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Abstract. In this paper, we study n-dimensional complete immersed submanifolds in

a Euclidean space E
nþp. We prove that if M n is an n-dimensional compact connected

immersed submanifold with nonzero mean curvature H in E
nþp and satisfies either:

(1) Sa
n2H 2

n� 1
, or

(2) n2H 2
a

ðn� 1ÞR

n� 2
,

then M n is di¤eomorphic to a standard n-sphere, where S and R denote the squared

norm of the second fundamental form of M n and the scalar curvature of M n, re-

spectively.

On the other hand, in the case of constant mean curvature, we generalized results

of Klotz and Osserman [11] to arbitrary dimensions and codimensions; that is, we

proved that the totally umbilical sphere S nðcÞ, the totally geodesic Euclidean space E
n,

and the generalized cylinder S n�1ðcÞ � E
1 are only n-dimensional ðn > 2Þ complete con-

nected submanifolds M n with constant mean curvature H in E
nþp if Sa n2H 2=ðn� 1Þ

holds.

1. Introduction.

It is well known by Nash that every finite dimensional Riemannian manifold pos-

sesses an isometric embedding into a Euclidean space of a su‰ciently high dimension.

Therefore, research of submanifolds in a Euclidean space E
nþp of nþ p dimensions

requires some additional conditions. In this paper, we shall agree that a submanifold

means an immersed submanifold. A classical theorem of Hadamard states that a com-

pact connected orientable hypersurface in E
nþ1 with positive sectional curvature is dif-

feomorphic to a standard sphere S nðcÞ. This result was generalized by Van Heijenoort

[18] and Sacksteder [15]. They proved that an n-dimensional complete connected ori-

entable hypersurface M n in E
nþ1 is a boundary of a convex body in E

nþ1 if every sec-

tional curvature of M n is non-negative and at least one is positive. In particular, they

proved that an n-dimensional locally convex (that is, the second fundamental form is

semi-definite) compact connected orientable hypersurface M n in E
nþ1 is di¤eomorphic to

S nðcÞ. In [6] and [7], Chern and Lashof studied the total curvature of an n-dimensional

compact connected orientable submanifold in E
nþp. They showed that the total cur-
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vature of an n-dimensional compact connected orientable submanifold in E
nþp is not

less than 2cnþp�1, and also that, if the equality holds, then M n is di¤eomorphic to S nðcÞ,

where cnþp�1 is the volume of the unit sphere S nþp�1ð1Þ. Recently, using a theorem

introduced by Lawson and Simons in [12], Shiohama and Xu [17] proved that an n-

dimensional connected orientable complete submanifold M n in E
nþp is homeomorphic

to S nðcÞ if n > 3 and supM nðS � ðn2H 2=ðn� 1ÞÞÞ < 0. It is clear that this condition

supM nðS � ðn2H 2=ðn� 1ÞÞÞ < 0 yields that the mean curvature is nonzero at each point

of M n and M n is compact by Myers theorem. In this paper, we shall prove a stronger

result under a weaker condition than the one in [17]. That is, we first prove the fol-

lowing:

Main Theorem 1. An n-dimensional compact connected submanifold M n with every-

where nonzero mean curvature H in E
nþp is di¤eomorphic to a sphere S nðcÞ if one of the

following conditions is satisfied:

(1) Sa
n2H 2

n� 1
,

(2) n2H 2
a

ðn� 1ÞR

n� 2
,

where S and R denote the squared norm of the second fundamental form of M n and the

scalar curvature of M n, respectively.

On the other hand, Klotz and Osserman [11] proved that a complete orientable

surface M 2 with constant mean curvature H and non-negative Gaussian curvature is

isometric to a totally umbilical sphere S2ðcÞ, a totally geodesic plane E
2, or cylinder

E
1 � S1ðcÞ. It is well known that the Gaussian curvature is non-negative if and only

if Sa n2H 2=ðn� 1Þ holds in the case of n ¼ 2. Next, we shall generalize the result

due to Klotz and Osserman to higher dimensions and higher codimensions under the

same condition of constant mean curvature.

Main Theorem 2. Let M n be an n-dimensional ðn > 2Þ complete connected sub-

manifold with constant mean curvature H in E
nþp. If Sa n2H 2=ðn� 1Þ is satisfied, then

M is isometric to the totally umbilical sphere S nðcÞ, the totally geodesic Euclidean space

E
n, or the generalized cylinder S n�1ðcÞ � E

1, where S denotes the squared norm of the

second fundamental form of M n.

