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Abstract. We construct Zp-extensions whose Iwasawa modules have prescribed

structure. Specifically, we give a Zp-extension with prescribed finite Iwasawa module.

Also we show that there exists a Zp-extension with arbitrarily given Iwasawa m-invariant.

We apply the construction of such Zp-extensions to a certain capitulation problem.

1. Introduction.

Let K=k be a Zp-extension and kn its n-th layer. The Iwasawa module XK of the

Zp-extension K=k is defined to be the projective limit lim
 �

AðknÞ of the Sylow p-subgroup

AðknÞ of the ideal class group of kn with respect to the norm maps. Otherwise, we can

also define XK to be the Galois group GalðLðKÞ=KÞ of the maximal unramified pro-p

abelian extension LðKÞ=K . Then the completed group ring LK=k ¼ Zp½½GalðK=kÞ�� acts

on XK and Iwasawa showed that XK is a finitely generated torsion LK=k-module. In the

arithmetic of the Zp-extension K=k, Iwasawa module XK plays a crucial role. Iwasawa

studied the LK=k-module structure of XK and deduced the following celebrated formula:

Theorem (Iwasawa). There exist non-negative integers lðK=kÞ; mðK=kÞ and an

integer nðK=kÞ such that

#AðknÞ ¼ plðK=kÞnþmðK=kÞ pnþnðK=kÞ

for all su‰ciently large n.

Here the integers lðK=kÞ; mðK=kÞ and nðK=kÞ are called Iwasawa invariants of K=k.

We remark that lðK=kÞ and mðK=kÞ are the invariants of the LK=k-module structure

of XK .

Now we raise the following natural question on the Iwasawa module:

Question A. Let p be a prime number and G a topological group isomorphic to

Zp. Put L ¼ Zp½½G ��. Then, for any finitely generated torsion L-module X , does there

exist a Zp-extension K=k such that XK is isomorphic to X as L-modules, regarding XK

as a L-module via some isomorphism GalðK=kÞFG ?

We also raise the following question, which relates to Question A:
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Question B. For any non-negative integers l and m, does there exist a Zp-extension

K=k with lðK=kÞ ¼ l and mðK=kÞ ¼ m?

Here we note that if Question A is a‰rmative, then Question B is also a‰rmative.

In the present paper, we shall give partial answers to the above questions. Specifi-

cally, we shall answer to Question A a‰rmatively in the case where X is finite (Theorem

1). Also we shall answer to Question B for m-invariants a‰rmatively (Theorem 2).

In the final section, we shall apply the construction in the proof of Theorem 1 to a

certain capitulation problem.

2. Main results.

On Question A, we shall give the following:

Theorem 1. Let p be a prime number and G a topological group isomorphic to Zp.

Put L ¼ Zp½½G ��. Then for any finite L-module X , there exists a cyclotomic Zp-extension

K=k over a totally real number field k such that

XK FX

as L-modules, regarding XK as a L-module via some isomorphism GalðK=kÞFG .

Greenberg conjectured that XK is finite if K=k is the cyclotomic Zp-extension over

a totally real number field k (see [3]). Therefore, assuming Greenberg’s conjecture,

Theorem 1 says that among the cyclotomic Zp-extensions over totally real number fields,

every possible L-module could appear as an Iwasawa module.

On Question B, we shall give the following:

Theorem 2. Let p be an odd prime number. For any non-negative integer m, there

exist a number field k and a Zp-extension K=k with mðK=kÞ ¼ m (and lðK=kÞ ¼ 0), spe-

cifically, XK F ðLK=k=pÞ
lm. Furthermore, we can take k to be an imaginary cyclic ex-

tension of degree 2p over Q.

Iwasawa conjectured that mðK=kÞ ¼ 0 for any cyclotomic Zp-extension K=k. This

conjecture is valid if the base field k is abelian over Q (the Ferrero-Washington theorem

[1]). However Iwasawa [7] constructed non-cyclotomic Zp-extensions with arbitrarily

large m-invariant. Our method of construction of Zp-extension K=k in Theorem 2 is

based on [7], hence K=k is a certain non-cyclotomic Zp-extension, so called the anti-

cyclotomic Zp-extension.

To prove the theorems, we refine the idea in Yahagi [13], in which he constructed

number fields with prescribed Sylow p-subgroup of the ideal class group. We extend

his method so that we can impose the prescribed Galois module structure on the Sylow

p-subgroup of the ideal class group.

3. Proof of Theorem 1.

Since X is finite, X is a Z=pm0 ½Gn0 �-module for some integers m0b 1 and n0b 0,

where Gn ¼ G=G p n

FZ=pn for nb 0.
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Lemma 1. Assume that a Zp-extension K=k satisfies the following three conditions:

(i) K=k is totally ramified at every ramified prime.

(ii) Aðkn0
ÞFX as Gn0

-modules, viewing Aðkn0Þ as a Gn0 -module by some identifica-

tion GalðK=kÞ with G .

(iii) Aðkn0ÞFAðkn0þ1Þ.

Then we have XK FX as L-modules.

Proof. It follows from assumptions (i), (iii) and Fukuda [2] that XK FAðkn0
Þ as

LK=k-modules. Hence the assertion follows from assumption (ii). r

By virtue of Lemma 1, our main aim is to construct a number field with prescribed

Sylow p-subgroup of the ideal class group and Galois action on it. Yahagi [13] con-

structed number fields with prescribed Sylow p-subgroup of the ideal class group. We

refine his method to construct a desired number field. Outline of the construction is

as follows: We construct a cyclic extension k=QN of degree pm0 for suitable N, QN

being the N-th layer of the cyclotomic Zp-extension over Q, such that Aðkn0Þ=ðs� 1ÞF

Aðkn0þ1Þ=ðs� 1ÞFX as G-modules (identifying G with Galðky=kÞ) by ‘‘genus theo-

retic’’ method, where ky=k is the cyclotomic Zp-extension, kn ðnb 0Þ is its n-th layer

and s is a generator of Galðkn0þ1=QNþn0þ1Þ. By selecting the ramified primes of k=QN

carefully, we can make the ideal classes in Aðkn0þdÞ containing s-invariant ideals

generate Aðkn0þdÞ=ðs� 1Þ for d ¼ 0; 1. Hence Aðkn0þdÞ ¼ Aðkn0þdÞ=ðs� 1ÞFX for

d ¼ 0; 1 by Nakayama’s lemma. Thus the cyclotomic Zp-extension ky=k is a desired

Zp-extension by Lemma 1.

