J. Math. Soc. Japan
Vol. 56, No. 3, 2004

Construction of K-stable foliations for two-dimensional dispersing

billiards without eclipse

By Takehiko MoriTA

(Received Aug. 19, 2002)
(Revised Mar. 6, 2003)

Abstract. Let 7 be the billiard map for a two-dimensional dispersing billiard
without eclipse. We show that the nonwandering set Q1 for T has a hyperbolic structure
quite similar to that of the horseshoe. We construct a sort of stable foliation for (Q*, T)
each leaf of which is a K-decreasing curve. We call the foliation a K-stable foliation for
(Q",T). Moreover, we prove that the foliation is Lipschitz continuous with respect to
the Euclidean distance in the so called (r,p)-coordinates. It is well-known that we can
not always expect the existence of such a Lipschitz continuous invariant foliation for a
dynamical system even if the dynamical system itself is smooth. Therefore, we keep our
construction as elementary and self-contained as possible so that one can see the concrete
structure of the set Q1 and why the K-stable foliation turns out to be Lipschitz con-
tinuous.

1. Introduction.

Let 01,05,...,0; (J =3) be a finite number of bounded domains in R? with
boundaries 0Q1,00,,...,0Q;. Each of them is called a scatterer. Throughout the
paper, we assume that these scatterers are located so that they can satisfy the Ikawa
conditions (H.1) and (H.2) in (see Figure 1.1).

(H.1) (dispersing) For each j, the boundary 0Q; of the domain Q; is a strictly
convex simply closed curve of class C3.

(H.2) (no eclipse) For any triplet of distinct indices (i, j2,j3), we have

conv(Q;, UQ;,)NQ;, = &,

where conv(A4) denotes the convex hull of the set A.

Consider the exterior domain Q:Rz\UjJ:1 Q, of the scatterers. Clearly, 0Q =
U‘]‘.Izl 00Q;. For qe 00, n(q) denotes the unit normal of dQ at g which is directed
towards the inside of the domain Q. The billiard flow S’ is, in short, the Euclidean
geodesic flow on the manifold Q obeying the law of reflections at the boundary.

Let SR> = R*> x S! denote the unit tangent bundle over R*> and = :SR*> — R?;
(q,v) — g the natural projection. The state space M of the billiard flow S’ is given by

M =71 (Q)U(x '(00)/~),

where the equivalence relation ~ on 7~'(6Q) means that (g,v) ~ (p,w) if and only if
g=p and w=v—2{v,n(q)yn(q). Namely, the state of incidence and the state of
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Figure 1.1.

reflection are identified. Therefore, selecting the states of reflection as representatives,
we can regard 7n71(0Q)/~ as

M* ={x=(q,v): € 0Q,{v,n(q)> = 0}.
Our main concern is the billiard flow restricted to its nonwandering set Q. For the sake
of simplicity we also denote the restriction by S’.
We define the first collision time and the last collision time for the billiard flow at
the point x € M* as follows.

tH(x)=inf{r>0:S'xe M"}
t(x)=sup{r<0:Sxe M},
where 7" (x) (resp. ¢~ (x)) is regarded as +oo (resp. —o0) if the set in the above definition
is empty. Set
Ir={xeM":t"(x)< w0}, Z1={xeM":t(x)>—wx}.
We define the local maps T:%, — M+t and T7': 2, — M* by

{TX:SNX))C (if xe %),
T-'x=8"Wx (if xe 2 ).

Z, and Z_, are defined to be the sets where one has the n-th iterations 7" and (71",
respectively. Note that the notation 7! is compatible with the definition of the inverse
map of T. Thus it is natural to denote (7~!)" by T-". The first collision map of T
for the flow S’ is usually called the billiard map. Later we verify that for each positive
integer n, the sets &, and Z_, are identified with unions of mutually disjoint J(J — 1)"_1
quadrilarerals with respect to the so called (r, ¢)-coordinates. In addition we can easily
see that 7" and T~" are diffeomorphisms of class C? from int &, onto intZ_, and from
intZ_, onto int%,, respectively.
Clearly, the nonwandering set of the billiard flow S’ can be expressed as

Q={xeM:zn(S'x) e dQ holds for both infinitely many ¢ > 0
and infinitely many ¢ < 0}.
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If we put Q* = QNM™*, Q" is expressed as Q" = () _, %, and T is clearly invertible
on Q", where 2, is defined to be 2, UZ%_; for convenience. Note that the set Q1 and
the map 7 play the roles of the Poincaré section and the Poincaré map for the flow S

Let k,/ be in ZU{—00, 00} with k < /. To each element x in ﬂ}i:k Yy, We assign
a sequence (&,(x))!_, so that T"xe 00¢,(v)- The sequence is called the itinerary of x
from time k to time /. In [7] we show that for each x € Q", the local stable curve y*(x)
and the local unstable curve y“(x) can be written as

P (x) = {y € (OO] Dy Ea(y) = &u(x) for any n > 0} and
n=0

n=—0ao0

Vu<x) = {y € ﬁ @n . fn(y) = én(x) for any n < 0}

Moreover, it is shown that if the boundary 0Q is of class C” for n > 2, the local stable
curve and the local unstable curve are K-monotone curves of class C"~! whose lengths
are bounded from below by a positive constant independent of x (see also [5]). The
definition of K-monotonicity will be given in Section 2.

The main purpose of the present paper is to show the following theorem that asserts
the existence of a kind of stable foliation. We call it a K-stable foliation for (%, T).

THEOREM 1.1 (c.f. Theorem 3.1 in [8]). Assume that the conditions (H.1) and (H.2)
are satisfied. Then we can construct a foliation & supported on the set &) with the
following properties.

(Z#.1) Each leaf of F is a K-decreasing curve.

(Z.2) For any xe€ QF, the leaf F (x) containing x coincides with the local stable
curve y°(x).

(#.3) For any point x € D, TF (x) <« F(Tx) holds.

(#.4) F is a Lipschitz continuous foliation on &, with respect to the Euclidean
distance in the (r,@)-coordinates.

We note that there are three unpublished papers [8], [9], and concerned with the
present one. One may find that [Theorem 1.1 is proved in the first half of [8]. We need
to explain the position of among these works. To this end we recall the
results in [6]. Consider the set X defined by

S ={E=(Epez €{1,2,.. ..} 1 & # &y for any ne Z}.

Using a positive number 6 € (0,1), we define a function dy: 2 x X — R by

d@(fﬁ”) = en for é = (fn)neZ and n= (”n)neZ’

where n =min{j > 0:¢; ##n; or {_; ##n_; hold}. Then it is easy to see that dy be-
comes a metric on 2 which introduces the same topology as the product topology of the
finite set {1,2,...,J} with discrete topology. The shift map ¢: 2 — X is defined so
that

(6¢),=¢, for any ne Z
holds for each &e 2.
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One of the main results in [6] asserts that the map &(-) : Q7 — X gives a conjugacy
between the dynamical systems (2%,7) and (X,5). Moreover, it is shown that for
appropriately chosen 6, the inverse map x(-) of &(-) is Lipschitz continuous with respect
to dp and if we define f: X — R by f(&) = ¢t(x(&)), f turns out to be dy-Lipschitz
continuous. Consequently, we obtain the conjugacy between the billiard flow (£,S’)
and the suspension flow over (X, ) with ceiling function f in such a way that the cor-
responding periodic orbits have the same periods. Therefore, we can apply the result in
Parry and Pollicott to the zeta function of the billiard flow defined by the following
formal Euler product

{(s) = TT(1 = exp(=st(2))) ",

T

where the product [], is taken over all the prime periodic orbits  of S and /(z) denotes
the period of 7. Hence we see that there exists 7 > 0 such that the infinite pruduct
above is absolutely convergent in the half-plane {se C :Res >/} and has a mero-
morphic extension to some half-plane containing {s € C : Res > A} in which it has no
zeros and s =h is a unique pole and simple. Consequently we obtain the following
analogue of the prime number theorem.

#{t:1(7) Su}#é;lu)—ﬂ (u — o0).

