Construction of Z_p -extensions with prescribed Iwasawa modules

By Manabu Ozaki

(Received Jun. 3, 2002) (Revised Mar. 3, 2003)

Abstract. We construct Z_p -extensions whose Iwasawa modules have prescribed structure. Specifically, we give a Z_p -extension with prescribed finite Iwasawa module. Also we show that there exists a Z_p -extension with arbitrarily given Iwasawa μ -invariant. We apply the construction of such Z_p -extensions to a certain capitulation problem.

1. Introduction.

Let K/k be a \mathbb{Z}_p -extension and k_n its n-th layer. The Iwasawa module X_K of the \mathbb{Z}_p -extension K/k is defined to be the projective limit $\varprojlim A(k_n)$ of the Sylow p-subgroup $A(k_n)$ of the ideal class group of k_n with respect to the norm maps. Otherwise, we can also define X_K to be the Galois group $\operatorname{Gal}(L(K)/K)$ of the maximal unramified pro-p abelian extension L(K)/K. Then the completed group ring $\Lambda_{K/k} = \mathbb{Z}_p[[\operatorname{Gal}(K/k)]]$ acts on X_K and Iwasawa showed that X_K is a finitely generated torsion $\Lambda_{K/k}$ -module. In the arithmetic of the \mathbb{Z}_p -extension K/k, Iwasawa module X_K plays a crucial role. Iwasawa studied the $\Lambda_{K/k}$ -module structure of X_K and deduced the following celebrated formula:

Theorem (Iwasawa). There exist non-negative integers $\lambda(K/k), \mu(K/k)$ and an integer $\nu(K/k)$ such that

$$#A(k_n) = p^{\lambda(K/k)n + \mu(K/k)p^n + \nu(K/k)}$$

for all sufficiently large n.

Here the integers $\lambda(K/k)$, $\mu(K/k)$ and $\nu(K/k)$ are called Iwasawa invariants of K/k. We remark that $\lambda(K/k)$ and $\mu(K/k)$ are the invariants of the $\Lambda_{K/k}$ -module structure of X_K .

Now we raise the following natural question on the Iwasawa module:

QUESTION A. Let p be a prime number and Γ a topological group isomorphic to \mathbf{Z}_p . Put $\Lambda = \mathbf{Z}_p[[\Gamma]]$. Then, for any finitely generated torsion Λ -module X, does there exist a \mathbf{Z}_p -extension K/k such that X_K is isomorphic to X as Λ -modules, regarding X_K as a Λ -module via some isomorphism $\mathrm{Gal}(K/k) \simeq \Gamma$?

We also raise the following question, which relates to Question A:

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R23; Secondary 11R29.

Key Words and Phrases. Iwasawa module, Iwasawa invariant, capitulation of ideals.

This research is partially supported by the Grant-in-Aid for Encouragement of Young Scientists, Ministry of Education, Science, Sports and Culture, Japan.

QUESTION B. For any non-negative integers l and m, does there exist a \mathbb{Z}_p -extension K/k with $\lambda(K/k) = l$ and $\mu(K/k) = m$?

Here we note that if Question A is affirmative, then Question B is also affirmative. In the present paper, we shall give partial answers to the above questions. Specifically, we shall answer to Question A affirmatively in the case where X is finite (Theorem 1). Also we shall answer to Question B for μ -invariants affirmatively (Theorem 2). In the final section, we shall apply the construction in the proof of Theorem 1 to a certain capitulation problem.

2. Main results.

On Question A, we shall give the following:

THEOREM 1. Let p be a prime number and Γ a topological group isomorphic to \mathbf{Z}_p . Put $\Lambda = \mathbf{Z}_p[[\Gamma]]$. Then for any finite Λ -module X, there exists a cyclotomic \mathbf{Z}_p -extension K/k over a totally real number field k such that

$$X_K \simeq X$$

as Λ -modules, regarding X_K as a Λ -module via some isomorphism $\operatorname{Gal}(K/k) \simeq \Gamma$.

Greenberg conjectured that X_K is finite if K/k is the cyclotomic \mathbb{Z}_p -extension over a totally real number field k (see [3]). Therefore, assuming Greenberg's conjecture, Theorem 1 says that among the cyclotomic \mathbb{Z}_p -extensions over totally real number fields, every possible Λ -module could appear as an Iwasawa module.

On Question B, we shall give the following:

THEOREM 2. Let p be an odd prime number. For any non-negative integer m, there exist a number field k and a \mathbb{Z}_p -extension K/k with $\mu(K/k) = m$ (and $\lambda(K/k) = 0$), specifically, $X_K \simeq (\Lambda_{K/k}/p)^{\oplus m}$. Furthermore, we can take k to be an imaginary cyclic extension of degree 2p over \mathbb{Q} .

Iwasawa conjectured that $\mu(K/k) = 0$ for any cyclotomic \mathbf{Z}_p -extension K/k. This conjecture is valid if the base field k is abelian over \mathbf{Q} (the Ferrero-Washington theorem [1]). However Iwasawa [7] constructed non-cyclotomic \mathbf{Z}_p -extensions with arbitrarily large μ -invariant. Our method of construction of \mathbf{Z}_p -extension K/k in Theorem 2 is based on [7], hence K/k is a certain non-cyclotomic \mathbf{Z}_p -extension, so called the anticyclotomic \mathbf{Z}_p -extension.

To prove the theorems, we refine the idea in Yahagi [13], in which he constructed number fields with prescribed Sylow *p*-subgroup of the ideal class group. We extend his method so that we can impose the prescribed Galois module structure on the Sylow *p*-subgroup of the ideal class group.

3. Proof of Theorem 1.

Since X is finite, X is a $\mathbb{Z}/p^{m_0}[\Gamma_{n_0}]$ -module for some integers $m_0 \ge 1$ and $n_0 \ge 0$, where $\Gamma_n = \Gamma/\Gamma^{p^n} \simeq \mathbb{Z}/p^n$ for $n \ge 0$.

Lemma 1. Assume that a \mathbb{Z}_p -extension K/k satisfies the following three conditions:

- (i) K/k is totally ramified at every ramified prime.
- (ii) $A(k_{n_0}) \simeq X$ as Γ_{n_0} -modules, viewing $A(k_{n_0})$ as a Γ_{n_0} -module by some identification Gal(K/k) with Γ .
 - (iii) $A(k_{n_0}) \simeq A(k_{n_0+1})$.

Then we have $X_K \simeq X$ as Λ -modules.

PROOF. It follows from assumptions (i), (iii) and Fukuda [2] that $X_K \simeq A(k_{n_0})$ as $\Lambda_{K/k}$ -modules. Hence the assertion follows from assumption (ii).

By virtue of Lemma 1, our main aim is to construct a number field with prescribed Sylow p-subgroup of the ideal class group and Galois action on it. Yahagi [13] constructed number fields with prescribed Sylow p-subgroup of the ideal class group. We refine his method to construct a desired number field. Outline of the construction is as follows: We construct a cyclic extension k/\mathbb{Q}_N of degree p^{m_0} for suitable N, \mathbb{Q}_N being the N-th layer of the cyclotomic \mathbb{Z}_p -extension over \mathbb{Q} , such that $A(k_{n_0})/(\sigma-1) \simeq A(k_{n_0+1})/(\sigma-1) \simeq X$ as Γ -modules (identifying Γ with $\mathrm{Gal}(k_\infty/k)$) by "genus theoretic" method, where k_∞/k is the cyclotomic \mathbb{Z}_p -extension, k_n ($n \ge 0$) is its n-th layer and σ is a generator of $\mathrm{Gal}(k_{n_0+1}/\mathbb{Q}_{N+n_0+1})$. By selecting the ramified primes of k/\mathbb{Q}_N carefully, we can make the ideal classes in $A(k_{n_0+\delta})$ containing σ -invariant ideals generate $A(k_{n_0+\delta})/(\sigma-1)$ for $\delta=0,1$. Hence $A(k_{n_0+\delta})=A(k_{n_0+\delta})/(\sigma-1)\simeq X$ for $\delta=0,1$ by Nakayama's lemma. Thus the cyclotomic \mathbb{Z}_p -extension k_∞/k is a desired \mathbb{Z}_p -extension by Lemma 1.

We fix a topological generator γ_{∞} of Γ and put $\gamma_n = \gamma_{\infty} \mod \Gamma^{p^n} \in \Gamma_n$. Let

(1)
$$r := \dim_{F_p} X/(p, \gamma_{n_0} - 1).$$

Then r is the number of minimal generators of X over $\mathbb{Z}/p^{m_0}[\Gamma_{n_0}]$, and there exists an exact sequence of $\mathbb{Z}/p^{m_0}[\Gamma_{n_0}]$ -modules

$$(2) 0 \to R_{n_0} \to \mathbf{Z}/p^{m_0}[\Gamma_{n_0}]^{\oplus r} \to X \to 0.$$

Let π'_{n_0+1,n_0} be the natural map from $\mathbf{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r}$ to $\mathbf{Z}/p^{m_0}[\Gamma_{n_0}]^{\oplus r}$ induced by the natural projection $\Gamma_{n_0+1} \to \Gamma_{n_0}$, and put $R_{n_0+1} = \pi'_{n_0+1,n_0}^{-1}(R_{n_0})$. Then π'_{n_0+1,n_0} induces the isomorphism

(3)
$$Z/p^{m_0} [\Gamma_{n_0+1}]^{\oplus r}/R_{n_0+1} \simeq X.$$

We identify $\mathbf{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r}/R_{n_0+1}$ with X via the natural isomorphism (3). We define the submodule $\tilde{R}_{n_0+\delta}$ $(\delta=0,1)$ of $\mathbf{Z}/p^{m_0}[\Gamma_{n_0+\delta}]^{\oplus r+1}$ as follows:

(4)
$$\tilde{R}_{n_0+\delta} = \left\{ (\alpha_i)_{1 \le i \le r+1} \in \mathbb{Z}/p^{m_0} [\Gamma_{n_0+\delta}]^{\oplus r+1} \mid \\ (\alpha_i)_{1 \le i \le r} \in R_{n_0+\delta}, \alpha_{r+1} \equiv \sum_{i=1}^r \alpha_i \pmod{\gamma_{n_0+\delta} - 1} \right\}.$$

We put

(5)
$$\tilde{X} = \mathbf{Z}/p^{m_0} [\Gamma_{n_0+1}]^{\oplus r+1} / \tilde{R}_{n_0+1}.$$

We remark that there is a natural injection $X \to \tilde{X}$ given by $(x_i)_{1 \le i \le r} \mod R_{n_0+1} \mapsto (x_1, \dots, x_r, \sum_{i=1}^r x_i) \mod \tilde{R}_{n_0+1}$, whose cokernel is isomorphic to \mathbb{Z}/p^{m_0} .

