and for each integer ab 1 there exists a separable completely metrizable

space Ca with CmpCa ¼ a which is completely decomposable in the sense of Cmp

([ChH, Theorem 3.1]). For the convenience of the reader, we recall that Ca ¼ f0g �

ð½0; 1�anð0; 1ÞaÞU6y

i¼1
fxig � ½0; 1�a H I aþ1, where fxig

y

i¼1 is a sequence of real numbers

such that 0 < xiþ1 < xia 1 for all i and limi!y xi ¼ 0. Note that the closed subsets

in the decomposition of Ca can be assumed without isolated points.

(ii) Note also that trInd satisfies the sum theorem of type Atr ([E, Theorem 7.2.7])

and for each infinite ordinal a with nðaÞb 1 there exists a metrizable compact space

S a (Smirnov’s compactum) with trIndS a ¼ a which is completely decomposable in the

sense of trInd ([Ch, Lemma 3.5]). Recall that Smirnov’s compacta S0;S1; . . . ;S a; . . . ;

a < o1, are defined by transfinite induction: S0 is the one-point space, S a ¼ S b � ½0; 1�

for a ¼ b þ 1, and if a is a limit ordinal, then S a ¼ f�agU0
b<a

S b is the one-point

compactification of the free union of all the previously defined S b’s, where �a is the

compactifying point. Note that the closed subsets in the decomposition of S a can be

assumed without isolated points.

(iii) Observe that trind satisfies another sum theorem. Namely, for any X being

the union of two closed subspaces X1 and X2 with trindXia ai and a2b a1 we have

trindXa a2, if lða1Þ < lða2Þ, and trindXa a2 þ 1, if lða1Þ ¼ lða2Þ [Ch, Theorem 3.9].

Proposition 1. (i) Let K be a class of topological spaces, d be a dimension func-

tion satisfying the sum theorem of type A, a be an integerb 1 and X be a space fromK with

dX ¼ a which is completely decomposable in the sense of d. Then for any integer 0a b < a

we have mKðd; b; aÞ ¼ mðX ; d; b; aÞ ¼ qðb; aÞ.

(ii) Let K be a class of topological spaces, d be a transfinite dimension function

satisfying the sum theorem of type Atr, a be an infinite ordinal with nðaÞb 1 and X be a

space from K with dX ¼ a which is completely decomposable in the sense of d. Then for

any infinite ordinal b < a we have mKðd; b; aÞ ¼ mðX ; d; b; aÞ ¼ qðb; aÞ if lðbÞ ¼ lðaÞ and

mKðd; b; aÞ does not exist otherwise.

Proof. We prove only (ii) as (i) is similar. The case lðbÞ < lðaÞ is clear from the

properties of d, and we assume lðbÞ ¼ lðaÞ. Observe that if a space Z from K with

dZ ¼ a can be written as the union 6k

i¼1
Yi, where each Yi is closed in Z and dYia b,

by the properties of d, aa lðbÞ þ knðbÞ þ k � 1 so that kb ðnðaÞ þ 1Þ=ðnðbÞ þ 1Þ ¼

pðb; aÞ. Hence mðZ; d; b; aÞb qðb; aÞ and thereby mKðd; b; aÞb qðb; aÞ. Now observe

that the space X can be written as the union of qðb; aÞðnðbÞ þ 1Þ closed sets each with

d ¼ lðaÞ. Hence, by the properties of d;X can be written as the union of qðb; aÞ closed

subsets each with da lðaÞ þ nðbÞ ¼ b. Thus mKðd; b; aÞamðX ; d; b; aÞa qðb; aÞ and,

therefore, mKðd; b; aÞ ¼ mðX ; d; b; aÞ ¼ qðb; aÞ. r

The deficiency def is defined in the following way: For a space X ,

def X ¼ minfdimðYnXÞ: Y is a metrizable compactification of Xg:

Recall that CmpXa def X and def X ¼ 0 if and only if CmpX ¼ 0.

