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Abstract. In this paper, we study n-dimensional complete immersed submanifolds in
a Buclidean space E"*”. We prove that if M" is an n-dimensional compact connected
immersed submanifold with nonzero mean curvature H in E™7 and satisfies either:
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then M" is diffecomorphic to a standard n-sphere, where S and R denote the squared
norm of the second fundamental form of AM"” and the scalar curvature of M", re-
spectively.

On the other hand, in the case of constant mean curvature, we generalized results
of Klotz and Osserman to arbitrary dimensions and codimensions; that is, we
proved that the totally umbilical sphere S”(c), the totally geodesic Euclidean space E”,
and the generalized cylinder S"~'(c) x E' are only n-dimensional (n > 2) complete con-
nected submanifolds M” with constant mean curvature H in E"7 if S <n’H?/(n—1)
holds.

1. Introduction.

It is well known by Nash that every finite dimensional Riemannian manifold pos-
sesses an isometric embedding into a Euclidean space of a sufficiently high dimension.
Therefore, research of submanifolds in a Euclidean space E"” of n+ p dimensions
requires some additional conditions. In this paper, we shall agree that a submanifold
means an immersed submanifold. A classical theorem of Hadamard states that a com-
pact connected orientable hypersurface in E"™! with positive sectional curvature is dif-
feomorphic to a standard sphere S”(¢). This result was generalized by Van Heijenoort
and Sacksteder [15]. They proved that an n-dimensional complete connected ori-
entable hypersurface M" in E™! is a boundary of a convex body in E"! if every sec-
tional curvature of M" is non-negative and at least one is positive. In particular, they
proved that an n-dimensional locally convex (that is, the second fundamental form is
semi-definite) compact connected orientable hypersurface M" in E"™! is diffeomorphic to
S"(¢). In[6] and [7], Chern and Lashof studied the total curvature of an n-dimensional
compact connected orientable submanifold in E"*”. They showed that the total cur-
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vature of an n-dimensional compact connected orientable submanifold in E”™” is not
less than 2¢,,_1, and also that, if the equality holds, then M" is diffeomorphic to S"(c),
where ¢,4p-1 is the volume of the unit sphere S"*7~1(1). Recently, using a theorem
introduced by Lawson and Simons in [I2], Shiohama and Xu proved that an n-
dimensional connected orientable complete submanifold M" in E"*? is homeomorphic
to S”(c) if n >3 and sup,.(S — (n?H?*/(n—1))) < 0. It is clear that this condition
sup,« (S — (n*H?/(n — 1))) < 0 yields that the mean curvature is nonzero at each point
of M" and M" is compact by Myers theorem. In this paper, we shall prove a stronger
result under a weaker condition than the one in [17]. That is, we first prove the fol-
lowing:

MAIN THEOREM 1. An n-dimensional compact connected submanifold M" with every-
where nonzero mean curvature H in E"'? is diffeomorphic to a sphere S"(c) if one of the
following conditions is satisfied:

n?H?
<
2o (m—=1R
(2) n*H S—n_z ,

where S and R denote the squared norm of the second fundamental form of M" and the
scalar curvature of M", respectively.

On the other hand, Klotz and Osserman proved that a complete orientable
surface M? with constant mean curvature H and non-negative Gaussian curvature is
isometric to a totally umbilical sphere S%(c), a totally geodesic plane EZ, or cylinder
E' x S'(c). Tt is well known that the Gaussian curvature is non-negative if and only
if S <n?H?/(n—1) holds in the case of n=2. Next, we shall generalize the result
due to Klotz and Osserman to higher dimensions and higher codimensions under the
same condition of constant mean curvature.

MAIN THEOREM 2. Let M" be an n-dimensional (n > 2) complete connected sub-
manifold with constant mean curvature H in E"". If S <n?H?/(n — 1) is satisfied, then
M is isometric to the totally umbilical sphere S"(c), the totally geodesic Euclidean space
E", or the generalized cylinder S"'(c) x E', where S denotes the squared norm of the
second fundamental form of M".

