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Abstract. In general, it is difficult to determine the dimension of the space of Siegel
modular forms with low weight. In this paper, we consider the spaces of modular forms
belonging to the principal congruence subgroup of level 3 as the representation spaces of
the finite symplectic group to calculate their dimensions.

0. Introduction.

The aim of this paper is to give the dimension of the space of Siegel modular forms
M (I'(3)) of degree 2, level 3 and weight k for each k. Our main result is

THEOREM.
S k=1,
15 k=2;
dika(F(B»)) =9340 k = 3;
1
5(6k3 —27k* +79% —18) k > 4.
\

In other words, we have the generating function:

idika(FB))t": 14142+ 60 + 6t‘:+ £ 4%+ z7.
=0 (I—1)

About the space of cusp forms, the dimension formula of weight k& > 4 is shown by
Morita ([11]) Christian (2], [3]) and Yamazaki ([17]), by using the Selberg trace formula
or Riemann-Roch theorem. Therefore for weight k& > 5, the calculation of the dimen-
sion of M (I'(3)) is not so hard using Eisenstein series and the Siegel @-operator. In
the case of low weights, the fact that M;(I(3)) are representation spaces of the finite
group Sp(2,F3) is crucial. Fortunately all the irreducible characters of Sp(2,F3) are
given by Srinivasan ((16f). By utilizing this table we can determine these representa-
tions, hence all the more the dimensions.

Now we review the contents of our paper in detail. Firstly we recall some basic
facts on elliptic modular forms in §1. In §2 the dimension formula of the spaces of
Siegel cusp forms of higher weights is reviewed, and we examine the boundaries of the
Satake compactification of I'(3)\H, in §4.
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We determine the dimensions in §5 and §6. The space of modular forms M (I°(3))
is decomposed into the space of cusp forms Si(77(3)), the space of Siegel Eisenstein
series E;(7°(3)) and the space of Klingen Eisenstein series K (/°(3)) in §§5.1 and 5.2. In
§§5.3 we define some elements of M;(I(3)) by using the theory of theta series of
quadratic forms, and we calculate the dimensions of M, (/°(3)) and M>(71(3)) in §§5.4.
Finally in §6 the dimensions of M3(17(3)) and M4(I'(3)) are determined exactly by using
the theory of non-holomorphic Eisenstein series.

This paper is the author’s master thesis at the University of Tokyo. After finishing
this paper, we are informed that Freitag and Salvati Manni are also investigating the
same problem for a slightly different method (cf. [S]). They give not only generating
functions but also relations for our graded ring.

ACKNOWLEDGEMENTS. The author would like to thank to Professor Ken-ichi
Shinoda of Sophia University for advices about the character table of Sp(2, F,), and to
Professor Shin-ichiro Mizumoto of Tokyo Institute of Technology for advices about
Eisenstein series. The author thanks to his master thesis advisor Professor Takayuki
Oda for various advices.

NOTATIONS.
H,={ZeM,C)|Z="Z,ImZ > 0}
For a commutative ring R,

Sp(g,R)—{MeMzg(R)|’MJM—J,J—( 0 19)}

'Y = Sp(g, 2)
TO(N)={MeTI'%Y|M=1,, modN}

If g =2 we write simply I", I'(N) respectively dropping superscript.
A

For M—(
C

B
D) € Sp(g,R) and Z € H;, we set
M{(Zy=(AZ + B)(CZ+ D)™ e H,.

A B
For a holomorphic function f on H, and M :< ) e Sp(g, R), we put

C D
[xM(Z) = det(CZ + D) ™[ (ML Z)).

Let I”” be a subgroup of I'Y) which contains some 19 (N).
The space of Siegel modular forms of weight k£ is given by

M (I'") = {/ a holomorphic function on H, |
SlyM = f for all M eI, f is holomorphic at each cusp if g =1}.

For f e Mi(I'") and M e I'Y we write f|M instead of f|, M. This function
belongs to My (M~'I"M).

For feM(I'") and zeH, (0 <r<g-—1), we define an operator @" on
Mi(I'") by
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. i z 0
o (N@=tim f(5 )

The image @'(f) is a holomorphic function on H,.
We write Si(I"") = {f e My(I'"")| @Y~ (f|M) =0 for any M e I'9}.
This is called the space of cusp forms of weight k.

1. Elliptic modular forms.

In this section we review basic facts about elliptic modular forms i.e. modular forms
of degree one. Among others, we give a basis of the space of elliptic modular forms
of level 3 and of weight k for each k. For details, refer to [14, Chapters 1, 2] and
[12, Chapter 1V].

The dimension formula of elliptic modular forms is already well known ([14,
Theorems 2.24 and 2.25]). For the case level 3, it gives the following.

LeEmMa 1.1.
) dmsirtE) = {70 0

2) dimM,(Ir'V3) =k+1 (k>0
It implies immediately the following.
THEOREM 1.1.  The graded ring @ZJ:O M (I'V(3)) is isomorphic to the polynomial
ring of two variables C|X,Y].

ProOF. Take a basis f,g of M(I''V(3)). In view of the dimensions, it suffices to

prove their algebraic independence.
Now assume that f and g satisfy some homogeneous relation of degree k:

aof* +arf g+t ar fit T +agt =0

Then ao(f/9)" + a1 (f/g9)* " +--- +ax =0. Hence f/g is algebraic over C, which
means f = Ag for 1€ C, to get a contradiction. OJ

We want to have the generators X, Y in the above theorem, i.c. a basis of
M (I'"(3)). For that purpose we use the theory of theta series of quadratic forms
([8, pp. 428-460] and also we explain it in this paper at §5).

23
Let Q—<3 6)’ For ze H|, we set

Iz) = Z exp(ni'mQmz)

meZ?
(z) = ! Z ex 17ri’QOz
X “) 3 ) p 9 ‘
meZ
m=(0,1) mod3

Then 8,y € M;(I''V(3)) and for g = >, p = ¢>*?/3 the Fourier expansions are as
follows.
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9=1+46q+6¢> + 64" +12¢" + - --

X:p+P4+2P7+2P13+P16+

1
And for Jz(_ol 0>, 3 and y satisfy
mJ_l§§3+2%&
V33, V3
x| = 5 9 — S

The I (')(3)-nonequivalent cusps of H{UQU {oc} are oo, 0, 1, and —1. For each
cusp x, as y € SL,(Z) such that y{oo) =x we can take the element respectively,

) (o) o) ()

DerNiTION 1.1, For f e Mi(I''V) and y defined above, the value of the 0-th
Fourier coefficient of f|y is called the value of f at the cusp of oo, 0, 1, —1 respectively.

ReMARkK. If k is even, the value at cusp x is independent on the choice of y such
that y{oo) = x, but if k£ is odd the sign may depend on the choice.

