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Abstract. We construct Z,-extensions whose Iwasawa modules have prescribed
structure. Specifically, we give a Z,-extension with prescribed finite Iwasawa module.
Also we show that there exists a Z,-extension with arbitrarily given Iwasawa u-invariant.
We apply the construction of such Z,-extensions to a certain capitulation problem.

1. Introduction.

Let K/k be a Z,-extension and k, its n-th layer. The Iwasawa module Xk of the
Z ,-extension K /k is defined to be the projective limit lim A(k,) of the Sylow p-subgroup
A(ky) of the ideal class group of k, with respect to the norm maps. Otherwise, we can
also define Xx to be the Galois group Gal(L(K)/K) of the maximal unramified pro-p
abelian extension L(K)/K. Then the completed group ring A = Z,[[Gal(K/k)]] acts
on Xx and Iwasawa showed that Xk is a finitely generated torsion Ak /-module. In the
arithmetic of the Z,-extension K/k, Iwasawa module X plays a crucial role. Iwasawa
studied the Ak -module structure of Xx and deduced the following celebrated formula:

THEOREM (Iwasawa). There exist non-negative integers A(K/k),u(K/k) and an
integer v(K/k) such that

#A(kn) _ pi(K/k)n-i—u(K/k)p"—O—v(K/k)
for all sufficiently large n.

Here the integers A(K/k),u(K/k) and v(K /k) are called Iwasawa invariants of K /k.
We remark that A(K/k) and u(K/k) are the invariants of the A/ -module structure
of X K-

Now we raise the following natural question on the Iwasawa module:

QUESTION A. Let p be a prime number and I" a topological group isomorphic to
Z, PutA=Z,[I']]. Then, for any finitely generated torsion 4-module X, does there
exist a Z,-extension K/k such that Xk is isomorphic to X as A-modules, regarding Xk
as a 4-module via some isomorphism Gal(K/k) ~ I'?

We also raise the following question, which relates to Question A:
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QuesTION B.  For any non-negative integers / and m, does there exist a Z,-extension
K/k with A(K/k) =1 and u(K/k) =m?

Here we note that if Question A is affirmative, then Question B is also affirmative.

In the present paper, we shall give partial answers to the above questions. Specifi-
cally, we shall answer to Question A affirmatively in the case where X is finite (Theoreml
1). Also we shall answer to Question B for u-invariants affirmatively (Theorem 2).
In the final section, we shall apply the construction in the proof of to a
certain capitulation problem.

2. Main results.
On Question A, we shall give the following:

THEOREM 1. Let p be a prime number and I' a topological group isomorphic to Z,.
Put A = Z,[[I'l]. Then for any finite A-module X, there exists a cyclotomic Z,-extension
K/k over a totally real number field k such that

X K = X
as A-modules, regarding Xx as a A-module via some isomorphism Gal(K/k) ~I.

Greenberg conjectured that Xy is finite if K/k is the cyclotomic Z,-extension over
a totally real number field k& (see [3]). Therefore, assuming Greenberg’s conjecture,
says that among the cyclotomic Z,-extensions over totally real number fields,
every possible 4-module could appear as an Iwasawa module.

On Question B, we shall give the following:

THEOREM 2. Let p be an odd prime number. For any non-negative integer m, there
exist a number field k and a Z,-extension K /k with u(K/k) =m (and A(K/k) = 0), spe-
cifically, Xg ~ (AK/k/p)®m. Furthermore, we can take k to be an imaginary cyclic ex-
tension of degree 2p over Q.

Iwasawa conjectured that u(K/k) = 0 for any cyclotomic Z,-extension K/k. This
conjecture is valid if the base field k is abelian over Q (the Ferrero-Washington theorem
[1]). However Iwasawa constructed non-cyclotomic Z,-extensions with arbitrarily
large w-invariant. Our method of construction of Z,-extension K/k in [Theorem 2 is
based on [7], hence K/k is a certain non-cyclotomic Z,-extension, so called the anti-
cyclotomic Z,-extension.

To prove the theorems, we refine the idea in Yahagi [13], in which he constructed
number fields with prescribed Sylow p-subgroup of the ideal class group. We extend
his method so that we can impose the prescribed Galois module structure on the Sylow
p-subgroup of the ideal class group.

3. Proof of Theorem 1.

Since X is finite, X is a Z/p™°[I},,]-module for some integers mo > 1 and ny > 0,
where I}, =T'/T"" ~ Z/p" for n > 0.
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LeMMA 1. Assume that a Z,-extension K/k satisfies the following three conditions:

(1) K/k is totally ramified at every ramified prime.

(i) A(kn,) ~ X as I,,-modules, viewing A(ky,) as a I,,-module by some identifica-
tion Gal(K/k) with I.

(i) Akn,) = AlKyi1):

Then we have Xx ~ X as A-modules.