Lemma 3. (i) def LðLðX ;PÞ;P1;Y Þ ¼ maxfdef X ; def Yg for any, X ;P;Y . In

particular, we have CmpLðLðX ;PÞ;P1;Y Þa 0 if CmpXa 0 and CmpYa 0.
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(ii) trIndLðLðX ;PÞ;P1
;YÞ ¼ maxftrIndX ; trIndYg for any compacta X ;Y and

any P.

Proof. (i) Let bX and bY be metrizable compactifications of X and Y respec-

tively such that dimðbXnX Þ ¼ def X and dimðbYnY Þ ¼ def Y . Observe that the space

LðLðbX ;PÞ;P1
; bYÞ is a compactification of LðLðX ;PÞ;P1

;YÞ and the increment Z ¼

LðLðbX ;PÞ;P1
; bYÞnLðLðX ;PÞ;P1

;YÞ is the union of countably many closed subsets,

one of which is homeomorphic to bXnX and the others are homeomorphic to bYnY .

So by the countable sum theorem for dim we get that dimZ ¼ maxfdimðbXnX Þ;

dimðbYnYÞg ¼ maxfdef X ; def Yg. Hence def LðLðX ;PÞ;P1
;Y Þamaxfdef X ; def Yg,

thereby def LðLðX ;PÞ;P1
;Y Þ ¼ maxfdef X ; def Yg.

(ii) At first let us prove the statement when Y is a singleton. Observe that in this

case LðLðX ;PÞ;P1
;YÞ ¼ LðX ;PÞ. Consider two disjoint closed subsets A and B of

LðX ;PÞ. Recall that LðX ;PÞ contains a copy of X . Choose a partition C between

AVX and BVX in X . Extend the partition to a partition C1 between A and B in

LðX ;PÞ. Consider another partition C2 between A and B in LðX ;PÞ which is ‘‘thin’’

(i.e. IntLðX ;PÞ C2 ¼ q) and is in C1. Observe that C2 HC. Hence trIndLðX ;PÞ ¼

trIndX .

Now let us consider the general case. Assume that A and B are disjoint closed

subsets in LðLðX ;PÞ;P1
;Y Þ. Recall that there is the natural continuous projection pr :

LðLðX ;PÞ;P1
;YÞ ! LðX ;PÞ. Consider the closed subsets prA and prB of LðX ;PÞ.

If they are disjoint, choose a partition C2 between prA and prB in LðX ;PÞ like in the

previous part. Observe that pr�1 C2 is a partition between A and B in LðLðX ;PÞ;

P1
;YÞ such that pr�1 C2 is homeomorphic to a closed subset of C. Assume now that

prAV prB0q. Note that Q1 ¼ prAV prB is finite and LðLðX ;PÞ;P1
;Y Þ is the free

union of LðLðX ; ðPnQÞÞ;P1nQ1
;YÞ, where Q is the finite subset of P corresponding to

Q1 and finitely many copies of Y . Choose a partition between A and B in X and a

partition between A and B in each of the copies of Y corresponding to points of Q. It

follows from the foregoing discussion that the free union of these partitions constitutes a

partition in LðLðX ;PÞ;P1
;YÞ between A and B. We conclude that trIndLðLðX ;PÞ;

P1
;YÞ ¼ maxftrIndX ; trIndYg. r

Proof of Theorem 1.

(i) Because of Remark 1 and Proposition 1, we need only establish that

MPðCmp; b; aÞ ¼ y. Consider the space Ca ¼ 6aþ1

i¼1
Xi, where each Xi is closed in X ,

without isolated points and CmpXi ¼ 0, from Remark 1. Let Pi be a countable dense

subset of Xi. Put P ¼ 6aþ1

i¼1
Pi. Recall that def Ca ¼ a ([ChH, Theorem 3.1]). So by

Lemma 3 for any integer q we have def LqðCa;PÞ ¼ a and hence CmpLqðCa;PÞ ¼ a.