Now we consider the space of modular forms of higher weights.
For k >3, and ‘(c,d) e Z*, we put

G DN (RS

(m,n)=(c,d) mod3
(m,n)=1

Then ef, ,,e(’y € Mi(I'(3)) and for M € SLy(Z), (c,d)M = (¢',d"), ef. 4
and ef’ ) |[M = ¢ .
Now we take (0,1), (1,0), (1,1) and (1,—1) as (c,d). The value of ¢**s at each

cusp are given as follows.

oo 0 1 -1
eoy |10 0 0
effy |0 1 0 0
effy |0 0 0 1
eff 00 (=DF 0

In particular when k=3, the set {e?cl d)} are basis of this space since
dim M5(I°(3)) = 4.

To consider Fourier expansion of e**, first we recall the expansion of e* ([12,
Chapter 1V, Proposition 17)):
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_ ZCMP;“ (p _ eZni:/3),

where
0 (¢ #0 mod3)
ag =
> ed moa3n % (¢ =0 mod3),
(_27Zi)k c— iy
a, :73]((](_ o] Z (sgn v)vk=le?md/3,
mEn?):n/;;)d3

Since e(k:d) = cleé”;_d) + czeé”;‘d) with

c) = Z wa)a>, e = Z u(a)a™® (u: Mébius function),
a=1 mod3,a>0 a=2 mod3,a>0

we can get the Fourier coefficients of e({f‘ Q) as follows.

(35 ) "(31*,0) 8(31*,1) 6(31*,_1)
ay 1= (bl — bz)(Cl — 6‘2) 0 0 0
ai 0 K(ci — ) wK(ci —c) | @’K(c — )
a» 0 3K(c1 — ¢3) | 3w*K(c1 — ¢) | 3wK(c) — ¢2)
as V=3K(c1 — ¢2) 9K(c1 — ) 9K (c1 — ¢2) 9K (c1 — ¢2)

Here K =372 (=2m)°, by =37 0(1+3n)7°, by=37,2+43n) ", and w=
ezni/3 ( 1+\/_)/2

Now 9° € M5(I''"V(3)) and by comparison of Fourier coefficients, we get

93—62* (e10+ell)+e( ) and  K(c — ) =3V =3,

and the exact values of Fourier coefficients.
Similarly, we have

( * 1 * % *
¥ =@ +§(€E‘1,0) +efiy +efi )
In the table below (Table 1-A), there are some of the Fourier coefficients of 6(3: &

and e (e d)
In addition we get the values at each cusp of 3 and y as follows.

o0 0 1 -1
AV v -3 V-3
91 1 —
3 3 3
v-=3 v =3 v-3 ,
x| 0 9 —3 w 9 w
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Next we consider the element s = 16(3(;1) e M4(I''"Y(3)). This function takes value
0 at each cusp, this means & e S4(I""(3)). The Fourier expansion of 7 is

h=p—8p*+20p7 —70p"3 +---.

3% 3% 3% 3% 4x 4x 4x
€0,1) €(1,0) e e, -1 €o,1) | 1,0 €, €1, -1

ay 1 0 0 0 1 0 0 0

a 0 3vV=3 3v=3w 3v—=3w? 0 3 3w 3¢
a 0 9v/=3 9v/—3w? 9v/=3w 0 27 27? 27w
ay | -9 | 27V/=3 27v/=3 27V=3 -3 81 81 81
as 0 393 39V =3w 39v/=3w? 0 219 219w 2192
as 0 2V =3 | 72v/-3w? 72v/=3w 0 378 | 378w? 378w
as | 27 81v/-3 81v/-3 81v/-3 —27 | 729 729 729
a; 0 150v/=3 | 150v/ =30 | 150v/=3w? 0 1032 | 103200 | 103202
ag 0 153v/=3 | 153V =3w? | 153V=3w 0 1755 | 175502 | 1755w
ag | =9 | 243v/=3 | 243V/-3 243/-3 159 | 2187 | 2187 2187

Table 1-A.

For our later use we have to specify the representation of SLy(F3) on My (I'V(3)).
The action of SL,(Z) on M;(I'"V(3)) given by (7, f) — fly~! for f e M(I''V(3)) and
y € SL(F3) induces a representation of SL,(F3) = SL,(Z)/I'V(3).

TueoreM 1.2. (1) If we denote the representation of SLy(F3) on M (I'V(3)) by n,,
then

n =AY, n, =~ SymFy = Sym* 4t

(2) For k >4, the representation on Si(I'"(3)) is given by B* @ Sym*~* 4+,
Here the character of all representation of SL,(F3) (AT, BT etc.) is given in the table
below (Table 1-B).

PrOOF. It is easily proved by seeing the action of SL,(Z) to 3 and y, and
1.1 and the fact that the basis of Si(I'"(3)) are given by {97y} 10-k—4, O

a,b=0
2. The dimension formula for Siegel cusp forms.

For the dimension of the Siegel cusp forms of degree two with level / > 3, there
exists a closed formula for weight £k > 4. There is a vanishing result for the space of
cusps of weight 3. We recall these results to use in latter section.

First we quote the following fundamental result.

THeOREM 2.1 ([17, §4 THEOREM], [2, Satz] and [11, Main Theorem)). For k >4
and | > 3,

dim S (I (1)) = {271937357 12k — 2)(2k — 3)(2k — 4)I'° — 2763722k — 3)/8

27537 ] - (0 - pY),

pll
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conj. class card. | 1 | N | Z A* B*
1 0
( ) 1 1 3 2 2 1
0 1
-1 0

1 1 3 -2 -2 1
(5
1 0
(1 1) 4 1| o | -1 1 + o*! wt!
1 0 _
(1 1) 4 1 0 -1 14+ ot! ™!
-1 0
( ) 1> 4 1[0 1| (1 +ot!) | ot!
-1 0
(1 1> 4 1|0 1 | —(1+o™) | of!
0 1
( ) 6 1] -1 0 0 1
-1 0

Table 1-B.

Put / =3 in this theorem, then we have following.

LEmMMA 2.1. For k >4,

dim Sy (I'(3)) = = (6k> — 27k? — k + 82).

NI =

Now we have to consider the case of the low weight k.
Lemma 2.2. dim S3(7°(3)) = 0.

Proor. Let X be a smooth compactification of I"(3)\H,. Then according to [6,
Corollary 3.4] X is rational, hence we get dim I'(X,Q3) = 0. On the other hand, there
is an isomorphism:

S’;(F<3)) — F(X,.Q/BY) f — del /\de /\dZ3
(4, Chapter III, Satz 2.6]), which proves the lemma. ]
LemMma 2.3. dim S;(/7(3)) = 0.