We fix a topological generator gy of G and put gn ¼ gy modG p n

A Gn. Let

r :¼ dimFp
X=ðp; gn0

� 1Þ:ð1Þ

Then r is the number of minimal generators of X over Z=pm0 ½Gn0
�, and there exists an

exact sequence of Z=pm0 ½Gn0 �-modules

0 ! Rn0
! Z=pm0 ½Gn0

�lr ! X ! 0:ð2Þ

Let p 0
n0þ1;n0

be the natural map from Z=pm0 ½Gn0þ1�
lr to Z=pm0 ½Gn0

�lr induced by

the natural projection Gn0þ1 ! Gn0
, and put Rn0þ1 ¼ p 0

n0þ1;n0

�1ðRn0Þ. Then p 0
n0þ1;n0

induces the isomorphism

Z=pm0 ½Gn0þ1�
lr=Rn0þ1 FX :ð3Þ

We identify Z=pm0 ½Gn0þ1�
lr=Rn0þ1 with X via the natural isomorphism (3).

We define the submodule ~RRn0þd ðd ¼ 0; 1Þ of Z=pm0 ½Gn0þd�
lrþ1 as follows:

~RRn0þd ¼

(

ðaiÞ1aiarþ1 A Z=pm0 ½Gn0þd�
lrþ1 jð4Þ

ðaiÞ1aiar A Rn0þd; arþ1 1
X

r

i¼1

ai ðmod gn0þd � 1Þ

)

:

We put

~XX ¼ Z=pm0 ½Gn0þ1�
lrþ1= ~RRn0þ1:ð5Þ
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We remark that there is a natural injection X ! ~XX given by ðxiÞ1aiar modRn0þ1 7!

ðx1; . . . ; xr;
Pr

i¼1 xiÞmod ~RRn0þ1, whose cokernel is isomorphic to Z=pm0 .

Then the natural map pn0þ1;n0
: Z=pm0 ½Gn0þ1�

lrþ1 ! Z=pm0 ½Gn0 �
lrþ1 induced by the

projection Gn0þ1 ! Gn0
gives the isomorphism

~XX ¼ Z=pm0 ½Gn0þ1�
lrþ1= ~RRn0þ1 FZ=pm0 ½Gn0 �

lrþ1= ~RRn0ð6Þ

because p�1
n0þ1;n0

ð ~RRn0Þ ¼ ~RRn0þ1.

Let g be the number of minimal generators of ~RRn0þ1 over Z=pm0 ½Gn0þ1�, and we

choose and fix once for all an integer N with the property

pN � 1b g and Nbm0:ð7Þ

Now we shall identify G with GalðQy=QNÞ by a fixed isomorphism G F

GalðQy=QNÞ, where Qy is the cyclotomic Zp-extension field of Q. Then Gt ¼

GalðQNþt=QNÞ for tb 0.

Let li ð1a ia rþ 1Þ be distinct degree one primes of QN which decompose com-

pletely in QNþn0þ1, say li ¼
Q

g AGn0þ1
gLi;n0þ1. Furthermore, we assume that li decom-

poses completely in ~QQNþn0þ1 :¼ QNþn0þ1ðmpÞ (if p0 2) or QNþn0þ1ðm4Þ (if p ¼ 2). Put

m ¼
Qrþ1

i¼1 li, and denote by Li;n0
the prime of QNþn0

below Li;n0þ1. For tb 0, we

denote by L t=QNþt the maximal abelian p-extension such that the conductor of L t=QNþt

divides m and the exponent of GalðL t=QNþtÞ is less than or equal to pm0 . Since

the class number of QNþn0þd is prime to p as well known, we get the exact sequence of

G-modules

O
�
Nþn0þd=p

m0
��!
rn0þd

ðONþn0þd=mÞ�=pm0
��!
rn0þd

GalðLn0þd=QNþn0þdÞ ! 0;ð8Þ

for d ¼ 0; 1 by class field theory, where ONþn0þd denotes the ring of integers of QNþn0þd,

rn0þd is the natural map, and rn0þd is the map induced by the reciprocity map. We can

see that the middle term ðONþn0þd=mÞ�=pm0 of (8) is isomorphic to Zp½Gn0þd�
lrþ1 via the

following map:

ðONþn0þd=mÞ�=pm0
FZ=pm0 ½Gn0þd�

lrþ1;ð9Þ

the class of a 7!
X

g AGn0þd

j
a

~gg~LLi;n0þd

 !

n0þd

0

@

1

Ag

0

@

1

A

1aiarþ1

:

Notations in (9) are as follows: ~gg A Galð ~QQNþn0þd=
~QQNÞ is the image of g via the natural

isomorphism Gn0þd FGalð ~QQNþn0þd=
~QQNÞ, where ~QQNþn0þd ¼ QNþn0þdðmpÞ (if p0 2) or

QNþn0þdðm4Þ (if p ¼ 2). ~LLi;n0þ1 are fixed primes of ~QQNþn0þ1 lying above Li;n0þ1, and
~LLi;n0 is the prime of ~QQNþn0

below ~LLi;n0þ1. ð�=�Þn0þd A mpm0 is the pm0 -th power residue

symbol for ~QQNþn0þd. j is a fixed isomorphism mpm0 FZ=pm0 . Here we note that

mpm0 J
~QQN by (7) hence ða=~gg~LLi;n0þdÞn0þd ¼ ðg�1a=~LLi;n0þdÞn0þd, and that ONþn0þd=gLi;n0þd

F ~OONþn0þd=~gg~LLi;n0þd, ~OONþn0þd being the ring of integers of ~QQNþn0þd, since li decomposes

completely in ~QQNþn0þ1.

In what follows we fix ~LLi;n0þ1 and j once for all and identify ðONþn0þd=mÞ�=pm0

with Z=pm0 ½Gn0þd�
lrþ1 via the above isomorphism. Then we get the exact sequence

O
�
Nþn0þd=p

m0
��!
rn0þd

Z=pm0 ½Gn0þd�
lrþ1

��!
rn0þd

GalðLn0þd=QNþn0þdÞ ! 0;ð10Þ
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from (8), and the map rn0þd is given by

rn0þdðeÞ ¼
X

g AGn0þd

j
e

~gg~LLi;n0þd

 !

n0þd

0

@

1

Ag

0

@

1

A

1aiarþ1

:ð11Þ

It follows from (7) that m2m0þ1 J ~QQNþn0þd when p ¼ 2. Hence rn0þdð�1Þ ¼ 0 for any

prime number p by (11) since �1 A ðm2m0þ1Þ2
m0

when p ¼ 2. From exact sequences (10)

for d ¼ 0; 1 and the fact that rn0þdð�1Þ ¼ 0, we get the following exact commutative

diagram:

O
�
Nþn0þ1=p

m0
���!
rn0þ1

Z=pm0 ½Gn0þ1�
lrþ1

���!
rn0þ1

GalðLn0þ1=QNþn0þ1Þ ���! 0

Nn0þ1; n0

?
?
?
y

pn0þ1; n0

?
?
?
y

resn0þ1; n0

?
?
?
y

O
�
Nþn0

=pm0
���!

rn0
Z=pm0 ½Gn0 �

lrþ1
���!

rn0
GalðLn0

=QNþn0
Þ ���! 0;

ð12Þ

where O
�
Nþn0þd ¼ O

�
Nþn0þd=fG1g for d ¼ 0; 1, Nn0þ1;n0

is the norm map from QNþn0þ1 to

QNþn0
, pn0þ1;n0

is the map induced by the natural projection Gn0þ1 ! Gn0 , and resn0þ1;n0

is the restriction map (Note that Ln0
JLn0þ1). Commutativity follows from the fact

~LLi;n0þ1j~LLi;n0 and the properties of the pm0 -th power residue symbol and the reciprocity

map.