Then the natural map $\pi_{n_0+1,n_0}: \mathbb{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r+1} \to \mathbb{Z}/p^{m_0}[\Gamma_{n_0}]^{\oplus r+1}$ induced by the projection $\Gamma_{n_0+1} \to \Gamma_{n_0}$ gives the isomorphism

(6)
$$\tilde{X} = Z/p^{m_0} [\Gamma_{n_0+1}]^{\oplus r+1} / \tilde{R}_{n_0+1} \simeq Z/p^{m_0} [\Gamma_{n_0}]^{\oplus r+1} / \tilde{R}_{n_0}$$

because $\pi_{n_0+1,n_0}^{-1}(\tilde{R}_{n_0}) = \tilde{R}_{n_0+1}$.

Let g be the number of minimal generators of \tilde{R}_{n_0+1} over $\mathbb{Z}/p^{m_0}[\Gamma_{n_0+1}]$, and we choose and fix once for all an integer N with the property

$$(7) p^N - 1 \ge g \quad \text{and} \quad N \ge m_0.$$

Now we shall identify Γ with $\operatorname{Gal}(\boldsymbol{Q}_{\infty}/\boldsymbol{Q}_N)$ by a fixed isomorphism $\Gamma \simeq \operatorname{Gal}(\boldsymbol{Q}_{\infty}/\boldsymbol{Q}_N)$, where \boldsymbol{Q}_{∞} is the cyclotomic \boldsymbol{Z}_p -extension field of \boldsymbol{Q} . Then $\Gamma_t = \operatorname{Gal}(\boldsymbol{Q}_{N+t}/\boldsymbol{Q}_N)$ for $t \geq 0$.

Let I_i $(1 \le i \le r+1)$ be distinct degree one primes of \mathbf{Q}_N which decompose completely in \mathbf{Q}_{N+n_0+1} , say $I_i = \prod_{\gamma \in \varGamma_{n_0+1}} \gamma \mathfrak{L}_{i,n_0+1}$. Furthermore, we assume that I_i decomposes completely in $\tilde{\mathbf{Q}}_{N+n_0+1} := \mathbf{Q}_{N+n_0+1}(\mu_p)$ (if $p \ne 2$) or $\mathbf{Q}_{N+n_0+1}(\mu_4)$ (if p = 2). Put $\mathfrak{m} = \prod_{i=1}^{r+1} I_i$, and denote by \mathfrak{L}_{i,n_0} the prime of \mathbf{Q}_{N+n_0} below \mathfrak{L}_{i,n_0+1} . For $t \ge 0$, we denote by L_t/\mathbf{Q}_{N+t} the maximal abelian p-extension such that the conductor of L_t/\mathbf{Q}_{N+t} divides \mathfrak{m} and the exponent of $\mathrm{Gal}(L_t/\mathbf{Q}_{N+t})$ is less than or equal to p^{m_0} . Since the class number of $\mathbf{Q}_{N+n_0+\delta}$ is prime to p as well known, we get the exact sequence of Γ -modules

$$(8) \qquad \qquad \mathcal{O}_{N+n_{0}+\delta}^{\times}/p^{m_{0}} \xrightarrow{\rho_{n_{0}+\delta}} (\mathcal{O}_{N+n_{0}+\delta}/\mathfrak{m})^{\times}/p^{m_{0}} \xrightarrow{r_{n_{0}+\delta}} \operatorname{Gal}(L_{n_{0}+\delta}/\boldsymbol{\mathcal{Q}}_{N+n_{0}+\delta}) \to 0,$$

for $\delta=0,1$ by class field theory, where $\mathcal{O}_{N+n_0+\delta}$ denotes the ring of integers of $\mathbf{Q}_{N+n_0+\delta}$, $\rho_{n_0+\delta}$ is the natural map, and $r_{n_0+\delta}$ is the map induced by the reciprocity map. We can see that the middle term $(\mathcal{O}_{N+n_0+\delta}/\mathfrak{m})^{\times}/p^{m_0}$ of (8) is isomorphic to $\mathbf{Z}_p[\Gamma_{n_0+\delta}]^{\oplus r+1}$ via the following map:

(9)
$$(\mathscr{O}_{N+n_0+\delta}/\mathfrak{m})^{\times}/p^{m_0} \simeq \mathbb{Z}/p^{m_0} [\Gamma_{n_0+\delta}]^{\oplus r+1},$$
 the class of $\alpha \mapsto \left(\sum_{\gamma \in \Gamma_{n_0+\delta}} \varphi \left(\left(\frac{\alpha}{\tilde{\gamma} \tilde{\mathfrak{Q}}_{i,n_0+\delta}}\right)_{n_0+\delta}\right) \gamma\right)_{1 \leq i \leq r+1}.$

Notations in (9) are as follows: $\tilde{\gamma} \in \operatorname{Gal}(\tilde{\boldsymbol{Q}}_{N+n_0+\delta}/\tilde{\boldsymbol{Q}}_N)$ is the image of γ via the natural isomorphism $\Gamma_{n_0+\delta} \simeq \operatorname{Gal}(\tilde{\boldsymbol{Q}}_{N+n_0+\delta}/\tilde{\boldsymbol{Q}}_N)$, where $\tilde{\boldsymbol{Q}}_{N+n_0+\delta} = \boldsymbol{Q}_{N+n_0+\delta}(\mu_p)$ (if $p \neq 2$) or $\boldsymbol{Q}_{N+n_0+\delta}(\mu_4)$ (if p = 2). $\tilde{\boldsymbol{\Sigma}}_{i,n_0+1}$ are fixed primes of $\tilde{\boldsymbol{Q}}_{N+n_0+1}$ lying above $\boldsymbol{\Sigma}_{i,n_0+1}$, and $\tilde{\boldsymbol{\Sigma}}_{i,n_0}$ is the prime of $\tilde{\boldsymbol{Q}}_{N+n_0}$ below $\tilde{\boldsymbol{\Sigma}}_{i,n_0+1}$. $(*/*)_{n_0+\delta} \in \mu_{p^{m_0}}$ is the p^{m_0} -th power residue symbol for $\tilde{\boldsymbol{Q}}_{N+n_0+\delta}$. φ is a fixed isomorphism $\mu_{p^{m_0}} \simeq \boldsymbol{Z}/p^{m_0}$. Here we note that $\mu_{p^{m_0}} \subseteq \tilde{\boldsymbol{Q}}_N$ by (7) hence $(\alpha/\tilde{\gamma}\tilde{\boldsymbol{\Sigma}}_{i,n_0+\delta})_{n_0+\delta} = (\gamma^{-1}\alpha/\tilde{\boldsymbol{\Sigma}}_{i,n_0+\delta})_{n_0+\delta}$, and that $\mathcal{O}_{N+n_0+\delta}/\gamma \mathcal{\Sigma}_{i,n_0+\delta}$ $\simeq \tilde{\mathcal{O}}_{N+n_0+\delta}/\tilde{\gamma}\tilde{\boldsymbol{\Sigma}}_{i,n_0+\delta}$, $\tilde{\mathcal{O}}_{N+n_0+\delta}$ being the ring of integers of $\tilde{\boldsymbol{Q}}_{N+n_0+\delta}$, since I_i decomposes completely in $\tilde{\boldsymbol{Q}}_{N+n_0+1}$.

In what follows we fix $\tilde{\mathfrak{Q}}_{i,n_0+1}$ and φ once for all and identify $(\mathcal{O}_{N+n_0+\delta}/\mathfrak{m})^{\times}/p^{m_0}$ with $\mathbb{Z}/p^{m_0}[\Gamma_{n_0+\delta}]^{\oplus r+1}$ via the above isomorphism. Then we get the exact sequence

(10)
$$\mathcal{O}_{N+n_0+\delta}^{\times}/p^{m_0} \xrightarrow{\rho_{n_0+\delta}} \mathbf{Z}/p^{m_0} [\Gamma_{n_0+\delta}]^{\oplus r+1} \xrightarrow{r_{n_0+\delta}} \operatorname{Gal}(L_{n_0+\delta}/\mathbf{Q}_{N+n_0+\delta}) \to 0,$$

from (8), and the map $\rho_{n_0+\delta}$ is given by

(11)
$$\rho_{n_0+\delta}(\varepsilon) = \left(\sum_{\gamma \in \Gamma_{n_0+\delta}} \varphi\left(\left(\frac{\varepsilon}{\tilde{\gamma}\tilde{\mathfrak{Q}}_{i,n_0+\delta}}\right)_{n_0+\delta}\right)\gamma\right)_{1 \leq i \leq r+1}.$$

It follows from (7) that $\mu_{2^{m_0+1}} \subseteq \tilde{\boldsymbol{Q}}_{N+n_0+\delta}$ when p=2. Hence $\rho_{n_0+\delta}(-1)=0$ for any prime number p by (11) since $-1 \in (\mu_{2^{m_0+1}})^{2^{m_0}}$ when p=2. From exact sequences (10) for $\delta=0,1$ and the fact that $\rho_{n_0+\delta}(-1)=0$, we get the following exact commutative diagram:

where $\overline{\mathcal{Q}_{N+n_0+\delta}^{\times}}=\mathcal{Q}_{N+n_0+\delta}^{\times}/\{\pm 1\}$ for $\delta=0,1,\ N_{n_0+1,n_0}$ is the norm map from \mathbf{Q}_{N+n_0+1} to $\mathbf{Q}_{N+n_0},\ \pi_{n_0+1,n_0}$ is the map induced by the natural projection $\Gamma_{n_0+1}\to\Gamma_{n_0}$, and $\operatorname{res}_{n_0+1,n_0}$ is the restriction map (Note that $L_{n_0}\subseteq L_{n_0+1}$). Commutativity follows from the fact $\tilde{\mathbf{Q}}_{i,n_0+1}|\tilde{\mathbf{Q}}_{i,n_0}$ and the properties of the p^{m_0} -th power residue symbol and the reciprocity map.