Proor. If £ #0eS(I'(3)), f3#0eS5(I'(3)). Therefore, the lemma is imme-
diately induced by [Lemma 2.2l |

REMARK. Since we have dim M;(17(3)) # 0 in §5, a similar argument as the proof

of shows dim S>(7°(3)) = 0 (Cemma 3.3).
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3. The representation of Sp(2, Fs).

Since the fact that M;(I'(3)) and Sx(I'(3)) are representations of the finite symp-
lectic group Sp(2, F3) is crucial in our investigation, we review the known result on the
irreducible representations of Sp(2,F3;). In this section, extracting from we give
a list of part of irreducible characters of G = Sp(2,Fs) which is necessary in this
paper.

Now as representative element of conjugation class of G, we take following ele-
ments.

1 10 1 -1 0
2
Ay =14, Aj=—14 Ay=|"" 00 Ap=|"7 00
0 1, 0 15
I 0 1 0
b0 1 Lo 11 10
11
0 1> 0 1,
0 1
10 -10 0 0 -1 0 -1 1 0 0
-11 10 0o 0 -1 -1 -1 0 -1 -1
Ap = Bi(1) = Bi(2) =
0 11 1 -1 0 0 0 0 0 1
01 0 1 1 1 1 0 0 0
element of order 10 element of order 5
0 1 0 0 1 01
0 0 1 0 0 1, -10 00
By(1) = Bs(1) = B;(1) =
0 0 0 1 -1, 0 0 0 1
-1 0 0 O -1 0
element of order 8
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 -1 0
Cl( ) -1 0o 0 0 CZl( ) -1 0O 0 0 22( ) -1 0 0 0
0 0o 0 1 0 0 0 1 0 0 0 1

10
0
0 -1

10 10 10
0 0 0
0 —1 0 —1 0 —1
1o 10 10 -1 0 10  —10
0-1 01 0 -1 0 -1 0 -1 0 1
D3, = D33 = Dy =

1o 10 10 —10 1o 10
0 -1 00 0-1 0 0 0 -1 0 -1
Dy = Dy = Ds =

And we write X’ for —X.
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The following table is a part of character tables of Sp(2,F3) determined by Sri-

nivasan.

conj. class card. 05 e 0Oy D, N Dy
Ay 5 24 15 10 30 30
A{ 1 5 24 15 10 30 30
A»y 40 2+ 3w 6 -3 —2+4+3w? 3+9%0° 3
A}, 40 243w 6 —3 —2+30w 3+90° 3
Ay 40 | 24 3w? 6 -3 2430w 3+9% 3
Ab, 40 | 243w’ 6 -3 243w 3+9% 3
Az 480 2 3 3 1 0 3
AY, 480 2 3 3 1 0 3
Az 240 -1 0 0 1 -3 3
A%, 240 -1 0 O 1 -3 3
Ay 2880 —? 0 O ? 0 0
Ay, 2880 —? 0 O > 0 0
Agp 2880 - 0 o0 W 0 0
A}, 2880 - 0 O W 0 0
B (1) 5184 0 -1 0 0 0 0
B (2) 5184 0 -1 0 0 0 0
By (1) 6480 —1 0 1 0 0 0
Be(1) 540 1 0 3 -2 2 2
B;(1) 4320 1 0 o0 1 -1 -1
Ci(1) 540 1 0 -1 2 2 -2
C|(1) 540 1 0 -1 2 2 -2
G (1) 2160 ) 0 -1 —? - 1
C (1) 2160 W 0 -1 —? - 1
Cx (1) 2160 > 0 -1 — —? 1
C,(1) 2160 > 0 -1 —w —? 1
Dy 90 -3 8 7 2 6 —10
D», 360 | —(2+ w) 2 1 2430w —-140> -1
Dy 360 | —(2 + w?) 2 1 243w —1+w —1
Dy; 360 | —(2+ w) 2 1 243w -1+ -1
Doy 360 | —(2 + w?) 2 1 243w -l1+ow -1
Dy 1440 @’ —w 2 =2 -1 0’ —w -1
D3, 1440 0 -1 1 -1 0 -1
Ds; 1440 0 -1 1 -1 0 -1
Dy 1440 ® — w? 2 =2 -1 o — w? -1

And 0, is the complex conjugate of 0s.

In this paper we have to calculate the symmetric tensor product or induced repre-

sentation of a given representation.

y e G, we have

We use the following formulae.
Let p be a representation of a finite group G and y =y, be its character.

For
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Zsym () (7) =5 () + 207),

() + 20 () + 24 (),

AN = N~

XSy1n3(p)(y) =

Zsym* () (V) = % ) + 6O + 357 + 82 () + 6x(7*)).

Let H be a subgroup of G and {g,} be a representative system of G/H. Then for
a representation p of H, we have

Xlndg(/;) (y) = Z Xp(gzlyg))

g;lw//) eH
4. Boundaries of the Satake compactification.

In this section we examine the boundary components of Satake compactification of
I'(3)\H,. About the definition of Satake compactification, we refer to [13, Exposé¢ 12,
13].

DermNiTION 4.1, (1) For a standard parabolic subgroup

U T
Py={yel'ly= <0 ,U1>},

the map wuy: Py — {+1} < C is given by uy(y) =detU.
(2) For another standard parabolic subgroup

ay 0 by by

> s by b
Pl:{yerb): j] 003 cl? cl'z }’

0 0 0 d
the map u; : P, — {+1} = C is given by u(y) = da.
ay b

Further we set =
() (Cl "

>, for n : P1 — SLz(Z)
We fix an integer N > 3. Now we decompose /" into double cosets by Py or P,
and I'(N) as
I'=\JI'(N)M,P,
u

or

r=r(N)M;P,
2
respectively.
Similarly we have the decomposition

SLy(Z) = | r'Y ()M, PV,

a b
Here P(()l):{yeSLz(Z)W:(O a—l)}'
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And we define 1: SL,(Z) — Sp(2,Z) by

(¢ a)-

Now we consider the element (f;); of [[, My (I"'V(N)) which satisfies the following
condition.
() For Ay, 22,vi,v» and u such that

S o O Q
O QU o >
—_ o O O

0
1
0
0

Milll(le) = O(M;(t)yl and Mﬂ}zl(Mvz) :ﬂMSyZ’ OC,ﬂEF(N) Y1572 €P07
(the O-th Fourier coefficient of f; |M,,) x uo(y,)"

MVz) X uO(y2)k'

Then the above value depends only on ]\43, and we call it the value of (f;), at O-th
cusp M.

= (the 0-th Fourier coefficient of f;,

DEFINITION 4.2, The subspace of [[, My (I (N)) spanned by the elements which
satisfy the above condition (x) is called the space of the boundary values. We denote it
by oM.