REMARK. The result due to Klotz and Osserman was extended by the author
and Nonaka to higher dimensions and higher codimensions under the stronger con-
dition that the mean curvature vector is parallel.

ACKNOWLEDGEMENT. [ would like to express my gratitude to Professors B. Y.
Chen, K. Enomoto, K. Kenmotsu, R. Miyaoka, S. Montiel, and K. Shiohama for their
valuable suggestions and discussion.

2. Preliminaries.

Let E"” be an (n+ p)-dimensional Euclidean space and M”" an n-dimensional
connected submanifold in E""”. We choose a local field of orthonormal frames
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{e1,...,ens,} adapted to E"? and dual coframes {wi,...,w,;,} in such a way that,
restricted to the submanifold M", {e,...,e,} are tangent to M". Let {w,p} denote
the connection forms of E"*”. The canonical forms {w4} and connection forms {w 4z}
restricted to M" are also denoted by the same symbols. We then have

(2.1) w, =0, a=n+1,....,n+p.
We see that ej,...,e, is a local field of orthonormal frames adapted to the induced
Riemannian metric on M"” and w,...,w, is a local field of its dual coframes on

M". Tt follows from and Cartan’s that

(2.2) Wy = Zh ‘w;, = hj.

Second fundamental form /7 and mean curvature vector A of M" are defined by

n+p n

(2.3) m= Y Z hwwje,,
o=n+11i,j=
n-+p n
(2.4) Z <Z hll)
oc—n—!—l

The mean curvature H of M" is defined by

2.5) DS (zh)

a=n+1

Let §=3/7 S0 L1 (B )2 denote the squared norm of the second fundamental form

of M". The connection form of M" is characterized by the structure equations

(26) dCO,' = — Z Wi Ny, Wy + Wji = O,
J=1
(2.7) dw; = Z Wik A i + 5 kXI:l Rijriwi A oy,
n+p
23) Ry = (highi; = hih3)
o=n+1

where Rjy; represents components of the curvature tensor of M". Letting R; and R
denote components of the Ricci curvature and the scalar curvature of M", respectively,

we obtain from [2.8):
n+p n n
(29) Jk - Z (Zhu ik Zh;;chji)’
i—1

a=n+1

(2.10) R=n’H?> - S.
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We also have

n+p
(2.11) dw,p = Z Woy A WOyp + = Z Rypijo; A wj,
y=n+1 i,j=1
(2.12) Ry = Y (hiih — hihi).
I=1
By taking the exterior differentiation of [2.2] and defining /7 by
n n n+p g
(2.13) > hion = dh} Zhlkcokj > i — > Mg,
k=1 k=1 p=n+1

we obtain Codazzi equation by straightforward computation:
(2.14) hige = hi; = Ny

We take the exterior differentiation of and define hj, by

n n n n n+p
(215) Y hor =dhl = hior =Y hyop— Y hhog— > hog,
=1 =1 =1 =1 p=n+1

Then, Ricci formula for the second fundamental form is given by
n+p
(216) hz]kl h;]k = th]lekl + ZhlmRm]kl + Z h,]R/Jakl

=1 p=n+1

The Laplacian 4hj of hj is defined by

Ah} = Z B

From the Codazzi equation and the Ricci formula [2.16), we obtain for any o,
n+l<oa<n+p,

(2.17) AhE =" "hiy
k=1

n  n+p
- Z hkkl] + Z hkm mijk + Z hmlRW’klk + Z Z hsz/))D‘Ik
k,m=1 k,m=1 =1 f=n+1

The following Generalized Maximum Principle of Omori and Yau will be used
in section 3.

GENERALIZED MAXIMUM PRINCIPLE (Omori and Yau [21]). Let M" be a com-
plete Riemannian manifold whose Ricci curvature is bounded from below and f € C*(M)
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a function bounded from above on M". Then for any ¢ > 0, there exists a point p € M" such
that

f(p) zsupf—e |grad fll(p) <& Af(p) <e

3. The reduction of codimensions.
In this section, we shall prove the following:

THEOREM 3.1. Let M" be an n-dimensional submanifold with everywhere nonzero
mean curvature H in E"? which satisfies one of the subsequent conditions. Then M" lies
in an (n+ 1)-dimensional totally geodesic submanifold congruent to E"' of E"7 if § <
n’H?/(n—1) holds:

(1) M" is compact.