LEMMA 2. (i) For any $t \ge 0$, we have

$$\overline{\mathcal{O}_{N+t}^{\times}}/p^{m_0} \simeq \mathbf{Z}/p^{m_0}[\Gamma_t]^{\oplus p^N-1} \oplus \mathbf{Z}/p^{m_0}[\Gamma_t]/N_{\Gamma_t},$$

as $\mathbf{Z}/p^{m_0}[\Gamma_t]$ -modules, where $N_{\Gamma_t} = \sum_{\gamma \in \Gamma_t} \gamma$.

(ii) In commutative diagram (12), the norm map $N_{n_0+1,n_0}:\overline{\mathcal{O}_{N+n_0+1}^{\times}}/p^{m_0}\to\overline{\mathcal{O}_{N+n_0}^{\times}}/p^{m_0}$ is surjective.

PROOF. Let $\eta = N_{\boldsymbol{Q}(\mu_{p^{N+t+1}})/\boldsymbol{Q}_{N+t}} (\zeta_{p^{N+t+1}} - 1)^{\sigma-1}$ (when $p \neq 2$), or $\eta = \zeta_{2^{N+t+2}}^{-2} \cdot ((\zeta_{2^{N+t+2}}^5 - 1)/(\zeta_{2^{N+t+2}} - 1))$ (when p = 2), where σ is a generator of $\operatorname{Gal}(\boldsymbol{Q}_{N+t}/\boldsymbol{Q})$ and ζ_d denotes a primitive d-th root of unity for $d \geq 1$. Then

$$C_{N+t} = \langle -1, \tau \eta \mid \tau \in \operatorname{Gal}(\boldsymbol{Q}_{N+t}/\boldsymbol{Q}) \rangle$$

is the group of cyclotomic units of Q_{N+t} and $p \not \mid [\mathcal{O}_{N+t}^{\times} : C_{N+t}]$ (for the various properties of the cyclotomic unit group, see [12, Chapter 8] for example). Hence $\overline{\mathcal{O}_{N+t}^{\times}}/p^{m_0} \simeq (C_{N+t}/\{\pm 1\})/p^{m_0}$. Because

$$C_{N+t}/\{\pm 1\} \simeq \mathbf{Z}[\operatorname{Gal}(\mathbf{Q}_{N+t}/\mathbf{Q})]/N_{\operatorname{Gal}(\mathbf{Q}_{N+t}/\mathbf{Q})},$$

as $\operatorname{Gal}(\boldsymbol{Q}_{N+t}/\boldsymbol{Q})$ -modules and

$$m{Z}[\mathrm{Gal}(m{Q}_{N+t}/m{Q})] = \bigoplus_{ au \in \mathrm{Gal}(m{Q}_{N+t}/m{Q})/\Gamma_t} m{Z}[\Gamma_t] au,$$

we can see that $C_{N+t}/\{\pm 1\} \simeq \mathbf{Z}[\Gamma_t]^{\oplus p^N-1} \oplus \mathbf{Z}[\Gamma_t]/N_{\Gamma_t}$. Thus we have proved assertion (i).

Assertion (ii) follows from $\overline{\mathcal{O}_{N+n_0+\delta}^{\times}}/p^{m_0} \simeq (C_{N+n_0+\delta}/\{\pm 1\})/p^{m_0}$ and the fact that the norm map $N_{n_0+1,n_0}: C_{N+n_0+1}/\{\pm 1\} \to C_{N+n_0}/\{\pm 1\}$ is surjective.

Lemma 3. For any Γ_{n_0+1} -homomorphism $f:\overline{\mathcal{O}_{N+n_0+1}^{\times}}/p^{m_0}\to \mathbf{Z}/p^{m_0}[\Gamma_{n_0+1}]$, there exist infinitely many degree one primes $\tilde{\mathfrak{Q}}$ of $\tilde{\mathbf{Q}}_{N+n_0+1}$ such that

$$f(\varepsilon) = \sum_{\gamma \in I_{n_0+1}} \varphi \left(\left(\frac{\varepsilon}{\tilde{\gamma} \tilde{\mathfrak{Q}}} \right)_{n_0+1} \right) \gamma,$$

for any $\varepsilon \in \overline{\mathcal{O}_{N+n_0+1}^{\times}}/p^{m_0}$, where the notations in the above are as in (9). Furthermore, for any fixed finite abelian extension $M/\tilde{\boldsymbol{Q}}_{N+n_0+1}$ with $M \cap \tilde{\boldsymbol{Q}}_{N+n_0+1}({}^{p^{m_0}}\sqrt{\mathcal{O}_{N+n_0+1}^{\times}}) = \tilde{\boldsymbol{Q}}_{N+n_0+1}$ and $\tau \in \operatorname{Gal}(M/\tilde{\boldsymbol{Q}}_{N+n_0+1})$, we can impose the condition

$$\left(rac{M/ ilde{oldsymbol{Q}}_{N+n_0+1}}{ ilde{\mathfrak{L}}}
ight)= au$$

on $\tilde{\mathfrak{Q}}$.

PROOF. From Lemma 2 (i), there exist ε_j , $\xi \in \mathcal{O}_{N+n_0+1}^{\times}$ $(1 \le j \le p^N - 1)$ such that

(13)
$$\overline{\mathcal{O}_{N+n_0+1}^{\times}}/p^{m_0} = \bigoplus_{i=1}^{p^N-1} \mathbf{Z}/p^{m_0} [\Gamma_{n_0+1}] \overline{\varepsilon_j} \oplus (\mathbf{Z}/p^{m_0} [\Gamma_{n_0+1}]/N_{\Gamma_{n_0+1}}) \overline{\xi},$$

where $\overline{\varepsilon_j}, \overline{\xi} \in \overline{\mathcal{O}_{N+n_0+1}^{\times}}/p^{m_0}$ are the classes of ε_j and ξ , respectively.

Assume that $f(\varepsilon_j) = \sum_{\gamma \in \Gamma_{n_0+1}} c_{j,\gamma} \gamma$ and $f(\xi) = \sum_{\gamma \in \Gamma_{n_0+1}} d_{\gamma} \gamma$. We shall show that there exist infinitely many degree one primes $\tilde{\mathbf{Q}}$ of $\tilde{\mathbf{Q}}_{N+n_0+1}$ such that

$$\left(\frac{\varepsilon_{j}}{\tilde{\gamma}\tilde{\mathfrak{Q}}}\right)_{n_{0}+1} = \varphi^{-1}(c_{j,\gamma}) \quad (1 \leq j \leq p^{N} - 1, \gamma \in \Gamma_{n_{0}+1}),$$

$$\left(\frac{\xi}{\tilde{\gamma}\tilde{\mathfrak{Q}}}\right)_{n_{0}+1} = \varphi^{-1}(d_{\gamma}) \quad (\gamma \in \Gamma_{n_{0}+1} - \{1\}).$$

We note that if the above conditions hold, then the condition

$$\left(\frac{\xi}{\tilde{\mathfrak{Q}}}\right)_{n_0+1} = \varphi^{-1}(d_1)$$

also holds, because $\prod_{\gamma \in \varGamma_{n_0+1}} (\xi/(\tilde{\gamma}\tilde{\mathfrak{Q}}))_{n_0+1} = (\prod_{\gamma \in \varGamma_{n_0+1}} \gamma \xi/\tilde{\mathfrak{Q}})_{n_0+1} = 1$ and $\sum_{\gamma \in \varGamma_{n_0+1}} d_{\gamma} = 0$. We also note that

$$(15) \qquad \left(\frac{\varepsilon}{\tilde{\gamma}\tilde{\mathfrak{Q}}}\right)_{n_0+1} = \left(\frac{\tilde{\boldsymbol{Q}}_{N+n_0+1}({}^{p^{m_0}}\sqrt{\tilde{\gamma}^{-1}\varepsilon})/\tilde{\boldsymbol{Q}}_{N+n_0+1}}{\tilde{\mathfrak{Q}}}\right)({}^{p^{m_0}}\sqrt{\tilde{\gamma}^{-1}\varepsilon})/({}^{p^{m_0}}\sqrt{\tilde{\gamma}^{-1}\varepsilon})$$

for any $\varepsilon \in \mathcal{O}_{N+n_0+1}^{\times}$.

We need the following lemma:

Lemma 4. The natural map $\overline{\mathcal{O}_{N+n_0+1}^{\times}}/p^{m_0} \to \tilde{\mathcal{O}}_{N+n_0+1}^{\times}/p^{m_0}$ is injective (note that $-1 \in (\tilde{\mathcal{O}}_{N+n_0+1}^{\times})^{p^{m_0}}$).

Proof. From the exact sequence

$$0 \longrightarrow \mu_{p^{m_0}} \longrightarrow \tilde{\boldsymbol{Q}}_{N+n_0+1}^{\times} \xrightarrow{p^{m_0}} (\tilde{\boldsymbol{Q}}_{N+n_0+1}^{\times})^{p^{m_0}} \longrightarrow 0,$$

we get the exact $G = \operatorname{Gal}(\tilde{\boldsymbol{Q}}_{N+n_0+1}/\boldsymbol{Q}_{N+n_0+1})$ -cohomology sequence

$$\boldsymbol{Q}_{N+n_0+1}^{\times} \xrightarrow{p^{m_0}} (\tilde{\boldsymbol{Q}}_{N+n_0+1}^{\times})^{p^{m_0}} \cap \boldsymbol{Q}_{N+n_0+1} \longrightarrow H^1(G,\mu_{p^{m_0}}) \longrightarrow 0.$$

If $p \neq 2$, $H^1(G, \mu_{p^{m_0}}) = 0$ since #G is prime to p. Hence we have $(\tilde{\boldsymbol{Q}}_{N+n_0+1}^{\times})^{p^{m_0}} \cap \boldsymbol{Q}_{N+n_0+1} = (\boldsymbol{Q}_{N+n_0+1}^{\times})^{p^{m_0}}$. Therefore the assertion of the lemma follows.