Observe that by Lemmas 2 and 3, we get that the completely metrizable space LqðCa;PÞ

is the union of ðaþ 1Þq many closed subspaces with Cmpa 0. Hence mðLqðCa;PÞ;

Cmp; b; aÞa ðaþ 1Þq. Since Cmp satisfies the sum theorem of type A;Ca cannot

be represented as a-many closed subsets with Cmpa 0. By Lemma 1 we have

mðLqðCa;PÞ;Cmp; b; aÞb qab q. Since limq!y q ¼ y we get MPðCmp; b; aÞ ¼ y.

(ii) By similar arguments as in the proof of (i) one can prove MCðtrInd; b; aÞ ¼ y,

if lðbÞ ¼ lðaÞ; and does not exist otherwise. r
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Proof of Theorem 2. (i) Put Xa ¼ f�gU0y

i¼1
LiðCa;PÞ. Observe that Xa is com-

pletely metrizable and is the union of countably many closed subspaces with Cmpa 0.

Since def Xa ¼ a, we have CmpXa ¼ a. Now observe that limi!y mðLiðCa;PÞ;Cmp;

a� 1; aÞ ¼ y. Hence Xa cannot be written as the finite union of closed subsets with

Cmpa a� 1.

(ii) Put Xa ¼ f�gU0y

i¼1
LiðS

a;PÞ. Observe that Xa is compact and is the union

of countably many finite-dimensional closed subspaces (recall that S a and therefore

LiðS
a;PÞ have the same property). Since for each i, trIndLiðS

a;PÞ ¼ a, we have

trIndXa ¼ a. Now observe that limi!y mðLiðS
a;PÞ; trInd; a� 1; aÞ ¼ y. Hence Xa

cannot be written as the finite union of closed subsets with trInda a� 1. r

Remark 2. Let Q be the set of rational numbers of the closed interval ½0; 1�.

Recall that for the spaces X ¼ Q� ½0; 1�n and Y ¼ ð½0; 1�nQÞ � I n we have CmpX ¼

def X ¼ CmpY ¼ def Y ¼ n ([AN, p.18 and p.56]). It is easy to observe that X

satisfies points (a)–(c) of Theorem 2 (i). However, X is not completely metrizable.

Note that Y is completely metrizable and satisfies points (a) and (c) of Theorem 2 (i) but

not (b). Observe that Smirnov’s compactum S a with nðaÞb 1 satisfies points (a) and

(b) of Theorem 2 (ii) but not (c). Note also that any Cantor manifold Z with

trIndZ ¼ a, where a is an infinite ordinal with nðaÞb 1, (see for such spaces for example

in [O]) satisfies points (a) and (c) of Theorem 2 (ii) but not (b).

Let d be a (transfinite) dimension function. A space X with dX 0y is said to

have property ð�Þd if for every open nonempty subset O of the space X there exists a

closed in X subset F HO with dF ¼ dX :

Observe that the spaces X ;Y from Remark 2 have property ð�ÞCmp and Z has

property ð�ÞtrInd.

Proposition 2. Let X be a completely metrizable space with dX 0y. Then

X 06y

i¼1
Xi, where each Xi is closed in X and dXi < dX if and only if there exists a

closed subspace Y of X such that (i) dY ¼ dX and (ii) Y has the property ð�Þd .

Proof. ð(Þ Assume X ¼ 6y

i¼1
Xi, where each Xi is closed in X and dXi < dX .

It su‰ces to obtain a contradiction. Consider Y ¼ 6y

i¼1
ðXi VYÞ. Observe that each

Yi ¼ ðXi VYÞ is closed in Y and dYia dXi < dX ¼ dY . By Baire’s theorem there

exists a natural number i such that IntYi 0q. By property ð�Þd , there is a closed in

Y (in X as well) subset F H IntYi with dF ¼ dY . Now, by the monotonicity of d, we

have dFa dYi < dY , a contradiction.