Now it is natural to ask how wide the domain of meromorphy of {(-) is and what
kind of information we can obtain from the analytic properties of {(-). In virtue of the
results in Ruelle [13], {(-) could be meromorphic on the entire complex plane if our
billiard map 7 would be smooth enough and the totality of local stable curves would
make up themselves into smooth invariant foliation supported on some neighborhood of
Q1. Obviously we are not in such a good situaton because 7" has singularities and in
addition the definition domain %, of T" shrinks as n becomes large.
above, however, enable us to show the following. First, by combining the results in the
second half of [8] with [9], it is possible to find a positive number f such that {(-) can be
extended to a meromorphic function in the half-plane {s € C : Res > —f} without zero.
Secondly, we can show that we can calculate the special value of {(-) as {(0) = —1/
((J —2)2771) (see [10]). Hence we can conclude that if we obtain the information of
the length spectrum of Q beforehand, we see how many scatterers there are.

This paper is organized as follows: In Section 2, we give some basic definitions
and fundamental results for billiard maps. In Section 3 alternative proofs of the results
in [6] and are given by using the idea of I. Kubo. This enable us to keep our
construction of K-stable foliation as elementary as possible. Section 4 is devoted to the
construction of K-stable foliation. Finally, we show the validity (#.4) of Lipschitz
continuity in Section 5.

ACKNOWLEDGEMENT. The author would like to thank I. Kubo for his comments on
the preceding works of authors. He would also like to thank N. Aoki and N. Chernov
for valuable comments on the Lipschitz continuity.
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2. Preliminaries.

In this section, we recall some notions and fundamental properties of the billiard
map. First of all, we introduce convenient coordinates to 7~10Q. Choose a base point
q(j) for each j=1,2,...,J and define the following quantities for x = (¢,v) e 7100
(Figure 2.1).

(So(x) =j if qedQ;,
r(x) = the arclength from ¢(&y(x)) to ¢
measured counterclockwise along the curve 00,
¢(x) = the angle between the vector v and the unit normal
n(q) which is directed towards the inside of the domain Q,
0 measured counterclockwise from n(gq) to v.

Such coordinates will be called the (r,¢)-coordinates of x. The quantities &,(x) and
¢(x) do not depend on the choice of the base point ¢(j) but r(x) does. Clearly, the
change of the base point causes just the translation of the r-coordinate.

Figure 2.1.

Note that
{(j,r,9) : 0 <r < the perimeter of 0Q;,—7n < ¢ <}

gives a global parametrization for the set 7-'0Q; but it is not a global parametrization
for the C® manifold 77'0Q;. We often use this coordinates without specifying which
points are chosen as base points. This ambiguity causes us no trouble because most of
our investigations below are carried out locally. Therefore we often abuse the notation
x=(j,r,p) for x=(q,v) and (j,r) for ¢, respectively. Further, we drop the first
coordinate ; if there is no possibility of confusion. The totality of reflection states M *
is expressed as

M*={xernlog:-Z < g(x) < S
2 2
For j=1,2,...,J, set

M = {xe M*:&(x) = j}.
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Each ]\4]* will be called a connected component of M. As we mentioned in Introduc-
tion, the state space M of the billiard flow can be regarded as

M=r'oUM".

We define the first collision time and the last collision time for the billiard flow at
the point x € M as follows.

tH(x)=inf{r>0:S'xeM"}
(x)=sup{r<0:S'xe M},

where 77 (x) (resp. #~(x)) is regarded as +oo (resp. —oo) if the set in the definition above
is empty. Set

Gy ={xeM':t"(x)< w0}, Z ={xeM" 1 (x)>—-wn}.
We define the local maps T:%; — M+ and T7': 2, — M™* by

{Tx:Sﬁ(x)x (if xe %),
T-'x=8"Wx (if xeZ_).

For each positive integer n, we define the sets &, and %_,, and the maps 7" and (7T !)"
inductively as follows.

D1 ={x€ G, : t7(T"x) < w0}
{@(nﬂ) ={xe%Z_,:t(T7"x) > —w}
and
T x = T(T"x), for x € 9,1
{T‘(”“)x =T YT™"x), forxeZ (1.

Note that the notation 7! is compatible with the definition of the inverse map of T
and T" (resp. T~") coincides with n-fold iteration of T (resp. T~'). Usually the first
collision map 7 is called the billiard map for the flow S’

It is not hard to see that the nonwandering set 2 of S’ is the totality of all initial
states such that 7n(S’x) € dQ holds for both infinitely many ¢ > 0 and infinitely many
1<0. Ifweset Q" =M*T"NQ, Q" can be expressed as Q" = () _, Z, and T is clearly
invertible on Q*, where %, is defined to be 2, U%_; for convenience.

For xe M* we put

Ei(x) = & (T'x), if T' is defined.

For k and / with —o0 <k </ < o0, a sequence {f,-}il:k is called the itinerary of xe M
from time k to time / if & = &;(x) holds for each ie ZN[k,l]. The number / — k + 1,
possibly oo, is called the length of the itinerary. On the other hand, any sequence
{fi}fzk which can be the itinerary of some point from time k to time / is called an
admissible word and the number / — k + 1 is called the length of the admissible word.
#, denotes the totality of admissible words of length n for n >2 (#1 ={1,2,...,J}
for convenience). Under the conditions (H.1) and (H.2), the admissibility is equivalent
to the condition that & e {1,2,...,J} for each ie ZNk,I] and ¢&; # ¢, for each
ieZNk,1—1].
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We employ the following slightly abusive notations for our convenience. For
x=(q,0) = (j,r,0), ki,ri,9;, ¢ci, 1, and ;- denote k(T'x),r(T'x),p(T'x),c(T'x), " (T'x),
and 1 (T'x), respectively, where k(x) = k(q) = k(j,r) denotes the curvature of 0Q; at
g = (j,r) and ¢(x) = cosg(x).

By the help of the Implicit Function Theorem, the Jacobi matrix D(T) for T and
D(T~") for T~! can be calculated as follows in terms of the (r,¢)-coordinates at the

point where they are defined (see [1], [2], [6] and [14]).

(Ory tk\ ¢ (0r_4 rk\ c
D —(1+=) 5, e (1-2) =,
or c ] or c Jc_q
ot oy
% o T
6(0 | Tk\ ¢ 0 ’ l kY ¢ (1)
A1 A (AL DI [ Y B AL Ly
or c ] or c Jc_y
+ 0 tk_
(R o9 _ (| _tka)
\ a¢ 9 \ agﬂ c1
In addition, the partial derivatives of t© and ¢~ are given by
o sin ¢ ori sin ¢ o sin o sin
o =sing —-—sing, | ——=sing | ———sing,
or or or or (22)
o * tan or [t
—— = o1, —— =1 tang_;.
op 0p

Then we obtain the following.

LemMA 2.1 (see [4], [6], [8], and [14]). Let y be a curve of class C' which is
expressed as {(j,r,¢) : 9 = o(r),a <r < b} in the (r,p)-coordinates, where ¢(-) is a C!
function in r. Assume that T and T~ are defined on y. If the images y, = Ty and
y_1 = T~y are expressed as {(ji1,r1,0;) : ¢, = ¢o1(r1),a1 <11 < b1} and {(j_1,r_1,9_,) :
9 =0 _1(r_1),a <r_y <b_1}, where ¢\(-) and ¢_,(-) are C' functions in ry and r_i,
respectively, then we have the formulas:

dp, 1 1 dp_; c_1 1
B P LA B
—+ —+
¢ vy ¢ dv_y
dr dr
dy do
N (49 _
@__i 1+t (dr+k> di’—l__i 1+Z (a’r k)
dar ¢ c Todr e c ’

do, c dr Tk dr do_, c dr tk dr
e DL A S LA N Sy A (B I (S
o= () (e G g (-2 ()

drt = sin dn sin di = sin
I 0 dr o, @
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These formulas make sense even when do/dr = 0 and we obtain similar formulas if the role
of the r-coordinate and that of the ¢-coordinate are exchanged in the representaitions of
curves y,y,, and y_,.

Next we introduce the notions of increasing curves and decreasing curves. A curve
in M* which is expressed as ¢ = ¢(r), a <r < b in the (r, p)-coordinates is said to be
increasing (resp. dcreasing) if ¢(-) is increasing (resp. decreasing) as a function of r. In
the case when a curve is expressed as r = r(¢), o < ¢ < ff, we also say it to be increasing
or decreasing according as r(-) is increasing or decreasing.