We assume that p=2. Then we can see $H^1(G,\mu_{2^{m_0}})\simeq \mathbb{Z}/2$. Hence we have $((\tilde{\boldsymbol{Q}}_{N+n_0+1}^{\times})^{2^{m_0}}\cap \boldsymbol{Q}_{N+n_0+1})/(\boldsymbol{Q}_{N+n_0+1}^{\times})^{2^{m_0}}\simeq \mathbb{Z}/2$. Since $-1\in (\tilde{\boldsymbol{Q}}_{N+n_0+1}^{\times})^{2^{m_0}}-(\boldsymbol{Q}_{N+n_0+1}^{\times})^{2^{m_0}}$, the kernel of the natural map $\mathcal{O}_{N+n_0+1}^{\times}/2^{m_0}\to \tilde{\mathcal{O}}_{N+n_0+1}^{\times}/2^{m_0}$, which is contained in $((\tilde{\boldsymbol{Q}}_{N+n_0+1}^{\times})^{2^{m_0}}\cap \boldsymbol{Q}_{N+n_0+1})/(\boldsymbol{Q}_{N+n_0+1}^{\times})^{2^{m_0}}$, is generated by the class of -1. Thus we also obtain the lemma in the case p=2.

PROOF OF LEMMA 3. Put $F_j = \tilde{\boldsymbol{Q}}_{N+n_0+1}({}^{p^{m_0}}\sqrt{\tilde{\gamma}^{-1}\varepsilon_j}\,|\,\gamma\in \Gamma_{n_0+1})$ and $E = \tilde{\boldsymbol{Q}}_{N+n_0+1}\cdot ({}^{p^{m_0}}\sqrt{\tilde{\gamma}^{-1}\xi}\,|\,\gamma\in \Gamma_{n_0+1})$. Then it follows from Lemma 4 and (13) that the abelian extensions $F_j/\tilde{\boldsymbol{Q}}_{N+n_0+1}$ $(1\leq j\leq p^N-1)$ and $E/\tilde{\boldsymbol{Q}}_{N+n_0+1}$ are independent, and that

$$\operatorname{Gal}(F_j/\tilde{\boldsymbol{Q}}_{N+n_0+1}) \simeq \bigoplus_{\gamma \in I_{n_0+1}} \mu_{p^{m_0}}, \quad \sigma \mapsto (\sigma(\sqrt[p^{m_0}]{\tilde{\gamma}^{-1}\varepsilon_j})/\sqrt[p^{m_0}]{\tilde{\gamma}^{-1}\varepsilon_j})_{\gamma \in I_{n_0+1}},$$

$$\operatorname{Gal}(E/\tilde{\boldsymbol{Q}}_{N+n_0+1}) \simeq \bigoplus_{\gamma \in \varGamma_{n_0+1}-\{1\}} \mu_{p^{m_0}}, \quad \sigma \mapsto (\sigma({}^{p^{m_0}}\!\!\!\sqrt{\tilde{\gamma}^{-1}\xi}\,)/{}^{p^{m_0}}\!\!\!\sqrt{\tilde{\gamma}^{-1}\xi}\,)_{\gamma \in \varGamma_{n_0+1}-\{1\}}.$$

Therefore, by the Čebotarev density theorem and (15), there exist infinitely many degree one primes of $\tilde{\mathbf{Q}}_{N+n_0+1}$ satisfying (14). Furthermore, we can impose the condition

$$\left(rac{M/ ilde{oldsymbol{Q}}_{N+n_0+1}}{ ilde{oldsymbol{\mathfrak{L}}}}
ight)= au$$

on
$$\tilde{\mathfrak{Q}}$$
, since $M \cap \tilde{\boldsymbol{Q}}_{N+n_0+1}(\sqrt[p^{m_0}]{\mathscr{O}_{N+n_0+1}^{\times}}) = \tilde{\boldsymbol{Q}}_{N+n_0+1}$.

Now we choose the primes $\tilde{\mathfrak{Q}}_{i,n_0+1}$ and \mathfrak{l}_i . From (7) and Lemma 2 (i), there exists a Γ_{n_0+1} -homomorphism $h:\overline{\mathscr{O}_{N+n_0+1}^{\times}/p^{m_0}}\to \mathbf{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r+1}$ such that $\mathrm{Im}(h)=\tilde{\mathbf{R}}_{n_0+1}$. Assume the following condition on the primes $\tilde{\mathfrak{Q}}_{i,n_0+1}$ $(1\leq i\leq r+1)$:

CONDITION A.

$$\operatorname{pr}_i \circ h = \sum_{\gamma \in I_{n_0+1}} \varphi \left(\left(\frac{*}{\widetilde{\gamma} \widetilde{\mathfrak{Q}}_{i,n_0+1}} \right)_{n_0+1} \right) \gamma$$

for $1 \le i \le r+1$, where $\operatorname{pr}_i : \mathbb{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r+1} \to \mathbb{Z}/p^{m_0}[\Gamma_{n_0+1}]$ denotes the projection map to the *i*-th component.

By virtue of Lemma 3, there exist degree one primes $\tilde{\mathfrak{Q}}_{i,n_0+1}$ of $\tilde{\boldsymbol{Q}}_{N+n_0+1}$ satisfying Condition A such that $\tilde{\mathfrak{Q}}_{i,n_0+1}$'s are lying over distinct rational primes. We choose the prime of \boldsymbol{Q}_N (resp. $\boldsymbol{Q}_{N+n_0+\delta}$) below $\tilde{\mathfrak{Q}}_{i,n_0+1}$ as \mathfrak{I}_i (resp. $\mathfrak{Q}_{i,n_0+\delta}$ ($\delta=0,1$)), and put $\mathfrak{m}=\prod_{i=1}^{r+1}\mathfrak{I}_i$. Then we have $\mathrm{Im}(\rho_{n_0+1})=\mathrm{Im}(h)=\tilde{R}_{n_0+1}$ by (11), hence r_{n_0+1} induces the isomorphism

(16)
$$\tilde{X} = \mathbf{Z}/p^{m_0} [\Gamma_{n_0+1}]^{\oplus r+1} / \tilde{R}_{n_0+1} \simeq \text{Gal}(L_{n_0+1}/\mathbf{Q}_{N+n_0+1}).$$

Also we have

(17)
$$\operatorname{Gal}(L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1}) \simeq \operatorname{Gal}(L_{n_0}/\boldsymbol{Q}_{N+n_0}),$$

because $\operatorname{Im}(\rho_{n_0}) = \tilde{R}_{n_0}$ and $\operatorname{Gal}(L_{n_0}/\boldsymbol{Q}_{N+n_0}) \simeq \boldsymbol{Z}[\Gamma_{n_0}]^{\oplus r+1}/\tilde{R}_{n_0} \simeq \tilde{X}$ by Lemma 2 (ii), commutative diagram (12), and the fact $\tilde{R}_{n_0+1} = \pi_{n_0+1,n_0}^{-1}(\tilde{R}_{n_0})$. We identify $\operatorname{Gal}(L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1})$ with \tilde{X} via the isomorphism (16).

We regard $X = \mathbf{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r}/R_{n_0+1}$ as a submodule of $\tilde{X} = \mathbf{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r+1}/\tilde{R}_{n_0+1}$ via the embedding $(x_i)_{1 \leq i \leq r} \mod R_{n_0+1} \mapsto (x_1, \dots, x_r, \sum_{i=1}^r x_i) \mod \tilde{R}_{n_0+1}$. We define F to be the intermediate field of $L_{n_0+1}/\mathbf{Q}_{N+n_0+1}$ with

$$(18) X = \operatorname{Gal}(L_{n_0+1}/F).$$

- Lemma 5. (i) There exists the unique cyclic extension k/\mathbf{Q}_N of degree p^{m_0} with conductor dividing m such that $F = k_{n_0+1} (= k\mathbf{Q}_{N+n_0+1})$.
- (ii) Primes $\gamma \mathfrak{Q}_{i,n_0+\delta}$ $(\gamma \in \Gamma_{n_0+\delta}, 1 \leq i \leq r+1)$ are totally ramified in $k_{n_0+\delta}/\mathbb{Q}_{N+n_0+\delta}$. Also primes \mathfrak{l}_i $(1 \leq i \leq r+1)$ are totally ramified in k.
 - (iii) $L_{n_0+\delta}$ is the genus p-class field of $k_{n_0+\delta}/Q_{N+n_0+\delta}$ for $\delta=0,1$.
- PROOF. (i) Since \tilde{X}/X is generated by the class of $(0, \dots 0, 1)$, $\operatorname{Gal}(F/\mathbf{Q}_{N+n_0+1}) \simeq \tilde{X}/X \simeq \mathbf{Z}/p^{m_0}$ with trivial Γ_{n_0+1} -action. Hence F/\mathbf{Q}_N is an abelian extension and $\operatorname{Gal}(F/\mathbf{Q}_N) = \operatorname{Gal}(F/\mathbf{Q}_{N+n_0+1}) \times I_p$, where $I_p \subseteq \operatorname{Gal}(F/\mathbf{Q}_N)$ is the inertia subgroup for the unique prime of \mathbf{Q}_N lying over p. Let k be the fixed field of I_p . Then k is the desired field.
- (ii) In (12), the inertia subgroup of $\operatorname{Gal}(L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1})$ for $\gamma \mathfrak{L}_{i,n_0+1}$ is generated by $r_{n_0+1}((0,\ldots,\check{\gamma},\ldots,0))$ over \boldsymbol{Z}/p^{m_0} . One can easily see that the order of $(0,\ldots,\check{\gamma},\ldots,0)$ mod \tilde{R}_{n_0+1} is p^{m_0} and that $\boldsymbol{Z}/p^{m_0}((0,\ldots,\check{\gamma},\ldots,0))$ mod $\tilde{R}_{n_0+1})\cap X=0$. Hence the prime $\gamma \mathfrak{L}_{i,n_0+1}$ is totally ramified in $k_{n_0+1}/\boldsymbol{Q}_{N+n_0+1}$ and L_{n_0+1}/k_{n_0+1} is an unramified extension. The remaining assertions follow from this fact because $k_{n_0+1}=k_{n_0}\boldsymbol{Q}_{N+n_0+1}=k\boldsymbol{Q}_{N+n_0+1}$.
- (iii) Let L' be the genus p-class field of k_{n_0+1}/Q_{N+n_0+1} . Then $L_{n_0+1} \subseteq L'$ since L_{n_0+1}/k_{n_0+1} is an unramified abelian p-extension and L_{n_0+1}/Q_{N+n_0+1} is abelian. Now we show $L' \subseteq L_{n_0+1}$. Since the class number of Q_{N+n_0+1} is prime to p, $\operatorname{Gal}(L'/k_{n_0+1})$ is annihilated by $p^{m_0} = [k_{n_0+1} : Q_{N+n_0+1}]$. Since the prime \mathfrak{L}_{i,n_0+1} is totally ramified in k_{n_0+1}/Q_{N+n_0+1} , we have $\operatorname{Gal}(L'/Q_{N+n_0+1}) \simeq \operatorname{Gal}(L'/k_{n_0+1}) \times \operatorname{Gal}(k_{n_0+1}/Q_{N+n_0+1})$. Hence $\operatorname{Gal}(L'/Q_{N+n_0+1})$ is annihilated by p^{m_0} . Since the conductor of L'/Q_{N+n_0+1} divides m, we obtain $L' \subseteq L_{n_0+1}$. Thus we have shown that L_{n_0+1} is the genus p-class field of k_{n_0+1} . The assertion for L_{n_0} also follows by the same argument. \square