ð)Þ Let G be the family of all open sets of X that can be written as a countable

union of closed subsets of X with d < dX . Because X is separable metrizable, G ¼

6G A G. Let Y ¼ XnG. By the assumed property of X , we have dY ¼ dX . Con-

sider now an open set U of Y . Then U ¼ Y VV for some open set V of X . If U

contains no closed subset of X with d ¼ dX then clearly V ¼ U U ðVnYÞ is the

countable union of closed subsets of X with d < dX . Hence V A G, V HG and so

U ¼ q. Thus, Y has property ð�Þd . r

Remark 3. This remark concerns non-metrizable compact spaces. Using the con-

struction of Lokucievskij’s example ([E, p.140]), Chatyrko, Kozlov and Pasynkov

[ChKP, Remark 3.15 (b)] presented for each n ¼ 3; 4; . . . a compact Hausdor¤ space Xn
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such that indXn ¼ 2 and mðXn; ind; 1; 2Þ ¼ n. Hence it is clear that mNðind; 1; 2Þ ¼ 2

and MNðind; 1; 2Þ ¼ y, where N is the class of compact Hausdor¤ spaces. In [K]

Kotkin constructed a compact Hausdor¤ space X with indX ¼ 3 which is the union of

three one-dimensional in the sense of ind closed subspaces. Hence, mNðind; 1; 3Þ ¼ 3

and mNðind; 2; 3Þ ¼ 2. Filippov in [F] presented for every n a compact Hausdor¤ space

Fn with indFn ¼ n, which is the union of finitely many one-dimensional in the sense

of ind closed subspaces, thereby mNðind; k; nÞ < y for each 1a k < n. By the sum

theorem from Remark 1 (iii) for ind which is valid in fact for all regular spaces, one can

get that mNðind; 1; nÞb 2n�2 þ 1 for each n.

3. The dimension function CmpU.

We begin with the definition of the additive large compactness degree CmpU.

Definition 1. Let X be a space. Then we define the additive large compactness

degree CmpU as follows.

(i) CmpUX ¼ �1 if and only if X is compact.

(ii) CmpUX ¼ 0 if and only if CmpX ¼ 0.

(iii) CmpUXa a, where a is an integerb 1, if X ¼6aþ1

i¼1
Zi, where each Zi is

closed in X and CmpZia 0.

(iv) CmpUX ¼ a if and only if CmpUXa a and the inequality CmpUXa b holds

for no b < a.

(v) CmpUX ¼ y if and only if CmpUXa a holds for no integer a.

The following properties of CmpU are evident.

(1) CmpU is monotone with respect to closed subspaces and CmpX � CmpUX for

any X .

(2) CmpU satisfies the sum theorem of type A.

(3) CmpUCa ¼ a, where Ca is described in Remark 1.

(4) Every space X with CmpUX ¼ ab 1 is completely decomposable in the sense

of CmpU.

Proof of Theorem 3 (i).

By the above properties of CmpU and Proposition 1, we have mðX ;CmpU; b; aÞ ¼

qðb; aÞ for every space X with CmpUX ¼ ab 1. Hence, mPðCmpU; b; aÞ ¼ MPðCmpU;

b; aÞ ¼ qðb; aÞ. r

Let a be an integerb 1 and P be a countable dense subset of Ca. Then it can be

proved similarly as in the proof of Theorem 1 that for every integer qb 2 we have

def LqðCa;PÞ ¼ a < qaaCmpULqðCa;PÞa ðaþ 1Þq. Observe also that for the spaces

X ;Y from Remark 2 and L�ðCa;PÞ we have CmpUX ¼ CmpUY ¼ CmpUL�ðCa;PÞ ¼

y, although def X ¼ def Y ¼ n and def L�ðCa;PÞ ¼ a.

Question. Is it true that def XaCmpUX for any X ?

4. The dimensions indU and IndU.

Definition 2. Let X be a space. Then we define the additive transfinite inductive

dimension indU as follows.
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(i) indUX ¼ �1 if and only if X ¼ q.