Put

kmax = max{k(q) : q € 00}, kmin = min{k(q) : q € 00},

Imin = min{dist(Q;,, 0,,) : j1 # j2},
1 1
Koax =k — =
max max Imin ’ 1 + tminkmin
An increasing (resp. decreasing) curve as above is called a K-increasing (resp. K-
decreasing) curve if

kmin < M < Kmax (resp. _Kmax < M < _kmin>
rp —n rp —rp

holds for any r; and r, with a <r; <r, <b. (K-)increasing curves and (K-)decreasing
curves are often called (K-)monotone curves.
From [Cemma 2.1, we can easily show:

LemMma 2.2. Let y be a C' curve in M* which is expressed as {(r,p) : ¢ = ¢(r),
a <r<b}. Assume that y is increasing (resp. decreasing) and T (resp. T~') is defined on
y.  Then Ty (resp. T~'9) turns out to be a C' curve which is expressed as {(r1,¢,) : ¢, =
o, (r), a1 <rp < by} (resp. {(r-1,0_1) 01 =0_1(r_1),a_1 <r_; <b_1}) satisfying
do,

do_
Kmin < d—l”l < Kinax (resp. —Kmax < d(fll < _kmin>-

In addition, we have
O(Ty) = 07'6(y) (resp. O(T 'y) = 07'6(y)),
where O(y) denotes the variation of the ¢-coordinate along 7.

It follows immediately from that if y is an increasing curve (resp. a
decreasing curve) of class C', then Ty (resp. T~!y) is a K-increasing curve (resp. K-
decreasing curve) of class C'. In fact, we can see that the T-image (resp. 7~ '-image)
of any increasing curve (resp. decreasing curve) is always a K-increasing curve (K-
decreasing curve) by a routine approximation argument.

3. Structure of Q.

Next, we observe the sturcture of the definition domain &, (resp. Z_,) of T" (resp.
T-"). Consider any admissible word j_,j_,—1)- - jo- - ju—1Jjn Of length 2n+ 1. We set
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Z1(oj1) = (@ N MHNT (D10 M),
D 1(jrjo) = (ZaNM)NT(Z N M),

Du(joji - jn) = T (Dur(rfo - Jn) N Z-1(joj1))  (n>2),
Dn(Jnj-n-1)- - Jo) = T(D_n-1)y(Jon- - J2j-1) NZ1(j-1]0)) (n=2).

Then it is easy to see that %,(joj1---ju) (resp. Z_n(j-nj—(u-1)---Jjo)) is a connected
component of &, (resp. Z_,). Therefore we have
Dy = U @n(jOJI e 'jn)
jOjl"'jnenﬂ/r;-%—l
D= U Dn(J-nj-(n-1) " Jo)-
JenJ 1) Jo € Wit

For j=1,2,...,J, put

Sj+: {xeM+:f(x) = j,0(x) :g}, S = {xeM+;§(x)=j,(ﬂ(x):—g}

and put
T e -] ¢t
S:'U1Sj7 S:U]Si’ S=SUS".
Jj= j=

Each S} (resp. S;) is identified with the line segment in ¢ = 7/2 (resp. ¢ = —7n/2) in the

(r,p)-plane. If ij is admissible, we can show that Z,(ij) is a closed domain in M;"
enclosed by the four curves T°'S’, 9 = —n/2, T7'S;", and ¢ = n/2. Similarly, &, (ji)
is a closed domain in M enclosed by the four curves T. AR —n/2, TS, and
¢ =n/2. Since cosp; =0 (resp. cosp_; =0) holds on T-'S (resp. TS), T~'S/ and
T *IS/T (resp. TS; and TS;") are K-decreasing curves (resp. K-increasing curves) ex-
pressed by the equation of the form

dp cos ¢ dp cos @
i k pm (resp. o =k —

Combining these facts and [Lemma 2.2, we can conclude inductively that if n is a posi-
tive integer and jyjj - - - j, is admissible, then the set Z,(joji - j,) is a closed domain
enclosed by a pair of K-decreasing curves and ¢ = +7/2 and the set Z_,(joji - ju) 1s
closed domain enclosed by a pair of K-increasing curves and ¢, = +7/2. We call such
a closed domain enclosed by four curves a quadrilateral.

Following the idea of Izumi Kubo, we prove some estimates which are necessary
for further investigations. Note that estimates which play similar roles to them are

obtained in [6]. But in the present case, the following seem to be more useful than
those in [6].

LemMmA 3.1.  Assume that the conditions (H.1) and (H.2) are satisfied. Let j_,---
Jo+ - ju be an admissible word of length 2n+ 1. Then we have the following.
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(1) The Euclidean length of the boundary curve of the quadrilateral Z,(jo--- ju)
(resp. D_y(j_n---Jjo)) contained in ¢ =+mn/2 is not greater than C,0", where Ci is a
positive constant depending only on the domain Q.

(2) The Hausdorff distance between K-decreasing curves (resp. K-increasing curves)
in the boudary of Z,(jo - jn) (resp. D_y(j-u---jo)) is not greater than C,0", where C\ is
the same constant as in the assertion (1).

(3) There is a positive constant C, > 0 depending only on the domain Q such that
the diameter of the set D_n(j_n--+jo) N Du(jo -+ ju) is not greater than Cy0".

In the above, the Euclidean length, the Hausdorff distance, and the diameter are
measured in terms of the (r,p)-coordinates.

Before we prove [Lemma 3.1, we observe the structure of 2,(jo---j,) and
Dw(j-n--+Jo)- We can choose the base point ¢(jy) so that the corresponding (r,¢)-
coordinates represents Z;(jo) and Z_;(jo) as quadrilaterals in the (r,¢)-plane. This
fact enable us to identify Z;(jy) and Z_,(jy) with quadrilaterals in the (r, p)-plane. We
label the sides of quadrilateral Z,(jo---j,) (resp. Z_n,(j_n---jo)) as y, =y,(Jo- "+ ju),
vi=nloJn)s o =700 Jn), and p.=73.(jo--ju) (resp. o =0(j-n-""Jjo), o1 =
01(Jon-"Jo), Op =0p(j_n+--Jo) and 6, =3,(j_n -+ jo)) in counterclockwise order so that
v, (resp. J,) is contained in ¢ = /2, y, (resp. J5) is contained in ¢ = —x/2, y, and y, are
K-decreasing curves (resp. J; and J, are K-increasing curves) (see Figure 3.1). It is not
hard to see the following facts:

(i) T*y, and T*y, are K-increasing curves (resp. %5, and T—*5, are K-decreasing
curves) for each k with 1 <k <n.

(ii) T%y, and T*y, are K-decreasing curves (resp. T7%6; and T%6, are K-increasing
curves) for each & with 0 <k <n-—1.

(i)  T"Zu(jo - jn) = ZL-n(jo - jn) (vesp. T"Dy(jn -+ jo) = Du(jn""" Jo))-

(iv) T*y, T*y,, T*y,, and T*y, (resp. T7%6,, T~%6;, T*6, and T—*5,) are the sides
of the quadrilateral TX%,(jo--- j,) (resp. T*%_,(j_n---jo)). In particular, T"y, (resp.
T7"60;) is contained in ¢, =n/2 or ¢, = —n/2 (resp. ¢_, =n/2 or ¢_, = —mn/2) ac-
cording as n is even or odd.

gn(jojl v 'jn)

) & . S//\h
'*P:'§ \ /‘

Sp R

Figure 3.1.
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PrOOF OF LEMMA 3.1. To establish the assertion (1), we estimate the length of y,
and y,. Lety, isgiven by p =7/2, a <r <b. In virtue of Lemma 2.1, the equation of
the curve Ty, is given by

do, €l
k0 R S
dri 1t t*

and dri/dr= —t"k/c; for a <r <b. Therefore we have
Ay doy dr

b b
n:Ja dr:Ja d(ﬂ] drl dr

We just note that the last inequality can be easily obtained from [Cemma 2.1. For the
curve y,, we get the same estimate. Now the first assertion of [Lemma 3.1 follows if we
put C| = n(l/kmin).

The assertion (2) is proved as follows. Consider any line segment y in Z,(jo - - - ju)
parallel to the r-axis. Then we can apply the same argument as in the proof of the
assertion (1) to y instead of y,. Thus we conclude that the Euclidean length of y is less
than C;0". Hence y, is contained in C;0" neighborhood of y;. This implies that the
assertion (2) is valid.