It follows from Lemmas 1, 5, (18), and (17) that if $L_{n_0+\delta}$ is the Hilbert *p*-class field of $k_{n_0+\delta}$ for $\delta=0,1$, the cyclotomic \mathbf{Z}_p -extension over k is a desired \mathbf{Z}_p -extension.

Let $H_{n_0+\delta}^{(p)}$ be the Hilbert *p*-class field of $k_{n_0+\delta}$ for $\delta=0,1$ and σ a generator of $\operatorname{Gal}(k_{n_0+1}/\mathbf{Q}_{N+n_0+1})$. Then we have

(19)
$$\operatorname{Gal}(L_{n_0+1}/k_{n_0+1}) \simeq \operatorname{Gal}(H_{n_0+1}^{(p)}/k_{n_0+1})/(\sigma-1),$$

by Lemma 5 (iii). Denote by $\overline{\mathfrak{Q}}_{i,n_0+1}$ the unique prime of k_{n_0+1} lying over \mathfrak{Q}_{i,n_0+1} (Lemma 5 (ii)). If $\{(\overline{\mathfrak{Q}}_{i,n_0+1},L_{n_0+1}/k_{n_0+1}) \mid 1 \leq i \leq r+1\}$ generates $\operatorname{Gal}(L_{n_0+1}/k_{n_0+1})$

over $Z/p^{m_0}[\Gamma_{n_0+1}]$, then $L_{n_0+1} = H_{n_0+1}^{(p)}$ by (19) and Nakayama's lemma because $\gamma \overline{\mathfrak{Q}}_{i,n_0+1}$ $(\gamma \in \Gamma_{n_0+1}, 1 \le i \le r+1)$ is invariant under the action of σ . Since $H_{n_0}^{(p)} k_{n_0+1} \subseteq H_{n_0+1}^{(p)}$ and $L_{n_0+1} = L_{n_0} k_{n_0+1}$ by (17), if $L_{n_0+1} = H_{n_0+1}^{(p)}$ holds then $L_{n_0} = H_{n_0}^{(p)}$ also holds.

LEMMA 6. The restriction induces the isomorphisms

$$\operatorname{Gal}(L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1})_{\Gamma_{n_0+1}} \simeq \operatorname{Gal}(L_0/\boldsymbol{Q}_N)$$

and

$$Gal(L_{n_0+1}/k_{n_0+1})_{\Gamma_{n_0+1}} \simeq Gal(L_0/k).$$

PROOF. Let M be the intermediate field of $L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1}$ with $\operatorname{Gal}(L_{n_0+1}/M) = (\gamma_{n_0+1}-1)\operatorname{Gal}(L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1}), \ \gamma_{n_0+1}$ being a generator of Γ_{n_0+1} .

Then $\operatorname{Gal}(L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1})_{I_{n_0+1}} = \operatorname{Gal}(M/\boldsymbol{Q}_{N+n_0+1})$ and M/\boldsymbol{Q}_N is an abelian extension. It is obvious that $L_0\boldsymbol{Q}_{N+n_0+1}\subseteq M$. Let $I_p\subseteq\operatorname{Gal}(M/\boldsymbol{Q}_N)$ be the inertia subgroup for the unique prime of \boldsymbol{Q}_N lying over p. Then $\operatorname{Gal}(M/\boldsymbol{Q}_N)=\operatorname{Gal}(M/\boldsymbol{Q}_{N+n_0+1})\times I_p$ and the fixed field of I_p is contained in L_0 . Therefore we have $L_0\boldsymbol{Q}_{N+n_0+1}=M$ and $\operatorname{Gal}(L_{n_0+1}/\boldsymbol{Q}_{N+n_0+1})_{I_{n_0+1}}\simeq\operatorname{Gal}(L_0/\boldsymbol{Q}_N)$ since $L_0\cap \boldsymbol{Q}_{N+n_0+1}=\boldsymbol{Q}_N$.

To show the second assertion, it is enough to show $(\gamma_{n_0+1}-1)X=(\gamma_{n_0+1}-1)\tilde{X}$ because $(\gamma_{n_0+1}-1)\tilde{X}=\mathrm{Gal}(L_{n_0+1}/L_0\mathbf{Q}_{N+n_0+1})$ by the first assertion. Let $(x_i)\in\tilde{X}=\mathbf{Z}/p^{m_0}[\Gamma_{n_0+1}]^{\oplus r+1}/\tilde{R}_{n_0+1}$ be any element. Since

$$\left(0,\ldots,0,(\gamma_{n_0+1}-1)\left(\sum_{i=1}^r x_i-x_{r+1}\right)\right) \in \tilde{R}_{n_0+1},$$

we have

(20)
$$(\gamma_{n_0+1} - 1)\overline{(x_i)} = \overline{((\gamma_{n_0+1} - 1)x_i)}$$

$$= \overline{((\gamma_{n_0+1} - 1)x_1, \dots, (\gamma_{n_0+1} - 1)x_r, (\gamma_{n_0+1} - 1)\sum_{i=1}^r x_i)}$$

$$= (\gamma_{n_0+1} - 1)\overline{(x_1, \dots, x_r, \sum_{i=1}^r x_i)} \in (\gamma_{n_0+1} - 1)X.$$

Hence $(\gamma_{n_0+1}-1)\tilde{X} \subseteq (\gamma_{n_0+1}-1)X$. Thus we have shown $(\gamma_{n_0+1}-1)\tilde{X} = (\gamma_{n_0+1}-1)X$.

Let $L_0^{(p)}$ and $L_k^{(p)}$ be the maximal elementary abelian p-subextension of L_0/\mathbf{Q}_N and L_0/k , respectively. Denote by $k^{(p)}$ the intermediate field of k/\mathbf{Q}_N with $[k^{(p)}:\mathbf{Q}_N]=p$. Then we have

(21)
$$\operatorname{Gal}(L_0^{(p)}/\mathbf{Q}_N) \simeq (\operatorname{Gal}(L_{n_0+1}/\mathbf{Q}_{N+n_0+1})_{\Gamma_{n_0+1}})/p$$

$$\simeq ((\operatorname{Gal}(L_{n_0+1}/k_{n_0+1}) \times \operatorname{Gal}(k_{n_0+1}/\mathbf{Q}_{N+n_0+1}))_{\Gamma_{n_0+1}})/p$$

$$\simeq (\mathbf{Z}/p)^{\oplus r+1}$$

by Lemmas 5, 6, (1) and (18). We find that $\operatorname{Gal}(L_k^{(p)}/\boldsymbol{Q}_N) = \operatorname{Gal}(L_k^{(p)}/k) \times \operatorname{Gal}(k/\boldsymbol{Q}_N)$ because \mathfrak{l}_i is totally ramified in k/\boldsymbol{Q}_N and $L_k^{(p)}/k$ is unramified extension by Lemma 5. Hence $L_k^{(p)} = kL_0^{(p)}$ and

(22)
$$(\operatorname{Gal}(L_{n_0+1}/k_{n_0+1})_{I_{n_0+1}})/p \simeq \operatorname{Gal}(L_k^{(p)}/k) \simeq \operatorname{Gal}(L_0^{(p)}/k^{(p)})$$

by Lemma 6, where isomorphisms in the above are given by the restriction. It follows from (22), the fact $(\gamma \bar{\mathfrak{Q}}_{i,n_0+1}, L_{n_0+1}/k_{n_0+1})|_{L_0^{(p)}} = (\bar{\mathfrak{l}}_i, L_0^{(p)}/k^{(p)}), \ \bar{\mathfrak{l}}_i$ being the unique prime of $k^{(p)}$ lying over \mathfrak{l}_i , and Nakayama's lemma that if $\{(\bar{\mathfrak{l}}_i, L_0^{(p)}/k^{(p)}) \mid 1 \leq i \leq r+1\}$ generates $\operatorname{Gal}(L_0^{(p)}/k^{(p)})$, then $\operatorname{Gal}(L_{n_0+1}/k_{n_0+1})$ is generated by $\{(\bar{\mathfrak{Q}}_{i,n_0+1}, L_{n_0+1}/k_{n_0+1}) \mid 1 \leq i \leq r+1\}$ over $\mathbb{Z}/p^{m_0}[\Gamma_{n_0+1}]$, hence $L_{n_0+\delta}$ is the Hilbert p-class field of $k_{n_0+\delta}$ ($\delta=0,1$) as mentioned above. Let I_i ($1 \leq i \leq r+1$) be the inertia subgroup of $\operatorname{Gal}(L_0^{(p)}/\mathbf{Q}_N)$ for the prime \mathfrak{l}_i . Then we have $I_i \simeq \mathbb{Z}/p$ and

