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Abstract. We construct spaces of initial conditions of Garnier system and its
degenerate systems in two variables and describe them as symplectic manifolds. These
systems are expressed as polynomial Hamiltonian systems on all affine charts.

0. Introduction.

In this paper, we construct spaces of initial conditions of Garnier system 57, J =
11111 and its degenerate systems 55, J = 1112,113,122,14,23,5 in two variables [2],
which are completely integrable Hamiltonian systems of degree 2 of the form

OH,; OH ;
dqy = J ds;, dpp=— Z 7‘](131-, k=1,2.
i=1,2 Opi i=1,2 9,

The Hamiltonians for all J are certain polynomials of q1, g2, p1, p2 whose coefficients are
rational functions of s = (s1, s2) holomorphic in a domain B; C C2. (The explicit forms
of the Hamiltonians are given in Section 1.) We remark that the label J is a partition of 5.
As is explained in [2], these systems are obtained as monodromy preserving deformation
equations of second order linear ordinary differential equations with regular or irregular
singular points and apparent singular points. Let us assign 1 to a regular singular point
and r + 1 to an irregular singular point of Poincaré rank r. Then we can express, by
a sequence of positive integers, the numbers of regular singular points and of irregular
singular points with the data of Poincaré ranks. For example, 711111 (or J112) is a
monodromy preserving deformation system of a linear differenatial equation with five
regular singular points (or with three regular singular points and an irregular singular
point of Poincaré rank 1).

Each /#; defines a nonsingular foliation of the trivial fiber space C* x By 3 (¢, p, s),
qg = (q¢1,92), p = (p1,p2), s = (s1,82), because OH ;;/Opx, OHy;/Oqx, i,k = 1,2 are
holomorphic on C* x B;. However, since the differential system is nonlinear, the leaves
or the solution surfaces may not be prolonged along some curves in By, in other words,
they may have movable singularities. Therefore it is preferable to obtain a fiber space
over B containing the C* x By as a fiber subspace in which every solution surface can
be prolonged along any curve in Bjy. If there exists such a fiber space, then the space
and their fibers will be called the defining manifold and the spaces of initial conditions
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respectively. The space of initial conditions is the space which parametrizes all the
solutions. The most typical and well known such spaces are those for Painlevé systems [6],
[7], [8] and (non-degenerate) Garnier systems in n variables [3]. For these systems, the
spaces of initial conditions have been constructed on the basis of the so-called Painlevé
property, namely movable singularities are at most poles. We remark here that, for
these systems, we can construct certain fiber spaces parametrizing all the meromorphic
solutions without using the Painlevé property, and the Painlevé property guarantees that
the spaces are the spaces of initial conditions, namely they parametrize all the solutions.

In this paper, we construct the spaces E; over By every fiber E;(s) (s € By) of
which parametrizes all the meromorphic solutions near the point s for 25 J = 11111,
1112,113,122, 14,23, 5 and describe them so that every E;(s) is a symplectic manifold. Tt
is known that the system %1111 has Painlevé property (see [1]) but the present author
does not know if the other systems for J = 1112,113,122,14,23,5 have the property.
However, since it is strongly expected that the other systems have also the Painlevé
property, the author called the fibers F;(s), (s € By) the spaces of initial conditions in
the title of this paper and in the top of this introduction.

As was cited above, the spaces of initial conditions for (non-degenerate) Garnier
system in n variables were constructed by H. Kimura ([3]), and symplectic structures in
the spaces were introduced by K. Kobayashi ([5]). H. Kimura has also constructed the
spaces E1112(s), (s € Bi112) ([4]) without introducing symplectic structures.