The assertion (3) can be shown as follows. Consider the line segment s passing
through the vertex of Z_,(j_n---jo) N Z,(jo- - ju) at the bottom, joining the curves J;
and 7y, and parallel to the r-axis. The length of s is not greater than 2C;0" by the
assertion (2). Next we consider the line segment / parallel to the g-axis and joinning
the vertex of Z_,(j_n---jo) N Zy(jo- - ju) at the top and the line segment s. Since J; is
K-increasing and y, is K-decreasing, it is easy to see that the length of / is not greater
than Ky,axC10". Clearly, the quadrilateral Z_,(j_,--- jo) N Z,(jo - - Ju) is contained in
a rectangle with base side s and with height not greater than K,,C;0". Hence C; is

chosen to be Ci\/K2,, +4 = (n/kmin) /K2 + 4 ]

Next we recall the itinerary problem studied in [6] (see for heigher dimensional
cases). The itinerary problem means the problem finding a point x € Q" which satisfies
the equation

do,
dr

dr = 0 "kin(b — a).

<x)=¢
for a sequence ¢ in X given beforehand. If the itinerary problem has a unique solution,
we denote it by x(&). For & ne X, put dy(&,n) =0", where n=min{i >0:¢_; #75_;
or & #mn;}. Then dy is a metric on X which introduces the same topology that is
induced by the product topology of {1,2,...,J }Z. In virtue of [Lemma 3.1, we can
show the Lipschitz well-posedness of the itinerary problem as follows.

THEOREM 3.1.  Assume that the conditions (H.1) and (H.2) are satisfied. Then for
any sequence £ € X, there exists a unique x € Q" such that &(x) =& Moreover, there
exists a positive constant Ci depending only on the domain Q such that

r(x(S)) = r(x(m))| < Cadp(&,m),  and  [p(x(&)) — o(x(1))| < C3dp(S,7)
hold for any & nel.
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Proor. Let & be any element in 2. Then {Z,(& &) ND_n(E -+ &)}, is a

decreasing sequence of compact subsets of M: & such that the diameter of Z,(&y---¢&,)N

D_u(é_, -+ &) is not greater than C,0" for each n > 1 in virtue of [Lemma 3.1. Thus
we see the validity of the existence and the uniqueness of the itinerary problem.

Let # be an element in X with dy(&, ) = 0" for some nonnegative integer n. If
n=0, then we have |r(x(&)) —r(x(n))] <L and |p(x(&)) —p(x(n))| <n, where L is
the maximum of perimeters of dQ;’s. Assume n > 1. Then we see by definition that
&, = n; holds for each i with |i| <n—1. Therefore x(¢) and x(7) are both contained in
@n_l(fo s én—l) N @—(n—l)(f—(n—l) s fo) Thus by we obtain

r(x(€)) = r(x(n))] < G207 'dy(&,m), and  |p(x(&)) — p(x(n)| < 0 dy(&, 7).
Hence if we set C3 = max{L,mn, Czﬁfl}, we reach the desired inequalities. O

Next we summarize the facts on the structure of the local stable curve and the local
unstable curve for x e Q.

THEOREM 3.2 ([7]). The local stable curve y*(x) (resp. the local unstable curve y"(x))
for x € Q" coincides with the set

ﬁ%@mwwgm Gm.ﬁgwgmwwmm)

and it turns out to be a K-decreasing curve (resp. K-increasing curve) of class C* except
for its end points. Moreover, there exists a function X* (resp. X") in C([—n/2,7/2])N
C'((=m/2,7/2)) such that y*(x) (resp. y"(x)) is expressed by the differential equation

L= X0 (rer G0 =X0)) for cach pe(~3.5)

with respect to the appropriately chosen (r,p)-coordinates.

PrOOF.  Set
(ktt +c¢)s+ " ,
X = f >
1(09) (kikt™ + kic+ c1k)s + kitt + ¢; if ye and 520, G.1)
(—kt 4 c)s+ 1 . '
_ = _ <0.
X 1()/,.8‘) (k_lkl‘f—k_lc—C_lk)S—k_]lf—l—C_l if yeg and s <0
Inductively we can define for n > 1
Xui1(3,8) = X1 (T"p, Xu(p,5)) if y€ P, and 5 >0, -
X_ipy(»,8) = X ((T7"y, X_u(y,s)) if yeZ_, and 5 <0. (3.2)

We notice that if p¥(x) (resp. p*(x)) is expressed by the equation r=r(p), g€
[—7/2,7/2], we must have

dr_,

n (—n/2,7n/2).
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Here we consider the case of y“(x). 7°(x) is treated in the same way. By defini-
tion y*(x) is a curve consisting of all points y such that the Euclidean distance between
T "x and T7"y goes to 0 as n — o0. By (2), we can verify that y“(x) is a
K-increasing curve and

YY) = () Don(En) - Eo(x)):

n=1

Let y"(x) be expressed as r =r(¢), —n/2 < ¢ <m/2. In this stage, we do not know
whether r(p) is of class C? in —n/2 < ¢ < /2 or not, but we know that it is absolutely
continuous on [—~7r/2,7/2]. Thus using the approximation by C' function, we can show
that 7 "y*(x) is K-increasing for each n > 1 and

dr dr_,
d_(ﬂ <(p) - Xn (l”n, @ _n» W_n (gon))

holds for alomost every ¢, where we denote 7 "(r,¢) by (r_,,¢_,). Therefore if we can
show that X,(r_,,¢ ,a_,) converges to some function uniformly on any compact set in
(=n/2,7n/2), and the limit function X(¢) is independent of the choice of the sequence
{a_,} with 1/Ky.x < a_, < 1/kmin, then we can easily see that the function r(p) is of
class C!.

Differentiating X; by s, we hve

00X o cC
0s (1 + katt + (kkytt + kye + c1k)s)?
_c !
¢ (1 Lt (ke + c1k>s)2 '
C1 C1
It follows that
0X 1 oX
0< & < > and 0< =< Sp (3.3)
Os (kytt) os c

Therefore, if m > n, we obtain
|Xm(r7 ®, a—m) - Xn<r7 ®, a—”)|
= |X1 (r—l > (p—laXm—l (V_m, D _m>» a—m)) - Xi (r—l ) (P—bXn—] (V_n, P _n, Cl_n))|

(G
< 792’Xm—1 (V—ma @ _m;s a—m) — Xn-1 (V—na D _n» a—n)‘

C*(”*l) 02n|

- Xm—n<r—m7(p—m7a—m) - a—n|

C—n 2 02}1

c kmin

by using the Mean Value Theorem repeatedly. Hence we have seen that the sequence
of continuous functions X,(r(¢),p,a_,) converges to a continuous function X (¢) which
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is independent of the choice of {a_,} uniformly on any compact set in (—x/2,7/2).
Now we have proved y“(x) is a K-increasing curve of class C! except for its end points.

In order to show y¥(x) is of class C? except for its end points, we need to prove
X(p) is class C! in (—n/2,7/2). Recall that X(¢) is the uniform limit of the sequence
of functions {X,(r_,,¢_,,a)} on any compact set in (—x/2,7/2), where a is any number
with 1/Kpnax < a < 1/kyin. From the equations (3.1) and (3.2) combining with the for-
mula (2.1), it is clear that X,(r_,,¢_,,a) is of class C! in the variable ¢ if each scatterer
has C? boundary. Thus for n > 2 we have

4 X))

do
0X
- Z( 1 )y7 Xni+1<T_ny7a))> X

x(,,—<T 9 Xk (T3) G+ S (T X, (T ) ),

where we denote (r_;,¢_ ;) by T’y for i=1,2,...,n and we regard Hizz' as 1 for
convenience.

Let us assume that ¢ € [—a, o] for some 0 < o < 7/2. The no eclipse condition
(H.2) implies |p;| > ¢, for some ¢, € (0,7/2) depending only on Q for any i= —1,

—2,.... Thus there is a positive number C(o) depending only on Q and « such that
k
oX, , 1 _
val Tf(lfl) X, 7" < _02(k 1)
= Os ( Vs +l( yaa>) = Ccos o )
0X _ dr_ 0X
T %y, X, (T T %y, X, (T <C (3.4)
or_ k( ) k( y7a))d¢_k+a¢_k( ) k( y7a)) (OC)7
dp_ < oF
dg
for any y = (r,p) € y*(x) with ¢ € [—a,a]. Note that the first inequality follows from
(3.3) and we have used the fact that 77/, i=1,2,... are all K-increasing. Since
Xoy—iv1(T "y, a) converges uniformly on [—o, o] as n — oo, so does (dX,/dp)(T"y,a) in
virtue of above. Hence we have seen that r = r(¢p) is of class C2. ]

The facts in Remark 3.1 below will be used frequently in our argument.