(23)
$$\operatorname{Gal}(L_0^{(p)}/\mathbf{Q}_N) = \bigoplus_{i=1}^{r+1} I_i$$

because \mathbf{I}_i ramifies in $k^{(p)}$ by Lemma 5 and $\mathrm{Gal}(L_0^{(p)}/\mathbf{Q}_N) \simeq (\mathbf{Z}/p)^{\oplus r+1}$ by (21). Hence $L^{(p)}/\mathbf{Q}_N$ is the composite of the abelian extensions $\mathbf{Q}_N^{(p)}(\mathbf{I}_i)/\mathbf{Q}_N$ ($1 \le i \le r+1$) of degree p with conductor \mathbf{I}_i , and the restriction induces the isomorphism

(24)
$$\operatorname{Gal}(L_0^{(p)}/k^{(p)}) \simeq \bigoplus_{i=1}^r \operatorname{Gal}(\boldsymbol{Q}_N^{(p)}(\mathfrak{l}_i)/\boldsymbol{Q}_N).$$

Assume the following condition on l_i $(1 \le i \le r + 1)$:

CONDITION B. The prime l_2 is inert in $\mathbf{Q}_N^{(p)}(l_1)$. If $3 \le i \le r+1$, then the prime l_i splits in $\mathbf{Q}_N^{(p)}(l_j)$ for all j such that $1 \le j \le i-2$ and is inert in $\mathbf{Q}_N^{(p)}(l_{i-1})$.

Then, under isomorphism (24),

$$\left(\frac{L_0^{(p)}/k^{(p)}}{\overline{\mathfrak{l}}_2}\right) \mapsto (\sigma_1, \ldots), \quad \sigma_1 \in \operatorname{Gal}(\boldsymbol{Q}_N^{(p)}(\mathfrak{l}_i)/\boldsymbol{Q}_N), \ \sigma_1 \neq 1,$$

$$\left(\frac{L_0^{(p)}/k^{(p)}}{\bar{\mathfrak{l}}_i}\right) \mapsto (1, \dots, 1, \sigma_{i-1}, \dots), \quad \sigma_{i-1} \in \text{Gal}(\mathbf{Q}_N^{(p)}(\bar{\mathfrak{l}}_{i-1})/\mathbf{Q}_N), \, \sigma_{i-1} \neq 1 \ (3 \leq i \leq r+1).$$

Therefore $\{(\bar{\mathbf{l}}_i, L_0^{(p)}/k^{(p)}) \mid 1 \leq i \leq r+1\}$ generates $\mathrm{Gal}(L_0^{(p)}/k^{(p)})$, which implies $L_{n_0+\delta} = H_{n_0+\delta}^{(p)}$ $(\delta=0,1)$, under Condition B. Condition B is equivalent to the following condition on $\tilde{\mathfrak{L}}_{i,n_0+1}$:

CONDITION B'. The prime $\tilde{\mathbf{Q}}_{2,n_0+1}$ is inert in $\mathbf{Q}_N^{(p)}(\mathfrak{l}_1)\tilde{\mathbf{Q}}_{N+n_0+1}$. If $3 \leq i \leq r+1$, then the prime $\tilde{\mathbf{Q}}_{i,n_0+1}$ splits in $\mathbf{Q}_N^{(p)}(\mathfrak{l}_j)\tilde{\mathbf{Q}}_{N+n_0+1}$ for all j such that $1 \leq j \leq i-2$ and is inert in $\mathbf{Q}_N^{(p)}(\mathfrak{l}_{i-1})\tilde{\mathbf{Q}}_{N+n_0+1}$.

By virtue of Lemma 3, we can choose inductively the degree one primes $\tilde{\mathbf{Q}}_{i,n_0+1}$ of $\tilde{\mathbf{Q}}_{N+n_0+1}$ from i=1 to r+1 such that $\tilde{\mathbf{Q}}_{i,n_0+1}$'s satisfy Conditions A and B', and that $\tilde{\mathbf{Q}}_{i,n_0+1}$'s are lying over distinct rational primes, because $\mathbf{Q}_N^{(p)}(\mathbf{I}_j)\tilde{\mathbf{Q}}_{N+n_0+1}$'s $(1 \leq j \leq i-1)$ and $\tilde{\mathbf{Q}}_{N+n_0+1}(p^{m_0}\sqrt{\mathcal{O}_{N+n_0+1}^{\times}})$ are independent over $\tilde{\mathbf{Q}}_{N+n_0+1}$. Thus the cyclotomic \mathbf{Z}_p -extension over totally real number field k given in Lemma 5 is a desired \mathbf{Z}_p -extension.

4. Proof of Theorem 2.

Let p be a given odd prime number and F an imaginary quadratic field such that the class number of F is prime to p and the prime p is inert in F. Such field F certainly exists by Horie [4]. Denote by F_{∞}/F the anti-cyclotomic \mathbb{Z}_p -extension, namely, the unique \mathbb{Z}_p -extension over F which is non-abelian (dihedral) Galois extension over \mathbb{Q} . We write F_n for the n-th layer of F_{∞}/F and put $\Gamma_n = \operatorname{Gal}(F_n/F)$. It follows from Iwasawa [7, section 2] (see also [10, chapter 13, Theorem 5.2]) that if a prime I of F with $\mathbb{I} \not = \mathbb{I}_p$ is inert in F/\mathbb{Q}_p , then I decomposes completely in F_{∞} . Let I_i ($1 \le i \le m+1$) be distinct rational primes such that

(25)
$$l_i$$
 is inert in F and $l_i \equiv 1 \pmod{p}$,

and put $f = \prod_{i=1}^{m+1} l_i$. For $n \ge 0$, we define the field L_n to be the maximal elementary abelian p-extension field over F_n whose conductor divides f. It follows from the assumption on F and Iwasawa [5] that the class number of F_n is prime to p. Then we have the following exact sequence of Γ_n -modules by class field theory:

(26)
$$\mathcal{O}_n^{\times}/p \to (\mathcal{O}_n/f)^{\times}/p \to \operatorname{Gal}(L_n/F_n) \to 0,$$

where \mathcal{O}_n denotes the integer ring of F_n . Since the prime l_i of F splits completely in F_n , we can see that $(\mathcal{O}_n/f)^{\times}/p \simeq \mathbf{Z}/p[\Gamma_n]^{\oplus m+1}$ as in the proof of Theorem 1. Then, by taking the projective limit of exact sequence (26) for $n \geq 0$, we get the exact sequence of $\Lambda_{F_\infty/F}$ -modules

(27)
$$\lim_{\longleftarrow} (\mathcal{O}_n^{\times}/p) \to (\Lambda_{F_{\infty}/F}/p)^{\oplus m+1} \to \operatorname{Gal}(L_{\infty}/F_{\infty}) \to 0,$$

where the projective limit $\varprojlim (\mathcal{O}_n^{\times}/p)$ is taken with respect to the norm maps and $L_{\infty} = \bigcup_{n \geq 0} L_n$.

Lemma 7. We have $\mathcal{O}_n^{\times}/p \simeq \mathbf{Z}/p[\Gamma_n]/\sum_{\gamma \in \Gamma_n} \gamma$, and $\lim_{\longleftarrow} (\mathcal{O}_n^{\times}/p) \simeq \Lambda_{F_{\infty}/F}/p$.

PROOF. We assume that $\mathcal{O}_n^{\times}/p \simeq \bigoplus_{i=1}^s \mathbf{Z}/p[\Gamma_n]/(\gamma_n-1)^{a_i}$ for $1 \leq a_i \leq p^n$. Then $\sum_{i=1}^s a_i = \dim_{\mathbf{Z}/p} \mathcal{O}_n^{\times}/p = p^n-1$. From the exact sequence

$$0 \to \mathcal{O}_n^{\times} \xrightarrow{p} \mathcal{O}_n^{\times} \to \mathcal{O}_n^{\times}/p \to 0$$

and the fact that $\hat{H}^{2i}(\Gamma_n, \mathcal{O}_n^{\times}) = 0$ $(i \in \mathbb{Z})$ (This follows from the fact that $\hat{H}^0(\Gamma_n, \mathcal{O}_n^{\times}) = \mathcal{O}_0^{\times}/(\sum_{\gamma \in \Gamma_n} \gamma)\mathcal{O}_n^{\times} = 0$ since $\#\mathcal{O}_0^{\times}$ is finite and prime to p), we get the following exact cohomology sequence:

$$(28) 0 \to \hat{H}^0(\Gamma_n, \mathcal{O}_n^{\times}/p) \to H^1(\Gamma_n, \mathcal{O}_n^{\times}) \xrightarrow{p} H^1(\Gamma_n, \mathcal{O}_n^{\times}) \to H^1(\Gamma_n, \mathcal{O}_n^{\times}/p) \to 0.$$

One can show that $H^1(\Gamma_n, \mathcal{O}_n^{\times}) \simeq P_n^{\Gamma_n}/P_0$, P_n being the principal ideal group of F_n . Because the class number h_n of F_n is prime to p and the prime \mathfrak{P}_n of F_n lying over p is the unique ramified prime in F_n/F , which is totally ramified, $P_n^{\Gamma_n}/P_0$ (note that $P_n^{\Gamma_n}/P_0$ has p-power order) is generated by the class of $\mathfrak{P}_n^{h_n}$, whose order is p^n . Hence $H^1(\Gamma_n, \mathcal{O}_n^{\times}) \simeq \mathbb{Z}/p^n$, which implies $H^1(\Gamma_n, \mathcal{O}_n^{\times}/p) \simeq \mathbb{Z}/p$ by (28). Since $H^1(\Gamma_n, \mathcal{O}_n^{\times}/p) = \bigoplus_{i=1}^s H^1(\Gamma_n, \mathbb{Z}/p[\Gamma_n]/(\gamma_n-1)^{a_i})$ and $H^1(\Gamma_n, \mathbb{Z}/p[\Gamma_n]/(\gamma_n-1)^{a_i}) = 0$ if and only if $a_i = p^n$, we have $\mathcal{O}_n^{\times} \simeq \mathbb{Z}/p[\Gamma_n]/(\gamma_n-1)^{p^n-1} = \mathbb{Z}/p[\Gamma_n]/\sum_{\gamma \in \Gamma_n} \gamma$.