We explain briefly how to obtain the fiber spaces E; over B;. For every J, we first
compactify the fiber C* x s 3 (q,p) x s suitably. As such a compact manifold we choose
four dimensional Hirzebruch manifold ¥,,, which is a P2-bundle over P2. The manifold
3, X s is covered by nine affine charts. Then we write the system 7 in the coordinates
of all charts. We see that on certain three charts the differential systems are polynomial
Hamiltonian systems, however on the other charts they are not Hamiltonian systems and
have pole singularities on a divisor Dy x s, s € B;. We next determine the so-called
accessible singular points of the solutions meromorphic in the original coordinate system
(¢,p) on Dy x s. An accessible singular point is a point through which many solution
surfaces may pass. We see that the set of accessible singular points is a disjoint union of
|J| connected components Ay (s) each of which is isomorphic to P!, where |.J| is the length
mof J=ning...ny (N1 +n2+ -+ ny =5) (e |J] is the number of singular points
of the corresponding linear diffrential equation). We assign to each component A(s) an
element ny of J = ninz...ny,. We then make quadratic transformation @Q 4, (s) along
each Ag(s). We see that the transformed differential system has yet pole singularities
on the exceptional divisor Dlgl) (5) = Qa,(s)(Ax(s)). Therefore we have to determine the
accessible singular points and make quadratic transformation again. After repeating such
quadratic transformations several times and auxiliary transformations, we can arrive at a
holomorphic system, namely we can obtain coordinate systems which separate infinitely
many solution surfaces of the original system 5 passing through any point on Ag(s).

Let E;(s) be the compact manifold obtained from Y, x s by the composition of
all the quadratic transformations and auxiliary transformations. Then we obtain E;(s)
by removing the inaccessible singular points almost all of which are the points on the
so-called vertical leaves. The fiber space Ey = |_|S€BJ E;(s) is what we want to obtain.
The space is covered by 2|.J|+3 charts each of which is isomorphic to C* x B;. We
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notice that the original polynomial Hamiltonian system is also expressed in every chart
as a polynomial Hamiltonian system. The number 2|J| 4 3 of affine charts of E;(s) is
understood as follows: The E;(s) is a disjoint union of C* and (|J| + 1) C*-bundles over
P! and each C?-bundle over P is covered by 2 affine charts C* and therefore E;(s)
is covered by 2(|J| + 1) + 1 affine charts C*. If the construction of the spaces of initial
conditions might be possible for general Garnier system in n variables and its degenerate
systems, the corresponding space E;(s) might be covered by n(|J| 4+ 1) + 1 affine charts
C?" because E;(s) is expected to be a disjoint union of C?" and (|.J| + 1) C™-bundles
over P~

We state our results more precisely. The number of quadratic transformations along
Ag(s) is 2ny where ny, is the positive integer assigned as above. The first ny quadratic
transformations are simultaneous replacement of every point on some curves by P? and
the second ny transformations are simultaneous replacement of every point on some
surfaces by P!. In the case where n; > 2, we have to insert some simple change of
variables after the ng-th transformation and make certain change of variables after the
last transformation by investigating carefully the 2-form dg; A dp; + dg2 A dps in order to
obtain good symplectic coordinate systems (¢*,p*) = (¢, ¢, 0T, 3), where we say that a
coordinate system (¢*,p*) = (¢F, ¢5, p%, p5) is symplectic if it satisfies

dqi A dpy + dga A dpa = dgi A dp] + dg; A dps.

We notice that the Hamiltonians H;, i = 1,2 in the coordinate system (g, p, s) are changed
to H;(x), i =1,2 in (¢*, p*, s) determined by

> dgiNdpi+ Y dH Ads; =Y dg; Adpy + Y dH;(x) Ads;.
i=1,2 i=1,2 i=1,2 i=1,2

The image of Ay (s) in E;(s) by a sequence of quadratic transformations is a C2-bundle
over P!

Lastly we notice that there exist Backlund transformations which act on some pa-
rameters as permutations in the case where J has several same elements. Since the
transformations also act as permutations of the corresponding components A(s), a co-
ordinate system for a component A (s) derives coordinate systems for the other com-
ponents Ax(s). However the coordinate systems thus obtained are not so good, which
means that the relation between the coordinate system and the original one is not of sim-
ple form, therefore we do not make use of the Backlund transformations in this paper.