REMARK 3.1. If we just want to prove y*(x) and y“(x) are of class C' in [Theorem
3.1, it is enough to assume that the boundary of each scatterer is of class C>. The
following are consequences of C? assumption of the boundary.

(1) T is a C? diffeomorphism from int %; onto int%_; in virtue of the expression
(2.1) of the Jacobi matrix of T.

(2) In [Cemma 2.1, if we assume that the curve y is of class C?, then the image
curves Ty and T~'y are of class C? from (1) above.

(3) In [Theorem 3.2, the local stable curve and the local unstable curve of each
point in Q1 are shown to be of class C? except for their end points. As we noticed, if x
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is an element in 2; N Z_;, then we can find ¢, with 0 < ¢, < /2 depending only on Q
such that |p(x)| < ¢, holds in virtue of the no eclipse condition (H.2). Thus
inf 3.5

it cosp(x) > Gy (3.5)
holds for some C; > 0 depending only on Q. Thus if we look at the proof of [Theoreml
3.2 carefully, it is not hard to see that there exists a positive number Cs depending only
on Q such that
d*r

—(co(x))‘ < Cs (3.6)

sup 40

Xey“Ng,

holds for any local unstable curve y* expressed as r=r(p), —n/2 < ¢ < n/2.

4. Construction of a K-stable foliation for (Q" T).

The purpose of this section is to construct a K-stable foliation for the set Q7. A
K-stable foliation for Q7 in this paper is a foliation # supported on &; satisfying the
following conditions:

(#.1) Each leaf of & is a K-decreasing curve.

(#.2) For any x € Q" the leaf # (x) containing x coincides with the local stable
curve *(x).

(#.3) For any point x € Z,, TF (x) < Z(Tx) holds.

(#.4) Z is a Lipschitz continuous foliation on 2; with respect to the Euclidean
distance in the (r,¢p)-coordinates.

The construction is divided into several steps. Except for the proof of Lipschitz
continuity, we follow the argument in Palis and Takens [11, Chapter 2]. Now let us
begin the first step (see Figure 4.1 throughout the construction).

Step 1. We start with giving an initial foliation %] supported on &;. Recall that

21 1s written as
a2 =\ 23).
et

For each j, we can choose the base point in 0Q; so that with respect to the corre-
sponding (r, ¢)-coordinates & (ji) and Z_,(ij) can be identified with quadrilaterals in the
(r,p)-plane for all i # j. In the other words such a choice of the base points enable
us to carry out our construction as if Z;(ji) and Z_;(ij) themselves are quadrilaterals in
the (r,¢)-plane. In this sense, each Z;(ij) is a quadrilateral whose boundary 0% (ij)
consists of two curves parallel to the r-axis, say y,(ij) and y,(ij) and two K-decreasing
curves, say y,(if) and y,(ij). Similarly, each Z_,(ij) is a quadrilateral whose boundary
02_1(ij) consists of two curves parallel to the r-axis, say J,(if) and J,(ij) and two K-
increasing curves, say ¢;(ij) and 0,(7).

Our initial foliation %, is chosen to be a Lipschitz continuous foliation on %
satisfying the following.
(#1.1)  F restricted to 21\(02,U0%,) is a C? foliation.
(#1.2) All leaves of &, are K-decreasing.
(71.3)  9,(i), v.(i)), 7,(ijp), and y,(ijp) are leaves of #; for any ij € #5 and for any
ijp € W3.
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We can choose such a foliation since y,(if), y,(if), y;(ijp), and y,(ijp) are K-decreasing

curves of class C! and of class C? except for their end points (Recall the equation of the
curves in 7S and Remark 3.1 (1) and (2)).

7(121) 5 {123) v, (123)

// /-

————— Jr(21)
71(12) N 7, (21)

Ty
Tvl
%(212) = T=1(5,(21) N 7, (12)

%(212) = T . (12) N 2_,(21)) w(212) = T (v (12) N 9-1(21))

Nw

Z2(212) = T-Y(2,(12) N Z_1(21))

~(121)

7 w(212) = T7H&(21) 0 71 (12))

Figure 4.1.

Step 2. Inductively, we can construct a sequence of foliations %, (n > 2) on 2,
with the following properties:

(#,.1)  F#, restricted to the set @AUZZ; 09 is a C? foliation.

(#4,.2) All leaves on 2, are K-decreasing.

(#,.3) On the set Z;\%;,1, we have ‘%f|@k\@k+1 :%|@k\@k+l for each 1 <k <
n—1.

(#,.4) Leaves of #, on the set &, are T ~l.images of leaves of .%,_; on the set
D 1ND,_;.

If we are given a sequence of foliations #, ..., %, with initial foliation .%#; for some
n > 1, then we have to define %, as follows because of the desired properties (%,.3)
and (#,,1.4). First, we employ the leaves of %, on ,\%,,, as those of %,,;. Next,
on the set Z,,;, we employ the T '-images of leaves of %, restricted to Z_; N Z,.
Then it is not hard to see that the foliation %, obtained above satisfies (%,;.1) and
(Zn11.2) in virtue of the following facts.

\J;_, 02 consists of leaves y,(w) and y,(w) with w € #}41, 1 <k < n and the curves
v,(if) and y,(ij) with ij € #3, where y,(w) and (resp. y,(w)) denotes the K-decreasing
curve appearing as the left (resp. right) side of the quadrilateral Z;(w) in terms of the
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(r, p)-coordinates for each w € #}.;. The (r, ¢)-coordinates being used in the above are
the same as we choose in Step 1. Let jyji--- j,.1 be any element in #,.,,. Then we
have

Tﬁl()’/(]'l e Jur) N2 (o)) =
T .G jus) D221 (1))
@G0 N Du(r )

) =

T76,(oj1) N Zu(jt -+ Juri

( "'jn+1

( "'jn+1

)

)

7o(Jo - Jns1)
Ve(Jo -+ Ju1)-

In addition, 77! is a C? diffeomorphism from int(Z,(j; --- j.s1) NZ_1(joj1)) onto
intZ,.1(jo- - jay1) as well as a homeomorphism from Z,(j; - jur1) N Z-1(joj1) onto
Dui1(Jo -+ Jnr1)-

STeP 3. We define # on 2; as follows.
For each positive integer n, # restricted to Z,\%,, is defined so that 7| AU
97,1]@"\%“ holds. Then it remains to define % on the set

@l\([)j](@n\@n—k—l> ﬂ@ - U V
n= xeQt

Therefore the leaf 7 (x) passing through x € Q7 must be defined so that # (x) = y*(x).
Then it is obvious by definition that & satisfies (#.1), (#.2), and (#.3). We note that
for positive integers n and k with k < n, we see that leaves of % restricted to Z,\ %,
are T *-image of leaves of the foliation & restricted to (Z,_x\Zui1-1) N D .

We prove that Z restricted to the set &, satisfies the Lipschitz continuity (#.4) in
the next section.

5. Proof of Lipschitz continuity.

In what follows, # restricted to the set &; will be denoted by the same notation
Z. We fix the base points which are chosen in Step 1 of the construction of Z.
Namely, to each j, we assign the (r,p)-plane P; and we treat Z;(ji) and Z_,(ij) as if
they are quadrilaterals in P; by means of the fixed (r,¢)-coordinates.

Let y be a decreasing curve of class C! expressed as r=r(p), « < ¢ < f with
—n/2 < o< ff<n/2. We consider a nonnegative valued function u = u( in ¢ which is
continuous on [x, 8] and C! in (a,f). Assume that 7" can be defined on y for a posi-

tive integer n. Define u;, i =0,1,...,n inductively by
Citl
Uip1 = kip) + ——————,
i+ —
! u; + k;

where the abbreviation k; = k(T (r(9),9)), t7 =7 (T'(r(p),p)) etc. are the same as
before.
First of all we evaluate (d/dp)log(u, + k).
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LeMMA 5.1. Let y be a C' curve on which T"*' is defined and T"y is K-
decreasing. Let u = uy be a nonnegative valued function which is of class C' along the
curve y. Let u;, i=0,1,...,n be defined as above. Then there are constant Cg and C;

depending only on the domain Q such that

d
— log(uo + ko)

< Ce0" + C70™"
do

d
’d—(p log(u, + ky)

holds. In particular, if T~ is also defined on vy, then we can put Cy = 1.