By the similar way to the above, we can show that $H^1(F_t/F_n, \mathcal{O}_t^{\times}) \simeq \mathbf{Z}/p^{t-n}$ for $0 \le n \le t$. Then it follows from the fact $\#H^1(F_t/F_n, \mathcal{O}_t^{\times})/\#\hat{H}^0(F_t/F_n, \mathcal{O}_t^{\times}) = [F_t : F_n] = p^{t-n}$ that $\hat{H}^0(F_t/F_n, \mathcal{O}_t^{\times}) = 0$, which implies the norm map $\mathcal{O}_t^{\times}/p \to \mathcal{O}_n^{\times}/p$ is surjective. Hence we have $\lim_{t \to \infty} \mathcal{O}_n^{\times}/p \simeq \lim_{t \to \infty} \mathbf{Z}/p[\Gamma_n]/\sum_{\gamma \in \Gamma_n} \gamma \simeq \lim_{t \to \infty} \mathbf{Z}/p[\Gamma_n] \simeq \Lambda_{F_{\infty}/F}/p$, where the projective limit in the second and third terms are taken with respect to the maps induced by the natural surjection $\Gamma_t \to \Gamma_n$ for $0 \le n \le t$.

Let k/F be a degree p subextension of L_0/F in which all the primes l_i $(1 \le i \le m+1)$ ramify. Then we will see that L_n/k_n is an unramified abelian p-extension, where $k_n = kF_n$. If L_n is the Hilbert p-class field of k_n for all $n \ge 0$ and the map $\lim_{\longleftarrow} (\mathcal{O}_n^{\times}/p) \to (\Lambda_{F_{\infty}/F}/p)^{\oplus m+1}$ in (27) is injective, then we have

$$X_{k_{\infty}} = \operatorname{Gal}(L_{\infty}/k_{\infty}) \sim \operatorname{Gal}(L_{\infty}/F_{\infty}) \simeq \operatorname{coker}(\lim_{\longleftarrow} (\mathcal{O}_{n}^{\times}/p) \to (\Lambda_{F_{\infty}/F}/p)^{\oplus m+1})$$
$$\sim (\Lambda_{F_{\infty}/F}/p)^{\oplus m} \simeq (\Lambda_{k_{\infty}/k}/p)^{\oplus m}$$

by Lemma 7, where $k_{\infty} = kF_{\infty}$ and \sim denotes a pseudo-isomorphism. In what follows, we shall choose the primes l_i and the field k so that the above conditions are satisfied.

For a prime $l \equiv 1 \pmod{p}$, we denote by $\mathbf{Q}^{(p)}(l)$ the unique subfield of $\mathbf{Q}(\mu_l)$ of degree p. Now we impose the following condition on primes l_i :

CONDITION. p is inert in $\mathbf{Q}^{(p)}(l_1)$ and splits in $\mathbf{Q}^{(p)}(l_i)$ for $2 \le i \le m+1$. If $2 \le i \le m+1$, then l_i splits in $\mathbf{Q}^{(p)}(l_j)$ for all j such that $1 \le j \le i-2$ and is inert in $\mathbf{Q}^{(p)}(l_{i-1})$.

Lemma 8. There exist distinct prime numbers l_i $(1 \le i \le m+1)$ satisfying (25) and the above condition.

PROOF. We first note that p is inert in $\mathbf{Q}^{(p)}(l)$ if and only if $p^{(l-1)/p} \not\equiv 1 \pmod{l}$ for a prime number $l \equiv 1 \pmod{p}$. Hence if the decomposition subgroup of $\operatorname{Gal}(\mathbf{Q}(\mu_p,\sqrt[p]p)/\mathbf{Q})$ for a prime of $\mathbf{Q}(\mu_p,\sqrt[p]p)$ lying over l is $\operatorname{Gal}(\mathbf{Q}(\mu_p,\sqrt[p]p)/\mathbf{Q}(\mu_p))$ (resp. trivial) then $l \equiv 1 \pmod{p}$ and p is inert (resp. splits) in $\mathbf{Q}^{(p)}(l)$. Applying the Čebotarev density theorem to $\mathbf{Q}(\mu_p,\sqrt[p]p)F/\mathbf{Q}$, we can choose prime l_1 satisfying (25) and the Condition since $\mathbf{Q}(\mu_p,\sqrt[p]p)$ and F are independent over \mathbf{Q} . We can choose the prime l_i $(2 \le i \le m+1)$ satisfying (25) and the Condition inductively from i=2 to m+1 by applying the Čebotarev density theorem to $\mathbf{Q}(\mu_p,\sqrt[p]p)F\mathbf{Q}^{(p)}(l_1)\cdots\mathbf{Q}^{(p)}(l_{i-1})/\mathbf{Q}$ since $\mathbf{Q}(\mu_p,\sqrt[p]p)$, F and $\mathbf{Q}^{(p)}(l_j)$'s $(1 \le j \le i-1)$ are independent over \mathbf{Q} .

We assume that distinct prime numbers l_i $(1 \le i \le m+1)$ satisfy the Condition and (25). It follows from (26) for n=0 that $L_0=F\boldsymbol{Q}^{(p)}(l_1)\cdots\boldsymbol{Q}^{(p)}(l_{m+1})$ and $\operatorname{Gal}(L_0/F)=\bigoplus_{i=1}^{m+1}I_{l_i}$ where $I_{l_i}\simeq \boldsymbol{Z}/p$ is the inertia subgroup of $\operatorname{Gal}(L_0/F)$ for the prime l_i . Since the decomposition subgroup of $\operatorname{Gal}(L_0/F)$ for the prime p is I_{l_1} by the Condition, there exists an intermediate field k of L_0/F with [k:F]=p such that p is inert and l_i ramifies in k/F for any i. Then k/\boldsymbol{Q} is a cyclic extension of degree 2p and k has the unique prime lying over p.

LEMMA 9. (i) L_n is the genus p-class field of k_n/F_n $(k_n := F_n k)$.

(ii) The restriction induces $Gal(L_n/k_n)_{\Gamma_n} \simeq Gal(L_0/k)$.

PROOF. (i) Since the prime l_i ramifies in L_0/F and $L_0 \subseteq L_n$, every prime of F_n lying over l_i ramifies in k_n/F_n . Hence L_n/k_n is an unramified p-extension, because in L_n/F_n , the ramification index of a prime of F_n lying over l_i is p. By a similar argument to the proof of Lemma 5 (iii), we have the assertion.

(ii) Let M be the maximal intermediate field of L_n/k_n which is abelian over k. Then $\operatorname{Gal}(L_n/k_n)_{\Gamma_n} \simeq \operatorname{Gal}(M/k_n)$ and M/F is abelian. We shall show that $M = k_n L_0$. $k_n L_0 \subseteq M$ is obvious. Denote by I_p the inertia subgroup of $\operatorname{Gal}(M/k)$ for the unique prime of k lying over p. Then $\operatorname{Gal}(M/k) = I_p \times \operatorname{Gal}(M/k_n)$ and the fixed subfield M^{I_p} of M by I_p is contained in L_0 , because M^{I_p}/k is unramified p-extension, M/F is abelian, and L_0 is the genus p-class field of k/F by (i). Hence it follows that $M \subseteq L_0 k_n$. Therefore we have $M = L_0 k_n$ and $\operatorname{Gal}(L_n/k_n)_{\Gamma_n} \simeq \operatorname{Gal}(M/k_n) \simeq \operatorname{Gal}(L_0/k)$. \square

By virtue of Lemma 9 and Nakayama's lemma, we find that if $\{(l_i, L_0/k) | 1 \le i \le m+1\}$ generates $Gal(L_0/k)$, then L_n is the Hilbert *p*-class field of k_n as in the proof of Theorem 1, where l_i denotes the unique prime of k lying over l_i . It follows from the Condition on l_i 's and the fact $L_0 = k \mathbf{Q}^{(p)}(l_1) \cdots \mathbf{Q}^{(p)}(l_m)$ that $\{(l_i, L_0/k) | 1 \le i \le m+1\}$ generates $Gal(L_0/k)$. Therefore L_n is the Hilbert *p*-class field of k_n for all $n \ge 0$.

Next we shall show the injectivity of the map $\lim_{n \to \infty} \mathcal{O}_n^{\times}/p \to (\Lambda_{F_{\infty}/F}/p)^{\oplus m+1}$ in (27). It is enough to show that the map $\mathcal{O}_n^{\times}/p \to (\mathcal{O}_n/l_1)^{\times}/p$ is injective for all $n \geq 0$. Let $F_n^{(p)}(l_1)$ be the maximal elementary abelian p-extension field over F_n whose conductor divides l_1 . Then we get the exact sequence

(29)
$$\mathscr{O}_n^{\times}/p \to (\mathscr{O}_n/l_1)^{\times}/p \to \operatorname{Gal}(F_n^{(p)}(l_1)/F_n) \to 0.$$

It follows from the above exact sequence for n=0 that $[F_0^{(p)}(l_1):F_0]=p$ and the prime l_1 ramifies in $F_0^{(p)}(l_1)/F_0$. Hence $F_n^{(p)}(l_1)/F_nF_0^{(p)}(l_1)$ is an unramified abelian p-extension. The class number of $F_0^{(p)}(l_1)$ is prime to p because the class number of F is prime to p and l_1 is the only ramified prime in $F_0^{(p)}(l_1)/F$ (see Iwasawa [5]). Since there is the unique prime of $F_0^{(p)}(l_1)=F\mathbf{Q}^{(p)}(l_1)$ lying above p by the Condition, which is the unique prime ramifying in $F_nF_0^{(p)}(l_1)/F_0^{(p)}(l_1)$, the class number of $F_nF_0^{(p)}(l_1)$ is prime to p by Iwasawa's result mentioned above. Hence we have $F_n^{(p)}(l_1)=F_nF_0^{(p)}(l_1)$ and $Gal(F_n^{(p)}(l_1)/F_n)\simeq \mathbf{Z}/p$, which implies the injectivity of the map $\mathcal{O}_n^\times/p\to(\mathcal{O}_n/l_1)^\times/p$ by (29) and the fact $\#((\mathcal{O}_n/l_1)^\times/p)/\#(\mathcal{O}_n^\times/p)=p$.