This paper is organized as follows. In Section 1, we give the explicit forms of the
Hamiltonians of the systems .7 due to H. Kimura ([2]). In Section 2, we state our
results in seven theorems, which are proved in the next section. In Section 3, we firstly
explain how to compactify the original phase space C* x s and we secondly determine
the accessible singluar points. After these preliminary studies, we proceed to make
a sequence of quadratic transformations for each connected component Ag(s) of the
accessible singular points. Since the calculations for all components cost too many pages,
we only study in this paper the case of As(s) for #1111 and the case of A;(s) for J112.
The former is the case of two times quadratic transformations and the latter is that of
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four times quadratic transformations. The readers who are interested in the other cases
can consult the author’s doctor thesis [9]. In the last part of this paper, we put seven
figures indicating the processes of quadratic transformations for all 7.

1. Hamiltonians of the all systems.

We list the explicit forms of the Hamiltonians Hj; and Hjs (abbreviated as H
and Hj respectively) of the systems .7 (J = 11111,1112,113,122,14,23,5) due to H.
Kimura ([2]).

JA1111:
s1(s1—1
si(s1 —1)Hy = {Q1(Q1 —1)(q1 —s1) — 15(11—52)(]“]2}1)%
s1(so — 1 sa(s1 —1
+2q1¢2 ((h - 1(2)>P1p2 +q192 <(I2 - 2(1)>P§
S9 — S1 S1 — 82

- {(040 —Dai(gr — 1) +a1q1(q1 — s1) + a2(qn — 1)(q1 — 51)

s1(s9 — 1 s1(s1 —1
s <q1 _ 1(2)) _021(1>q2}p1
So9 — 81 S1 — S2
s1(s9 — 1 so(s1 — 1
+ {(aoo +20)q1g2 + 0[2MQQ - agycn }pz
So — 81 S1 — 82

+v(v+ as)q,

s1(sa — 1 so(s1 —1
s2(s2 —1)Ha = q1go <Q1 - suls2 = 1) )>p§ + 2q142 (CZQ — sals = 1) )>p1p2
S92 — 81 S1 — S2

So(s2 — 1
+ {QQ(Qz —1)(g2 — s2) — Z(%ﬁ)qm }p§

2
Ss1(s9 — 1 Sso(s1 —1

+ {(aoo +2v)q1q2 + QQMQQ + Q3MQ1 }}h
So — 81 S1 — S2

- {(Oéo —1)ga(q2 — 1) + 1g2(q2 — 52) + a3(g2 — 1)(q2 — s2)

so(s1 — 1 So(s9 — 1
+ q2qo <Q2 — 2(1)) - G3MQ1 }pQ

51— 82 82 — 51

1
+u(u+aoo)q2, (1/:—2(a0+a1+a2+a3—1+am)).

H112:
stHy =i (g1 — s1)p1 + 2¢iqop1p2 + 0142(42 — s2)p3
—{(a0+ a2 = 1)} + a1qi(q1 — s1) + nlqr — s1) + 15192 21
— {0 + 1 = D)qiga + a2g1(q2 — s2) — n(s2 — 1)g2 }p2 + v(v + o)1,
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s2(s2 — 1)Hy = ¢ qap; + 2q1q2(q2 — s2)p1p2
+ {Q2(Q2 —1)(g2 — s2) + Sz(szl_l)qm}p%
— {(a0 + o1 = 1)q1g2 + a2q1 (g2 — 52) — (s2 — 1)g2 } 1
- {(040 —1)g2(q2 — 1) + @1g2(q2 — s2) + a2(g2 — 1)(g2 — s2)

82(82 — 1)

S1

+ (02q1 + 77Q2)}p2 + vV + ),
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1
(V:—Q(a0+a1+a2—1+aoo)>.