Lemma 2. (i) For any tb 0, we have

O
�
Nþt=p

m0 FZ=pm0 ½Gt�
lpN�1

lZ=pm0 ½Gt�=NGt ;

as Z=pm0 ½Gt�-modules, where NGt ¼
P

g AGt
g.

(ii) In commutative diagram (12), the norm map Nn0þ1;n0
: O

�
Nþn0þ1=p

m0 ! O
�
Nþn0

=

pm0 is surjective.

Proof. Let h ¼ NQðm
pNþtþ1 Þ=QNþt

ðzpNþtþ1 � 1Þs�1 (when p0 2), or h ¼ z�2
2Nþtþ2 �

ððz52Nþtþ2 � 1Þ=ðz2Nþtþ2 � 1ÞÞ (when p ¼ 2), where s is a generator of GalðQNþt=QÞ and zd
denotes a primitive d-th root of unity for db 1. Then

CNþt ¼ h�1; th j t A GalðQNþt=QÞi

is the group of cyclotomic units of QNþt and pF ½O�
Nþt : CNþt� (for the various properties

of the cyclotomic unit group, see [12, Chapter 8] for example). Hence O
�
Nþt=p

m0 F
ðCNþt=fG1gÞ=pm0 . Because

CNþt=fG1gFZ½GalðQNþt=QÞ�=NGalðQNþt=QÞ;

as GalðQNþt=QÞ-modules and

Z½GalðQNþt=QÞ� ¼ 0
t AGalðQNþt=QÞ=Gt

Z½Gt�t;

we can see that CNþt=fG1gFZ½Gt�
lpN�1

lZ½Gt�=NGt . Thus we have proved assertion

(i).

Assertion (ii) follows from O
�
Nþn0þd=p

m0 F ðCNþn0þd=fG1gÞ=pm0 and the fact that

the norm map Nn0þ1;n0 : CNþn0þ1=fG1g ! CNþn0
=fG1g is surjective. r
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Lemma 3. For any Gn0þ1-homomorphism f : O
�
Nþn0þ1=p

m0 ! Z=pm0 ½Gn0þ1�, there

exist infinitely many degree one primes ~LL of ~QQNþn0þ1 such that

f ðeÞ ¼
X

g AGn0þ1

j
e

~gg~LL

� �

n0þ1

 !

g;

for any e A O
�
Nþn0þ1=p

m0 , where the notations in the above are as in (9). Furthermore, for

any fixed finite abelian extension M= ~QQNþn0þ1 with M V ~QQNþn0þ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O
�
Nþn0þ1

p
m0

q

Þ ¼ ~QQNþn0þ1

and t A GalðM= ~QQNþn0þ1Þ, we can impose the condition

M= ~QQNþn0þ1

~LL

 !

¼ t

on ~LL.

Proof. From Lemma 2 (i), there exist ej; x A O
�
Nþn0þ1 ð1a ja pN � 1Þ such that

O
�
Nþn0þ1=p

m0 ¼ 0
pN�1

j¼1

Z=pm0 ½Gn0þ1�ej l ðZ=pm0 ½Gn0þ1�=NGn0þ1
Þx;ð13Þ

where ej; x A O
�
Nþn0þ1=p

m0 are the classes of ej and x, respectively.

Assume that f ðejÞ ¼
P

g AGn0þ1
cj; gg and f ðxÞ ¼

P

g AGn0þ1
dgg. We shall show that

there exist infinitely many degree one primes ~LL of ~QQNþn0þ1 such that

ej

~gg~LL

� �

n0þ1

¼ j�1ðcj; gÞ ð1a ja pN � 1; g A Gn0þ1Þ;

x

~gg~LL

� �

n0þ1

¼ j�1ðdgÞ ðg A Gn0þ1 � f1gÞ:

ð14Þ

We note that if the above conditions hold, then the condition

x

~LL

� �

n0þ1

¼ j�1ðd1Þ

also holds, because
Q

g AGn0þ1
ðx=ð~gg~LLÞÞn0þ1 ¼ ð

Q

g AGn0þ1
gx=~LLÞn0þ1 ¼ 1 and

P

g AGn0þ1
dg ¼ 0.

We also note that

e

~gg~LL

� �

n0þ1

¼
~QQNþn0þ1ð

ffiffiffiffiffiffiffiffiffi

~gg�1ep
m0
p

Þ= ~QQNþn0þ1

~LL

 !

ð
ffiffiffiffiffiffiffiffiffi

~gg�1e
p
m0
p

Þ=ð
ffiffiffiffiffiffiffiffiffi

~gg�1e
p
m0
p

Þð15Þ

for any e A O
�
Nþn0þ1.

We need the following lemma:

Lemma 4. The natural map O
�
Nþn0þ1=p

m0 ! ~OO
�
Nþn0þ1=p

m0 is injective (note that �1 A

ð ~OO�
Nþn0þ1Þ

pm0
).

Proof. From the exact sequence

0�! mpm0 �! ~QQ
�

Nþn0þ1 �!
pm0

ð ~QQ
�

Nþn0þ1Þ
pm0

�! 0;
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we get the exact G ¼ Galð ~QQNþn0þ1=QNþn0þ1Þ-cohomology sequence

Q�
Nþn0þ1 �!

pm0

ð ~QQ
�

Nþn0þ1Þ
pm0

VQNþn0þ1 �!H 1ðG; mpm0 Þ�! 0:

If p0 2, H 1ðG; mpm0 Þ ¼ 0 since #G is prime to p. Hence we have ð ~QQ
�

Nþn0þ1Þ
pm0

V

QNþn0þ1 ¼ ðQ�
Nþn0þ1Þ

pm0
. Therefore the assertion of the lemma follows.