Proor. It follows from assumptions (i), (iii) and Fukuda [2] that Xx ~ A(k,,) as
Ag/k-modules.  Hence the assertion follows from assumption (ii). O

By virtue of [Lemma I, our main aim is to construct a number field with prescribed
Sylow p-subgroup of the ideal class group and Galois action on it. Yahagi con-
structed number fields with prescribed Sylow p-subgroup of the ideal class group. We
refine his method to construct a desired number field. Outline of the construction is
as follows: We construct a cyclic extension k/Q, of degree p™ for suitable N, Qy
being the N-th layer of the cyclotomic Z,-extension over Q, such that A(k,,)/(c — 1) ~
A(kny+1)/(6 — 1) ~ X as I'-modules (identifying I” with Gal(k,, /k)) by ‘“genus theo-
retic” method, where k., /k is the cyclotomic Z,-extension, k, (n > 0) is its n-th layer
and o is a generator of Gal(ky,11/Qy,,+1)- By selecting the ramified primes of k/Qy
carefully, we can make the ideal classes in A(k,,;s) containing oc-invariant ideals
generate A(ky,4+s)/(0 —1) for 6 =0,1. Hence A(k, o) = A(kny+s)/(0—1) ~ X for
0 =0,1 by Nakayama’s lemma. Thus the cyclotomic Z,-extension k., /k is a desired
Z ,-extension by [Lemma 1.

We fix a topological generator y,, of I" and put y, =y, modI'”" eI,. Let

(1) r:=dimg, X/(p,7,, — 1)

Then r is the number of minimal generators of X over Z/p"|[I}, ], and there exists an
exact sequence of Z/p™ I, ]-modules

(2) 0= Ry — Z/p™ 1] — X — 0.

Let 7/ 1®”

be the natural map from Z/p"[I;,.1]%" to Z/p™[I; induced by

no+1,ng 0
the natural projection [;,+1 — I,,, and put R, i :n,’10+17n0*1(R,10). Then 7, .,
induces the isomorphism
(3) Z/pmo [I—;10+1]@r/Rn0+1 ~X.

We identify Z/p™[I},11]®" /Ry 1 with X via the natural isomorphism (3).
We define the submodule R, .5 (6 =0,1) of Z/p™[I;,.s]®"" as follows:

m r+1
(4) Rn0+5 - {(ai)lsi31‘+l € Z/p 0[1710+5]® - ‘

;
(%)) <i<, € Rugio, 0ry1 = Zoc,- (modynﬁ(; — 1)}.
i=1

We put
(3) X =2Z/p™ L] Ry
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We remark that there is a natural injection X — X given by (x;);_;., mod Ry,+1 —
(X1, vy Xpy > oiq X;) mod ﬁn0+1, whose cokernel is isomorphic to Z/p™.

Then the natural map 7,414, : Z/p"[L3,01)°"" — Z/p™[I;,,)®"" induced by the
projection 1,1 — I, gives the isomorphism

(6) X Z/pmo[ 0+1] r+1/1~{n0+1 = Z/pmo[mo]e—)rﬂ/ﬁno

because 7, |, (Rn,) = Rups1-
Let g be the number of minimal generators of R, over Z/p™[I},, 1], and we

choose and fix once for all an integer N with the property
(7) pY —1>g and N >my.

Now we shall identify I” with Gal(Q,/Qy) by a fixed isomorphism I ~
Gal(Q,/0Qy), where Q. 1is the cyclotomic Z,-extension field of Q. Then I;=
Gal(Qy,,/0Oy) for t > 0.

Let [; (1 <i<r+1) be distinct degree one primes of @, which decompose com-
pletely in Qy, 115 say l; = Hye Lo 7L no+1. Furthermore, we assume that [; decom-
poses completely in QN+n0+1 = Oninor1(1,) (f p#2) or Qnipi1(y) (if p=2). Put
m= H“rl l;, and denote by %;,, the prime of Qy,, below &;, ;. For >0, we
denote by L,/Qy,, the maximal abelian p-extension such that the conductor of L,/Qy_,
divides m and the exponent of Gal(L,/Qy,,) is less than or equal to p”°. Since
the class number of Qy,, s 1s prime to p as well known, we get the exact sequence of
I'-modules

n0+(>

(8) 0]>\</+no+5/pmo - <@N+n0+5/m> /p

mo T'ng+o

— Gal(Lny+5/ Qning+s) — 0,

for 6 = 0,1 by class field theory, where On,,,;s denotes the ring of integers of Qy ., s,
Puy+o 18 the natural map, and r,,, s 1s the map induced by the reciprocity map. We can
see that the middle term (O, ,,1s/m)°/p™ of (8) is isomorphic to Z [1}0+5]®'+1 via the
following map:

(9) (@N+n0+0/m> /pmo = Z/p [ no+0 ](Br—t—l’

the class of o — Z 1] <~~oc ) 14
040

ye]’,;0+(5 y2i7110+(5 no+

1<i<r+l1

Notations in (9) are as follows: 7 e Gal(QN ot d / QN) is the image of y via the natural
isomorphism  1;,¢ ~ Gal(QN+n0+o/QN) where QN+n0+<S QN+n0+(5(ﬂp) (if p#2) or
QN+n0+o(ﬂ4) (if p=2). € 441 are fixed primes of QN+” 41 lying above &;,,.1, and
L, , 1s the prime of QNM below & okl (%/%), 15 € Wm 1s the p™-th power residue
symbol for Qy ingro- @ 1s a fixed 1somorphlsm Hymo =~ Z[p™. Here we note that

Hpmo S QN b}’ (7) hence ((x/yﬂ, no+0)ngrs = (77 oc/ﬁ, no+r>)n0+(5: and that Oyinyt6/7%i ng+o
~ Ongng+5/ 78 no+0 (9N+n0+5 being the ring of integers of Qy., ., since |; decomposes

completely in Qy, .1 )
In what follows we fix £;,,+1 and ¢ once for all and identify (Oy.,,+s/m)*/p™
with Z /pm0[1310+5]@"+1 via the above isomorphism. Then we get the exact sequence
m r+1
(10)  Ofinges/P™ == Z[p"[[gs]®" = Gal(Luyss/ Qynyes) = 0,