JA13:

1 1 S1 1
Hy =qpt +24; <Q2 + )p1p2 + Q1{LI2 <(J2 + ) - (2 + >Q1 }pg
S9 So s5 2
- {(ao + oy — 1)g3 +77<Q1 + 32) }p1

Hy =g (q >p1 +2q; {Q2 (qQ + ) ( >q1 }p1p2
_;’_ =+ ﬁ _52) 2 (51 + § _@y 2
ga | 42 S% 4 q1 S% B q192 5 b2

51 n
(a0 + 1 = 1)qige + *Ch 77(5 - )612+ 5}1)1
2

+{
S1 1
040+061—1 ag—1+aq 82+§ q1
2
(o) e S D) e+ v+ an)
- - = — -l —5+= V(v + aoo)qo,
n S% 1 5 g2 — 1 S% B D2 q2

{ ap+oap —1) Q1(J2+*Q1 ( >Q2+ U }p2+V(V+Oéoo)Q1a

1
(V = —5(0504—0(1 — l—i—aoo)).

S22
sty = ¢i (q1 — s1)pT + 241020102 + 143D3
—{(a0 = 1)gf + arqi(qr — s1) + m(q — s1) + ms1g2 }p1
— {(a0 + o1 = 1)q1g2 + nos2qr + maz }p2 + v(v + o),
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—soHy = @2 qop? + 2q143p1p2 + 43 (g2 — 1)p3

—{(a0 + a1 — 1)q1g2 + 1m052q1 + M3z }p1

S
- {(ao —1)ga(go — 1) + a1g5 + %ql + nos2(q2 — 1)}p2 + (v + a)ge,
1
1
V:*i(aoJrozl—lJraoo) .

4t

1
S§>p§ —{a(q1 + 52) — @2}p1,

H,y :pf — 2s9p1p2 — (qQ + Ss2q1 + 51 — 5

1
- {CHQQ + (81 - 28§>Q1 + s2g2 +1— Oéo}p2 — Vq1,

1
Hy = — sop — 2((12 + s2q1 + 51 — 23§>P1p2

2 1, 1, 2
— {8291 +q1q2 + | $1 — 552 | = 5202 = Sa| S1 =55 ) P2,

1
- {Q1Q2 + (81 - 23§>Q1 + 82g2 —ap + 1}]?1

1 1
- [q% - {Oéo —1+ 59 (51 - 283> }(h + <81 - 283)%}]32 — Vq2, (V = *Oéoo)~

1
H: Hi = (q1 — s1)p} + 2q2p1p2 — 5{(11(611 —51) — g2+ 2(ag — 1) }p1

1( Insa) 1

5 (@162 = 2052)p2 — Svan,

1
—s9Hs = qop — @5p3 — 5 (@12 = 2ns2)ps
1, 1
- 5{‘12 — 2n52(q1 — s1) — 2(0 — 1)g2 }p2 — ZVa2 (V= —ac).

Hs: Hy = (g3 — a1 — 51)p; + 2q2p1p2 + p3 + 2(q5 — 57 + s2q2) 1
+2(q1G2 + $1G2 + S2)p2 + 2vq1,

Hy = qop? + 2p1p2 + 2(q1g2 + s1q2 + $2)p1 +2(05 — q1 + 81)p2 + 20,

(v=a+3).

Here ¢1, g2, p1,p2 and s1, so are complex variables and ag, a1, ... are complex constants.
We notice that Hamiltonians Hy = Hjy; and Hs = H o are polynomials of ¢ = (g1, ¢2)
and p = (p1,p2) whose coefficients are rational functions of s = (s1, $2) holomorphic in
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Bj where

By = C?\ {s152(s1 — 1)(s2 — 1)(s1 — 52) =0}, Bi11a = C?\ {s182(s2 — 1) = 0},
Bz =C?\ {s2 =0}, Biaa=C?\{s; =0}, By =By =DB;=C>

2. Main results.

We give our main results, namely, the descriptions of the fiber spaces E; for all
systems 27, J = 11111,1112,113,122,14,23,5. For every J, E; is covered by 2|J| + 3
charts V* x By > (q},¢5,p}, 5, 81, s2) each of which is isomorphic to C* x B;. Note that
V0 x By is the original space in which the original Hamiltonians Hs;(q,p,s), i = 1,2
are defined and then we write the coordinate system of VO x B as (q1,q2, p1, P2, 51, 52)
omitting the label 0. In the following theorems, we use the notation

V(z; =0) ={(z1,...,2,) €C" | x; = 0}

for an affine space V = C" > (z1,...,x,).