We assume that p ¼ 2. Then we can see H 1ðG; m2m0 ÞFZ=2. Hence we have

ðð ~QQ
�

Nþn0þ1Þ
2m0

VQNþn0þ1Þ=ðQ
�
Nþn0þ1Þ

2m0FZ=2. Since �1A ð ~QQ
�

Nþn0þ1Þ
2m0

� ðQ�
Nþn0þ1Þ

2m0
,

the kernel of the natural map O
�
Nþn0þ1=2

m0 ! ~OO
�
Nþn0þ1=2

m0 , which is contained in

ðð ~QQ
�

Nþn0þ1Þ
2m0

VQNþn0þ1Þ=ðQ
�
Nþn0þ1Þ

2m0
, is generated by the class of �1. Thus we also

obtain the lemma in the case p ¼ 2. r

Proof of Lemma 3. Put Fj ¼ ~QQNþn0þ1ð
ffiffiffiffiffiffiffiffiffiffi

~gg�1ej
p
m0
p

j g A Gn0þ1Þ and E ¼ ~QQNþn0þ1 �

ð
ffiffiffiffiffiffiffiffiffiffi

~gg�1xp
m0
p

j g A Gn0þ1Þ. Then it follows from Lemma 4 and (13) that the abelian exten-

sions Fj= ~QQNþn0þ1 ð1a ja pN � 1Þ and E= ~QQNþn0þ1 are independent, and that

GalðFj= ~QQNþn0þ1ÞF 0
g AGn0þ1

mpm0 ; s 7! ðsð
ffiffiffiffiffiffiffiffiffiffi

~gg�1ej
p
m0

q

Þ=
ffiffiffiffiffiffiffiffiffiffi

~gg�1ej
p
m0

q

Þg AGn0þ1
;

GalðE= ~QQNþn0þ1ÞF 0
g AGn0þ1�f1g

mpm0 ; s 7! ðsð
ffiffiffiffiffiffiffiffiffiffi

~gg�1x
p
m0
p

Þ=
ffiffiffiffiffiffiffiffiffiffi

~gg�1x
p
m0
p

Þg AGn0þ1�f1g:

Therefore, by the Čebotarev density theorem and (15), there exist infinitely many degree

one primes of ~QQNþn0þ1 satisfying (14). Furthermore, we can impose the condition

M= ~QQNþn0þ1

~LL

 !

¼ t

on ~LL, since M V ~QQNþn0þ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O
�
Nþn0þ1

p
m0

q

Þ ¼ ~QQNþn0þ1. r

Now we choose the primes ~LLi;n0þ1 and li. From (7) and Lemma 2 (i), there exists

a Gn0þ1-homomorphism h : O
�
Nþn0þ1=p

m0 ! Z=pm0 ½Gn0þ1�
lrþ1 such that ImðhÞ ¼ ~RRn0þ1.

Assume the following condition on the primes ~LLi;n0þ1 ð1a ia rþ 1Þ:

Condition A.

pri � h ¼
X

g AGn0þ1

j
�

~gg~LLi;n0þ1

 !

n0þ1

0

@

1

Ag

for 1a ia rþ 1, where pri : Z=pm0 ½Gn0þ1�
lrþ1 ! Z=pm0 ½Gn0þ1� denotes the projection

map to the i-th component.

By virtue of Lemma 3, there exist degree one primes ~LLi;n0þ1 of ~QQNþn0þ1 satisfying

Condition A such that ~LLi;n0þ1’s are lying over distinct rational primes. We choose

the prime of QN (resp. QNþn0þd) below ~LLi;n0þ1 as li (resp. Li;n0þd ðd ¼ 0; 1Þ), and put

m ¼
Qrþ1

i¼1 li. Then we have Imðrn0þ1Þ ¼ ImðhÞ ¼ ~RRn0þ1 by (11), hence rn0þ1 induces the

isomorphism

~XX ¼ Z=pm0 ½Gn0þ1�
lrþ1= ~RRn0þ1 FGalðLn0þ1=QNþn0þ1Þ:ð16Þ
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Also we have

GalðLn0þ1=QNþn0þ1ÞFGalðLn0
=QNþn0

Þ;ð17Þ

because Imðrn0Þ ¼
~RRn0 and GalðLn0=QNþn0

ÞFZ½Gn0
�lrþ1= ~RRn0 F

~XX by Lemma 2 (ii),

commutative diagram (12), and the fact ~RRn0þ1 ¼ p�1
n0þ1;n0

ð ~RRn0Þ. We identify

GalðLn0þ1=QNþn0þ1Þ with ~XX via the isomorphism (16).

We regard X ¼ Z=pm0 ½Gn0þ1�
lr=Rn0þ1 as a submodule of ~XX ¼ Z=pm0 ½Gn0þ1�

lrþ1=
~RRn0þ1 via the embedding ðxiÞ1aiar modRn0þ1 7! ðx1; . . . ; xr;

Pr
i¼1 xiÞ mod ~RRn0þ1. We

define F to be the intermediate field of Ln0þ1=QNþn0þ1 with

X ¼ GalðLn0þ1=FÞ:ð18Þ

Lemma 5. (i) There exists the unique cyclic extension k=QN of degree pm0 with

conductor dividing m such that F ¼ kn0þ1ð¼ kQNþn0þ1Þ.

(ii) Primes gLi;n0þd ðg A Gn0þd; 1a ia rþ 1Þ are totally ramified in kn0þd=QNþn0þd.

Also primes li ð1a ia rþ 1Þ are totally ramified in k.

(iii) Ln0þd is the genus p-class field of kn0þd=QNþn0þd for d ¼ 0; 1.

Proof. (i) Since ~XX=X is generated by the class of ð0; . . . 0; 1Þ, GalðF=QNþn0þ1ÞF
~XX=X FZ=pm0 with trivial Gn0þ1-action. Hence F=QN is an abelian extension and

GalðF=QNÞ ¼ GalðF=QNþn0þ1Þ � Ip, where Ip JGalðF=QNÞ is the inertia subgroup for

the unique prime of QN lying over p. Let k be the fixed field of Ip. Then k is the

desired field.

(ii) In (12), the inertia subgroup of GalðLn0þ1=QNþn0þ1Þ for gLi;n0þ1 is generated

by rn0þ1ðð0; . . . ; �gg
i

. . . ; 0ÞÞ over Z=pm0 . One can easily see that the order of ð0; . . . ;

�gg
i

. . . ; 0Þmod ~RRn0þ1 is pm0 and that Z=pm0ðð0; . . . ; �gg
i

. . . ; 0Þmod ~RRn0þ1ÞVX ¼ 0. Hence

the prime gLi;n0þ1 is totally ramified in kn0þ1=QNþn0þ1 and Ln0þ1=kn0þ1 is an unramified

extension. The remaining assertions follow from this fact because kn0þ1 ¼ kn0QNþn0þ1

¼ kQNþn0þ1.

(iii) Let L 0 be the genus p-class field of kn0þ1=QNþn0þ1. Then Ln0þ1 JL 0 since

Ln0þ1=kn0þ1 is an unramified abelian p-extension and Ln0þ1=QNþn0þ1 is abelian. Now

we show L 0
JLn0þ1. Since the class number of QNþn0þ1 is prime to p, GalðL 0=kn0þ1Þ

is annihilated by pm0 ¼ ½kn0þ1 : QNþn0þ1�. Since the prime Li;n0þ1 is totally ramified

in kn0þ1=QNþn0þ1, we have GalðL 0=QNþn0þ1ÞFGalðL 0=kn0þ1Þ �Galðkn0þ1=QNþn0þ1Þ.