Next we consider the Siegel @-operator (refer to [13, Expos¢ 14]).
DEerINITION 4.3. For f e My(I'(N)), we define the operator

@) M (I'(N)) — M(I''V(N)) by

@;(f)(z) = @' (fIM})(2) = lim f|M] (3 X )

ix
Similarly we put (DS : M (C(N)) — C,
Ou(f) = @°(f1My) = lim f|M;(ixL).

The Siegel operator has the following properties.
LemMa 4.1. For f e My(I'(N)),

O (1) = m() @ (Nny) if ye P,

°(f1y) = uo(»)*@°(f) if ye P

This is a straightforward calculation, so we omit the proof.
From this lemma, the following proposition is induced immediately.

ProrosITiON 4.1. (1) The image of the morphism [[, @) : My(I'(N)) —
[, Mi(F'Y(N)) is contained in dMy, and the value of (®}(f)), at the cusp M;? equal to
(7).

(2) Sk(I(N)) = ker(I], @;).
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Now we consider the case N =3. We can take {M)}, and {M 1} as follows.

" a a 0 -1 0
1 2
MO- (12 0) o as —12 0 1 0 0
L
2 0 1 1 0 1 0 0 0
o 0 0 0 1
0 1 0 0 0 1L 0 0 0 1L 0 0
a 0 -1 0 a -1 -1 0 a 1L 1 0
0 0 0 1 1 0o o0 1 1 0 0 1
1 0 0 0 1 o0 0 0 -1 0 0 0
0y _
a; €{0,1,—1} #{Mﬂ}_40
[ -1
0 0
1, O 01 0 1
Ml
A 0 I 0 10 0 10
-1 1 11
0 1 0 aa -1 0
0 )
-1 0 0 a 1, a ag 1 —I
0 1 @ 11
0 1, 0 0
-1 0 01
0 az —1 0 —dg dy 0 —1
dy dg -1 -1 0 aa 1 0
1 —1 0 1
0 0
0 1 -1 0

a;e{0,1,—1} #{M} =40

And we put M, as follows, which correspond to the cusp 00,0,1 and —1 of I'(")(3)

respectively.
1 0 1 1 1 -1 0 1
0 1)’ 0 1)’ 0 1) -1 0/

Now we want to describe the manner of intersections of boundaries precisely.
Namely in the language of discrete subgroups, we have to calculate A, u,v satisfying

Mji(M,) e F(3)M,)y, ye P

and the value of u(y) at the same time.

. . U

First, if M) is the form of < 0 Ul

of up on the 1 dimensional boundary components corresponding to M) are given by
following table (Table 4-A).

: ) A Ut - .
Next if M] is the form <U 0 ), the descriptions of boundaries are as

follows. In this case, when x = 0,1, —1, it corresponds to cusp oo, 1,—1 respectively,
and the rest element corresponds to cusp 0 (Table 4-B).
This fact shows the dimension of M for each k as follows.

)J the point cusps and the associate values
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M\0-th cusp -1
(12 0) (12 0) (8? ) (é? *) (H )
0 0 1)\ s+
value of uy -1
61 0 (12 0) 01 S i
o 47 0 L R oo 40
value of uy -1 1 -1
o1 0 (12 ()) 0 T 54
0 11 0 L 10 po 10
value of uy 1 —1 1
S 0 (12 0) 00 1o * %0
o )| N0 RS ey o)\
value of ug 1 —1 1
Table 4-A.

LemmA 4.2. For k >3, dim oM = 40k — 80.

PRrOOF.

Then it is clear

ker ¥ = {(f3), € My | f € Si(I'V(3)) for all }.

1
M}
0 1
0 a _ —X @ _ *
as uj 12 ar ay 12 as 0
12 0 12 0 (]) 8 *
value of uy 1 —1
O a -1 0 0 1
- —X —x+ta _ *
ar ay 1 -1 < i@ —xoan |2a4 12) ar+tay —1
11 10
0 0 1, 0 e *
value of ug 1 -1
0 a -1 0 0 1
2 - 3 *
ar ay 1 1 < 7,\’«&)»((12 7)6«\:(2;“4%&4 —12> ay dg 1
11 10
01 0 1, 0 R *
value of ug 1 1
—day a 0 -1 a; O
0'a 10 (gi a —12> o1 *
0 1 10
Yo 0 1, 0 o0 *
value of uy 1 1
xe{0,1,—-1}

Table 4-B.

387

We define the morphism ¥ : oM — [] ,C to send the element of dM; to
the value at each O-th cusp M, 0,



388 K. Guni

Since k >3, eé‘::d) e Mi(I'V(3)), and it shows ¥ is surjective. By [Lemma 1.1
dim S (I'V(3)) = k — 3, so we get

dim 0Mj = 40(k — 3) + 40 = 40k — 80.
This proves the lemma. ]

LemMa 4.3. dim oM, < 15.

ProoF. By [Mheorem 1.1, we can take a basis {9%, 9y, 7>} of Mo(I''V(3)). 1In
view of the values of these elements at each cusp, we see that for every element of
M>(I''V(3)) the sum of values at each cusp is equal to 0. In particular if f e
M>(I'V(3)) takes value 0 at three cusps, we get f = 0.

In view of the configuration of boundaries and using the above argument, we can
show that the morphism which send the element of dM; to the value at O-th cusp

A -1 C e .
M g = ( ) 02> is injective. Here A represents these 15 matrices.
2

0 0 -1 0 1 0 0 1 -1 1 0 -1
0o o)’ o o/ \o o/ \1 o)’ 1 o) \-1 o)’
-1 -1
-1 0o )’
0 -1
-1 1)’

This proves the lemma. ]

In the same way of the proof of this lemma, we have following.

LemMA 4.4. dim oM, < 6.

5. The space of modular forms as Sp(2, F3)-modules.

§§5.1. Eisenstein series.

First we consider the Siegel Eisenstein series and the Klingen Eisenstein series.
Let N >3. We put

E*z)y= Y det(cz+D)*
PNL(NW\L(N)

and for g e Sp(I'V(N)),

E*(g,72) = Z g(<Z>") det(CZ + D) .
PINT(N)\I(N)
Here y{Z>* means the (1,1)-component of y<{Z>.