Pny+o Tng+o
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from (8), and the map p, ,; is given by

(11) Pues®) = Y v ( ) y
no+o

VAV ST yQi,n0+(5

I1<i<r+l

It follows from (7) that pymen S QN+,10+5 when p=2. Hence p, ,5(—1) =0 for any
prime number p by [1T) since —1 € ( fiymer1)® * when p = 2. From exact sequences
for 6 =0,1 and the fact that p, ,;(—1) =0, we get the following exact commutative
diagram:

n0+1

r+1 Fng+1
(/I>\<7+no+1/p Z/p [ no+1]®+ — Gal( n0+1/QN+n0+1> — 0

(12) Nn0+1.nol nn0+1,n0l resn0+17noJ/

pn r er
Onin /P — Z/p™[[, )2 " Gal(Ly,/Oysn) — O,

where Oy, s = Oy, s/{F1} for 6 = 0,1, Nygi1,4, is the norm map from Qy., i to
ONinys Tng+1,n, 18 the map induced by the natural projection 75,1 — I5,, and res, i1,
is the restriction map (Note that L,, < L,,+1). Commutativity follows from the fact
5~3i,,10+1|§,~7,,0 and the properties of the p”°-th power residue symbol and the reciprocity
map.

Lemma 2. (i) For any t >0, we have

Ond/P™ = Z[p™ (L] @ Z/p™ (L) /Ny,

as Z/p™|[I;]-modules, where N = ZVGE 7 ox 0%,
(i) In commutative diagram (12), the norm map Nyuyi1n : Oy i1 /2™ = OXini/
p™ is surjective.

PROOF. Let 1= No(yy..1)/0y., (oot —1)7 1 (when p#2), or 5={
((Gwiz — 1) /(Eowia — 1)) (When p = 2), where o is a generator of Gal(Qy.,/Q) and {,
denotes a primitive d-th root of unity for d > 1. Then

Cni =<1, |7e Gal(Qy,,/Q)>

is the group of cyclotomic units of @y, and p }f [Oy,, : Cyy,] (for the various properties
of the cyclotomic unit group, see [12, Chapter 8] for example). Hence Oy ,/p™® ~

(Cnyi/{x1})/p™. Because
Cni/{£1} =~ Z[Gal(Qy,,/ )]/ Naaio,.,/0)
as Gal(Qy,,/0Q)-modules and

Z[Gal(Qy,/0)] = D Z[Ir,
teGal(Qy.,/0)/1;

we can see that Cy.,/{+1} ~ Z[I}]®” oz [I}]/Np. Thus we have proved assertion
(i).

Assertion (i) follows from Oy, . s5/p™ =~ (Cyinyrs/{£1})/p™ and the fact that
the norm map Ny, +1,n, : CNingr1/{E1l} = Cnin,/{Z1} is surjective. O
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LemMmA 3. For any I, 1-homomorphism f: Oy, \/p™ — Z[p"™[[}11], there
exist infinitely many degree one primes & of Qy.,, . such that

-3 (ﬂ((y—g)> y

for any e € Oy, . /p™, where the notations in the above are as in (9). Furthermore, for

any fixed finite abelian extension M/QN+n0+l with M N Q~N+n0+1 ("N O ns1) = QN+n0+1

and T € Gal(M/Q~N+nO+1), we can impose the condition
M/QN+I10+1 — 7
U

Proor. From (i), there exist &,&e Oy, . (1 <j<p" —1) such that

on L.

_ pY-1 _
(13) @]>\<7+n0+1/pm0 = EBI Z/p’no[moJrl]S_j @ (Z/pmo[mo+1]/NEzo+1)év
j=

where &,¢ e Opinyr1/P™ are the classes of ¢ and ¢, respectively.
Asspmc? the}t f(g) = Zyel“,,o+1 Cj vy ar}d f(&) = ZV€E10+1 d,y. We shall show that
there exist infinitely many degree one primes £ of Qy,, ., such that

&i _ .
(—’) =9 ¢,) (1<j<pV—1,9el),
yQ }’l()+1

(14)

<)7%) =0 '(d,) (ye Ly —{1}).
no+1

We note that if the above conditions hold, then the condition

also holds, because Hyefnoﬂ (f/()?fl))nOH = (Hyerno+l yé/ﬁ)no+1 =1 and Zyernoﬂ d, =0.
We also note that

(15) <%) _ <Q~N+no+1<pm\/0 _16)/QN+n0+1> (,,W)/(,"W>
Y no+1

for any e€ Oy, .-
We need the following lemma:

iS4

[eol}

LemMmA 4. The natural map Oy, .1/p™ — @K,Moﬂ/p’"o is injective (note that —1 €
~ PVHO
(@]>\<7+}’l()+1) )‘

Proor. From the exact sequence

pmo ~x mq
- (QN+n0+1)p —>0

~ X
0 — tymg — Onipgs ,
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we get the exact G = Gal(Qy vnot1/ Oniny11)-cohomology sequence

<QN+VZO+1>

If p#2, H'(G, ,upmo) =0 since #G is prime to p. Hence we have (QN+n0+1)pm° N
Oningt1 = (Onin, +1)p . Therefore the assertion of the lemma follows.
We assume that p=2. Then we can see H!(G,um )~ Z/2. Hence we have