Hence GalðL 0=QNþn0þ1Þ is annihilated by pm0 . Since the conductor of L 0=QNþn0þ1

divides m, we obtain L 0
JLn0þ1. Thus we have shown that Ln0þ1 is the genus p-class

field of kn0þ1. The assertion for Ln0
also follows by the same argument. r

It follows from Lemmas 1, 5, (18), and (17) that if Ln0þd is the Hilbert p-class field

of kn0þd for d ¼ 0; 1, the cyclotomic Zp-extension over k is a desired Zp-extension.

Let H
ðpÞ
n0þd be the Hilbert p-class field of kn0þd for d ¼ 0; 1 and s a generator of

Galðkn0þ1=QNþn0þ1Þ. Then we have

GalðLn0þ1=kn0þ1ÞFGalðH
ð pÞ
n0þ1=kn0þ1Þ=ðs� 1Þ;ð19Þ

by Lemma 5 (iii). Denote by Li;n0þ1 the unique prime of kn0þ1 lying over Li;n0þ1

(Lemma 5 (ii)). If fðLi;n0þ1;Ln0þ1=kn0þ1Þ j 1a ia rþ 1g generates GalðLn0þ1=kn0þ1Þ
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over Z=pm0 ½Gn0þ1�, then Ln0þ1 ¼ H
ðpÞ
n0þ1 by (19) and Nakayama’s lemma because gLi;n0þ1

ðg A Gn0þ1; 1a ia rþ 1Þ is invariant under the action of s. Since H
ðpÞ
n0 kn0þ1 JH

ðpÞ
n0þ1

and Ln0þ1 ¼ Ln0kn0þ1 by (17), if Ln0þ1 ¼ H
ðpÞ
n0þ1 holds then Ln0

¼ H
ðpÞ
n0 also holds.

Lemma 6. The restriction induces the isomorphisms

GalðLn0þ1=QNþn0þ1ÞGn0þ1
FGalðL0=QNÞ

and

GalðLn0þ1=kn0þ1ÞGn0þ1
FGalðL0=kÞ:

Proof. Let M be the intermediate field of Ln0þ1=QNþn0þ1 with GalðLn0þ1=MÞ ¼

ðgn0þ1 � 1ÞGalðLn0þ1=QNþn0þ1Þ, gn0þ1 being a generator of Gn0þ1.

Then GalðLn0þ1=QNþn0þ1ÞGn0þ1
¼ GalðM=QNþn0þ1Þ and M=QN is an abelian ex-

tension. It is obvious that L0QNþn0þ1 JM. Let Ip JGalðM=QNÞ be the inertia

subgroup for the unique prime of QN lying over p. Then GalðM=QNÞ ¼

GalðM=QNþn0þ1Þ � Ip and the fixed field of Ip is contained in L0. Therefore we have

L0QNþn0þ1 ¼ M and GalðLn0þ1=QNþn0þ1ÞGn0þ1
FGalðL0=QNÞ since L0 VQNþn0þ1 ¼ QN .

To show the second assertion, it is enough to show ðgn0þ1 � 1ÞX ¼ ðgn0þ1 � 1Þ ~XX

because ðgn0þ1 � 1Þ ~XX ¼ GalðLn0þ1=L0QNþn0þ1Þ by the first assertion. Let ðxiÞ A ~XX ¼

Z=pm0 ½Gn0þ1�
lrþ1= ~RRn0þ1 be any element. Since

0; . . . ; 0; ðgn0þ1 � 1Þ
X

r

i¼1

xi � xrþ1

 ! !

A ~RRn0þ1;

we have

ðgn0þ1 � 1ÞðxiÞ ¼ ððgn0þ1 � 1ÞxiÞð20Þ

¼ ðgn0þ1 � 1Þx1; . . . ; ðgn0þ1 � 1Þxr; ðgn0þ1 � 1Þ
X

r

i¼1

xi

 !

¼ ðgn0þ1 � 1Þ x1; . . . ; xr;
X

r

i¼1

xi

 !

A ðgn0þ1 � 1ÞX :

Hence ðgn0þ1 � 1Þ ~XX J ðgn0þ1 � 1ÞX . Thus we have shown ðgn0þ1 � 1Þ ~XX ¼ ðgn0þ1 � 1ÞX .

r

Let L
ðpÞ
0 and L

ðpÞ
k be the maximal elementary abelian p-subextension of L0=QN and

L0=k, respectively. Denote by kðpÞ the intermediate field of k=QN with ½kðpÞ : QN � ¼ p.

Then we have

GalðL
ðpÞ
0 =QNÞF ðGalðLn0þ1=QNþn0þ1ÞGn0þ1

Þ=pð21Þ

F ððGalðLn0þ1=kn0þ1Þ �Galðkn0þ1=QNþn0þ1ÞÞGn0þ1
Þ=p

F ðZ=pÞlrþ1
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by Lemmas 5, 6, (1) and (18). We find that GalðL
ðpÞ
k =QNÞ ¼ GalðL

ðpÞ
k =kÞ�

Galðk=QNÞ because li is totally ramified in k=QN and L
ðpÞ
k =k is unramified extension by

Lemma 5. Hence L
ðpÞ
k ¼ kL

ðpÞ
0 and

ðGalðLn0þ1=kn0þ1ÞGn0þ1
Þ=pFGalðL

ðpÞ
k =kÞFGalðL

ðpÞ
0 =kðpÞÞð22Þ

by Lemma 6, where isomorphisms in the above are given by the restriction. It follows

from (22), the fact ðgLi;n0þ1;Ln0þ1=kn0þ1ÞjLð pÞ

0

¼ ð li;L
ðpÞ
0 =kðpÞÞ, li being the unique prime

of kðpÞ lying over li, and Nakayama’s lemma that if fð li;L
ð pÞ
0 =kð pÞÞ j 1a ia

rþ 1g generates GalðL
ð pÞ
0 =kð pÞÞ, then GalðLn0þ1=kn0þ1Þ is generated by fðLi;n0þ1;Ln0þ1=

kn0þ1Þ j 1a ia rþ 1g over Z=pm0 ½Gn0þ1�, hence Ln0þd is the Hilbert p-class field of

kn0þd ðd ¼ 0; 1Þ as mentioned above. Let Ii ð1a ia rþ 1Þ be the inertia subgroup of

GalðL
ðpÞ
0 =QNÞ for the prime li. Then we have Ii FZ=p and

GalðL
ðpÞ
0 =QNÞ ¼ 0

rþ1

i¼1

Iið23Þ

because li ramifies in kðpÞ by Lemma 5 and GalðL
ðpÞ
0 =QNÞF ðZ=pÞlrþ1 by (21). Hence

LðpÞ=QN is the composite of the abelian extensions Q
ðpÞ
N ðliÞ=QN ð1a ia rþ 1Þ of degree

p with conductor li, and the restriction induces the isomorphism

GalðL
ðpÞ
0 =kðpÞÞF 0

r

i¼1

GalðQ
ðpÞ
N ðliÞ=QNÞ:ð24Þ

Assume the following condition on li ð1a ia rþ 1Þ:

Condition B. The prime l2 is inert in Q
ðpÞ
N ðl1Þ. If 3a ia rþ 1, then the prime li

splits in Q
ðpÞ
N ðljÞ for all j such that 1a ja i � 2 and is inert in Q

ðpÞ
N ðli�1Þ.