(ii) indUXa a, where a is an ordinalb 0, if

(a) for every point x A X and any neighborhood Ox there exists a neigh-

borhood Ux such that UxHOx and indUBdUx < a (i.e. indUBdUxa b for some

b < a), if a is finite or limit; or

(b) X ¼ 6nðaÞþ1

i¼1
Zi, where each Zi is closed in X and indUZia lðaÞ; if a is

infinite and nðaÞb 1.

Remark 4. It is easy to prove by induction the following facts.

(i) For any ordinal a, if A is a closed subset of a space X and indUXa a then

indUAa a.

(ii) For any ordinal b; a with b < a, if indUXa b then indUXa a.

Definition 2 (continued).

(iii) indUX ¼ a if and only if indUXa a and the inequality indUXa b holds for

no b < a.

(iv) indUX ¼ y if and only if indUXa a holds for no ordinal number a.

Similarly one can define the function IndU, i.e., IndU is defined by replacing the

arbitrary point x A X in Definition 2 (ii) (a) with an arbitrary closed subset A of X .

Observe that for any space X and aao0, indUX ¼ a if and only if trindX ¼ a,

and IndUX ¼ a if and only if trIndX ¼ a.

Proposition 3. Let X be a space. Then

(i) indUX � IndUX ;

(ii) indUAa indUX , if AHX , and IndUAa IndUX , if A is a closed subset of X ;

(iii) trindX � indUX , and trIndX � IndUX .

Proof. Let us check only the first inequality of (iii). Apply induction on

indUX ¼ a. Let abo0. If a is limit, then we consider a point x A X and any

neighborhood Ox. By Definition 2, there exists a neighborhood Ux such that UxHOx

and indUBdUx < a. By induction the inequality trind BdUx < a holds. So we have

trindXa a. If nðaÞb 1 then X ¼ 6nðaÞþ1

i¼1
Zi, where each Zi is closed in X and

indUZia lðaÞ. By induction trindZia lðaÞ. Recall that trind satisfies the sum

theorem of type A. Hence trindXa a. r

Observe that the space X ¼ 0y

n¼1
I n has indUX ¼ o0 and IndUX ¼ y.

The following technical lemma can be found in [ChH, Lemma 2.1].

Lemma 4. Let X be a space such that X ¼ X1 UX2, where each Xi is closed in X,

and A;B be two closed disjoint subsets of X such that AVXi 0q and BVXi 0q,

i ¼ 1; 2. Choose a partition C1 in X1 between AVX1 and BVX1 such that X1nC1 ¼

U1 UV1, where U1;V1 are open in X1 and disjoint, and AVX1 HU1, BVX1 HV1.

Choose also a partition C2 in X2 between AVX2 and ððC1 UV1ÞUBÞVX2 such

that X2nC2 ¼ U2 UV2, where U2;V2 are open in X2 and disjoint, and AVX2 HU2,

ððC1 UV1ÞUBÞVX2 HV2. Then the set C ¼ XnðððU1nX2ÞUU2ÞU ðV1 U ðV2nX1ÞÞÞ is a

partition in X between A and B such that CHC1 UC2 U ðX1 VX2Þ.

Proposition 4. Let d be one of the functions indU or IndU. Let a space X be the
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union of two closed subspaces X1 and X2 such that dX1a a1; dX2a a2 and a1a a2.

Then

(i)

dXa
a2; if lða1Þ < lða2Þ;

a2 þ nða1Þ þ 1; if lða1Þ ¼ lða2Þ:

�

i.e. d satisfies the sum theorem of type Atr.

(ii) If dðX1 VX2Þ < lða2Þ, then dXa a2.

Proof. In the proof of (i) let us consider only the case of indU. Apply induction

on a2. Let a2bo0. Consider the case when a2 is limit. If a1 < a2 (i.e. lða1Þ <

lða2Þ ¼ a2), one easily sees that every point of X has arbitrarily small neighborhood

U with indUðBdU VX2Þ < a2. Then, by the inductive hypothesis, indUBdU < a2 and

therefore indUXa a2. If a1 ¼ a2, then, by Definition 2, we have indUXa a2 þ 1.