(2) M" is complete and the mean curvature of M" is constant.

S denotes the squared norm of the second fundamental form of M".

PrOOF. Since the mean curvature of M" is nonzero at each point of M", we know
that e,.; = h/H is a unit normal vector field defined globally on M”. Hence, M" is
orientable. We define S; and S, as

n n—+p n

(3.1) Si=> (M —Hsy)? S= > (h)

i,j=1 o=n+2i,j=1

respectively. Then, S| and S, are functions defined on M" globally, which do not
depend on the choice of the orthonormal frame {e;,...,e,}. Also,

(3.2) S —nH*=S| +85..

From the definition of mean curvature vector h, we know that nH ="  h*! and
it hi=0 for n+2<oa<n+p on M" Setting H,= (h}) and defining N(4) =
trace(‘4A) for n x n-matrix A, by making use of a direct computation we have, from

(2.12) and the Gauss equation [2.8),

n-+p n n+p n+p

Z Z hihi Rige = Z trace(Hy 1 Hy)* — Z trace(H,1 H,)]*
o=n+21,j,k,I=1 o=n+2 o=n+2
n+p n-+p
+ Z trace(HaHl;)z— Z [trace(HaHﬁ)]z,
o, f=n+2 o, f=n+2
n+p n n+p
> > hihjRug =nH Y trace(H,. H,)
o=n+21,jk,I=1 o=n+2
n+p ntp
- Z trace(H | H}) — Z trace(H,HpzHgH,),
oa=n+2 o, f=n+2

and
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n+p n n+p n+p
Z Z h hk,Rﬂogk = Z trace(H,Hg)* Z trace(H,HyHpH,).
o, f=n+11i,j, k=1 o, f=n+1 o, f=n+1

Hence, we conclude from the formula (2.17) in section 2, that

1 n+p n n+p n
I DD SIUTED 9 32
o=n+21i,j k=1 o=n+2i,j=
n+p n n+p n-+p
= Z Z (hgk)2+nH Z trace(H, 1 H?) — Z trace(H,,1 H,)]*
o=n+21,j k=1 oa=n+2 a=n+2
n+p n+p 5
— Y N(H,Hy— HzH,)— Y [trace(H,Hp)]
o, f=n+2 o, f=n+2
n+p n+p
+ Z trace(H, 1 H,) Z trace(H7,  H}).
o=n+2 o=n+2

According to the following and the definition of S,, we obtain

n+p n+p
3
(3.4) — Y N(H,Hp— HgH,)— > [trace(H,Hp))* > —5522.
o, f=n+2 o, f=n+2

Lemma 3.1 (see [13]). For symmetric matrices Ay,...,A, (@ =1), put S,p=
trace(A,Ag), So = >0, Sus, and N(A,) = trace('d,4,). Then

q
3
;1 N(A,Ag — AgA,) + ;1 Sy < Esg.

Since e,+1 = h/H, we have trace(H,) =0 for « =n+2,...,n+ p and trace(H, )
=nH.

— Z {trace(H,. 1 H, } + Z trace( n+1H Z trace HHZHHZ)
oa=n+2 oa=n+2 oa=n+2

n+p

= Z [—{trace(H,, 1 H,)}* + trace(H, 1 H,)* — trace(H,  H?)]
oa=n+2
n+p 5

= Z[ {trace{(H,+1 — HI)H,}}
o=n+2

+ trace{(H,1 — HI)H,}’ — trace{(H,, — HI)’H}}],

where I denotes the unit matrix.