Then, under isomorphism (24),

L
ðpÞ
0 =kðpÞ

l2

 !

7! ðs1; . . .Þ; s1 A GalðQ
ðpÞ
N ðliÞ=QNÞ; s1 0 1;

L
ðpÞ
0 =kðpÞ

li

 !

7! ð1; . . . ; 1; si�1; . . .Þ; si�1 A GalðQ
ðpÞ
N ðli�1Þ=QNÞ; si�1 0 1 ð3a ia rþ 1Þ:

Therefore fð li;L
ðpÞ
0 =kðpÞÞ j 1a ia rþ 1g generates GalðL

ðpÞ
0 =kðpÞÞ, which implies

Ln0þd ¼ H
ðpÞ
n0þd ðd ¼ 0; 1Þ, under Condition B. Condition B is equivalent to the fol-

lowing condition on ~LLi;n0þ1:

Condition B 0. The prime ~LL2;n0þ1 is inert in Q
ðpÞ
N ðl1Þ ~QQNþn0þ1. If 3a ia rþ 1,

then the prime ~LLi;n0þ1 splits in Q
ðpÞ
N ðljÞ ~QQNþn0þ1 for all j such that 1a ja i � 2 and is

inert in Q
ðpÞ
N ðli�1Þ ~QQNþn0þ1.

By virtue of Lemma 3, we can choose inductively the degree one primes ~LLi;n0þ1 of
~QQNþn0þ1 from i ¼ 1 to rþ 1 such that ~LLi;n0þ1’s satisfy Conditions A and B 0, and that
~LLi;n0þ1’s are lying over distinct rational primes, because Q

ðpÞ
N ðljÞ ~QQNþn0þ1’s ð1a ja

i � 1Þ and ~QQNþn0þ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O
�
Nþn0þ1

p
m0

q

Þ are independent over ~QQNþn0þ1. Thus the cyclotomic

Zp-extension over totally real number field k given in Lemma 5 is a desired Zp-extension.

r
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4. Proof of Theorem 2.

Let p be a given odd prime number and F an imaginary quadratic field such that

the class number of F is prime to p and the prime p is inert in F . Such field F

certainly exists by Horie [4]. Denote by Fy=F the anti-cyclotomic Zp-extension,

namely, the unique Zp-extension over F which is non-abelian (dihedral) Galois extension

over Q. We write Fn for the n-th layer of Fy=F and put Gn ¼ GalðFn=FÞ. It follows

from Iwasawa [7, section 2] (see also [10, chapter 13, Theorem 5.2]) that if a prime l

of F with lF p is inert in F=Q, then l decomposes completely in Fy. Let li ð1a ia

mþ 1Þ be distinct rational primes such that

li is inert in F and li 1 1 ðmod pÞ;ð25Þ

and put f ¼
Qmþ1

i¼1 li. For nb 0, we define the field Ln to be the maximal elementary

abelian p-extension field over Fn whose conductor divides f . It follows from the as-

sumption on F and Iwasawa [5] that the class number of Fn is prime to p. Then we

have the following exact sequence of Gn-modules by class field theory:

O
�
n=p! ðOn=f Þ

�=p! GalðLn=FnÞ ! 0;ð26Þ

where On denotes the integer ring of Fn. Since the prime li of F splits completely in

Fn, we can see that ðOn=f Þ
�=pFZ=p½Gn�

lmþ1 as in the proof of Theorem 1. Then, by

taking the projective limit of exact sequence (26) for nb 0, we get the exact sequence of

LFy=F -modules

lim
 �
ðO�n=pÞ ! ðLFy=F=pÞ

lmþ1 ! GalðLy=FyÞ ! 0;ð27Þ

where the projective limit lim
 �
ðO�n=pÞ is taken with respect to the norm maps and

Ly ¼6
nb0

Ln.

Lemma 7. We have O
�
n=pFZ=p½Gn�=

P
g AGn

g, and lim
 �
ðO�n=pÞFLFy=F=p.

Proof. We assume that O
�
n=pF0s

i¼1 Z=p½Gn�=ðgn � 1Þai for 1a aia pn. Then
Ps

i¼1 ai ¼ dimZ=p O
�
n=p ¼ pn � 1. From the exact sequence

0! O
�
n !

p
O
�
n ! O

�
n=p! 0

and the fact that ĤH 2iðGn;O
�
n Þ ¼ 0 ði A ZÞ (This follows from the fact that ĤH 0ðGn;O

�
n Þ ¼

O
�
0=ð

P
g AGn

gÞO�n ¼ 0 since #O�0 is finite and prime to p), we get the following exact

cohomology sequence:

0! ĤH 0ðGn;O
�
n=pÞ ! H 1ðGn;O

�
n Þ !

p
H 1ðGn;O

�
n Þ ! H 1ðGn;O

�
n=pÞ ! 0:ð28Þ

One can show that H 1ðGn;O
�
n ÞFPGn

n =P0, Pn being the principal ideal group of Fn.

Because the class number hn of Fn is prime to p and the prime Pn of Fn lying over p

is the unique ramified prime in Fn=F , which is totally ramified, PGn
n =P0 (note that

PGn
n =P0 has p-power order) is generated by the class of Phn

n , whose order is pn.

Hence H 1ðGn;O
�
n ÞFZ=pn, which implies H 1ðGn;O

�
n=pÞFZ=p by (28). Since H 1ðGn;

O
�
n=pÞ ¼0 s

i¼1 H
1ðGn;Z=p½Gn�=ðgn � 1ÞaiÞ and H 1ðGn;Z=p½Gn�=ðgn � 1ÞaiÞ ¼ 0 if and only

if ai ¼ pn, we have O
�
n FZ=p½Gn�=ðgn � 1Þp

n�1 ¼ Z=p½Gn�=
P

g AGn
g.
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By the similar way to the above, we can show that H 1ðFt=Fn;O
�
t ÞFZ=p t�n for

0a na t. Then it follows from the fact #H 1ðFt=Fn;O
�
t Þ=#ĤH 0ðFt=Fn;O

�
t Þ ¼ ½Ft : Fn� ¼

p t�n that ĤH 0ðFt=Fn;O
�
t Þ ¼ 0, which implies the norm map O

�
t =p! O

�
n=p is surjective.