Then the above infinite sums defining E**(Z) and E**(g,Z) converges absolutely
and uniformly in V(d) = {Z € H, |Im(Z) > d1,, Tr((Re(Z))?) < d~'} for any d > 0, if
k >3, k > 4 respectively (cf. [10, §5 Theorem 1]). Clearly E** (k >4) and E*(g,Z)
(k =5) belong to My(I'(N)).
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Next we recall the relation of Eisenstein series and the Siegel ®@-operator. First we
consider @'(E**(g,Z)). Since the sum defining E**(g, Z) converges uniformly in V()
for any d > 0, if we use the fact

% —k
cron. (s )l £)-9) "

(cf. [10, §5 Proposition 5]), we see ®'(E*(g,Z)) = g.
Since for M eI’ we have

E*g,Z) M= > g(XZ>*)det(CZ + D)7,
F(NNPN\T(N)M

we can get

1 0
: 1
o (E*(g,2)) =Y 1fo~<0 1)

0 otherwise

because {M]} is a representative system of I'(N)\I'/P;.
We put Ei¥(g,Z) = E*(g,Z) | (M})_l. Since {(M)}O)_lM/%};_ is also a represen-
tative system of I'(N)\I'/P; for fixed 29, by we get

1 ek g if 2=l
PilE(9:2)) = {O otherwise.

-1

In the same way, if we put E;¥ = E*¥|(M}])™" we can get

’ 1 ifu=
@O E*k 7 _{ 2 Ho
u B (2) 0 otherwise.

By the above mentioned, we can show the following lemma.

LemMma 5.1. For k =5, the morphism [[, @} : My(I'(N)) — 0My. is surjective. In
particular for k > 5,

1

dim Mi(I'(3)) = 5

(6k> — 27k + 79k — 78).

ProOF. The latter half is induced by and Lemma 4.2

We take (f;) € dM) and let a, be the value of (f;) at each 0-th cusp M /8. We set
=3 aﬂE;k. If we write (g;) = (f3) — [, @.(f") € dMy, then g; € Sp(I''V(N)) for
all 1.

Hence if we put f = f'+ >, Ei*(g;,Z), we get ®)(f) = f; for each A. O]

As a conclusion of this subsection, we have the following.

PROPOSITION 5.1. For k>S5, we can get the decomposition of the M;(I'(N)),

Mi(I'(N)) = Si(I'(N)) @ Ki(I'(N)) @ Ex(I'(N)).
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Here,
Sk (I'(N)): the space of cusp forms
Ki(T'(N)): the space spanned by E;*(g,Z)

E (I'(N)): the space spanned by E;k(Z),
and each space is closed the action of I.

§§5.2. The representations associated with Eisenstein series.
Now we want to decompose the space M (I'(N)) for k <4, similarly the case
k > 5.

DerFNiTION 5.1. For k > 1, we assume that M;(I'(N)) is decomposed as

Mi(I'(N)) = Si(I'(N)) @ Ki(I'(N)) @ Ex(I'(N))
Si(I'(N)): the space of cusp forms

Ki(I'(N)): the subspace of the complement space of Si(/'(N)) such that

! (f) e Sp(I'V(N)) for all A

Ei(I'(N)): the complement space of Si(I'(N)) ® Ki(I'(N)) = ker (H @2)
u

and each space is closed under the action of I.
Then we call Ei(I'(N)) and Ki(I'(N)) the space of Siegel Eisenstein series and
Klingen FEisenstein series respectively.

REMARK. This decomposition always exists by the complete reducibility of the
representation of finite groups, but it is not unique.

PROPOSITION 5.2. We put G=Sp(2,Z/NZ), and Py, P, the image of Py, P\ re-
spectively by the natural map I' — G.

(1) For k =1 the representation of G on Ei(I'(N)) is given by the subrepresentation
of Indg (ug).

(2) For k =1 the representation of G on Ki(I'(N)) is given by the subrepresentation
of 4§ (uf ® (p, o).

Here p, means the representation of SLy(Z/NZ) on Si(I'V(N)). Moreover ,uy,
uy denote the map from Py, P\ to SL>(Z/NZ) or C*, naturally induced from m,uq,u,
given in Definition 4.1.

In the case of N =3, we have p, = Bt ® Sym*™* 4+ by (2).

Proor. We only prove (2), since one can easily show (1) in the similar way.
Let take a basis A',...,h" of Sy(I''V(N)). First we assume that for each i
(1 <i < m), there exists an element ' e K;(I'(N)) such that
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. 1 0
) (f) = AN

0 otherwise.
Then for fj = fi|(M})~",

h if L=l
0 otherwise.

2}t = {

Now since {M}} is a representative system of I'(N)\I'/Py, the set {(M })_1} is a rep-
resentative system of I'(N)P;\I". Hence if we fix a y € I, for each A there exists A’ such
that

(M) 'y =xpi(M))" xeI(N) p,eP, (1)

and when 2 runs through the representative system, .’ also runs the system.
Further because Si(I'(N))NKi(I'(N)) =0, if we can write

ur (p)*h' | 7(p;) Za}h] a,-j-eC, (2)
we have
fly=>Y_dif. (3)
Jj=1

In particular the space spanned by {f'},_;_,, is closed under the action of P;, and
the representation of P; on this space is given by uf ® (p, ox). Since {f;} ,.i 18 a basis
of Ki(I'(N)), the representation of G on Ki(I'(N)) is given by IndG(u1 ® (pom)) in
this case.

In general, we consider the C-vector space V which is spanned by free basis {f;},
and induce the action of I" by (1), (2) and (3). Next we define the morphism o :
Ki(I'(N)) — V by a(f) =3, ;¢c,f} for feKi(I'(N)) such that D) (f) =" cihl.
Then « is injective and by the construction, o is the homomorphism of G-modules.
Hence the representation of G is given by the subrepresentation of Ind ( ® (py om)).

[]
We put N =3. Then we have the following corollary.

CorOLLARY 5.1. (1) When k is even, the representation of G = Sp(2,F3) on
E(I'(3)) is given by for k >4

IndG( 7)) =16 ® 01 & 0o,

and its subrepresentation if k = 2.
(2) When k is odd, the representation of G on Ex(I'(3)) is given by for k> 5

Indg)(ul) ~ 03 D 04 ® Do,

and its subrepresentation if k=1 or k= 3.
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Proor. In view of the proposition, it suffices to show the corresponding relations:
(1) Indg)(lpo):l(;@&]@%
(2) Indg)(ul) ~ 03 @ 04 @ @9.

These follows by direct computation of the induced characters. One should be careful
that a representative system of G/P, is given by {M 3} Here is the table (Table 5-A) of
the values of these induced characters. By comparing the values of characters in §3, we
can check the isomorphism. O

§§5.3. Theta series of quadratic forms.
As in §1, we use the theory of theta series of quadratic forms in order to get the
element of modular forms of weight 1.

DEFINITION 5.2. Let Q € M,,(Z) be a symmetric positive definite matrix with even
diagonal entries, and let ¢ be the minimum positive integer such that ¢Q~' € M,,(Z) has
even diagonal entries.