THEOREM 1. The space E11111 for the system 511111 is obtained by glueing thirteen
copies

V* x 311111 > (qi‘,qﬁ,p’l‘,pz,shsz), * = 0, 1,2,01,02, 11, 12,21,22,31,32, 001,002

of C* x Bi1111 via the following symplectic transformations

1 q1
G=— ©=-3 p=-q{E+ap+ep), p2=ap,
a3 aq
(I% 1 2 2 2 2,2 2,2
Q=5 @@=, P1=¢P, P2= -4+ api+¢Gps),
a3 q3
01
5247 So 1
a=a" @=py(a0—gPy) - +s, p1=—g +01, P2= 5,
S1 81p2 p2
52 82 1
=47 ¢ =0(a0—apd) + 520" — =, pi=—15+07 D=3
51 V2 2
11 11 11,11 11 1 11 1
Nh=a, 92=D; (0‘1_(12102)_(11 +1, pp=—3+p1, P2= 77,
b2 D3
1 12 1 12 12,12 12 1 1 12 1 1
a=a, e=p(a-ep) a1 R (N e
2 2

1
q1 :Pfl(az - Q%lpfl), q2 = qSI, P = Fa P2 :p§17

1

1
2 22 22 22 2 22 2 2 22
ai =i (02 — ¢i°07%), @ =&7, PL=ams P21
1
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q1 = qg’lv qz2 = P%l (a3 - qglpgl), P11 = P:fla p2 = é,

o =aq° @=p(as—q¢3°p3’), pr=pi" py= ]91?2,2,
@ =P (0o — '), =4 p :z%’ ps = p3°,
=0 3 =05 (00 — 63%05%%), pI=p57, pi= é,

where
1
Bii1111 = 02 \ {81(81 - 1)52(82 - 1) = 0}, V= —5(040 +a;+ay+az—1+ Oéoo).
Each fiber E11111(s) is a disjoint union of VO ~ C* and

Vial =0)uVi(g3 =0), V(' =0) UV (pg? =0).
VI =0) UV (pi? =0), V(' =0) UV (I =0),
VLR = 0) UV =0),  VEL(pt = 0) U V2 (p3? = 0)

each of which except V° is a C?-bundle over P'. Since any C?-bundle over P! is a
disjoint union of C® and C?, we have

Fiini(s) = Ctue(Cc® uc?).
The Hamiltonians H;(x) = H;(*;q*,p*,s), i = 1,2 in every chart V* x By1111 are

polynomials of ¢* = (qf,q3) and p* = (p3, p3) whose coefficients are rational functions of
s = (81, $2) holomorphic in Bi1111-

THEOREM 2. The space E1115 for the system 51112 is obtained by glueing eleven
copies

V* x Blll2 > (qrvq>2k7p1<7p§a31782); * = 07 1a2701,027 11; 12321a223 0017002

of C* x By112 via the following symplectic transformations

1 q1
G=-3, @=-2 p=-q¢V+ap+aep), p2=aps,
q1 q1
Q% 1 2, 2 2 2. 2 2 2
q1 = ?7 q2 = ?7 P1 =42P1, D2 = —Q42 (V + 9101 + qug),
2 2