Hence we have lim � O
�
n=pF lim � Z=p½Gn�=

P

g AGn
gF lim � Z=p½Gn�FLFy=F=p, where the

projective limit in the second and third terms are taken with respect to the maps induced

by the natural surjection Gt ! Gn for 0a na t. r

Let k=F be a degree p subextension of L0=F in which all the primes li ð1a ia

mþ 1Þ ramify. Then we will see that Ln=kn is an unramified abelian p-extension, where

kn ¼ kFn. If Ln is the Hilbert p-class field of kn for all nb 0 and the map lim � ðO
�
n=pÞ !

ðLFy=F=pÞlmþ1
in (27) is injective, then we have

Xky ¼ GalðLy=kyÞ@GalðLy=FyÞF cokerðlim � ðO
�
n=pÞ ! ðLFy=F=pÞlmþ1Þ

@ ðLFy=F=pÞlm F ðLky=k=pÞlm

by Lemma 7, where ky ¼ kFy and@ denotes a pseudo-isomorphism. In what follows,

we shall choose the primes li and the field k so that the above conditions are satisfied.

For a prime l1 1 ðmod pÞ, we denote by QðpÞðlÞ the unique subfield of QðmlÞ of
degree p. Now we impose the following condition on primes li:

Condition. p is inert in QðpÞðl1Þ and splits in QðpÞðliÞ for 2a iamþ 1. If 2a

iamþ 1, then li splits in Qð pÞðljÞ for all j such that 1a ja i � 2 and is inert in

Qð pÞðli�1Þ.

Lemma 8. There exist distinct prime numbers li ð1a iamþ 1Þ satisfying (25) and

the above condition.

Proof. We first note that p is inert in QðpÞðlÞ if and only if pðl�1Þ=p D 1 ðmod lÞ
for a prime number l1 1 ðmod pÞ. Hence if the decomposition subgroup of

GalðQðmp;
ffiffiffi

pp
p Þ=QÞ for a prime of Qðmp;

ffiffiffi

pp
p Þ lying over l is GalðQðmp;

ffiffiffi

pp
p Þ=QðmpÞÞ (resp.

trivial) then l1 1 ðmod pÞ and p is inert (resp. splits) in QðpÞðlÞ. Applying the Če-

botarev density theorem to Qðmp;
ffiffiffi

pp
p ÞF=Q, we can choose prime l1 satisfying (25) and

the Condition since Qðmp;
ffiffiffi

pp
p Þ and F are independent over Q. We can choose the

prime li ð2a iamþ 1Þ satisfying (25) and the Condition inductively from i ¼ 2 to

mþ 1 by applying the Čebotarev density theorem to Qðmp;
ffiffiffi

pp
p ÞFQðpÞðl1Þ � � �QðpÞðli�1Þ=Q

since Qðmp;
ffiffiffi

pp
p Þ, F and QðpÞðljÞ’s ð1a ja i � 1Þ are independent over Q. r

We assume that distinct prime numbers li ð1a iamþ 1Þ satisfy the Condition and

(25). It follows from (26) for n ¼ 0 that L0 ¼ FQðpÞðl1Þ � � �QðpÞðlmþ1Þ and GalðL0=FÞ ¼
0mþ1

i¼1 Ili where Ili FZ=p is the inertia subgroup of GalðL0=FÞ for the prime li. Since

the decomposition subgroup of GalðL0=FÞ for the prime p is Il1 by the Condition, there

exists an intermediate field k of L0=F with ½k : F � ¼ p such that p is inert and li ramifies

in k=F for any i. Then k=Q is a cyclic extension of degree 2p and k has the unique

prime lying over p.

Lemma 9. (i) Ln is the genus p-class field of kn=Fn ðkn :¼ FnkÞ.
(ii) The restriction induces GalðLn=knÞGn FGalðL0=kÞ.
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Proof. (i) Since the prime li ramifies in L0=F and L0 JLn, every prime of Fn

lying over li ramifies in kn=Fn. Hence Ln=kn is an unramified p-extension, because in

Ln=Fn, the ramification index of a prime of Fn lying over li is p. By a similar argument

to the proof of Lemma 5 (iii), we have the assertion.

(ii) Let M be the maximal intermediate field of Ln=kn which is abelian over k.

Then GalðLn=knÞGn FGalðM=knÞ and M=F is abelian. We shall show that M ¼ knL0.

knL0 JM is obvious. Denote by Ip the inertia subgroup of GalðM=kÞ for the unique

prime of k lying over p. Then GalðM=kÞ ¼ Ip �GalðM=knÞ and the fixed subfield M Ip

of M by Ip is contained in L0, because M Ip=k is unramified p-extension, M=F is

abelian, and L0 is the genus p-class field of k=F by (i). Hence it follows that MJL0kn.

Therefore we have M ¼ L0kn and GalðLn=knÞGn FGalðM=knÞFGalðL0=kÞ. r

By virtue of Lemma 9 and Nakayama’s lemma, we find that if fðli;L0=kÞ j 1a ia

mþ 1g generates GalðL0=kÞ, then Ln is the Hilbert p-class field of kn as in the proof of

Theorem 1, where li denotes the unique prime of k lying over li. It follows from the

Condition on li’s and the fact L0 ¼ kQðpÞðl1Þ � � �QðpÞðlmÞ that fðli;L0=kÞ j 1a ia

mþ 1g generates GalðL0=kÞ. Therefore Ln is the Hilbert p-class field of kn for all nb 0.

Next we shall show the injectivity of the map lim � O
�
n=p! ðLFy=F=pÞlmþ1 in (27).

It is enough to show that the map O
�
n=p! ðOn=l1Þ�=p is injective for all nb 0. Let

F
ðpÞ
n ðl1Þ be the maximal elementary abelian p-extension field over Fn whose conductor

divides l1. Then we get the exact sequence

O
�
n=p! ðOn=l1Þ�=p! GalðF ðpÞn ðl1Þ=FnÞ ! 0:ð29Þ

It follows from the above exact sequence for n ¼ 0 that ½F ðpÞ0 ðl1Þ : F0� ¼ p and the

prime l1 ramifies in F
ðpÞ
0 ðl1Þ=F0. Hence F

ðpÞ
n ðl1Þ=FnF

ðpÞ
0 ðl1Þ is an unramified abelian p-

extension. The class number of F
ðpÞ
0 ðl1Þ is prime to p because the class number of F is

prime to p and l1 is the only ramified prime in F
ðpÞ
0 ðl1Þ=F (see Iwasawa [5]). Since there

is the unique prime of F
ðpÞ
0 ðl1Þ ¼ FQðpÞðl1Þ lying above p by the Condition, which is the

unique prime ramifying in FnF
ðpÞ
0 ðl1Þ=F

ðpÞ
0 ðl1Þ, the class number of FnF

ðpÞ
0 ðl1Þ is prime

to p by Iwasawa’s result mentioned above. Hence we have F
ðpÞ
n ðl1Þ ¼ FnF

ðpÞ
0 ðl1Þ and

GalðF ðpÞn ðl1Þ=FnÞFZ=p, which implies the injectivity of the map O
�
n=p! ðOn=l1Þ�=p by

(29) and the fact #ððOn=l1Þ�=pÞ=#ðO�n=pÞ ¼ p.