We put 7"(Q) ={T € M, ,(Z) | QT =0 modg}. Then we define for Z € H, and
TeT(0),

1 1
0"(Z,Q|T) = Z expniTr(’(N+—T)Q(N+—T>Z>.
NeMyo(2) 4 4

ProrosiTioN 5.3 ([1, Proposition 1.3.14, Exercise 2.2.3]).

0

(1) 0”<(V tV01><Z>,QT>_H”(Z,Q|TV) Ve GL,(Z).

(s 7)@orr)=ewnmi(G ors)oriz. o

0

@ (4 ))@.ar)

= (det Q) "*(det(—i2))"™? > exp2miTr <i2 fTQT’) 0"(Z,0|T").
T'ET(0) 1
mod ¢

(3) 0"(Z,0IT) € My (I'"(q)).
Now we put m=n=2, Q= (2 3). Then we get ¢ =3, and 0*(Z,Q|T) €

36
M, (I'(3)).
The set {T € M»(F;)| QT = 0} consisting of 9 matrices is given as follows.

o) (o) (5o (1) (6 5)
1) (55 (05 (5)
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conj. class  card. Ind?ﬂ(l ) Indg0 (uy)
Aq 1 40 40
A{ 1 40 40
An 40 4 4
A 40 4 4
A 40 4 4
Al 40 4 4
Az 480 7 7
A4 480 7 7
Az 240 1 1
A, 240 1 1
Ax 2880 1 1
A} 2880 1 1
A 2880 1 1
A}, 2880 1 1
Bi(1) 5184 0 0
B (2) 5184 0 0
By (1) 6480 2 =2
Bs(1) 540 4 4
B;(1) 4320 1 1
Ci(1) 540 0 0
C/(1) 540 0 0
Ca (1) 2160 0 0
C5(1) 2160 0 0
Cn(1) 2160 0 0
Ch,(1) 2160 0 0
D, 90 16 —16
Dy 360 4 —4
Dy 360 4 —4
D3 360 4 —4
Dy, 360 4 —4
Dy 1440 1 —1
D3, 1440 1 —1
D33 1440 1 -1
Dsy 1440 1 -1
Table 5-A.

And clearly, 0°(Z,0|T) = 0°(Z,0|-T). Now we put
p

and

X
ol

0 0
0 0

0 0

1

) e
)

393
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li = 92(27 o\T;)
1/ 2 3
= Z expniTr(g(‘Cl x2>< )(xl yl)Z).
o o»/\3 6)\x2 »
(2 1)
X2 2
mod 3
Let Z = <Zl Zz) and p; = e?=/3 Then using these D), the Fourier expansions
Zy  Z3

of t; are written as follows.
t =1+ 6p] +6p3 + 12p{p3p3 +12p7p3°p3 +6pipspi + -+,
tr=3p1 + 6p1p3 + 6p1p3ps + 6p1py P+
t3 = 3p3 + 6pi p3 + 6pi p3p3 + 6pi Py 3 + -
ts = 6p1p5' p3 +3p1p3p3 + 6pTpIps + 3pipytps + 6pipaps + 3pipy e+,
ts = 6p1paps +3p1ps 7 p3 + 6p1 Py p3 + 3pt paps + 6p1pytps + 3pipaps + -

For any element f e M;(I'(3)) if we write the Fourier expansion of f as
>l pfl péz p?, then we consider the set of indices (/i,/,/3) with non-vanishing

coefficients: ;
S(f) ={(lh,h,h)e Z’ | Cy 1,15 # 0}.

M} Di(t) D)(1) D)) Di(ta)  D)(1s)

L 0
(2 ) 9 3y 0 0 0

as—ay

X y w™x w Yy @@ty

0 a> 11 01
a) dy —
X y w™ tlzy w® \tl4x a)“*‘y
1
1 0

x y w as+as J/ w ay y w as—as X

X w as X ¥ W as—ay ¥ w ar+ay ¥

Table 5-B.

Here, x = —(9+6y)/3, v=—(9-3y)/3.
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On the other hand, we write the residue classes
R(my,ma, m3) = (my, ma,ms3) + (3Z)°
in Z* with respect to the subgroup 3Z°. Then

S(#) = R(0,0,0), S(t) = R(1,0,0), S(t3) = R(0,0,1),
S(t) = R(1,-1,1), S(t5) = R(1,1,1).

In particular, #;,---,#; are linearly independent.
Next we consider the Siegel @-operator. The action of I to ¢; are given by
Proposition 5.3, thus we can calculate easily the image of cbj.

§§5.4. Determination of the dimensions in low weight cases.
Now we can determine the dimensions of M (I(3)) for k < 4.

LemMma 5.2. dim M (I°(3)) = 5 and the representation of G = Sp(2, F3) on M(I°(3))
is given by 04.

Proor. In view of Proposition 5.3, we can see the representation of G on the
subspace of M;(I'(3)) spanned by {#;} is given by 04 (We consider the action of I" as
(7,f) = fly~"). This fact and and Lemma 2.3, 4.4, immediately prove

this lemma. ]

LemMa 5.3. dim M»(I°(3)) =15, dim S>(1'(3)) = 0 and the representation of G on
M>(I'(3)) is given by 0.

Proor. The map S»(1'(3)) — S35(I'(3))f + t1f is clearly injective, hence we get
dim S>(I'(3)) =0 by Lemma 2.2

By Lemma 4.3 and [Corollary 5.1, the representation of G on M>(I'(3)) is the
subrepresentation of 1 @ 0 @ 0y with dimension < 15. Since M,(I") = {0} ([10, §9,
Theorem]), the dimension of M>(I'(3)) is 15 and the representation is 0. ]

LemMMA 5.4. The representation of G on S4(I(3)) is given by 0y;.

Proor. From [18, Proposition 4.1], we have dim Sy(75(3)) =1, where I(3) =

A B
{<C D) eI'|C =0 mod3}. The image of IH(3) by the natural map to G is equal
to f_)().

On the other hand, if we write p the representation of G to Si(7°(3)), Frobenius
reciprocity law tells

(15))6

- (p lG)G + (p7H11)G + (p7 09)6-

(pl5,15)5 = (p.Indf

0

We know already that (p|s,15)p =dimSs(£o(3)) =1. Since dimSy(I) =0, p
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does not contain the trivial representation of G. Finally dim 0y = 24, dim 0;; = 15, and
dimp = 15, we get p = 6y;. L]

Next we consider the case k =3 or kK =4. Since there is a natural map from
Sym* M\ (I"(3)) to My (I"(3)), we have to calculate the k-th symmetric tensor product of
the representation on M;(I(3)).