a=d¢" g :pm(a 7q01p01)7SQQ?1+8 b1 = S2 +9%0 p :i
1 1 2 2 0 2 P2 51 25 1 S1p(2)1 1 2 pglv
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S9 S9
@ =d"2 =0 o—q32p82)+82q?2—5, pi = +p0%, py=
b
11 11 77(‘1%1 —1) al 11 n 11
Q=4¢, ©=G¢, P=—"—F7ing T i +tPi, DP2= 11 +P2,
(Ch ) q1 q1
12
2 12 2 12 s nlg* —1) ai 12 2 n 12
G=¢" @=490, PI="{1s +t th P2=—"13+Dp"
(Q1 ) q1 gy
1
a=4¢" @=p"(e-¢p'), pn=p" =75,
2
1
@ =q7 @ =p5 (02— q3?p3%), pL=pi0, py= =l
2
a1 =P (o — '), @5 = 57, p}=ﬁ7 ps = p5,
1
1
G =% @5 =0 (oo — 07), P =077 pi = el
2

where
9 1
Bii1o = C?\ {s152(s2 —1) =0}, v= —5(040 +ar+az—1+ax).

Each fiber E1112(s) is a disjoint union of VO ~ C* and

Vig =0)UV3(g3 =0), V(p3' =0)UVZ(p)® =0),
Vll( ) V12( O), V21 (pgl — 0) U V22 (p§2 — 0),
VL (pi!h = 0) U V2 (p5*? = 0)

each of which except VO is a C?-bundle over P'. Since any C?-bundle over P! is

disjoint union of C® and C?, we have

E1112(S) =C*U 5(03 L Cg)

02
p

1

2
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a

The Hamiltonians H;(x) = H;(x;q*,p*,s), i = 1,2 in every chart V* x By112 are
polynomials of ¢* = (¢}, q5) and p* = (pt, p5) whose coefficients are rational functions of

s = (s1,82) holomorphic in Bi11s.

THEOREM 3.  The space E113 for the system 13 is obtained by glueing nine copies

V* X B113 > (qikaq§7p>{7p;7sl782)7 * = 07 1723017027 117 1270017002

of C* x Bi13 via the following symplectic transformations
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1 q1
G=-3, @=-2 p=-@V+ap+ap), p2=aps,
q1 q1
Q% 1 2.2 2 2.2 2.2
9= —5, 2= 35, P1=4P1, P2= _QQ(V+ 1P +QQp2)a
g5 q5
251 + 2 1
o =aq", qzzzzgl(ao-—qgﬁﬁl)_’(Q2>Q?1—>,
52 52
251 + 53 01 1
pl = 5 01 b) p2 = 77
2s0p8" P!
02 2
1 02 1 02 02 02 q1 281 + 83 1 1 02 1 1
91 =41 5, QG =Py \&o — P2 q - - =, D= +pi, Ps= 59,
1 1 2 2 ( 2 2) 39 259 1 5227(2)2 1 2 pgz
1142 11
11 11 n(g2") n a1 11 142 11
q1 = q q2 = g3 p1=— + + =5 +pP1, P2= 75 +D3
’ ’ (@) (at")? it (¢i')? ’
12
2 12 2 12 2 n N4> a1 12 2 n 12
Ga=q", G=q¢, p]=-— + + 5 t+p1°, pPy=——73 +D3°,
(@?)?  (@®)? a4 ai°
1
a1 =P (oo — ¢°'PY), @@ =a, pr= T ps = p3°,
1
1
@ =a% @ =5 (as — ¢5°%p3?), pi=p3, p§=:;;§,
2

where
2 1
Bi113=C*“\{s2 =0}, v= _5(% +ar— 1+ o).
Each fiber E113(s) is a disjoint union of VO ~ C* and

VOI (p(z)l — O) U V02 (p(2)2 — O),

V(g =0)UV?(g5 =0)
_ Vool(p<1>ol _ 0) U Voo2 (pgo2 _ 0)

Vll (qil _ O) U V12 (q%2 0)

)
b

each of which except VO is a C?-bundle over P'. Since any C?-bundle over P! is a

disjoint union of C® and C?, we have

Eng(s) =C*U 4(03 [ Cg)

The Hamiltonians H;(x) = H;(*;q*,p*,s), i = 1,2 in every chart V* X B3 are
polynomials of ¢* = (q},q3) and p* = (pF, p5) whose coefficients are rational functions of

s = (81, $2) holomorphic in Biis.