Thus we have shown that k_{∞}/k is a \mathbb{Z}_p -extension with $X_{k_{\infty}} \sim (\Lambda_{k_{\infty}/k}/p)^{\oplus m}$.

Finally we shall show that $X_{k_{\infty}} \simeq (\Lambda_{k_{\infty}/k}/p)^{\oplus m}$. Since $pX_{k_{\infty}} = p \varprojlim \operatorname{Gal}(L_n/k_n) = 0$, $X_{k_{\infty}}$ is a finitely generated module over the principal ideal domain $\Lambda_{k_{\infty}/k}/p$. Because $X_{k_{\infty}} \sim (\Lambda_{k_{\infty}/k}/p)^{\oplus m}$, we have

$$(30) X_{k_{\infty}} \simeq (\Lambda_{k_{\infty}/k}/p)^{\oplus m} \oplus \operatorname{Tor}_{\Lambda_{k_{\infty}/k}/p} X_{k_{\infty}}$$

as $\Lambda_{k_{\infty}/k}/p$ -modules. From the fact that there is the unique prime of k lying over p and k_{∞}/k is a totally ramified at that prime, we have $\operatorname{Gal}(L_0/k) \simeq X_{k_{\infty}/k}/(\gamma_{\infty}-1)$, where γ_{∞} is a topological generator of $\operatorname{Gal}(k_{\infty}/k)$ (see [6]). Hence it follows from $\operatorname{Gal}(L_0/k) = \operatorname{Gal}(F\boldsymbol{Q}^{(p)}(l_1)\cdots\boldsymbol{Q}^{(p)}(l_{m+1})/k) \simeq (\boldsymbol{Z}/p)^{\oplus m}$ and (30) that $\operatorname{Tor}_{\Lambda_{k_{\infty}/k}/p} X_{k_{\infty}} = 0$. Thus we have $X_{k_{\infty}} \simeq (\Lambda_{k_{\infty}/k}/p)^{\oplus m}$ as $\Lambda_{k_{\infty}/k}$ -modules.

EXAMPLE. Put p = 3, $F = Q(\sqrt{-1})$, and let F_{∞}/F be the anti-cyclotomic Z_3 -extension. Then p is inert in F and the class number of F is prime to p. Put

 $f_1 = 7 \cdot 19$, $f_2 = 7 \cdot 19 \cdot 43$, $f_3 = 7 \cdot 19 \cdot 43 \cdot 1597$, and denote by M_s/\mathbf{Q} (s = 1, 2, 3) a cubic cyclic extension of conductor f_s such that the prime 3 is inert in M_s . Then it holds that $\mu(M_sF_\infty/M_sF) = s$ for s = 1, 2, 3.

5. Application to a certain capitulation problem.

In this section we shall apply Theorem 1 to a certain capitulation problem. Let F be a number field with the ideal class group Cl(F). Then the principal ideal theorem says that:

PRINCIPAL IDEAL THEOREM. Every ideal of F capitulates in the Hilbert class field H_F of F, namely, the natural map $Cl(F) \to Cl(H_F)$ is the zero map.

However it happens that all the ideals of F capitulate in a proper subextension field of H_F/F . Iwasawa constructed an infinite family of such number fields F by using the theory of \mathbb{Z}_p -extensions in [9]:

Theorem (Iwasawa [8], [9]). For any prime number p, there exist infinitely many number fields F with the following properties:

- (i) $Cl(F)(p) \simeq \mathbb{Z}/p^r$ with $r \ge 2$, Cl(F)(p) being the Sylow p-subgroup of Cl(F),
- (ii) Cl(F)(p) capitulates in an unramified cyclic extension F'/F of degree p.

In the above theorem, let M be the compositium of F' and the Hilbert l-class fields of F for all the prime numbers $l \neq p$. Then $F \subseteq M \subsetneq H_F$ and Cl(F) capitulates in M.

In the paper [11], the author showed that for any given number N, there exists a number field F such that $\operatorname{Cl}(F)(p) \simeq \mathbb{Z}/p^r$ with $r \geq N$ and that F has property (ii) in Iwasawa's theorem. By using the construction of Theorem 1, we further improve the theorem:

THEOREM 3. For any prime number p and finite abelian p-group A, there exists a number field F with the following properties:

- (i) $Cl(F)(p) \simeq A$,
- (ii) Cl(F)(p) capitulates in an unramified cyclic extension F'/F of degree exp(Cl(F)(p)), exp(Cl(F)(p)) being the exponent of Cl(F)(p).

PROOF. Let p^e be the exponent of A and A' a subgroup of A with $A \simeq A' \oplus \mathbb{Z}/p^e$. By the construction in the proof of Theorem 1 for X = A' with trivial Γ -action, $n_0 = 0$ and $m_0 = e$, we get the cyclic extension k/\mathbb{Q}_N of degree p^e such that $\mathrm{Cl}(k_t)(p) \simeq A'$ for any $t \geq 0$ and the Hilbert p-class field $H_k^{(p)}$ of k is the genus p-class field L_0 of k/\mathbb{Q}_N (recall Lemma 5 (iii)). Let F be an intermediate field of k_e/\mathbb{Q}_N such that $\mathrm{Gal}(F/\mathbb{Q}_N) \simeq \mathbb{Z}/p^e$ and $F \cap k = F \cap \mathbb{Q}_{N+e} = \mathbb{Q}_N$. Then we can see that k_e/F is an unramified cyclic extension of degree p^e . Denote by $H_{k_e}^{(p)}$ the Hilbert p-class field of k_e . Then $H_{k_e}^{(p)} = L_0 k_e = L_0 \mathbb{Q}_{N+e}$, hence $H_{k_e}^{(p)}/\mathbb{Q}_N$ is an abelian extension since L_0/\mathbb{Q}_N is abelian. Therefore $H_{k_e}^{(p)}/F$ is an unramified abelian p-extension. Consequently, $H_{k_e}^{(p)}$ is the Hilbert p-class field of F. Since $H_{k_e}^{(p)} = L_0 F$ and $L_0 \cap F = \mathbb{Q}_N$, we have $\mathrm{Cl}(F)(p) \simeq \mathrm{Gal}(H_{k_e}^{(p)}/F) = \mathrm{Gal}(L_0 F/F) \simeq \mathrm{Gal}(L_0/\mathbb{Q}_N) \simeq A' \oplus \mathbb{Z}/p^e \simeq A$. Hence the field F satisfies condition (i).

Next we shall show that the field F satisfies condition (ii). From class field theory, we get the following commutative diagram:

$$\operatorname{Cl}(k_e)(p) \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(H_{k_e}^{(p)}/k_e)$$

$$\uparrow \qquad \qquad \uparrow \text{transfer}$$

$$\operatorname{Cl}(F)(p) \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(H_{k_e}^{(p)}/F) \simeq A,$$

where the horizontal maps are the reciprocity maps, the left vertical map is the natural map and the right vertical map is the transfer map from $\operatorname{Gal}(H_{k_e}^{(p)}/F)^{\operatorname{ab}} = \operatorname{Gal}(H_{k_e}^{(p)}/F)$ to $\operatorname{Gal}(H_{k_e}^{(p)}/k_e)^{\operatorname{ab}} = \operatorname{Gal}(H_{k_e}^{(p)}/k_e)$. Since the transfer map $\operatorname{Gal}(H_{k_e}^{(p)}/F) \to \operatorname{Gal}(H_{k_e}^{(p)}/k_e)$ is equal to the multiplication-by- p^e -map when we regard $\operatorname{Gal}(H_{k_e}^{(p)}/F)$ as a subgroup of $\operatorname{Gal}(H_{k_e}^{(p)}/F)$, it is equal to the zero-map by $\operatorname{Gal}(H_{k_e}^{(p)}/F) \simeq A$. Hence the natural map $\operatorname{Cl}(F)(p) \to \operatorname{Cl}(k_e)(p)$ is also the zero-map. Therefore $\operatorname{Cl}(F)(p)$ capitulates in an unramified cyclic extension k_e/F of degree $p^e = \exp(\operatorname{Cl}(F)(p))$.

References

- [1] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. (2), **109** (1979), 377–395.
- [2] T. Fukuda, Remarks on \mathbb{Z}_p -extensions of number fields, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 264–266.
- [3] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263–284.
- [4] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math., 88 (1987), 31–38.
- [5] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, **20** (1956), 257–258.
- [6] K. Iwasawa, On Γ -extensions of algebraic number fields, Bull. Amer. Math. Soc., **65** (1959), 183–226.
- [7] K. Iwasawa, On the μ -invariants of \mathbf{Z}_{ℓ} -extensions, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 1–11.
- [8] K. Iwasawa, A note on capitulation problem for number fields I, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 59–61.
- [9] K. Iwasawa, A note on capitulation problem for number fields II, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 183–186.
- [10] S. Lang, Cyclotomic Fields I and II (2nd edition), Grad. Texts in Math., 121, Springer-Verlag, New York, 1990.
- [11] M. Ozaki, Iwasawa invariants of p-extensions of totally real number fields, preprint.
- [12] L. C. Washington, Introduction to Cyclotomic Fields (2nd. edition), Grad. Texts in Math., 83, Springer-Verlag, New York, 1997.
- [13] O. Yahagi, Construction of Number fields with prescribed *l*-class groups, Tokyo J. Math., 1 (1978), 275–283.

Manabu Ozaki

Department of Mathematics
Faculty of Science and Engineering
Shimane University
Nishikawatsu-Cho 1060
Matsue 690-8504
Japan
E-mail: ozaki@math.shimane-u.ac.jp