Now assume nða2Þb 1. Then, by Definition 2, X2 ¼ 6nða2Þþ1

i¼1
Z

ð2Þ
i , where each Z

ð2Þ
i

is closed in X and indUZ
ð2Þ
i a lða2Þ. If lða1Þ < lða2Þ put Yi ¼ X1 UZ

ð2Þ
i . By induc-

tion, indUYia lða2Þ for each i. Observe that X ¼ 6nða2Þþ1

i¼1
Yi and hence indUXa a2.

If lða1Þ ¼ lða2Þ, then we have X1 ¼ 6nða1Þþ1

i¼1
Z

ð1Þ
i , where Z

ð1Þ
i is closed in X and

indUZ
ð1Þ
i a lða1Þ. It is clear that indUXa a2 þ nða1Þ þ 1.

In the proof of (ii), let us also consider only the case of indU. Apply induction

on a2. Let a2bo0. Consider the case when a2 is limit. If x A X1nX2 or x A X2nX1

then one can easily find a neighborhood Ux such that UxHOx and indUBdUx < a2.

Let now x A X1 VX2 and A be a closed subset of X such that x B A and AVXi 0q for

every i. Choose a partition C1 in X1 between the point x and the set AVX1 such that

indUC1 < a2. Let X1nC1 ¼ U1 UV1, where U1;V1 are open in X1 and disjoint, and

x A U1. Choose a partition C2 in X2 between the point x and the set ððC1 UV1ÞUAÞV

X2 such that indUC2 < a2. Put Y ¼ C1 UC2 U ðX1 VX2Þ. Observe that by (i), the

inequality indUY < a2 holds. By Lemma 4, there exists a partition C between the point

x and the set A such that CHY . So indUC < a2. Now assume nða2Þb 1. Then

by Definition 2, Xk ¼ 6nða2Þþ1

i¼1
Z

ðkÞ
i , where Z

ðkÞ
i is closed in X and indUZ

ðkÞ
i a lða2Þ,

k ¼ 1; 2. Put Yi ¼ Z
ð1Þ
i UZ

ð2Þ
i for each i. Observe that indUðZ

ð1Þ
i VZ

ð2Þ
i Þ < lða2Þ. By

induction, the inequality indUYia lða2Þ holds. Observe that X ¼ 6nða2Þþ1

i¼1
Yi. Hence

indUXa a2. r

Proposition 5. Let X be a space. Then indUXao0 � trindX . In particular,

trindX < y ðo1Þ if and only if indUX < y ðo1Þ.

Proof. We need to prove only the inequality indUXao0 � trindX . Apply induc-

tion on trindX ¼ a. Let abo0 and B ¼ fUig
y
i¼1 be a countable base for the space X

such that trind BdUi ¼ ai < a for every i. By induction we have indUBdUiao0 � ai <

o0 � a for every i. Observe that the ordinal number o0 � a is limit. Hence, by Def-

inition 2, we have indUXao0 � a. r

Proposition 6. Let X be a space such that trIndX < y. Then, IndUX ¼ indUX .

Proof. We need to prove only the inequality indUXb IndUX . Apply induction

on indUX ¼ a. Assume that abo0. By [E, Theorem 7.1.25] there is a compact
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subspace K of X such that trIndK < y and IndF < y for each closed subspace F of

X disjoint from K . If a is limit then there exists a countable base B ¼ fUig
y
i¼1 for X

such that indUBdUi ¼ ai < a for every i. Consider a pair A;B of closed disjoint subsets

of X . If one of them is disjoint from K then we can easily choose a partition C

between A and B which is disjoint from K and hence IndC < y. Suppose now that

AVK0q and BVK0q. Choose a finite covering fUikg
m
k¼1 of AVK by elements

from B such that ClðUik ÞVB ¼ q for every k. Observe that the set D ¼ An6m

k¼1
Uik is

disjoint from K . So we can find a neighborhood O of D such that ClðOÞV

ðK UBÞ ¼ q. Hence IndBdO < y. Observe that the set U ¼ OU6m

k¼1
Uik is a

neighborhood of A such that ClðUÞVB ¼ q and BdU HBdOU6m

k¼1
BdUik . By

Proposition 4 (i), we have indUBdU < a. Hence by the inductive assumption and

Definition 2, IndUXa a:

Now assume nðaÞb 1. Then X ¼ 6nðaÞþ1

i¼1
Zi, where each Zi is closed in X and

indUZia lðaÞ. By induction we have that IndUZia lðaÞ. Hence IndUXa a by

Definition 2. r

Corollary 1. For every compact space X, IndUX ¼ indUX .

Proof. It su‰ces to check this equality when trIndX ¼ y. Then trindX ¼ y

too ([E, Corollary 7.1.32]). By Proposition 3, we have indUX ¼ y. Hence

IndUX ¼ indUX . r

Recall that the notation aðþÞb means the natural sum of the ordinals [KM].

Proposition 7. Let Xi be a space with indUXia aib 0, i ¼ 1; 2. Then

indUðX1 � X2Þa a1ðþÞa2 þ nða1Þ � nða2Þ:

Proof. Let g ¼ a1ðþÞa2. Apply induction on g. Assume that gbo0. If g

is limit then both a1 and a2 are limit (recall that 0 is limit). Consider a point p and the

rectangular neighborhood U � V of p such that indUBdU ¼ b1 < a1 and indUBdV ¼

b2 < a2. Observe that BdðU � VÞ ¼ ðBdU � ClðVÞÞU ðClðUÞ � BdVÞ and b1ðþÞa2 þ

nðb1Þ � nða2Þ < g, a1ðþÞb2 þ nða1Þ � nðb2Þ < g. By the induction and Proposition 4 (i),

we have indUBdðU � VÞ < g. Hence indUðX1 � X2Þa g ¼ a1ðþÞa2.

Now let nðgÞb 1. Observe that nðgÞ ¼ nða1Þ þ nða2Þ. Let nða1Þb 1. Then X1 ¼

6nða1Þþ1

i¼1
Z

ð1Þ
i , where each Z

ð1Þ
i is closed in X1 and indUZ

ð1Þ
i a lða1Þ. If nða2Þ ¼ 0, then

by induction we have indUðZ
ð1Þ
i � X2Þa lða1ÞðþÞa2. Observe that lða1ÞðþÞa2 is limit

and X1 � X2 ¼ 6nða1Þþ1

i¼1
ðZ

ð1Þ
i � X2Þ. So indUðX1 � X2Þa lða1ÞðþÞa2 þ nða1Þ ¼ a1ðþÞa2.

If nða2Þb 1, then X2 ¼ 6nða2Þþ1

i¼1
Z

ð2Þ
i , where each Z

ð2Þ
i is closed in X2 and indUZ

ð2Þ
i a

lða2Þ. Observe that in this case we have X1 � X2 ¼ 6nða1Þþ1

i¼1
6nða2Þþ1

j¼1
ðZ

ð1Þ
i � Z

ð2Þ
j Þ and

ðnða1Þ þ 1Þ � ðnða2Þ þ 1Þ ¼ nða1Þ þ nða2Þ þ nða1Þ � nða2Þ þ 1, and we can apply induction.

r

Recall that Smirnov’s compactum S a described in Remark 1, where a is an infinite

ordinal < o1, is the union 6nðaÞþ1

i¼1
Zi, where each Zi is closed in S a, and for any k with

0a ka nðaÞ we have trIndð6kþ1

i¼1
ZiÞ ¼ lðaÞ þ k ([Ch, Lemma 3.5]). Moreover we can

assume that each Zi is the disjoint union of ½0; 1�nðaÞ (a point in the case nðaÞ ¼ 0) and

countably many clopen compacta S bi , i ¼ 1; 2; . . . ; with bi < lðaÞ such that for any

point x A ½0; 1�nðaÞ we have indx Zi < y. Then we have the following.
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Proposition 8. For any a and any k with 0a ka nðaÞ we have indUð6
kþ1

i¼1
ZiÞ ¼

lðaÞ þ k, where each Zi is the subspace of S a described above. In particular, indUS
a ¼ a.