Thus we have shown that ky=k is a Zp-extension with Xky @ ðLky=k=pÞlm.

Finally we shall show that Xky F ðLky=k=pÞlm. Since pXky ¼ p lim � GalðLn=knÞ ¼
0, Xky is a finitely generated module over the principal ideal domain Lky=k=p. Because

Xky @ ðLky=k=pÞlm, we have

Xky F ðLky=k=pÞlm
lTorLky=k=p Xkyð30Þ

as Lky=k=p-modules. From the fact that there is the unique prime of k lying over p

and ky=k is a totally ramified at that prime, we have GalðL0=kÞFXky=k=ðgy � 1Þ,
where gy is a topological generator of Galðky=kÞ (see [6]). Hence it follows from

GalðL0=kÞ ¼ GalðFQðpÞðl1Þ � � �QðpÞðlmþ1Þ=kÞF ðZ=pÞlm and (30) that TorLky=k=p Xky ¼
0. Thus we have Xky F ðLky=k=pÞlm as Lky=k-modules. r

Example. Put p ¼ 3, F ¼ Qð
ffiffiffiffiffiffiffi

�1
p

Þ, and let Fy=F be the anti-cyclotomic Z3-

extension. Then p is inert in F and the class number of F is prime to p. Put
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f1 ¼ 7 � 19, f2 ¼ 7 � 19 � 43, f3 ¼ 7 � 19 � 43 � 1597, and denote by Ms=Q ðs ¼ 1; 2; 3Þ a

cubic cyclic extension of conductor fs such that the prime 3 is inert in Ms. Then it

holds that mðMsFy=MsF Þ ¼ s for s ¼ 1; 2; 3.

5. Application to a certain capitulation problem.

In this section we shall apply Theorem 1 to a certain capitulation problem. Let F

be a number field with the ideal class group ClðFÞ. Then the principal ideal theorem

says that:

Principal ideal theorem. Every ideal of F capitulates in the Hilbert class field HF

of F, namely, the natural map ClðF Þ ! ClðHF Þ is the zero map.

However it happens that all the ideals of F capitulate in a proper subextension field

of HF=F . Iwasawa constructed an infinite family of such number fields F by using the

theory of Zp-extensions in [9]:

Theorem (Iwasawa [8], [9]). For any prime number p, there exist infinitely many

number fields F with the following properties:

(i) ClðF ÞðpÞFZ=pr with rb 2, ClðFÞðpÞ being the Sylow p-subgroup of ClðFÞ,

(ii) ClðF ÞðpÞ capitulates in an unramified cyclic extension F 0=F of degree p.

In the above theorem, let M be the compositium of F 0 and the Hilbert l-class fields

of F for all the prime numbers l0 p. Then F JMWHF and ClðF Þ capitulates in M.

In the paper [11], the author showed that for any given number N, there exists a

number field F such that ClðF ÞðpÞFZ=pr with rbN and that F has property (ii) in

Iwasawa’s theorem. By using the construction of Theorem 1, we further improve the

theorem:

Theorem 3. For any prime number p and finite abelian p-group A, there exists a

number field F with the following properties:

(i) ClðF ÞðpÞFA,

(ii) ClðF ÞðpÞ capitulates in an unramified cyclic extension F 0=F of degree

expðClðFÞðpÞÞ, expðClðF ÞðpÞÞ being the exponent of ClðF ÞðpÞ.

Proof. Let pe be the exponent of A and A 0 a subgroup of A with AFA 0 l

Z=pe. By the construction in the proof of Theorem 1 for X ¼ A 0 with trivial G-action,

n0 ¼ 0 and m0 ¼ e, we get the cyclic extension k=QN of degree pe such that ClðktÞðpÞF

A 0 for any tb 0 and the Hilbert p-class field H
ðpÞ
k of k is the genus p-class field L0

of k=QN (recall Lemma 5 (iii)). Let F be an intermediate field of ke=QN such that

GalðF=QNÞFZ=pe and F V k ¼ F VQNþe ¼ QN . Then we can see that ke=F is an

unramified cyclic extension of degree pe. Denote by H
ðpÞ
ke

the Hilbert p-class field of

ke. Then H
ðpÞ
ke

¼ L0ke ¼ L0QNþe, hence H
ðpÞ
ke

=QN is an abelian extension since L0=QN

is abelian. Therefore H
ðpÞ
ke

=F is an unramified abelian p-extension. Consequently,

H
ðpÞ
ke

is the Hilbert p-class field of F . Since H
ðpÞ
ke

¼ L0F and L0 VF ¼ QN , we have

ClðF ÞðpÞFGalðH
ðpÞ
ke

=FÞ ¼ GalðL0F=FÞFGalðL0=QNÞFA 0 lZ=pe
FA. Hence the

field F satisfies condition (i).
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Next we shall show that the field F satisfies condition (ii). From class field theory,

we get the following commutative diagram:

ClðkeÞðpÞ ���!
@

GalðH
ðpÞ
ke

=keÞ
x
?
?
?

x
?
?
?
transfer

ClðFÞðpÞ ���!
@

GalðH
ðpÞ
ke

=FÞFA;

where the horizontal maps are the reciprocity maps, the left vertical map is the natural

map and the right vertical map is the transfer map from GalðH
ðpÞ
ke

=F Þab ¼ GalðH
ðpÞ
ke

=F Þ

to GalðH
ðpÞ
ke

=keÞ
ab ¼GalðH

ðpÞ
ke

=keÞ. Since the transfer map GalðH
ðpÞ
ke

=FÞ !GalðH
ðpÞ
ke

=keÞ

is equal to the multiplication-by-pe-map when we regard GalðH
ðpÞ
ke

=keÞ as a subgroup

of GalðH
ðpÞ
ke

=F Þ, it is equal to the zero-map by GalðH
ðpÞ
ke

=FÞFA. Hence the natural

map ClðFÞðpÞ ! ClðkeÞðpÞ is also the zero-map. Therefore ClðFÞðpÞ capitulates in an

unramified cyclic extension ke=F of degree pe ¼ expðClðFÞðpÞÞ. r
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