((QN+n0+1)2mOmQN+n0+1)/(QN+nO+1)2mO ~Z/2. Since _IG(QN+n0+1>2 ! (QN+n0+1)2 0;
the kernel of the natural map Oy, /2" — CON tnyi1/2™M, which is contained in

p’”() pmo

Q]>\<]+n0+l ﬂ QN-H’l(H—I —>H (G ﬂp’”()) B 0

((Q~;,+no+l)2m0 N QNMOH)/(Q;,HOH)ZMO, is generated by the class of —1. Thus we also
obtain the lemma in the case p = 2. O

PROOF oF LEMMA 3. Put Fy =0y 1 ("7 e |y € lnyr1) and E= Oy i1+
"N '¢|y € Iy+1). Then it follows from [Lemma 4| and [(13) that the abelian exten-

sions F/QNMOJrl (1<j<p"—1) and E/QN+no+1 are independent, and that

Gal(F;/Qyiny1) = D tymos = (a("\/776)/ "\ T8 )yery o

VGI;;OH

Gal(E/QN+no+1) = C—D Hpmo s g (a(’ OV 7! )/me” NS )V€1770+1_{1}‘

yE[}:lo-Fli{l}

Therefore, by the Cebotarev density theorem and (15), there exist infinitely many degree
one primes of Qy,, ., satisfying (14). Furthermore, we can impose the condition

M/QN+n0+l _
e

~ . A mo [ x N
on £, since MNQyp1("\/Oxinii1) = Oningst- [

Now we choose the primes €;,,4; and [, From (7) and (i), there exists
a [y,r1-homomorphism h: Oy, . /p™ — Z/p™ [F,41]®" such that Im(h) = R,
Assume the following condition on the primes &;,,+1 (I <i<r+1):

CONDITION A.

*
prioh= Y ¢ < > y
n0+1

7€yt PLing+1

for 1 <i<r+1, where pr,: Z/p™[I},.1]® " — Z/p™II;,,.1] denotes the projection
map to the i-th component.

By virtue of [Lemma 3, there exist degree one primes w1 of Oy ngi1 Satisfying
Condition A such that &;,,.1’s are lying over distinct rational primes. We choose
the prime of Qy (resp. Qy,,, .s) below U as [; (resp. B, np+o (0=0,1)), and put
m= H”l Then we have Im(p, ;) = Im(h) = R,,+1 by [1I}, hence r,,+ induces the
isomorphism

(16) X = Z/PmO[Eerl]@rH/RnoJrl =~ Gal(Lno+1/QN+n0+1)'
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Also we have

(17) Gal(Lyy 11/ Onngr1) = Gal(Lng /Oy i)

because Im(p, ) = Ry, and Gal(Ln,/Qy.n,) = Z[13)®" "' /R, ~ X by (i),
commutative diagram (12), and the fact Rui1 = n;ole(Rno). We identify
Gal(Lyy11/Qnynyr1) With X via the isomorphism (16).

We regard X = Z/p™ I}, :1]®" /Ru+1 as a submodule of X = Z/p™I[I; 1]/
jén(H_l via the embedding (x;);.,., mod R, ;1 — (X1yeey Xy Doty Xi) mOan0+1. We

define F to be the intermediate field of L, 1 1/Qyy,,1 With
(18) X = Gal(L,,11/F).

LemMMA 5. (i) There exists the unique cyclic extension k/Qy of degree p™° with
conductor dividing m such that F = kyy1(=kQy.p 1)

(i) Primes yL;nyrs (7 € Tngrs,1 <i <r+ 1) are totally ramified in ky,ys5/ Oy poss-
Also primes 1; (1 <i<r+1) are totally ramified in k.

(i) Lp,4s is the genus p-class field of kny15/Qyin,vs for 6 =0,1.

ProOF. (i) Since X /X is generated by the class of (0,...0,1), Gal(F/Qy . pyi1) =
X/X ~Z/p™ with trivial I, ;-action. Hence F/Qy is an abelian extension and
Gal(F/Qy) = Gal(F/Qy, 1) X I, where I, = Gal(F/Qy) is the inertia subgroup for
the unique prime of Qy lying over p. Let k be the fixed field of 7,. Then k is the
desired field.

(ii) In (12), the inertia subgroup of Gal(Lyy11/Qy.y,11) fOr yLi .11 is generated
by rn0+1((0,...,§...70)) over Z/p™. One can easily see that the order of (0,...,
%...,O)modﬁnﬁl is p™ and that Z/me((O,...,é...,O)modﬁnUH)ﬂX:O. Hence
the prime y&; ,,41 is totally ramified in &,y 11/Qpy 1 and Ly i 1/kyo41 is an unramified
extension. The remaining assertions follow from this fact because k1 = kngQnpys1
= kQN+n0+1'

(iii) Let L' be the genus p-class field of k, 11/Qy,, ;- Then L, 1 = L’ since
Lyyi1/knys1 s an unramified abelian p-extension and Ly,y1/Qpy .1 15 abelian. Now
we show L' < L, ;1. Since the class number of Qy., .| is prime to p, Gal(L'/k,,1)
is annihilated by p™* = [k;,11: Qyy,11]- Since the prime &;,,.1 is totally ramified
in kny11/Qninop1, We have Gal(L'/Qy.,, 1) = Gal(L'/kni1) x Gal(Kug+1/ Qg r1)-
Hence Gal(L'/Qy.,,,+1) is annihilated by p™. Since the conductor of L'/Qy., i
divides m, we obtain L' < L, ;. Thus we have shown that L, . is the genus p-class
field of k,,4+1. The assertion for L,, also follows by the same argument. O