For a fixed o, n+2 <a <n+ p, we can take a local orthonormal frame field
{e1,... ey} such that h} = A70;. Thus, we have Y | A7 = 0 and trace H; = S (02
Let B= Hn+1 HI = (b;). We have b; =bj; for any i,j=1,...,n, >." b; =0 and
i1 =
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—[trace{(H,.1 — HI)H,})* + trace{(H,1 — HI)H,}* — trace{(H,,, — HI)*H?>}

— —{trace(BH,)}* + trace(BH,)" — trace(B>H?)

- ’ n n
o <Zl R ) F QBT = D b

Clearly, A and b; for i,j=1,...,n satisfy the conditions in (1) of in the
Appendix, which is algebraic; a proof of it can be found in [3]. For the reader’s
convenience, we shall give the proof in the Appendix. We obtain

—[trace{(H,.1 — HI)H,})* + trace{(H, .1 — HI)H,}"
— trace{(H,| — HI)*H?>} > —S trace H>.

Since the two sides of the above inequality do not depend on the choice of local
orthonormal frame fields, we have

n+p
(3.5) > [~[trace{(H,1 — HI)H,}]*
o=n+2
+ trace{(H,1 — HIH,}> — trace{(H,,1 — HI)*H>}]
n+p
> -5 Z tracer = -515,.
a=n+2

Making use of the same assertion as above, we obtain, for fixed o, n+2 <a <n+ p,

trace{(H,,, — HI)H?} = Zbii(i?)z-
i—1

1

From (2) and (3) of in the Appendix, we obtain

-2
trace{(H,,, — H)H?} > —nix/Sl trace H?.

Vnn—1)

Hence, we conclude

n+p n+p n+p
(3.6) nH Z trace(H, 1 H?) = nH Z trace{(H,,, — HI)H?} + nH? Z trace H?
o=n+2 oa=n+2 a=n+2
n+p
=nH Y trace{(H,. — HI)H,} + nH"S,
o=n+2

> nHS; — |- . (1= 2)H\/S1S:.

From (3.3), (3.4), [3.5), and (3.6), we have
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1 n+p
(3.7) 51152 Z h;;k + (nH2 \ / 1 2)H+\/S; — Si ——Sz)Sz
o=n+21,j,k=1

n+p n
-2 n—2 3

= > > U+ )Hz— 5 Sl—Sl—552)SZ

o=n+21,j, k=1 )

<R & 2772

% )2 2 I/l(l’l—z) , n°H n (n—3)

- j H® - —SH +———2§ S»)S

a;Zi,j,;—l( 2 +< 2(n—1) * 2 2 + 2 2 )22
— o \2 n(n-H o (n—?))
-2 . () +{2(n_1 S>+ 5852 (S)

oa=n ls]kal

n+p n

n

> o+ (U s s >0

a=n+21i,j, k=1

When M" is compact, from Stokes formula we obtain

n+p n
(3-8) Z Z ( 3;()2 =0
o=n+21i,j,k=1

on M"; and all inequalities are equalities. Hence, we have S, =0 for n > 3. When
n =3, we obtain

2172
S>=0 or SEZfII and nile\/E.
From S =S, + S, +nH? we also infer that S, = 0.
When M" is complete and the mean curvature is constant, from the condition
S <n?H?/(n—1) and from we know that the Ricci curvature of M” is bounded
from below. Applying the Generalized Maximum Principle of Omori and Yau [21]
stated in section 2 to the function S, we find that there exists a sequence {py} < M"
such that

klim S>(pr) =supS, and klim sup 4S2(px) < 0.
— 0 — 0

Since S <n’H?/(n—1), we know that {h}(pi)}, for any i,j=1,2,...,n and any
a=n-+1,...,n+ p, is a bounded sequence. Hence, we can assume limy_,., hZ(Pk) =
h" if necessary, we can take a subsequence. From (3.7) and (3.9), by obtaining the
hmlt of (3.7), we know that all inequalities are equalities. Hence, sup S, =0 for
n>3. When n=23, if supS, #0, we know limy_ ., (n?H?/(n—1) — S)(px) =0 and
llmk_m\/n/ n— 1 H pk = hmk_wm/Sl pk Let limy_ H(pk) = FI, limy_ o, S(pk) =
S and limy—o; Sy (pk) Si. Then, we have n?H?/(n—1) =S, (n/(n—1))H?> = S| and
S=supS,+ S, +nH*=S+supS,. This is impossible. Hence, we obtain sup S, = 0.
That is, S, =0 on M”". From (3.7), we have

n-+p n

(3.10) > (hi)P=0

o=n+21,j k=1
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on M". Thus, we infer S, =0 and holds on M" under the assumption of
COIC .