ProoOF. Put
2kt Ci
b= tF
a Cir1 \' * a; + k;
for i=0,1,...,n—1. Since
c.
Uip1 + kiy1 = 2kiy1 + IHCI.
+
u + ki

holds, we can obtain

C:

Ui + k; (Z—J— +—l>

(i1 + ki) | 4 ui+ ki) _ 2kip (z*%—L)"‘l
Cit1 Citl i + ki

= bi+l + 1>1+ kainlmim

For each integer i =0,1,...,n— 1, we have

log(uir1 + kiy1)

de;.
1 d Citl
= ki) + ———
Uirt + kit dogy " P
! u; + k;
_ 2 dkii1 drip _ Si+1 1
U1 + ki drigy dogy i ki gy G
! u; + k;
B 1 Cit1 (dﬁ dri i ) dy,
Uip1 + kig (+ ¢ )2 dri do; wi+k;)dp;,,
t+
u; + k;
¢ ¢ do, d
+ il s P og(u+ ki)
i + k) (£ + ¢ ui+ ki do;, do;
i+1 i+1 i u; +ki

: dg; d
= Air1(9;41) + = — — log(u; + ki),
(1 + bi+1) (1 +M> d(pi—H d(pl

Ci

(5.1)

(5.2)
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where s; denotes sin ¢; as ¢; does cos; and 4,.1(p; ;) denotes the sum of the three terms

after the second “=”. Therefore we have

i log(uy, + k»)

dy
do 1 d
= Au(p,) 5+ — log(up—1 + kp—1).  (5.3)
"d £ (g + Ky d
P (1 by (14 Bl ) @
Cn—1
Since y is contained in the set Z,,;, we see that ¢; > C4, i=1,2,...,n holds in

virtue of the inequality (3.5) which is a consequence of no eclipse condition (H.2). But
in the case when i = 0, we can not use the condition (H.2). We have to proceed with
the proof being careful about this difference. Recall the following equalities in

2.1.
do: i1 dr; t ki dr;
Pi _ g, il ”+1_<1_L“)(1—k,~+1 r“). (5.4)
de; ¢ dpiyy Ci dpiy
Since Ty is a K-decreasing curve for i =0, ...,n and ¢; > C; holds for i =1,2,...,n,
we can see that for each i=1,2,...,n—1
_ do,
07! L > -Gy 5.5
de; 5:3)

for some Cg > 1 depending only on Q. In fact, the second inequality in (5.5) follows
from the equality in (5.4) if we set

K diam(0Q) Kax Kinax
C8 C‘4kmin * ( * C4kmin ) < * C4kmin)

and the first inequality in (5.5) follows from [Lemma 2.2. Hence we can find a positive
number Cy depending only on Q such that

[Ai1] < Gy

holds for each i=1,2,...,n— 1.
On the other hand, by the inequality [5.1), it is obvious that

l;r u; + k; _
-+ (1) 2 (1 bt)? =07
holds for i =0,1,2,...,n. In addition, since T’y is decreasing, we have
do,
0>—"~>-0'
> d(p >

holds for i = 1,2,...,n by Lemma 2.2. Thus if we use the equation (5.3) repeatedly, we
can reach the inequality

d _nld
’d—(plog(uﬂrkn) < Cpo0" +0*" dp o8t k) (5.6)

with Cyg = C9/<1 — 0)
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Now we consider the case when i = 0 in the formula (5.3). Since we do not have a
lower bound for cos ¢ independent of ¢, we can not have the estimate (5.5) for |dg/dy,|
if 77! is not defined on y. Consequently, it seems hard to obtain an upper bound for
|41(p;)| depending only on Q. But it is easy to see from the explicit form (5.2) that
there is a poitive number C;; depending only on Q such that

d
‘Al((ﬂl)di;' < Ci.

Therefore we have

. (5.7)

d d
'd—¢ log(u; + k)| < Ci1 + Hz‘d_(p log(uo + ko)

Combining with (5.7), we arrive at the desired result.

Finally, if 7-! is defined on 7y, we see that ¢y = cos¢p > C4 follows from the condi-
tion (H.2). Thus (5.5) is true for i = 0. This implies that we can proceed to one step
further in [5.6]. Now the proof of is complete. ]

Next we consider the following situation: Let y and y’ be K-decreasing curves of
class C! contained in the same connected component of %, say Z(ij) for some ij € #5.
Note that we are working on the direct sum of the (r, ¢)-planes P, ..., P; as mentioned
in the beginning of the present section. Therefore we regard Z(ij) as a quadrilateral in
P.. Assume that y and " do not intersect each other. Let X and X be points on y and
y and y be points on . We assume that the line segment 7 joining X and y is parallel
to the r-axis. We also assume that the line segment 7 joining X and y is parallel to the
r-axis. Let & be the quadrilateral enclosed by y,7’,7, and  whose vertices are labelled
as X,X,p, and y in counterclockwise order (see Figure 5.1). Then we can show:

LEMMA 5.2. Let & be the quadrilateral as above. Further we assume that T" is
defined on & for some n > 1. Then there exists a constant Cy > 1 depending only on the
domain Q such that

(5.8)

Figure 5.1.
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Proor. In order to avoid trifling confusions, we put ~ and ~ on variables cor-
responding to 7 and §, respectively. For example, if x € 7, ¢ = cos(T'x), k; = k(T'x)
and so on.

First of all we note that 7% and T are in 2_; N%,. Therefore T’y and T') are all
K-increasing and

¢;>Cyq, and ¢ > Cy (59)

fori=1,2,...,n by and the inequality (3.5). In addition, these curves are
of class C? except for their end points at worst since 77 is a C? diffeomorphism from
int(Z;) onto int(Z_;).

Next we show that there is a number Cj3 > 1 depending only on Q such that

(%) — r(7)| € [Cr, C13]O(TF) and  |r(%) — r(P)] € [CF, Ci3)O(TH).  (5.10)

Indeed, we have
dpy . 1 o
—=—k—— Tk)k
dF 5 e+ ik

from [Lemma 2.1. Thus we can easily see that (5.10) holds for 7 by the inequality (5.9).
By exactly the same reason we obtain (5.10) for j.
Now we show that there exists a constant Cj4 > 1 depending only on Q such that

do,
do,

O(T7) € [Cry, Cua] = (p(T"X))O(T"7)

i (5.11)
dop,
dg,
Take any x(i) e T’y for i=1,...,n. Applying the formula in [Lemma 2.1 to @;/@;.,
with i=1,2,...,n— 1, we have

do; _ Je, S1 drizi <1 _ tH—lki+1> (1 ks dri+l).
dpiy ¢i doiy Ci dg;

O(T) € [Cyy', Cual

(p(T"%))O(T"p).

Then it is not hard to see that

B (p(71413)) ~ 2 g+ 1) | = C0(T) < Ciat

APy dpiy
holds for i=1,...,n—1 1n virtue of the Mean Value Theorem and the estimate
(3.6), where Cjs and C)4 are positive numbers depending only on Q. Since Ty is K-
increasing for each i=1,...,n— 1, we have
-G < d(,/)_,_+1 < -0

i
by the same reason as (5.4) from the equation

d¢-+1 ¢ dr; l~+kl‘ dr;
a5 A A T S LA Y )
do; . Cir1 do; ( " Citl " dy;
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in Cemma 2.1. Hence we obtain for i=1,....n—1

d(pi (TiJrl)_C)
Z‘(Ppiﬂ 1| < ¢
L (x(i+1
d(/),-+1( (i+1))
for any x(i+ 1) e T™'5. Consequently, we arrive at the inequality
dp _ _ dp .
P (p(at)| G Cul g2 o) (5.12)

where Cj7 and Cg are positive constants depending only on Q.
Denote by I(77) the interval in the ¢-axis corresponding to the curve T77.
Similarly, /(7"y) denotes the interval corresponding to 7"y. Combining the formula
dp,

orn=| uni=| |
(T 1(T;)| ! 1(T"7) do,

with the inequality (5.12), we have the desired inequality (5.11) for 7. (5.11) for j is
obtained in exactly the same way.
Finally we prove that

dp,|

dp,

n

€ [C1_917 C]g]

(T"%)

‘dcﬁl
g,
holds for some Cj9 depending only on Q. Combining (5.10), (5.11), and (5.13), we can
easily obtain the desired estimate (5.8).