Proof. It su‰ces to prove the inequality indUZia lðaÞ for every infinite a < o1

and each i. If a is limit, then by induction we have indUS
a
a a. If nðaÞb 1, then for

each i the inequality indUZia lðaÞ is valid by induction and the construction of Zi.

Now by Definition 2, we get the inequality indUð6
kþ1

i¼1
ZiÞa lðaÞ þ k for any a and any

k with 0a ka nðaÞ. r

Corollary 2. For any infinite ordinal number a with nðaÞb 1 there exists a compact

space Xa with indUXa ¼ a such that for any non-negative integers p; q with pþ q ¼

nðaÞ � 1 there exist closed subsets Xa;p and Xa;q of Xa with Xa ¼ Xa;p UXa;q, indUXa;p ¼

lðaÞ þ p and indUXa;q ¼ lðaÞ þ q.

Proof of Theorem 3 (ii).

Observe that every space X with indUX ¼ a, where a is an infinite ordinal with

nðaÞb 1, is completely decomposable in the sense of indU. So by Proposition 1, we have

mðX ; indU; b; aÞ ¼ qðb; aÞ for every space X with indUX ¼ a. Hence mCðindU; b; aÞ ¼

MCðindU; b; aÞ ¼ qðb; aÞ. Observe that by Corollary 1, we have also mCðIndU; b; aÞ ¼

MCðIndU; b; aÞ ¼ qðb; aÞ. r

Recall the definition of D-dimension D introduced by Henderson [H].

One assigns DðqÞ ¼ �1, and for every space X one defines DðX Þ as the smallest

ordinal number a such that there exists a closed cover fAbgbalðaÞ of the space X

satisfying the following conditions:

(i) The union 6fAb : da ba lðaÞg is closed for every da lðaÞ.

(ii) For every x A X the set fba lðaÞ : x A Abg has a largest element.

(iii) dimAb < y for every b < lðaÞ; and dimAlðaÞa nðaÞ.

If no such ordinal exists, one assigns DðX Þ ¼ y.

Recall also that DðS aÞ ¼ a, a < o1, and for any X which is the union of two closed

subspaces X1 and X2 we have DðX Þ ¼ maxfDðX1Þ;DðX2Þg.

Remark 5. Write So0þ4 ¼65

i¼1
Zi, as in the paragraph preceding Proposition 8.

By the sum theorem for D we can assume that DðZ1Þ ¼ o0 þ 4. Put Y ¼64

i¼1
Zi.

Observe that DðYÞ ¼ o0 þ 4. By the sum theorem for trind (Remark 1 (iii)), trindYa

o0 þ 2. Furthermore, in view of Proposition 8, trIndY ¼ indUY ¼ o0 þ 3. Note that

the first example of a compact space with di¤erent transfinite dimensions trind, trInd

and D was presented by Luxemburg [L].

Remark 6. Let nðaÞb 1 and S a ¼6nðaÞþ1

i¼1
Zi, as in the paragraph preceding

Proposition 8. We can assume that each Zi is without isolated points. Choose a dense

subset Pi of Zi for each i. Put P ¼6nðaÞþ1

i¼1
Pi. Then for every integer qb 2 we

have trIndLqðS
a;PÞ ¼ a < lðaÞ þ qnðaÞa indULqðS

a;PÞa lðaÞ þ ðnðaÞ þ 1Þq. Indeed,

the equality follows from Lemma 3 (ii), the second inequality follows from Lemma 1

and Proposition 8. The last inequality follows from Lemma 2 because the analogue of

Lemma 3 (ii) for indU is readily seen to be valid in the case of limit ordinals.

Note also that trIndL�ðS
o0þ1;PÞ ¼ o0 þ 1, but IndUL�ðS

o0þ1;PÞ ¼ o0 þ o0.
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