Remark. The result due to Klotz and Osserman [11] was extended by the author

and Nonaka [5] to higher dimensions and higher codimensions under the stronger con-

dition that the mean curvature vector is parallel.

Acknowledgement. I would like to express my gratitude to Professors B. Y.

Chen, K. Enomoto, K. Kenmotsu, R. Miyaoka, S. Montiel, and K. Shiohama for their

valuable suggestions and discussion.

2. Preliminaries.

Let E
nþp be an ðnþ pÞ-dimensional Euclidean space and M n an n-dimensional

connected submanifold in E
nþp. We choose a local field of orthonormal frames
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fe1; . . . ; enþpg adapted to E
nþp and dual coframes fo1; . . . ;onþpg in such a way that,

restricted to the submanifold M n, fe1; . . . ; eng are tangent to M n. Let foABg denote

the connection forms of E nþp. The canonical forms foAg and connection forms foABg

restricted to M n are also denoted by the same symbols. We then have

oa ¼ 0; a ¼ nþ 1; . . . ; nþ p:ð2:1Þ

We see that e1; . . . ; en is a local field of orthonormal frames adapted to the induced

Riemannian metric on M n and o1; . . . ;on is a local field of its dual coframes on

M n. It follows from (2.1) and Cartan’s Lemma that

oai ¼
X

n

j¼1

ha

ijoj ; ha

ij ¼ ha

ji :ð2:2Þ

Second fundamental form II and mean curvature vector h of M n are defined by

II ¼
X

nþp

a¼nþ1

X

n

i; j¼1

ha

ijoiojea;ð2:3Þ

h ¼
1

n

X

nþp

a¼nþ1

X

n

i¼1

ha

ii

 !

ea:ð2:4Þ

The mean curvature H of M n is defined by

H ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

nþp

a¼nþ1

X

n

i¼1

ha

ii

 !2
v

u

u

t

:ð2:5Þ

Let S ¼
Pnþp

a¼nþ1

Pn
i; j¼1ðh

a

ijÞ
2 denote the squared norm of the second fundamental form

of M n. The connection form of M n is characterized by the structure equations

doi ¼ �
X

n

j¼1

oij5oj; oij þ oji ¼ 0;ð2:6Þ

doij ¼ �
X

n

k¼1

oik5okj þ
1

2

X

n

k; l¼1

Rijklok5ol ;ð2:7Þ

Rijkl ¼
X

nþp

a¼nþ1

ðha

ikh
a

jl � ha

ilh
a

jkÞð2:8Þ

where Rijkl represents components of the curvature tensor of M n. Letting Rij and R

denote components of the Ricci curvature and the scalar curvature of M n, respectively,

we obtain from (2.8):

Rjk ¼
X

nþp

a¼nþ1

X

n

i¼1

ha

iih
a

jk �
X

n

i¼1

ha

ikh
a

ji

 !

;ð2:9Þ

R ¼ n2H 2 � S:ð2:10Þ
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We also have

doab ¼ �
Xnþp

g¼nþ1

oag5ogb þ
1

2

Xn

i; j¼1

Rabijoi5oj;ð2:11Þ

Rabij ¼
Xn

l¼1

ðha
ilh

b
lj � ha

jlh
b
li Þ:ð2:12Þ

By taking the exterior di¤erentiation of (2.2) and defining ha
ijk by

Xn

k¼1

ha
ijkok ¼ dha

ij �
Xn

k¼1

ha
ikokj �

Xn

k¼1

ha
jkoki �

Xnþp

b¼nþ1

h
b
ijoba;ð2:13Þ

we obtain Codazzi equation by straightforward computation:

ha
ijk ¼ ha

ikj ¼ ha
jik:ð2:14Þ

We take the exterior di¤erentiation of (2.13) and define ha
ijkl by

Xn

l¼1

ha
ijklol ¼ dha

ijk �
Xn

l¼1

ha
ljkoli �

Xn

l¼1

ha
ilkolj �

Xn

l¼1

ha
ijlolk �

Xnþp

b¼nþ1

h
b
ijkoba:ð2:15Þ

Then, Ricci formula for the second fundamental form is given by

ha
ijkl � ha

ijlk ¼
Xn

m¼1

ha
mjRmikl þ

Xn

m¼1

ha
imRmjkl þ

Xnþp

b¼nþ1

h
b
ijRbakl :ð2:16Þ

The Laplacian Dha
ij of ha

ij is defined by

Dha
ij ¼

Xn

k¼1

ha
ijkk:

From the Codazzi equation (2.14) and the Ricci formula (2.16), we obtain for any a,

nþ 1a aa nþ p,

Dha
ij ¼

Xn

k¼1

ha
kijkð2:17Þ

¼
Xn

k¼1

ha
kkij þ

Xn

k;m¼1

ha
kmRmijk þ

Xn

k;m¼1

ha
miRmkjk þ

Xn

k¼1

Xnþp

b¼nþ1

h
b
kiRbajk:

The following Generalized Maximum Principle of Omori [14] and Yau [21] will be used

in section 3.