From (2.13), we have, for any o #n+ 1,

n

Z hior = —nHwy, .

i k=1
Hence, yields w,,41 = 0 for any «. Thus, we know that e, is parallel in the
normal bundle 7+(M") of M". Hence, if we denote by N; the normal subbundle
spanned by e,.2,€,43, ..., e, of the normal bundle of M", then M" is totally geodesic
with respect to N;. Since e, is parallel in the normal bundle, we know that the
normal subbundle N; is invariant under parallel translation with respect to normal
connection of M". Then, from Theorem 1 in [20], we conclude that M" lies in a totally
geodesic submanifold congruent to E""! of E"*?. This completes our proof. ]

4. Proof of Main Theorems.
This section presents a proof of our Main Theorems.

PrOOF OF MAIN THEOREM 1. From Gauss equation (2.10), we have R = n>H? — S.
Hence, we know that these two conditions in Main Theorem 1 are equivalent to each
other. Thus, we shall only prove Main Theorem 1 under the condition S <n’H?/
(n—1). From [Theorem 3.1, we know that M”" lies in a totally geodesic submanifold
E™' of E"?. We denote by H' the mean curvature of M" in E"*'. Since E"' is
totally geodesic in E™™?, we have H = H’; that is, the mean curvature H' of M" in E""!
is the same as in E"*”. We also know that the squared norm S’ of the second funda-
mental form of M" in E™! is the same as in E""”. Hence, S’ <n?(H')*/(n—1) and
H' #0. We choose a local orthonormal frame field {ej,...,e,} such that h; = 1;0;
for i,j=1,2,...,n; h; and 4; denote components of the second fundamental form and
principal curvatures of M” in E"*!, respectively. Thus, we obtain

S < S’

im1 n—1

From Lemma 4.1 in Chen [1, p. 56|, we have, for any i, j,
iiij > 0.

Hence, we know that the principal curvatures are non-negative on M" because the mean
curvature is nonzero at each point of M”. Namely, M" is locally convex. Therefore,
M" is diffeomorphic to S”(c¢) from the result obtained by Van Heijenoort and
Sacksteder [15]. This completes the proof of Main Theorem 1. O]

PrOOF OF MAIN THEOREM 2. Since mean curvature H is constant, we have H =0
or H > 0. In the case of H =0, we have S =0 on M", since S <n’*H?/(n— 1) holds.
Therefore, we know that M" is totally geodesic. Hence, M" is isometric to the hy-
perplane E”. Next, we assume H > 0. Thus e, = h/H is a unit normal vector field
defined globally on M". Hence, M" is orientable. From the proof of [Theorem 3.1,
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we know that the unit normal vector field e,,; = h/H is parallel in the normal bundle
of M". Since the mean curvature is constant on M”, we conclude that the mean cur-
vature vector h = He,, is also parallel in the normal bundle of M”". From results
obtained by the author and Nonaka [5], we know that Main Theorem 2 is true. This
completes the proof of Main Theorem 2. ]

5. Appendix.
In the Appendix, we shall prove the following:

LEMMA.
(1) Let ai,...,a, and by for i,j=1,...,n be real numbers satisfying » i, a; =0,
S b =0, 370 1bg—b and b; = bj; for i,j=1,...,n. Then

(5.1) (Zb,,a,) + Zb a;a; — Zbu a; > —ia?b.
i=1

(2) Let b; for i =1,...,n be real numbers satisfying > i, b; =0 and > I, b? =
Then