THEOREM 4. The space E129 for the system 5129 is obtained by glueing nine copies

V* X B122 > (CILQS,pTap;a 81782)7 * = 03 1727017027 117 127001u 002
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of C* x By via the following symplectic transformations

1 q1
G=— @©=-—= p=-qV+ap+aps), p2=ap
qi qi
Q% 1 2.2 2 2,2 2,2
91 = —5, q2= —5, DP1=4Gq3P1, P2= —(q3 (V+Q1p1 +QQp2)a
a5 a3
01
01 01 TloS2 01 77082((11 —81) Qo 01
q1 =49q q2 = q 1= +pi, Pp=—"—F7375 1+ 57 + P
Lo 27 spq9t s1(q3")2 @t
02
1 02 1 02 1 NoS2 02 1 Mosz2(s147° — 1) Qo 02
G=9, G2=G9, P1=—"—Fg TP, Po=——F0995 — T o3 TP
1 1 2 2 1 qu 1 2 s1( q82)2 qu 2
11
mie —1) M
an=q', @=¢' p= —21712 + =7 +pi', pe= -1 +p3',
(Ch ) qi q1
12
2 12 2 12 s mlg”—1) o 12 2 mn 12
G1=q" 4G =G", PI1=——"F1955 T 13 +tP1"s P3=——15+DP2,
(Q1 ) q1 q1
1
@ =i (ase — ¢°'p5Y), @ =%, pi= ST ps = p3,
1
1
G =0, @3 =13 (0 — 57°p7), I =172, pi = st
2

where
9 1
3122:C \{81:0}, V:7§(Oé0+04171+0£00).
Each fiber E192(s) is a disjoint union of V° ~ C* and

0), V% (gg" =0)UV*?(gg* =0),

Vigh =0) UVE (g =0),
0), V'(pe! =0)uV>=?(p5? =0)

VI (gt =0)UV2(gl2 =

each of which except VO is a C?-bundle over P'. Since any C?-bundle over P! is a
disjoint union of C® and C?, we have

E122(8) = C4 [ 4(C3 L C2)
The Hamiltonians H;(x) = H;(*x;q*,p*,s), i = 1,2 in every chart V* X Biag are
polynomials of ¢* = (¢7,q3) and p* = (p}, ps) whose coefficients are rational functions of
s = (81, 82) holomorphic in Bias.

THEOREM 5.  The space E14 for the system F4 is obtained by glueing seven copies

V* X Bl4 > (CILQS»pLPZaShSZ), * = 07 17270170270017002
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of C* x By via the following symplectic transformations

1 q
G=— @=-= p=-q¢V+api+aps). p2=aqp,
q1 q7
Q% 1 2 92 2 2 2 2 2
Q=5 G=-, P1=a0Gp, p2=-0¢G+dar +ap),
a3 q5
251 + 52 S9 1
a=4" @=p(w-ag'P')—sq - ——2 p=-5+0, p= 7
2 Do P2
251 + s2
a =q%, a3 =pP (a0 — ¢5*p3?) — (22)q(32 — 59,
281 + $2 1
1_ 2 02 1_ L
P = ngg +p1 ’ P2 pggv
at =aq*t, a3 =qt,
1 2¢°! 1—ag+2a
1 2 o0 ool 1 ool
pr=- + +pt, Py = -5 + 13,
(geh)*  (g°h)3 gt (g7°)?
a =% @ =2,
P2 = (¢7?)? 1 $p2, pie— (¢7%)° n 2¢7% | 1—ap+20x 4 pee
1 — 1 » 2 - 2
(¢5°%)%  (g5°2)? (g5°%)*  (g5°%)? 45
where
Bl4 = CQ, V= —0Qx-