It follows from Lemmas 1, 5, (18), and (17) that if L, s is the Hilbert p-class field
of ky,1s for 0 =0,1, the cyclotomic Z,-extension over k is a desired Z,-extension.
Let H'”) - be the Hilbert p-class field of k,,.s for 6 =0,1 and o a generator of

no+o
Gal(kyy11/Qnin,11)- Then we have

(19) Gal(Lnys1 /kny1) = Gal(H\"), [kny41)/ (o — 1),

by Lemma 5 (iii). Denote by 5_3,3,10“ the unique prime of k1 lying over £;,,+1
(Lemma 5 (ii)). If {(Line+1,Lng+1/kng+1)|1 <i<r+1} generates Gal(Ly,+1/kny+1)
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over Z/p"[I,+1], then L, 1 = Hn +1 by (19) and Nakayama’s lemma because y2; ,, 1

(yel,,41,1 <i<r-+1) is invariant under the action of ¢. Since H,go)knoﬂ = H,EOPH
and Ly, 41 = Lyyky,+1 by [17), if Ly1 = »§+1 holds then L,, = H,(,f) also holds.

LEMMA 6. The restriction induces the isomorphisms

Gal(Lyy 11 /QN+n0+1 )I}OH ~ Gal(Lo/Qy)

and
Gal(Ln0+1/kn0+1 )I;OH =~ Gal(L()/k)

Proor. Let M be the intermediate field of L, 41/Qy, .1 With Gal(L,,11/M) =

(Pnor1 — 1) Gal(Lug+1/ QN ngs1)s 7o+ being a generator of I, ..

Then Gal(Ly,41/Oningr1)r, ., = Gal(M /Oy 1) and M/Qy is an abelian ex-
tension. It is obvious that LOQN inor1 E M. Let I, = Gal(M/Qy) be the inertia
subgroup for the wunique prime of @, lying over p. Then Gal(M/Qy) =
Gal(M/Qy,p,+1) ¥ 1, and the fixed field of 1, is contained in Lo. Therefore we have

LoOy 41 = M and Gal(L n0+1/QN+no+l)F ~ Gal(Lo/Qy) since LoNQy_ 1 = QN-
To show the second assertion, it is enough to show (y,,.1 —1)X = (yno RN D¢

because (7,11 — I)X Gal(Lyny11/LoQy,,+1) by the first assertion. Let (x))eX =
Z/p™ I, 41 ]@'+ /R,,+1 be any element. Since

(O,.. s (Pnor1 — (le —er)) € Ryyi1,

(20) Pngst = D) = (g1 — D)

= ((yn0+1 - 1)X1, ) (yn0+1 - I)X,, yn0+1 le>

we have

= (yn()+1 (xla . xlyzxz> yn0+1 I)X

Hence (7,1 — )X < (7021 — 1)X.  Thus we have shown (y, ., — X = (Pnos1 — DX
[

Let L ) and L ) be the maximal elementary abelian p-subextension of Lo /Oy and
Lo/k, respectlvely. Denote by k(7 the intermediate field of k/Q, with [k(?) : Q] =
Then we have

(1) Gal(Ly’/Qy) = (Gal(Luy1/ Qv imyi)s;,, /P
~ ((Gal(Lyy11/kng1) x Gal( Vlo+1/QN+no+l)> n0+1)/p

~(Z/p)®™!
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by Lemmas 5, 6, (1) and (18). We find that Gal(L /QN) Gal( /k)
Gal(k/Qy) because [; is totally ramified in k/Qy and L(” /k is unramified extens1on by
Lemma 5. Hence L(p = kLY and

(22) (Ga1(Ln0+1/kn0+l)%l)/pzGal(L}g’)/k) Gal(L{" /k'?)

by Lemma 6, where isomorphisms in the above are glven by the restriction. It follows
from (22) the fact (& 11, n0+1/kn0+1)|L (I,,L /k )), 1; being the unique prime
of k(») lying over 1, and Nakayama s lemma that if {(I;, L ) Jk» NlT<i<
r+ 1} generates Gal(L(op JkP), then Gal(L,,1/kn,+1) is generated by {( Q oits Lug1/
kny+1)|1 <i<r+1} over Z/p™[I,,+1], hence L, s is the Hilbert p-class field of
kn,+s (0 =0,1) as mentioned above. Let [; (1 <i<r+ 1) be the inertia subgroup of
Gal(L{"/Qy) for the prime I, Then we have I, ~ Z/p and

r+1

(23) Gal(L{"/Qy) = @1

because [; ramifies in k(”?) by Lemma 5 and Gal(Lo /QN) ~ (Z/p)® ! by (21). Hence

(P) /@, is the composite of the abelian extensions Q%’)(I,-) /Oy (1 <i<r+1) of degree
p with conductor [;, and the restriction induces the isomorphism

(24) Gal(Ly) /k7) ~ @ Gal(QY(1)/ Q).
i=1

Assume the following condition on [; (1 <i<r+1):