Generalized Maximum Principle (Omori [14] and Yau [21]). Let M n be a com-

plete Riemannian manifold whose Ricci curvature is bounded from below and f A C 2ðMÞ
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a function bounded from above on M n. Then for any e > 0, there exists a point p A M n such

that

f ðpÞb sup f � e; kgrad f kðpÞ < e; D f ðpÞ < e:

3. The reduction of codimensions.

In this section, we shall prove the following:

Theorem 3.1. Let M n be an n-dimensional submanifold with everywhere nonzero

mean curvature H in E
nþp which satisfies one of the subsequent conditions. Then M n lies

in an ðnþ 1Þ-dimensional totally geodesic submanifold congruent to E
nþ1 of E nþp if Sa

n2H 2=ðn� 1Þ holds:

(1) M n is compact.

(2) M n is complete and the mean curvature of M n is constant.

S denotes the squared norm of the second fundamental form of M n.

Proof. Since the mean curvature of M n is nonzero at each point of M n, we know

that enþ1 ¼ h=H is a unit normal vector field defined globally on M n. Hence, M n is

orientable. We define S1 and S2 as

S1 ¼
Xn

i; j¼1

ðhnþ1
ij �HdijÞ

2; S2 ¼
Xnþp

a¼nþ2

Xn

i; j¼1

ðha
ijÞ

2;ð3:1Þ

respectively. Then, S1 and S2 are functions defined on M n globally, which do not

depend on the choice of the orthonormal frame fe1; . . . ; eng. Also,

S � nH 2 ¼ S1 þ S2:ð3:2Þ

From the definition of mean curvature vector h, we know that nH ¼
Pn

i¼1 h
nþ1
ii andPn

i¼1 h
a
ii ¼ 0 for nþ 2a aa nþ p on M n. Setting Ha ¼ ðha

ijÞ and defining NðAÞ ¼

traceð tAAÞ for n� n-matrix A, by making use of a direct computation we have, from

(2.12) and the Gauss equation (2.8),

Xnþp

a¼nþ2

Xn

i; j;k; l¼1

ha
ijh

a
klRlijk ¼

Xnþp

a¼nþ2

traceðHnþ1HaÞ
2 �

Xnþp

a¼nþ2

½traceðHnþ1HaÞ�
2

þ
Xnþp

a;b¼nþ2

traceðHaHbÞ
2 �

Xnþp

a;b¼nþ2

½traceðHaHbÞ�
2;

Xnþp

a¼nþ2

Xn

i; j;k; l¼1

ha
ijh

a
liRlkjk ¼ nH

Xnþp

a¼nþ2

traceðHnþ1H
2
a Þ

�
Xnþp

a¼nþ2

traceðH 2
nþ1H

2
a Þ �

Xnþp

a;b¼nþ2

traceðHaHbHbHaÞ;

and
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Xnþp

a;b¼nþ1

Xn

i; j;k¼1

ha
ijh

b
kiRbajk ¼

Xnþp

a;b¼nþ1

traceðHaHbÞ
2 �

Xnþp

a;b¼nþ1

traceðHaHbHbHaÞ:

Hence, we conclude from the formula (2.17) in section 2, that

1

2
DS2 ¼

Xnþp

a¼nþ2

Xn

i; j;k¼1

ðha
ijkÞ

2 þ
Xnþp

a¼nþ2

Xn

i; j¼1

ha
ijDh

a
ijð3:3Þ

¼
Xnþp

a¼nþ2

Xn

i; j;k¼1

ðha
ijkÞ

2 þ nH
Xnþp

a¼nþ2

traceðHnþ1H
2
a Þ �

Xnþp

a¼nþ2

½traceðHnþ1HaÞ�
2

�
Xnþp

a;b¼nþ2

NðHaHb �HbHaÞ �
Xnþp

a;b¼nþ2

½traceðHaHbÞ�
2

þ
Xnþp

a¼nþ2

traceðHnþ1HaÞ
2 �

Xnþp

a¼nþ2

traceðH 2
nþ1H

2
a Þ:

According to the following Lemma 3.1 and the definition of S2, we obtain

�
Xnþp

a;b¼nþ2

NðHaHb �HbHaÞ �
Xnþp

a;b¼nþ2

½traceðHaHbÞ�
2
b�

3

2
S2
2 :ð3:4Þ

Lemma 3.1 (see [13]). For symmetric matrices A1; . . . ;Aq ðqb 1Þ, put Sab ¼

traceðAaAbÞ, S0 ¼
Pq

a¼1 Saa, and NðAaÞ ¼ traceð tAaAaÞ. Then

Xq

a;b¼1

NðAaAb � AbAaÞ þ
Xq

a;b¼1

S2
aba

3

2
S2
0 :

Since enþ1 ¼ h=H, we have traceðHaÞ ¼ 0 for a ¼ nþ 2; . . . ; nþ p and traceðHnþ1Þ

¼ nH.

�
Xnþp

a¼nþ2

ftraceðHnþ1HaÞg
2 þ

Xnþp

a¼nþ2

traceðHnþ1HaÞ
2 �

Xnþp

a¼nþ2

traceðH 2
nþ1H

2
a Þ

¼
Xnþp

a¼nþ2

½�ftraceðHnþ1HaÞg
2 þ traceðHnþ1HaÞ

2 � traceðH 2
nþ1H

2
a Þ�

¼
Xnþp

a¼nþ2

½�ftracefðHnþ1 �HIÞHagg
2

þ tracefðHnþ1 �HIÞHag
2 � tracefðHnþ1 �HIÞ2H 2

a g�;

where I denotes the unit matrix.

For a fixed a, nþ 2a aa nþ p, we can take a local orthonormal frame field

fe1; . . . ; eng such that ha
ji ¼ lai dij . Thus, we have

Pn
i¼1 l

a
i ¼ 0 and traceH 2

a ¼
Pn

i¼1ðl
a
i Þ

2.

Let B ¼ Hnþ1 �HI ¼ ðbijÞ. We have bij ¼ bji for any i; j ¼ 1; . . . ; n,
Pn

i¼1 bii ¼ 0 andPn
i; j¼1 b

2
ij ¼ S1.
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�½tracefðHnþ1 �HIÞHag�
2 þ tracefðHnþ1 �HIÞHag

2 � tracefðHnþ1 �HIÞ2H 2
a
g

¼ �ftraceðBHaÞg
2 þ traceðBHaÞ

2 � traceðB2H 2
a
Þ

¼ �
X

n

i¼1

biil
a

i

 !2

þ
X

n

i¼1

b2ijl
a

i l
a

j �
X

n

i¼1

b2ijðl
a

i Þ
2
:

Clearly, l
a

i and bij for i; j ¼ 1; . . . ; n satisfy the conditions in (1) of Lemma in the

Appendix, which is algebraic; a proof of it can be found in [3]. For the reader’s

convenience, we shall give the proof in the Appendix. We obtain

�½tracefðHnþ1 �HIÞHag�
2 þ tracefðHnþ1 �HIÞHag

2

� tracefðHnþ1 �HIÞ2H 2
a
gb�S1 traceH

2
a
:

Since the two sides of the above inequality do not depend on the choice of local

orthonormal frame fields, we have

X

nþp

a¼nþ2

½�½tracefðHnþ1 �HIÞHag�
2ð3:5Þ

þ tracefðHnþ1 �HIÞHag
2 � tracefðHnþ1 �HIÞ2H 2

a
g�

b�S1

X

nþp

a¼nþ2

traceH 2
a
¼ �S1S2:

Making use of the same assertion as above, we obtain, for fixed a, nþ 2a aa nþ p,

tracefðHnþ1 �HIÞH 2
a
g ¼

X

n

i¼1

biiðl
a

i Þ
2
:

From (2) and (3) of Lemma in the Appendix, we obtain

tracefðHnþ1 �HIÞH 2
a
gb�

n� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p

ffiffiffiffiffi

S1

p

traceH 2
a
:

Hence, we conclude

nH
X

nþp

a¼nþ2

traceðHnþ1H
2
a
Þ ¼ nH

X

nþp

a¼nþ2

tracefðHnþ1 �HIÞH 2
a
g þ nH 2

X

nþp

a¼nþ2

traceH 2
a

ð3:6Þ

¼ nH
X

nþp

a¼nþ2

tracefðHnþ1 �HIÞH 2
a
g þ nH 2S2

b nH 2S2 �

ffiffiffiffiffiffiffiffiffiffiffi

n

n� 1

r

ðn� 2ÞH
ffiffiffiffiffi

S1

p

S2:

From (3.3), (3.4), (3.5), and (3.6), we have
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1

2
DS2b

X

nþp

a¼nþ2

X

n

i; j;k¼1

ðha

ijkÞ
2 þ nH 2 �

ffiffiffiffiffiffiffiffiffiffiffi

n

n� 1

r

ðn� 2ÞH
ffiffiffiffiffi

S1

p

� S1 �
3

2
S2

� �

S2ð3:7Þ

b

X

nþp

a¼nþ2

X

n

i; j;k¼1

ðha

ijkÞ
2 þ nH 2 �

nðn� 2Þ

2ðn� 1Þ
H 2 �

n� 2

2
S1 � S1 �

3

2
S2

� �

S2

¼
X

nþp

a¼nþ2

X

n

i; j;k¼1

ðha

ijkÞ
2 þ nH 2 �

nðn� 2Þ

2ðn� 1Þ
H 2 þ

n2H 2

2
�
n

2
S þ

ðn� 3Þ

2
S2

� �

S2

¼
X

nþp

a¼nþ2

X

n

i; j;k¼1

ðha

ijkÞ
2 þ

n

2

n2H 2

n� 1
� S

� �

þ
ðn� 3Þ

2
S2

� �

S2

b

X

nþp

a¼nþ2

X

n

i; j;k¼1

ðha

ijkÞ
2 þ

ðn� 3Þ

2
S2

� �

S2b 0:

When M n is compact, from Stokes formula we obtain

X

nþp

a¼nþ2

X

n

i; j;k¼1

ðha

ijkÞ
2 ¼ 0ð3:8Þ

on M n; and all inequalities are equalities. Hence, we have S2 1 0 for n > 3. When

n ¼ 3, we obtain

S2 1 0 or S1
n2H 2

n� 1
and

ffiffiffiffiffiffiffiffiffiffiffi

n

n� 1

r

H1

ffiffiffiffiffi

S1

p

:

From S ¼ S1 þ S2 þ nH 2, we also infer that S2 1 0.

When M n is complete and the mean curvature is constant, from the condition

Sa n2H 2=ðn� 1Þ and from (2.9) we know that the Ricci curvature of M n is bounded

from below. Applying the Generalized Maximum Principle of Omori [14] and Yau [21]

stated in section 2 to the function S2, we find that there exists a sequence fpkgHM n

such that

lim
k!y

S2ðpkÞ ¼ supS2 and lim
k!y

supDS2ðpkÞa 0:ð3:9Þ

Since Sa n2H 2=ðn� 1Þ, we know that fha

ijðpkÞg, for any i; j ¼ 1; 2; . . . ; n and any

a ¼ nþ 1; . . . ; nþ p, is a bounded sequence. Hence, we can assume limk!y ha

ijðpkÞ ¼
~hha

ij ; if necessary, we can take a subsequence. From (3.7) and (3.9), by obtaining the

limit of (3.7), we know that all inequalities are equalities. Hence, supS2 ¼ 0 for

n > 3. When n ¼ 3, if supS2 0 0, we know limk!yðn2H 2=ðn� 1Þ � SÞðpkÞ ¼ 0 and

limk!y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=ðn� 1Þ
p

HðpkÞ ¼ limk!y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S1ðpkÞ
p

. Let limk!y HðpkÞ ¼ ~HH, limk!y SðpkÞ ¼
~SS and limk!y S1ðpkÞ ¼ ~SS1. Then, we have n2 ~HH 2=ðn� 1Þ ¼ ~SS, ðn=ðn� 1ÞÞ ~HH 2 ¼ ~SS1 and
~SS ¼ supS2 þ ~SS1 þ n ~HH 2 ¼ ~SS þ supS2. This is impossible. Hence, we obtain supS2 ¼ 0.

That is, S2 ¼ 0 on M n. From (3.7), we have

X

nþp

a¼nþ2

X

n

i; j;k¼1

ðha

ijkÞ
2 ¼ 0ð3:10Þ
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on M n. Thus, we infer S2 1 0 and (3.10) holds on M n under the assumption of

Theorem 3.1.