Since (5.13) is trivial in the case when n = 1, we assume »n > 2 in the sequel. Let y
be expressed as r =r(p), a < ¢ < f. Without loss of generality, we may assume that
x=(r(a),n) and ¥ = (r(f),f). Consider a function u = u, identically 0 on y. Note
that the function u; is defined so that

(T”)‘c)‘ (5.13)

= dp; i i dg; ig
u(p(T'5) = 22 ((T'5) and  u(p(T'8)) = X (H(T'%)) (5.14)
can hold for i =0,1...,n. It is clear that y is a K-decreasing curve lying in &, and the
function u satisfy the assumptions in [Lemma 5.1. Therefore we have
d . Ll d . 1 dic dr
L og(us + k)| < G0 1y — G0 A 1
'd(p og(u; + )‘ Cel' + C70 o ogky| = C' + C70 ko dr dy (5.15)

for each i =0,1,...,n. Thus from (5.14) and (5.15), it is not hard to show that there
exists a positive number Cy depending only on Q such that

, do. . o
(r(T'5)) =22 (r(T’fc))‘ < Cub' +lki—Ki|  (5.16)

i b7 dp;
—Cyb' — |ki — ki| < ‘df,-
holds for each i=0,1,2,...,n, where ko= k(x), ki = k(T'x), and k; = k(T'%) with
x = (r(p),p). Since the curvature of 0Q is of class C!, we have

k(T'S) = k(T'%) = k(ri(9:(X))) — k(ri(9;(%))) = % (ri(¢:0)) 5—; (#1,0)(9:(%) = 9:(X))



Construction of K-stable foliations 825

for some ¢;, by the Mean Value Theorem. Thus using the fact that T y is K-
decreasing for each i =0,1,...n, we arrive at the inequality

i dk 0'n
k(') — k(T'5)| < max ()
This and the inequality (5.16) yield
do, i & dp i i= i
‘dz’ (r(T'%)) — df,( T x))’ < Cxf (5.17)

for each i =0,1,...n for some C,; depending only on Q.
We have to estimate the difference

a9 _ k Civt dFis 1 i1k (1 o dfi+1>
5. . e do.. \ TG — Kiy1 52
dPiy ¢ dpiyy Ci df;,

dg; _ ; Cip1 diig | 17 ki (1 s dfiﬂ)

doi & dpyy Ci g,
for i=1,2,...,n—1. The functions ¢ = cos@;, k; = k(#;), and I~ = ¢t~ (#;,{,) are ob-
tained by substituting (#;, @) for (r,¢) in the C' functions cos ¢, k(r), and t~. Similarly,
¢ = cos ¢, k; = k(#;), and i~ =t~ (f;,¢,) are obtained by substituting (;,¢;) for (r,p)
in the C! functions cos ¢, k(r), and r~. Therefore, we can easily estimate the differences
¢ from ¢é;, k; from l%i, and 7~ from 7~ directly. On the other hand, (d7i1/d@;,,) and
(d#i11/d¢;.,) are defined on T35 and T'*'j. So at first sight, it seems hard to esti-
mate their difference. But we have already established the estimate (5.17) of the dif-
ference (d7iy1/dp, ) from (diiy1/d;, ) fori=1,2,...,n—1. It is easy to see that all
the functions in the right hand sides of the equations expressing d@,/d®;,; and d¢,;/d¢;.
are bounded from above by positive constants depending only on Q. In particular, ¢;
and ¢; are also bounded from below by Cy for i=1,2,...,n—1 in virtue of (3.5).
Thus if we make use of the elementary inequality of type |ab — cd| < |a — ¢| |b| + |¢|
|b — d| repeatedly, we can arrive at the inequality

from

' ai(”i _ ‘{% < Cpl
dgiyy APy
for each i =1,2,...,n— 1 for some constant Cy, depending only on Q. Since we can

show that |d@;/dp;, | > Cg! for i=1,2,...,n—1 by the same way as (5.5), we reach

d(ﬁz (TH-] )
d(0i+1 1l < C230i
d(pz (T1+1 )
dpiyy
for each i =1,2,...,n— 1. Consequently, we conclude that (5.13) is valid. O

Now we are in a position to prove the main result in this section. The Lipschitz
continuity (#.4) turns out to be its easy consequence.
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THEOREM 5.1. Let X and y be distinct points contained in the same connected
component of &, such that the line segment joining X and y is parallel to the r-axis.
Choose any points X € F (X) and y € F () such that the line segment joining X and p is
parallel to the r-axis. Then

r(X) — ()]
[r(x) = r(3)]
holds for some constant Cyy > 1 depending only on Q.

€ [C2_41, C24]

Proor. Before we get into the body of the proof, we observe the structure of the
quadrilateral &, for our convenience (see Figure 5.2 which illustrates the case when
J =3and w, =3). The quadrilateral &, consists of J(J — 1)"~" connected components
Z,(w) with we #,.1, where #,.,, is the totality of admissible words of length n + 1.
For each w = wow;---w, € #uq1, y,(w) (resp. y,(w)) denotes the K-decreasing curve
lying on the left (resp. right) side boundary of %,(w). Each Z,(w) contains J — 1
components Z,.1(wj) of Z,.; and Z,(w) is divided into 2J — 1 quadrilaterals by
2(J — 1) curves y,(wj) and y,(wj) with j # w,, where wj denotes the concatenation of the
words w and j. Since we regard Z,(w) as a quadrilateral in the (r,¢)-plane P,,, we
can give indices to these 2J — 1 quadrilaterals as &,(w);, &,(W),,...,&x(W),,_, from the
left to the right. Then each connected component of Z,\%,;; contained in Z,(w)
conincides with one of the quadrilaterals &,(w),, &,(w)s,...,&x(w),,_, with odd indices
up to boundary curves.

-« r(w)

D {w2)

,@n(w)

J=3and w, =3

Figure 5.2.

In what follows 7 (resp. 7) denotes the line segment joining X and y (resp. X and ).
There are four possibilities.

Case (i) There exists an integer N > 1 such that x, y € 9y, &;(x) = &,(p) for each i
with 0 <i< N —1 but &y(X) # En(P).

Case (ii) There exists an integer N > 1 such that X, y € Zy\Zn41, &(X) = &(P) for
each i with 0 <i < N, and X and jy are contained in distinct connected components of

IN\DN+1.
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Case (iii) There exists an integer N > 1 such that X,y € Iy\Dn11, &i(X) = E(D)
for each i with 0 <i < N, and X and y are contained in the same connected component
of QN\@N—H-

Case (iv) There exists an integer N > 1 such that X € Zy; (resp. ¥ € Dny1), J €
IN\DN+1 (resp. X € In\Dn+1), and () = () for each i with 0 <i < N.

CasE (i) AND CasE (ii). First of all, we consider Case (i) and Case (ii). Let I” be
the totality of K-decreasing curves which appear as sides of quadrilaterals ;(w) with
we W, or Zo(w) with we #3. Namely, we can write as

= {3 (0),5(w) : we #3U W53},

We note that for each ij € #5, the quadrilateral Z,(ij) contains 2J elements in I
Precisely, 2,(ij) has y,(ij) and 7,(ij) as its sides and it is divided into 2J — 1 quad-
rilaterals by 2(J — 1) curves y,(ijk) and y,(ijjk) with j # k. Put

A =min{dist(y,y’) : 9,y e [,y #y',7,9 = Z1(w) for some we #>},

where dist(y,y’) denotes the Euclidean distance between the curves y and y’ with respect
to the fixed (r,¢)-coordinates. Clearly 4 is positive.

If N=1, both ¥ and y join distinct elements in I'. Therefore we have 4 <
|r(X) —r(¥)| < L and 4 < |r(x) —r(p)| < L hold for both Case (i) and Case (ii), where

L = max {the perimeter of 00;}.

1<j<J
Therefore we obtain
[r(X) = r(p)| L\ L
0l < |\a) va) 519

If N>2, both T¥ !5 and TV~ join distinct elements in I". Thus we see
that 4 < [H(TV71%) —r(T¥"'5)| < L and 4 < [((TV"'%) — r(T¥"'9)] < L. 1In addition,
TN=1% and TVN-'$ are K-increasing. Therefore it follows that

Akin < O(TV19) <7 and  Akpin < O(TV1H) < 7.