CONDITION B. The prime [, is inert in QN (). f3<i<r+1, then the prime ;
splits in QN (I;) for all j such that 1 < j<i—2 and is inert in QN (Liz1).
Then, under isomorphism (24),

(P) /1(p)
<%) — (01,...), 0] eGal( ( i)/ Oy), o1 # 1,

Oi— — (1,...,1,011,...), 06i1€Gal(QP(1i_1)/0y), 0.1 #1 B<i<r+]1).
Therefore {(I,,L /k N1 <i<r+1} generates Gal(LE)”)/k(l’)), which implies
Lyts :Hr(lf)+5 (6 =0,1), under Condition B. Condition B is equivalent to the fol-
lowing condition on £; ,,+1:

ConDITION B’. The prime £, np+1_18 Inert in QN <11>QN+n0+1 f3<i<r+1,

then the pr1me [ o1 splits in QN)( )QNMO+1 for all j such that 1 < j <i—2 and is
inert in QN (Ii— 1)QN+n0+l

By virtue of Lemma 3, we can choose inductively the degree one primes £ no+1 of
QN bt from i =1 to r+ 1 such that €, ,’s satisfy Condltlons A and B’, and that
I np+1's are lying over distinct rational primes, because QN (l; Oy g1 s (1<
i—1) and Qy ot "V OXinor1) are independent over Oy inos1- Thus the cyclotomic
Z ,-extension over totally real number field k£ given in Lemma 5 is a desired Z,-extension.

[
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4. Proof of Theorem 2.

Let p be a given odd prime number and F an imaginary quadratic field such that
the class number of F is prime to p and the prime p is inert in F. Such field F
certainly exists by Horie [4]. Denote by F../F the anti-cyclotomic Z,-extension,
namely, the unique Z,-extension over F which is non-abelian (dihedral) Galois extension
over Q. We write F, for the n-th layer of F.,/F and put I, = Gal(F,/F). It follows
from Iwasawa [7, section 2] (see also [10, chapter 13, Theorem 5.2]) that if a prime [
of F with [y p is inert in F/Q, then [ decomposes completely in F.,,. Let /; (1 <i<
m+ 1) be distinct rational primes such that

l; is inert in F and [; =1 (modp),

and put f = H,’El ;. For n >0, we define the field L, to be the maximal elementary
abelian p-extension field over F,, whose conductor divides f. It follows from the as-
sumption on F and Iwasawa that the class number of F, is prime to p. Then we
have the following exact sequence of I,-modules by class field theory:

(26) Oy/p = (Gu/f)"/p — Gal(Ly/F,) — 0,

where (), denotes the integer ring of F,. Since the prime /; of F splits completely in
F,, we can see that (0,/f)*/p ~ Z/p[I;]®™" as in the proof of Mheorem 1. Then, by
taking the projective limit of exact sequence for n > 0, we get the exact sequence of
Ap, ;p-modules

(27) lim (0 /p) — (Ap, ;#/p)®"" — Gal(L,./F..) — 0,

where the projective limit lim(¢,/p) is taken with respect to the norm maps and
L, = UnZOLn'
Lemma 7. We have O [p ~ Z/p[]}l]/zyenl y, and 121(0:/p) ~ Ag, /r/D-

Proor. We assume that O /p ~@P,_ | Z/p[I})/(y, — 1) for 1 <a; < p". Then
Yoiya;=dimg, Ox/p=p" —1. From the exact sequence

0— 0L 0= 0)p—0

and the fact that H%(I;,, ) =0 (i e Z) (This follows from the fact that H°(I;, ¢*) =
Os/ (> ,er, )0, =0 since #(f is finite and prime to p), we get the following exact
cohomology sequence:

(28) 0 — H(I;,, 0% /p) — H'(I;,, 0X) & H(I;, ©) — H'(I, 0} /p) — 0.

One can show that H!(I;,0F) ~ PI"/P;, P, being the principal ideal group of F,.
Because the class number /4, of F, is prime to p and the prime B, of F, lying over p
is the unique ramified prime in F,/F, which is totally ramified, P?/P, (note that
PIi/Py has p-power order) is generated by the class of %,ﬁ’”, whose order is p”".
Hence H'!(I,,0X) ~ Z/p", which implies H'(I;,0"/p) ~ Z/p by (28). Since H'(I,,
Ox/p) =@y H'(L, Z/plL3) [ (7, — 1)) and H'(L,, Z/p[L)/ (7, — 1)) = 0 if and only
if 4= p, we have O = Z/pL)/ (5, — )" = Z/pIL]/ %, e
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By the similar way to the above, we can show that H'(F,/F,, OF) ~ Z/p"™ for
0<n<t Then it follows from the fact #H'(F,/F,, 0)/#H"(F,/F,,0X) = [F; : F,] =
p'™" that H(F,/F,, ¢) =0, which implies the norm map ¢)/p — X/p is surjective.
Hence we have lim O /p ~ lim Z/p[I}]/ > . v =~ lim Z/p[I},] ~ Af, jr/p, Where the
projective limit in the second and third terms are taken with respect to the maps induced
by the natural surjection I; — I, for 0 <n <t O

Let k/F be a degree p subextension of Ly/F in which all the primes /; (1 <i <
m+ 1) ramify. Then we will see that L, /k, is an unramified abelian p-extension, where
kn = kF,. 1f L, is the Hilbert p-class field of k, for all n >0 and the map lim (O;;/p) —
(Af, /F/p)(BWrl in (27) is injective, then we have

Xi, = Gal(Ly /k) ~ Gal(Lye /F.e) = coker(im (€)' /p) — (Ar, i /p)*""")

~ (AFOO/F/p)@m = (Akm/k/l’)@m

by Lemma 7, where k., = kF,, and ~ denotes a pseudo-isomorphism. In what follows,
we shall choose the primes /; and the field £ so that the above conditions are satisfied.