From (2.13), we have, for any a0 nþ 1,

Xn

i;k¼1

ha

iikok ¼ �nHoanþ1:

Hence, (3.10) yields oanþ1 ¼ 0 for any a. Thus, we know that enþ1 is parallel in the

normal bundle T?ðM nÞ of M n. Hence, if we denote by N1 the normal subbundle

spanned by enþ2; enþ3; . . . ; enþp of the normal bundle of M n, then M n is totally geodesic

with respect to N1. Since enþ1 is parallel in the normal bundle, we know that the

normal subbundle N1 is invariant under parallel translation with respect to normal

connection of M n. Then, from Theorem 1 in [20], we conclude that M n lies in a totally

geodesic submanifold congruent to E
nþ1 of E

nþp. This completes our proof. r

4. Proof of Main Theorems.

This section presents a proof of our Main Theorems.

Proof of Main Theorem 1. From Gauss equation (2.10), we have R ¼ n2H 2 � S.

Hence, we know that these two conditions in Main Theorem 1 are equivalent to each

other. Thus, we shall only prove Main Theorem 1 under the condition Sa n2H 2=

ðn� 1Þ. From Theorem 3.1, we know that M n lies in a totally geodesic submanifold

E
nþ1 of E

nþp. We denote by H 0 the mean curvature of M n in E
nþ1. Since E

nþ1 is

totally geodesic in E
nþp, we have H ¼ H 0; that is, the mean curvature H 0 of M n in E

nþ1

is the same as in E
nþp. We also know that the squared norm S 0 of the second funda-

mental form of M n in E
nþ1 is the same as in E

nþp. Hence, S 0
a n2ðH 0Þ2=ðn� 1Þ and

H 0 0 0. We choose a local orthonormal frame field fe1; . . . ; eng such that hij ¼ li dij

for i; j ¼ 1; 2; . . . ; n; hij and li denote components of the second fundamental form and

principal curvatures of M n in E
nþ1, respectively. Thus, we obtain

Xn

i¼1

ðliÞ
2
a

ð
Pn

i¼1 liÞ
2

n� 1
:

From Lemma 4.1 in Chen [1, p. 56], we have, for any i; j,

liljb 0:

Hence, we know that the principal curvatures are non-negative on M n because the mean

curvature is nonzero at each point of M n. Namely, M n is locally convex. Therefore,

M n is di¤eomorphic to S nðcÞ from the result obtained by Van Heijenoort [18] and

Sacksteder [15]. This completes the proof of Main Theorem 1. r

Proof of Main Theorem 2. Since mean curvature H is constant, we have H ¼ 0

or H > 0. In the case of H ¼ 0, we have S ¼ 0 on M n, since Sa n2H 2=ðn� 1Þ holds.

Therefore, we know that M n is totally geodesic. Hence, M n is isometric to the hy-

perplane E
n. Next, we assume H > 0. Thus enþ1 ¼ h=H is a unit normal vector field

defined globally on M n. Hence, M n is orientable. From the proof of Theorem 3.1,
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we know that the unit normal vector field enþ1 ¼ h=H is parallel in the normal bundle

of M n. Since the mean curvature is constant on M n, we conclude that the mean cur-

vature vector h ¼ Henþ1 is also parallel in the normal bundle of M n. From results

obtained by the author and Nonaka [5], we know that Main Theorem 2 is true. This

completes the proof of Main Theorem 2. r

5. Appendix.

In the Appendix, we shall prove the following:

Lemma.

(1) Let a1; . . . ; an and bij for i; j ¼ 1; . . . ; n be real numbers satisfying
Pn

i¼1 ai ¼ 0,
Pn

i¼1 bii ¼ 0,
Pn

i; j¼1 b
2
ij ¼ b, and bij ¼ bji for i; j ¼ 1; . . . ; n. Then

�
X

n

i¼1

biiai

 !2

þ
X

n

i; j¼1

b2ijaiaj �
X

n

i; j¼1

b2ija
2
i b�

X

n

i¼1

a2i b:ð5:1Þ

(2) Let bi for i ¼ 1; . . . ; n be real numbers satisfying
Pn

i¼1 bi ¼ 0 and
Pn

i¼1 b
2
i ¼ B.