By direct computation we have

Syl’l’l2 94 =~ 011 s
15dim

Sym304; 03 @ Dy,
5dim 30 dim

Sym*0, = 16® 0 ® 0y @ Dy .
15 dim 24 dim 30 dim

On the other hand by [Proposition 5.2 and [Corollary 5.1, M3(I7(3)) is the subrepresen-
tation of

0 @ 0 @ Do,

Sdim 5dim 30 dim

and M4(I'(3)) is the subrepresentation of

l¢ @011 DO D Indg(/u om) @ Oy

~1g® 0h @ 09 ® & & D4 @ 0Oy

15 dim 24 dim 10 dim 30 dim 15dim
A o N s

.

-~

E(I'(3)) Ke(I'(3)) Su(I'(3))

LEMMA 5.5. The natural map Sym* M\ (I'(3)) — My(I'(3)) is injective. That is 1,
t,t3,t4 and ts does not have homogeneous relations of degree 4.

By this lemma and by enumerating of the representations of low degree, we can get
immediately the following.

LEMMA 5.6. We get
dim M3(I°(3)) = 35 or 40, dim M4(I'(3)) =85 or 95.

PrROOF OF LEMMA 5.5. We have to show that the 70 monomials of ¢; are linearly
independent. Since S(#;) is contained in some class R(mp,m», m3), for any monomial x
of #; the support of Fourier coefficients S(x) is contained in some R(my,ma,m3). We
have the following table (Table 5-C).

The elements which contain different classes are clearly independent, so we have
only to show the linearly independence of the elements contained in the same classes. It
can be shown by using the Siegel ®-operator. For example, consider the 2 elements

contained in the class R(1,0,1). For M) = (? _01> we see

Dl (fitrt3) =Xy @) (513) = ¥
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Since x and y are algebraic independent (cf. Theorem 1.1) #7773 and 7773 are linearly
independent.
In the same way we can show all elements are linearly independent. OJ

Now we consider the 6 elements that are contained in the class R(0,0,0), 7}, 11,
nt3,tiey, 113, and tistats.
If we put
_ M4 3,3, .3, 3
g=1 —ti(t; + 15 +1; +t5) + 3tat3tats,

-1
@) (g) =0 for M?—(A v )

U 0
R(0,0,0) 1 Hi; nt3  ng o htd o biits
R(1,0,0) £t 2 Lty bty bt
R(0,0,1) B Bt 5 nt]  ni
R(1,-1,1) £ty By IS 7R 7 S PV
R(1,1,1) £ts $3ts Bts  1its t
R(—1,0,0) 1213 histats
R(1,0,1) it 13t
R(—1,-1,1) ity Bl
R(-1,1,1) Buts B3
R(0,0,—1) 132 hiatals
R(1,-1,-1) ity B
R(1,1,-1) 113t 53
R(—1,1,-1) 2 hitsts
R(-1,0,—1) P tats B
R(-1,0,1) hi3ts Bats
R(1,0,-1) 11yt Byts
R(—=1,-1,-1) | ttrtsts B2
R(0,—1,1) hilty 11315
R(0,1,-1) hit? Bisls
R(0,1,1) n3ts 131412
R(0,—1,—1) tityt? Bty
R(1,1,0) nilts igt?
R(1,-1,0) niity L3t
R(-1,1,0) htyt2 Litlts
R(-1,-1,0) hit? hilit
R(0,1,0) g2 Lz}
R(0,-1,0) hilts hiyi3
Table 5-C.

U 0
And for M} —(0 ZU_1>’ ¢)l(q) :1(}4_2719%3 :e?&l)'
This means

10
: 0 _
s -{* =0 1)

/l
0 otherwise.
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Using this fact we can see the following.

LEMMA 5.7. The image W of the natural map Sym®* M (I'(3)) — M4(I'(3)) satisfies
W NS4(I(3)) = {0} and the image W /S4(I'(3)) in M4(L(3))/Ss(I"(3)) coincides with the
image of the Siegel Eisenstein series E4(I'(3)).

6. Main result.

In this section we will prove the main result:

THEOREM 6.1.

15 k=2
(1) dim M, (I'(3)) = { 40 k=3
%(6k3—27k2+79k—78) k>4,
0 k:172333
2) dim Sy (I'(3)) =
(2)  dim S,(I°(3)) %(6k3_27k2—k+82) k> 4.

COROLLARY 6.1.
o 1+t+24+6854+66+1+15++
> (dim M@t = =
k=0 -

PROOF OF THE THEOREM. First the statement (2) is already proved by [Lemma 2.1,
2.2, 2.3 and 5.3. Also the assertion (1), it is proved except for the cases k =3, k =4,
(cf. Lemma 5.1, 5.2 and 5.3). Further because of [Lemma 5.6,

dim M3(I"(3)) =35 or 40, and dim M4(I"(3)) =85 or 95.

So if we show that the latter cases are true, the proof is finished.
LemMma 6.1. If dim M3(I°(3)) = 40, then dim M4(I(3)) = 95.

ProoF. Since dimS;(I'(3))=0 and dimS;(7"Y(3)) =0, the assumption
dim M3(I'(3)) =40 means dim E3(7'(3)) =40. Hence there exists an element

f € M3(I'(3)) such that
: 1 0
ﬁm{lﬁM3<01)

0 otherwise.

e if M! = v 0
ol =4 o0 T o )

0 otherwise.

This means that
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Hence if we consider tf € M4(I'(3)),
: 1 0
36(307])}{:3/1 if MBz(O 1),

0 otherwise.

D) (trf) =

Thus dim K4(77(3)) = 40, and from the result of §§5.4, we get dim M4(717(3)) = 95.
[

Now it suffices to show that dim M3(7°(3)) = 40, or equivalently dim M3(7I"(3)) > 35
by Lemma 5.6, Namely we have to show there exists a element of M3(7'(3)) which is
not contained in the image W of the natural map Sym?® M, (I'(3)) — M3(I'(3)).

To show this, we use the theory of non-holomorphic Eisenstein series.

For se C, Re(s) >0 and Z e H, let

E(s,Z)= Y det(CZ+D)7’|det(CZ+ D).
PNT(3\T(3)
Since PyI(3) = I)(3), this series can also be written as
E(s,Z)= Y (detD)det(CZ+ D)™ |det(CZ + D)| ™.
Po\I5(3)
Here  is the primitive Dirichlet character modulo 3.

ProrosITION 6.1 ([15, Theorem 7.1]). For each Z, E(s,Z) extends to a meromorphic
function on C, and it is holomorphic at s = 0. Further E(0,Z) is holomorphic in Z and
E(0,Z) e M3(I(3)).

Our aim is to prove that £ = E(0,Z) is not contained in W. First we show a
property of E:

LemmA 6.2. For ye Py, E satisfies
Ely =u(y)E.