For a prime / =1 (modp), we denote by Q) (/) the unique subfield of Q(x;) of
degree p. Now we impose the following condition on primes /;:

CONDITION. p is inert in Q(p)(ll) and splits in Q(”)(li) for2<i<m+1. If2<
i<m+1, then /; splits in Q(p)(lj) for all j such that 1 < j<i—2 and is inert in
Q(p)(lH)-

LeEMMA 8. There exist distinct prime numbers I; (1 <i <m+ 1) satisfying (25) and
the above condition.

ProoF. We first note that p is inert in Q) (/) if and only if p{"D/7 £ 1 (mod/)
for a prime number /=1 (modp). Hence if the decomposition subgroup of
Gal(Q(u,,v/p)/ Q) for a prime of Q(u,,v/p) lying over [ is Gal(Q(u,,/p)/Q(u,)) (resp.
trivial) then /=1 (modp) and p is inert (resp. splits) in Q(p)(l). Applying the Ce-
botarev density theorem to Q(u,,v/p)F/Q, we can choose prime /; satisfying (25) and
the Condition since Q(u,,+/p) and F are independent over . We can choose the
prime /; (2<i<m+ 1) satisfying (25) and the Condition inductively from i=2 to
m + 1 by applying the Cebotarev density theorem to O(u,, W)FQ(I’) () -0V (Ii_1)/0
since Q(u,,v/p), F and QP (y’s (1 <j<i—1) are independent over Q. O

We assume that distinct prime numbers /; (1 <i <m + 1) satisfy the Condition and
(25). It follows from for n = 0 that Ly = FO (1) --- Q") (I,,41) and Gal(Ly/F) =
G—)lnjl I, where I, ~ Z/p is the inertia subgroup of Gal(L,/F) for the prime /;. Since
the decomposition subgroup of Gal(Ly/F) for the prime p is [, by the Condition, there
exists an intermediate field k of Lo/F with [k : F] = p such that p is inert and /; ramifies
in k/F for any i. Then k/Q is a cyclic extension of degree 2p and k has the unique
prime lying over p.

Lemma 9. (i) L, is the genus p-class field of k,/F, (k,:= F,k).
(i) The restriction induces Gal(L,/ky); ~ Gal(Lo/k).
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Proor. (i) Since the prime /; ramifies in Lo/F and Lo < L,, every prime of F,
lying over /; ramifies in k,/F,. Hence L,/k, is an unramified p-extension, because in
L,/F,, the ramification index of a prime of F, lying over /; is p. By a similar argument
to the proof of (iii), we have the assertion.

(i) Let M be the maximal intermediate field of L,/k, which is abelian over k.
Then Gal(L,/k,); ~ Gal(M/k,) and M/F is abelian. We shall show that M = kL.
k,Lo = M 1is obvious. Denote by I, the inertia subgroup of Gal(M /k) for the unique
prime of k lying over p. Then Gal(M/k) = I, x Gal(M /k,) and the fixed subfield M’
of M by I, is contained in L,, because M’ /k is unramified p-extension, M/F is
abelian, and L is the genus p-class field of k/F by (i). Hence it follows that M < Lok,.
Therefore we have M = Lok, and Gal(L,/k,); ~ Gal(M /k,) ~ Gal(Ly/k). ]

By virtue of and Nakayama’s lemma, we find that if {(I;, Lo/k)|1 <i <
m + 1} generates Gal(L/k), then L, is the Hilbert p-class field of &, as in the proof of
Mheorem 1, where I; denotes the unique prime of k lying over /;. It follows from the
Condition on [’s and the fact Lo =kQP(l)---QW(l,) that {(I;,Lo/k)|1 <i<
m + 1} generates Gal(Lo/k). Therefore L, is the Hilbert p-class field of &, for all n > 0.

Next we shall show the injectivity of the map lim O /p — (AF, /r /p)®™ T in (27).
It is enough to show that the map O)/p — (0,/l)"/p is injective for all n > 0. Let
F\¥ )(ll) be the maximal elementary abelian p-extension field over F, whose conductor
divides /;. Then we get the exact sequence

(29) Ox/p — (Cu/1)"[p — Gal(FyP (1) /Fy) —
It follows from the above exact sequence for n= 0 that [ (ll) Fy] = p and the
prime /; ramifies in F (ll)/Fo Hence F.” (ll)/FF )(ll) is an unramified abelian p-
extension. The class number of F,”’(I)) is prime to p because the class number of F is
prime to p and /; is the only ramlﬁed prlme in F (p )(ll) /F (see Iwasawa [5]). Since there
is the unique prime of F ( ) =FQW (ll) lying above p by the Condition which is the
unique prime ramifying in F, F (11) /F (ll) the class number of F, F (ll) is prime
to p by Iwasawa’s result mentioned above. Hence we have F,” () = F,F, é )(ll) and
Gal(F\" (I,)/F,) ~ Z/p, which implies the injectivity of the map ¢*/p — (0,/1;)*/p by
and the fact #((C,/h)"/p)/#(C;/p) =