Then

X

n

i¼1

b4i �
B2

n
a

ðn� 2Þ2
nðn� 1ÞB

2:ð5:2Þ

(3) Let ai and bi for i ¼ 1; . . . ; n be real numbers satisfying
Pn

i¼1 ai ¼ 0 and
Pn

i¼1 a
2
i ¼ a. Then

X

n

i¼1

aib
2
i b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

b4i �
ð
Pn

i¼1 b
2
i Þ

2

n

v

u

u

t

ffiffiffi

a
p

:ð5:3Þ

Proof. In order to prove (1), we consider the function

f ðxijÞ ¼ �
X

n

i¼1

xiiai

 !2

� 1

2

X

n

i; j¼1

x2
ijðaj � aiÞ2;ð5:4Þ

subject to the constraint conditions

X

n

i¼1

xii ¼ 0 and
X

n

i; j¼1

x2
ij ¼ b:ð5:5Þ

Making use of Lagrangian multipliers, we shall calculate the minimum of the function

f ðxijÞ with constraint conditions (5.5). Let

g ¼ f ðxijÞ þ l
X

n

i¼1

xii þ m
X

n

i; j¼1

x2
ij � b

 !

;

where l and m are the Lagrangian multipliers. We have

Q.-M. Cheng484



g ¼ �
X

n

i¼1

aixii

 !2

�
1

2

X

n

i; j¼1

x2
ijðaj � aiÞ

2 þ l
X

n

i¼1

xii þ m
X

n

i; j¼1

x2
ij � b

 !

:

If f attains its minimum f0 at some point ðxijÞ, we have

�2
X

n

i¼1

aixiiaj þ lþ 2mxjj ¼ 0; for j ¼ 1; . . . ; n;ð5:6Þ

�xijðaj � aiÞ
2 þ 2mxij ¼ 0; for i0 j:ð5:7Þ

Hence,

�
X

n

i¼1

aixii

 !2

þ m
X

n

j¼1

x2
jj ¼ 0;

�
1

2

X

n

i; j¼1

x2
ijðaj � aiÞ

2 þ m
X

n

i; j¼1; i0 j

x2
ij ¼ 0:

Thus,

f0 ¼ �mb:

From (5.6) and
Pn

i¼1 ai ¼ 0, we obtain l ¼ 0 and

m�
X

n

j¼1

a2j

 !

X

n

i¼1

xiiai ¼ 0;

m
X

n

j¼1

x2
jj �

X

n

i¼1

xiiai

 !2

¼ 0:

If
Pn

i¼1 xiiai 0 0, we have m ¼
Pn

j¼1 a
2
j . Hence,

f0 ¼ �mb ¼ �
X

n

j¼1

a2j b:

If
Pn

i¼1 xiiai ¼ 0, we have m
Pn

j¼1 x
2
jj ¼ 0. m ¼ 0 yields f0 ¼ 0. If m0 0, we have

Pn
j¼1 x

2
jj ¼ 0. Hence, b ¼ 0 or there exists i0 j such that xij 0 0. From (5.7), we

obtain

2m ¼ ðai � ajÞ
2
a 2

X

n

j¼1

a2j :

Therefore,

f0b�
X

n

j¼1

a2j b:

Since
Pn

i¼1 ai ¼ 0,
Pn

i¼1 bii ¼ 0,
Pn

i; j¼1 b
2
ij ¼ b, and bij ¼ bji for i; j ¼ 1; . . . ; n hold, we

have
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�
X

n

i¼1

biiai

 !2

þ
X

n

i; j¼1

b2ijaiaj �
X

n

i; j¼1

b2ija
2
i ¼ �

X

n

i¼1

biiai

 !2

�
1

2

X

n

i; j¼1

b2ijðaj � aiÞ
2
b�

X

n

j¼1

a2j b:

Thus, we complete the proof of (1) of Lemma.

For the proof of (2), we consider the function

f ðyÞ ¼
X

n

i¼1

y4i �
B2

n

with constraint conditions
Pn

i¼1 yi ¼ 0 and
Pn

i¼1 y
2
i ¼ B.

Since
Pn

i¼1 y
2
i ¼ B, we know that at least one of the y2i ’s is not less than B=n. We

assume the y2nbB=n, without loss of generality. From
Pn

i¼1 yi ¼ 0, we have

y2n ¼
X

n�1

i¼1

yi

 !2

a ðn� 1Þ
X

n�1

i¼1

y2i ¼ ðn� 1ÞðB� y2nÞ;

y2n �
B

2
¼

X

1ai< jan�1

yiyj;

y2na
ðn� 1ÞB

n
:

Hence,

f ðyÞ ¼
X

n�1

i¼1

y4i þ y4n �
B2

n

¼
X

n�1

i¼1

y2i

 !2

� 2
X

1ai< jan�1

y2i y
2
j þ y4n �

B2

n

a ðB� y2nÞ
2 �

4

ðn� 1Þðn� 2Þ

X

1ai< jan�1

yiyj

 !2

þ y4n �
B2

n

¼
2nðn� 3Þ

ðn� 1Þðn� 2Þ
ðy4n � By2nÞ þ

n� 1

n
�

1

ðn� 1Þðn� 2Þ

� �

B2:

Since the maximum of the function t2 � Bt in the interval ½ð1=nÞB; ððn� 1Þ=nÞB� is

�ððn� 1Þ=n2ÞB2, we obtain

f ðyÞa
ðn� 2Þ2

nðn� 1Þ
B2:

This completes the proof of (2) of Lemma.