Proor. For Re(s) > 0, the infinite sum defining E(s, Z) converges absolutely and
uniformly on V(d) = {Z € H>|Im(Z) > d1,, Tr(Re(Z))* <d~'} for any d > 0. Now
from the definition

E@Z)ly=")Y_, ()
PN GNL(3)y
Since I'(3) and Py N I'(3) are normal subgroups of I and P, respectively, we get
E(s,Z)y=" > (-
P(PoNT(3\I(3))

Hence for Re(s) >0, E(s,Z) |y = uo(y)E(s,Z). Since it is holomorphic at s =0,
Ely = uo(y)E. 0
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LEMMA 6.3. E is not contained in the image of the natural map Sym® M\ (I'(3)) —
M(I°(3)). Hence dim M3(I°(3)) = 40.

Proor. We assume that E is contained in the image. Because E is invariant

1 T
under < 0 1 > € Py, S(E) is contained in R(0,0,0). Hence E can be written by five
0

elements #,43,45,4, and 2. Further, since < 0 U

) induces permutation of ¢,
13,14,15, we get
E=at; +b(5 +16 +1; +1), abeC. (%)
Now from [15, expression (7.8a) (7.8b) (7.8¢c) and (7.13)], we can see some infor-
: : . 0 1 .
mation of the Fourier coefficients of E|M}, for M] _< : 0). In the Fourier
expansion N

E(s,Z)| M} = Za(h, Im(Z), s) exp(2ni Tr(hRe(Z))),
h>0

the coefficient function is written as
a(h,Im(Z),s) = ca., (h,Im(Z), s)as(h, s)
with

1
o (h,Im(Z),0) = _§<2n)6r2(3)—‘(deth)3/2 exp(—2z Tr(hIm(Z))).
In particular a(h,Im(Z),0) =0 if deth = 0. This means

0 1
®;(E) =0 for Mj:(_l 0)'

Hence from (%) and Table 5-B, we have
ax® + b(x* +3y%) = 0.

Since x and y are algebraically independent, we have a=56=0. It is a con-
tradiction. ]

Now we have finished the proof of [Theorem 6.1.

7. Remarks for further investigation.

§§7.1. Representation of G.
Here is a collection of the results on the representations of G obtained in the paper.

THEOREM 7.1. For k < 4 the representations of G on My (I'(3)) are given as follows.

Os k=1;
O k=2;
03 @ 04 @ @9 k = 3~
lc@01 @0 @ P, OP, @ 01y k=4
\ E4(I(3)) Ky(1(3)) S4(I(3))
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For k =5 the representation on Ei(I'(3)) is given by

{10@011 @ 0y k: even
0 DO, DDy k: odd.

The representation on Ky (I'(3)) is given by
Indg1 (uf ® (BT ® Sym = 4*) o n)).

§§7.2. Generators and relations for the ring (P,”, M (I'(3)).
Since dim M (I"(3)) =5, it is better to rewrite the generating function of
6.1 as

1+5823 -5 —1¢8
(1-1)°

The quotient M3(1'(3))/Sym® M (I"(3)) has dimension 5. Therefore we further
rewrite this function as

1 — 5¢°> + {higher terms}
(1-0°(1 =)

Thus it is easy to see that we need 5 generators of weight 1 and another 5 generators of
weight 3 in the graded ring €P,”, Mx(1'(3)), which has 5 linearly independent nontrivial
relations of weight 5.

However one should be careful, because the above generating function itself gives
no answer for the question whether there are nontrivial relations of weight 4 or not.
Fortunately we can work out this problem.

ProrosiTioN 7.1, All the elements of weight 4 are generated by the elements of
weight 1 and 3. Therefore there is no nontrivial relation of weight 4 between the
generators of weight 1 and weight 3.

ProOF. We use some results of [9]. As we show in the proofs of and
6.3, there exists a unique element E** € M3(I"(3)) such that

1 0
1 if MO :< )
0/ -3\ . )
cbﬂ(E ) = # 0 1
0 otherwise.

Then E* is contained in the space M3(I5(3),(—3/(det D))) by the property of Siegel @-
operator. On the other hand [9, Theorem 4] shows the following (this lemma gives the
another proof of Lemma 6.3).

LemMA 7.1.  Let us define 3 elements Ey, E;,O4 of M4(1y(3)) by
Ei(Z) = det(CZ+ D)™, E|Z) = E(32)
PN

and
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@ys= Y  P(N)expriTr('NSNZ)

N€M4‘2(Z)
nm; np
0
3 2 np  np 2
for S = , P = (myny — nymy + mang — n3my)” — (Mng — nymy
23 ms n3
02 55 )
myg Ny

2
+ mony — mpyms + mny — nymsz)”.
Then the three functions

3 ﬁ o E4 —+ 81Ei — 821“1‘ + 324@4

Y4 E4 —SIEA
1, =

d ==
H 161 > an hH 107,

make a basis of the space M;(IyH(3),((—=3)/(detD))).

PrROOF OF THE LEMMA. We have to show the divisibility of x4 and y4 by #;. This is
shown by the relations x; = afws and yj = ajvs in Theorem 4 of [9]. Again by the
same theorem 7 (essentially equals to of), x4/f; and ys4/t; are linearly independent.
Meanwhile the fact that there are only 3 equivalence classes of 0 dimensional cusps of
IH(3) implies dim M3(15(3),(—3/(detD))) < 3. This settles the proof of our lemma.

[

Now let us return to the proof of [Proposition 7.1. By comparison of the values at
each 0 dimensional cusp of Ip(3) we get

1 X4 V4
EYB ——p s
TR T
This implies a relation:
9 729
HES = ——ft+ —E, +—FE +—0,.
! 64’ Tea0 Teap e T3 %4

As we saw in §§5.4, nE* and g =1t} — 1,(55 + 15 + 1] + 12) + 3n2t31415 have the same
value at each 1 dimensional cusp. Hence we have t{E** = g +aB4, ac C. By com-
paring the Fourier coefficient of e>”1*+%) we have

. 81
HE® =t —t1(6 + 65 +1; + ) + 3ntatats +§@4.
Let V' be a subspace of My(I'(3)) generated by the elements of weight 1 and 3. The

above relation shows that S4(7°(3)) < V' in view of the irreducibility of the represen-
tation of Sp(2,F3) on S4(I'(3)). Furthermore since

1 0
o ifMoz( )
D E) = £\0 1

0 otherwise

and
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3he Sy(I''V(3))

10
if M) =
u=( )

O

The Burkhardt group and modular forms I, Manuskripte der

Math. Ann., 278 (1987), 401-408.

Internat. J. Math., 2 (1991), 17-35.
forms, Cambridge Stud. Adv. Math., 20,

@} (HLE?) =
0 otherwise,
have E4(I'(3)) < V and K4(I'(3)) = V, hence finally V' = M4(I°(3)). This proves
proposition.
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