Thus we have shown that k. /k is a Z,-extension with X, ~ (Ax,/x/p)®"

Finally we shall show that X, ~ (/lkw/k/p)@". Since pXi, = p lim Gal(L,/k,) =
0, X, is a finitely generated module over the principal ideal domain A,/ /p. Because
Xie, ~ (A, x/p)®", we have

(30) Xie, = (Ai, i /p)"" @ Torn,,,1p X,

as Ay, s/p-modules. From the fact that there is the unique prime of k lying over p
and k. /k is a totally ramified at that prime, we have Gal(Lo/k) ~ X; /i/(7,, — 1),
where 7 is a topological generator of Gal(k./k) (see [6]). Hence it follows from
Gal(Lo/k) = Gal(FQ'" (1) - -- Q) (ly11) /k) =~ (Z/p)®" and [30] that Tory, ,/, Xe, =
0. Thus we have Xj, =~ (Akx/k/p)eam as Ay, -modules. O

ExampLE. Put p=3, F=Q(v-1), and let F,/F be the anti-cyclotomic Z3-
extension. Then p is inert in F and the class number of F is prime to p. Put
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f1=7-19, /L =7-19-43, f3=7-19-43-1597, and denote by M,/Q (s=1,2,3) a
cubic cyclic extension of conductor f; such that the prime 3 is inert in M,. Then it
holds that u(MF.,/MF)=s for s =1,2,3.

5. Application to a certain capitulation problem.

In this section we shall apply to a certain capitulation problem. Let F
be a number field with the ideal class group CI(F¥). Then the principal ideal theorem
says that:

PRINCIPAL IDEAL THEOREM. FEvery ideal of F capitulates in the Hilbert class field Hp
of F, namely, the natural map CI(F) — Cl(Hp) is the zero map.

However it happens that all the ideals of F capitulate in a proper subextension field
of Hr/F. Iwasawa constructed an infinite family of such number fields F by using the
theory of Z,-extensions in [9]:

THEOREM (Iwasawa (8], [9]). For any prime number p, there exist infinitely many
number fields F with the following properties:

(i) CUF)(p) ~Z/p" with r =2, CI(F)(p) being the Sylow p-subgroup of CI(F),

(i) CI(F)(p) capitulates in an unramified cyclic extension F'/F of degree p.

In the above theorem, let M be the compositium of F’ and the Hilbert /-class fields
of F for all the prime numbers / # p. Then F =< M < Hp and CI(F) capitulates in M.

In the paper [11], the author showed that for any given number N, there exists a
number field F such that CI(F)(p) ~ Z/p” with r > N and that F has property (ii) in
Iwasawa’s theorem. By using the construction of [Theorem 1, we further improve the
theorem:

THEOREM 3. For any prime number p and finite abelian p-group A, there exists a
number field F with the following properties:

() ClF)(p) ~ 4,

(i) CUF)(p) capitulates in an unramified cyclic extension F'|/F of degree
exp(CL(F)(p)), exp(CI(F)(p)) being the exponent of CI(F)(p).

ProoF. Let p¢ be the exponent of 4 and A4’ a subgroup of 4 with 4 ~ A’ @
Z/p¢. By the construction in the proof of for X = A’ with trivial I"-action,
no =0 and my = e, we get the cyclic extension k/Q, of degree p¢ such that Cl(k,)(p) ~
A’ for any ¢t >0 and the Hilbert p-class field ngp ) of k is the genus p-class field L
of k/Qy (recall (iii)). Let F be an intermediate field of k./Qy such that
Gal(F/Qy) ~ Z/p°¢ and Fﬂk:FﬂQN+e Oy. Then we can see that k./F is an
unramified cyclic extension of degree p°. Denote by H ) the Hilbert p-class field of
k.. Then H( ) = Lok, = LOQN+L, hence H| (7) /Oy 1s an abehan extension since Lo/ Qy
is abelian. Therefore H; (7) /F 1s an unramlﬁed abelian p-extension. Consequently,
H,ﬁp ) is the Hllbert p class field of F. Since H (p) — =LoF and LoNF = Qy, we have
CI(F)(p) ~ Gal(H; /F) Gal(LoF/F) ~ Gal(LO/QN) ~ A" ®Z/p° ~A. Hence the
field F satisfies COIldlthIl (i).
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Next we shall show that the field F satisfies condition (ii). From class field theory,
we get the following commutative diagram:

Cl(k)(p) ——  Gal(H\" /k.)

]\ T transfer

CI(F)(p) —— Gal(H"/F) ~ 4,

where the horizontal maps are the reciprocity maps, the left vertical map is the natural
map and the right vertical map is the transfer map from Gal(H,if’ ) JF)*® = Gal(H,if’ )/F)
to Gal(H,(cf)/ke}z‘lb = Gal(Hlif)/ke). Since the transfer map Gal(H,g)/F) — Gal(ngf) /ke)
is equal to the multiplication-by-p¢-map when we regard Gal(H,Ef7 ) /k.) as a subgroup
of Gal(H,if ) /F), it is equal to the zero-map by Gal(H,Ee” ) /F) ~ A. Hence the natural
map CI(F)(p) — Cl(k.)(p) is also the zero-map. Therefore CI(F)(p) capitulates in an
unramified cyclic extension k,/F of degree p¢ = exp(Cl(F)(p)). O
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