Making use of the Lagrangian multipliers, we calculate the minimum of the func-

tion gðxÞ ¼
Pn

i¼1 xib
2
i with constraint conditions

Pn
i¼1 xi ¼ 0 and

Pn
i¼1 x

2
i ¼ a. If the

function gðxÞ attains its minimum g0 at some point x, then we have, at x,

b2i þ lþ 2mxi ¼ 0; for i ¼ 1; . . . ; n;

where l and m are the Lagrangian multipliers. Hence, we have
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g0 ¼ �2ma; l ¼ �

Pn
i¼1 b

2
i

n
;

Xn

i¼1

b4i �
ð
Pn

i¼1 b
2
i Þ

2

n
þ 2mg0 ¼ 0:

Thus, (3) of Lemma is true. r

References

[ 1 ] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.

[ 2 ] Q.-M. Cheng, Complete hypersurfaces in a Euclidean space R
nþ1 with constant scalar curvature,

Indiana Univ. Math. J., 51 (2002), 53–68.

[ 3 ] Q.-M. Cheng, Submanifolds with constant scalar curvature, Proc. Roy. Soc. Edinburgh Sect. A, 132

(2002), 1163–1183.

[ 4 ] Q.-M. Cheng and H. Nakagawa, Totally umbilical hypersurfaces, Hiroshima Math. J., 20 (1990),

1–10.

[ 5 ] Q.-M. Cheng and K. Nonaka, Complete submanifolds in Euclidean spaces with parallel mean curvature

vector, Manuscripta Math., 105 (2001), 353–366.

[ 6 ] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math., 79

(1957), 306–318.

[ 7 ] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds II, Michigan Math. J., 5

(1958), 5–12.

[ 8 ] M. P. do Carmo and E. Lima, Immersions of manifolds with semi-definite second quadratic forms,

Arch. Math. (Basel), 20 (1969), 173–175.

[ 9 ] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer.

J. Math., 81 (1959), 901.

[10] W. Y. Hsiang, Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces

I, J. Di¤erential Geom., 17 (1982), 337–356.

[11] T. Klotz and R. Osserman, On complete surfaces in E
3 with constant mean curvature, Comm. Math.

Helv., 41 (1966–67), 313–318.

[12] B. Lawson and J. Simons, On stable currents and their application to global problems in real and

complex geometry, Ann. of Math., 98 (1973), 427–450.

[13] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch.

Math. (Basel), 58 (1992), 582–594.

[14] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205–214.

[15] R. Sacksteder, On hypersurfaces with no negative sectional curvature, Amer. J. Math., 82 (1960),

609–630.

[16] Y. B. Shen, Complete submanifolds in E
nþp with parallel mean curvature, Chinese Ann. Math. Ser.

B, 6 (1985), 345–350.

[17] K. Shiohama and H. W. Xu, The topological sphere theorem for complete submanifolds, Compositio

Math., 107 (1997), 221–232.

[18] J. Van Heijenoort, On locally convex manifolds, Comm. Pure Appl. Math., 5 (1952), 223–242.

[19] H. Wu, The spherical images of convex hypersurfaces, J. Di¤er. Geom., 9 (1974), 279–290.

[20] S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math., 96 (1974), 346–366.

[21] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28

(1975), 201–228.

[22] X. S. Zhang, Geometry and Topology of submanifolds immersed in space forms and ellipsoids, Kodai

Math. J., 17 (1994), 262–272.

Qing-Ming Cheng

Department of Mathematics

Faculty of Science and Engineering

Saga University

Saga 840-8502

Japan

E-mail: cheng@ms.saga-u.ac.jp

Spherical rigidities of submanifolds in Euclidean spaces 487


	1. Introduction.
	2. Preliminaries.
	3. The reduction of codimensions.
	THEOREM 3.1. ...

	4. Proof of Main Theorems.
	5. Appendix.