Then we can easily see that we can apply [Lemma 5.2 with setting y = 7 (X), ' = Z (),
and n =N — 1. Consequently we have
x) —r())] . Cpn\™' Cpn
V()_C) - V()_/)| Akmin 7Akmin

I
Cask (iii). Next we consider Case (iii). If N =1, we use the fact that the leaves
of # on the set 2,\%, are those of #;. Obviously &, is Lipschitz continuous. In
fact, we can easily find a number C,s depending only on #; (i.e. depending only on Q
and the choice of the initial foliation ;) such that

: . (5.19)

# € [Cys', Cas). (5.20)

Now we consider the case N > 2. Let & denote the quadrilateral enclosed by the
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leaves # (x) and # (y) and the curves 7 and y. Then it is easy to see that we can apply
to & with y=Z(X), yy =% (y), and n=N — 1. Thus (5.8) holds with
n=N—1.

o(T"19)

r(x) —r(y)l
O(TN"1y)’

r(x) — r(y)l

We note that the following fact which is an easy exercise. Let y, and p, be
mutually disjoint K-decreasing curves and let 0 be a K-increasing curve intersecting both
of them. Without loss of generality we may assume that y, is lying on the left hand
side of y,. Consider any line / intersecting 6 and parallel to the r-axis. Let x; and x;
be the points where / intersects y; and y,, respectively. Then we can easily show that

e [Cp', C1a) (5.21)

r(x2) —r(x) € [ 2 2

el L0 2

holds.

Now we can apply this fact to the case when y, = #(TV"'%), y, = Z(T"V"'y), and
0= T""'5 and the case when y, = Z (T %), y, = Z(T""'y), and § = T¥"!5. On
the other hand, in virtue of Step 4 of the construction of %, the leaves of % on a
connected component of Zy\Zy,; are mapped by TV~! onto the leaves of % on the
corresponding connected component of (21\%;) N Z_y_1). Thus we can apply (5.20)
to any curves joining .Z (TV~'x) and % (T"~'y) parallel to the r-axis. Hence we arrive
at

V1) | (KuaxCos\ ™ Kmax
@( ]j) c ax C25 ’ ax C2s (523)
@(TN_IV) kmin kmin
in virtue of (5.20) and (5.22). Combining (5.21) with (5.23) we obtain
N - -1
|I’(>_C) I’(J_/)| . (KmaxC12C25> 7KmaxClzczs ' (5.24)
]r(x) - F(y)‘ kmin K min
This completes the proof for Case (iii).
Case (iv). We set
_ L Cpn Kimax C12Cos
Gy = maX{Z’Akmin , Cos, - }
Then the argument above implies that
r(X) =l _
=7 €1Cy, Co6 (5.25
[CRIGIR )

is valid for Case (i), Case (ii), and Case (iii). It remains to prove (5.25) for Case (iv).

We may assume that X € Dy, V€ Iy\Dn+1, and r(X) <r(y). The other cases
are dealt with in the same way. Let wow;---wywy,; be the element in #y,» such
that X € Dy 1(wowy ---wywyi1) and y € Dy(wow; ---wy). For simplicity we denote
wowp - --wywys as the concatenation wwy.; of w=wew;---wy and wy,;. From
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our assumption, we see that 7 and 7 intersect y,(wwyy1). Let Z and Z be the points at
which 7 and § intersect y,(wwy,1), respectively. We note that y,(wwyy) = F(2) =
Z(z) holds. We can show that

r(y) —r(2)
— L e [Caf, Cag). (5.26)
r(y) —rz)
In fact, any u € y with the difference (1) — (") > 0 being small enough is contained in
IN(W)\Dn+1- If 4 is the point in F (i) N9, the same assertion is also true. Thus the

argument for Case (ii) or that for Case (111) can be applied to u, y,u, and y. Hence we
have

€ [Ca4', Cag).

Letting # — Z we obtain (5.26).

Note that there are the following possibilities.

(iV-l) X € Dyio.

(iv-2) X € Dni1\DNia-

If (iv-1) occurs, then the line segment 7(XZ) joining X and Z (resp. y(XZ) joining X
and %) is contained in Py.j(wwy;;) and crosses at least one connected component
Eni1(wwyi1); of Dyi1\Dni2. Therefore, it is easy to see that 4 < [r(TVz) — r(TVX)|
< L (resp. 4 <|r(TVz) —r(TVx)| < L). Since T'(xz) and T'j(xZ) are K-increasing
curves for i=1,2,...,N, we can apply Lemma 5.2 to our situation with y = 7 (X),
' =% (Z), and n = N. Therefore we obtain

r(x) —r(2) Con\ ' Cun
Akmin ,Akmin

————— €
r(x) —r(z)
in the same way as |5.18).

Next we assume that (iv-2) occurs. If X coincides with Z we do not need to prove
any more in virtue of (5.26). Therefore we may assume that ¥ does not coincide with
Z. Then we can apply the same argument for Case (ii) or Case (iii) according as X €

(5.27)

Ent1(WWNi1)yq Withi=1,....J —1 or X € &n+1(WWn11),,- Hence we can conclude
that
(%) = r(2)
l"()?) _ V(Z) [C26 ’ C26] (528)

holds in both cases (iv-1) and (iv-2). Combining (5.26) with (5.28) we arrive at the
desired inequality

r(x) —r(y -
C.,C
()~ r(y) €0
This completes the proof of [Theorem 5.1. O

Now we prove Theorem 1.1.
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PrOOF OF THEOREM 1.1. We have only to verify the property (#.4). As before
we regard Z;(ij) as a quadrilateral in the (r,¢)-plane P; for each ij € #5. Fix ij € #5.
Let a = a(ij) = 7,(5) Ny, (if), b= b(ij) = 7,(5) N yp(if), ¢ = c(if) = 7, () N.(if), and d =
d(ij) = y.(if) Ny,(if) be the vertices of the quadrilateral Z;(ij). Our goal is to construct
a homeomorphism

@ =y ) < [-5.5] - 20

with the following properties.

(1) @ 1is Lipschitz continuous with respect to the usual Euclidean distance on
[r(a),r(d)] x [-n/2,7/2] and the Euclidean distance on the (r,¢)-plane.

(2) @' is Lipschitz continuous with respect to the Euclidean distance on the
(r,p)-plane and the usual Euclidean distance on [r(a),r(d)] x [-n/2,7/2].

(3) For each re [r(a),r(d)], ® maps {r} x [—n/2,7/2] homeomorphically to a leaf
of 7.

For (r,¢) € [r(a),r(d)] x [-r/2,7/2], there exists a unique point x, € y,(ij) such that
r(x,) =r (clearly, ¢(x) ==n/2). The point @(r,¢) is defined to be a unique point x on
F (x,) satisfying ¢(x) = ¢. Then property (3) is obviously satisfied.

The property (1) is verified as follows. Let (r1,¢,) and (r2,¢,) be any points in
[r(a),r(d)] x [-n/2,7/2]. Then we have

[ @(r1,01) = @(r2, )| < [@(r1,01) = P11, 92)| + |D(r1, 05) — (12, 9,)]

1 2
1+ (k ) 01 — @af + Coalry — 12
min

1 2
< \/1+<k . ) + C3l(r1,01) = (r2, 0]
min

In the above, we have used the property (#.1) and Theorem 5.1 to estimate the first
term and the second term of the first line, respectively.

Next we verify the property (3). Let x = (r(x),p(x)) and x = (r(y),p(»)) be any
points in Z;(ij). We can write @ 'x = (r;,p(x)) and @'y = (1, ¢(»)) for some r; and
r, in [r(a),r(d)] by definition. Let z be the unique point in % (x) with ¢(z) = ¢(y).
Since we can write as @ 'z = (r|,p(y)), we obtain

@ Ix— 07y <@ x -7z 4 |@7 1z — D7y
< lp(x) —@(¥)| + |r1 — 12
<lp(x) — p(p)| + Caulr(x) —r(z)|.

Note that the second inequality above is a consequence of [Theorem 5.1. On the other
hand the property (Z.1) yields

2
) = (2)] = 2= 31 < e = b= 31 = 414 () o) = o) + = .
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Therefore we obtain

D Ix— oy < |14+ Cou| 1+

Now (3) is verified. ]
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