" B  (n—-2)*
2 f < B’
(5.2) 2=y,

(3) Let a; and b; for i=1,...,n be real numbers satisfying >." ,a; =0 and
Sriat=a. Then

n n b
(5.3) > aib} = - Zb,‘.‘—( 1 62)° Va.
i=1 i=1
PrOOF. In order to prove (1), we consider the function

(5.4) S () (Z x,,a,) 7. Z (aj a;)

subject to the constraint conditions

(5.5) zn:xl-,- =0 and zn: xizj =b.
i=1 i,j—=1

Making use of Lagrangian multipliers, we shall calculate the minimum of the function
f(x;) with constraint conditions (5.5). Let

_f(xij) +/1ixii+u<i xé—b),
i=1 Q=1

where A and u are the Lagrangian multipliers. We have
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n 2 n n n
g= —<Zaixii> —%Exé(aj —a;)? +}“2xii+ﬂ<uzlx§ _b>'
Lj= = L=

i=1

If f attains its minimum f; at some point (x;), we have

5.6 =2 aixza;+ A+2ux; =0, for j=1,...,n,
] i
i1
(5.7) —x;i(aj — a;)? + 2ux; =0, for i# j.
Hence,
n 2 n
(S +a30 -0
i=1 =1
1 n ) n
S -l s Y 50
i,j=1 i j=1,i#]
Thus,
Jo=—ub.

From (5.6) and ) ., a; =0, we obtain 4 =0 and

(ﬂ - Zn:aj2> Xn:Xﬁai =0,
j=1 i=1
n n 2
/IZXJ% — (Z x,-,-a,-) =0.
j=1

i=1
If Z?:l Xiid; # 0, we have = Zj’.q:l ajz_ HenceJ
n
— _ 2
j:

If 30 xaa; =0, we have u) ' x;=0. pu=0 yields fo=0. If u#0, we have

>t xj- =0. Hence, b =0 or there exists i # j such that x; #0. From (5.7), we

obtain
2u=(a; —a))* < 2Zaj2.
i=1
Therefore,
Jo=— Z ajzb.
J=1

Since Zinzl a; = O, Z;Z:I bl',' = O, Zirszl b; = b, and bg/' = bji for l,] = 1, ...,n hOld, w¢E
have
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n 2 n n n 2 n
) (Z b) > bl — D bja? = - (Z b) ~3 2t~ 2 =3 ah
i=1 i,j=1 i, j=1 i=1 i,j=1

J=1

Thus, we complete the proof of (1) of [Lemmal
For the proof of (2), we consider the function

n 2
S =Zy?—%
i=1

with constraint conditions Y7, y; =0 and Y., y? = B.
Since Y. | y? = B, we know that at least one of the y?’s is not less than B/n. We

1
assume the y2 > B/n, without loss of generality. From Y. y; =0, we have

n—1

n—1 2
yn= (Z%) <(n-1)> yi=@m-1)(B-y),
i=1

i=1
B
J’,% 5= Z YiVj,

1<i<j<n-—1

(n—1)B
Y
Hence,

n—1 Bz
S =) yi+r——
i=1

n—1 2 Bz
— 2 2.2 4
—(;yi) -2 > -

1<i<j<n—1

P
<B-y) - > wy R
- ! (n—1)(n—2) l<iZj<n—1 ’ o

_ 2n(n-3) 4 p2 n—1_ 1 )
N CEDRL By"”( ” <n—1><n—2>)B'

Since the maximum of the function 7> — Bt in the interval [(1/n)B,((n—1)/n)B] is
—((n —1)/n*)B?, we obtain

2
1)< WA

This completes the proof of (2) of [Lemmal
Making use of the Lagrangian multipliers, we calculate the minimum of the func-

tion g(x) = >_", x;b? with constraint conditions > 7, x; =0 and >." x> =a. If the
function g(x) attains its minimum ¢, at some point x, then we have, at x,

b? + )4 2ux;=0, fori=1,...,n,

where 4 and u are the Lagrangian multipliers. Hence, we have
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" ob?
go = —2,ua, == Zl:l : )
n

n }1 b2 2
> b - Ll—}}l D 4 ougy =0,
i=1

Thus, (3) of is true. O
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