Each fiber E14(s) is a disjoint union of V° ~ C* and
Vgt =0)UV3(g3 =0), V°'(p3 =0)uVv®(pP =0),

Vool (qile — O) U Voo2 (QSOQ — O)

each of which except VO is a C?-bundle over P'. Since any C?-bundle over P! is a
disjoint union of C® and C?, we have

E14(S) = C4 [ 3(03 (] CZ)
The Hamiltonians H;(x) = H;(x;q*,p*,s), i = 1,2 in every chart V* X Biy are

polynomials of ¢* = (q},q3) and p* = (p3, p3) whose coefficients are rational functions of
s = (81, 82) holomorphic in Biy.

THEOREM 6. The space Eo3 for the system %53 is obtained by glueing seven copies

V* x Bas 3 (4, 45,01, 0%, 51,82), *=0,1,2,01,02,001, 002
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of C* x Bays via the following symplectic transformations

1 q
G =, @=-2 p=-gV+ap+aep), p2=aps,
q1 qi
Q% 1 2.2 2 2,2 2,2
91 = —5, 42= —5, DP1=4sP7, pQZ_Q2(V+QIp1+QQp2)a
a5 a3
01
ns2 ns2(qi —s1) | @
qlzq?l7 q?zqglv P1=—""%7 +p(1)17 p2:10712+ﬁ+p817
dz (g5") q3
02
1 02 1 02 1 _ 7Ns182 02 1 ns2(s14i” — 1) Qo 02
G=0, =0, PI="—g TP, P2=— 955 — + o3 TP
ds (q3%) 2
o =4, a=¢"
1 gt 1—ap+ 2a 1
1 _ 2 0 o0 ool 1_ ool
P = 2((]1001)3 + 2((]?01)2 + qfd +py 7, Do 27qf°1 +Dpy,
G =% @ =47,
2 00212
2 q7° 002 2 (q7°%) 1 1 —ap + 200 02
Pl = 575y TP py = — + +
P22 T T T 2 2 45 2
where
BQgZCQ, V= —0-

Each fiber Ea3(s) is a disjoint union of V° ~ C* and

Vi =0)uV?(g3=0), V(g =0)uV®(¢d*=0),
Vool(qi)ol — 0) U V002 (ng2 — 0)

each of which except VO is a C?-bundle over P'. Since any C?-bundle over P! is a
disjoint union of C® and C?, we have

Egg(s) =C*U 3(03 U 02)
The Hamiltonians H;(x) = H;(x;q*,p*,s), i = 1,2 in every chart V* x Baz are

polynomials of ¢* = (¢}, q5) and p* = (p}, p5) whose coefficients are rational functions of
s = (s1,82) holomorphic in Bag.

THEOREM 7. The space Es for the system 6 is obtained by glueing five copies
V* XB59 (qik7q§7py{7p§a51,82)a *:O7la270017002

of C* x Bs via the following symplectic transformations
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1 q1

G=-—7 ©=-—= p=-q@+apl+ap), p2=aipi,
q1 q1
iy

1
W= w5 P G, p2=—a5 (v + 4ipi + ¢3p3),
2 2

1 _ ool 1 _ ool
91 =41, 42 =43

2(g5°")* | 6(g5°')? 2 2(s1 + 5205°1) 20

1 ool
pl = — — T T o1 +p1 )
(@) (g (¢h)? (¢5°1)? a7t

20D A2

G R L

@ =a? @ =g

2 2¢2°? 251

2 1 002
p1 = T T o2 +p )

1 (q2002)3 (q§o2)2 q§o2 1

2 _ 2 607°2  2(¢7°%)? | 2(s147% +s2) 2a 002
by = — 0025+ co2\4 0023+ 002\2 7002+p2 ’

(45°%) (g5°%) (45°%) (g5°%) ds

where

1
Bs; =C?, V:Oz+§.

Each fiber Es(s) is a disjoint union of VO ~ C* and
& (q% = O) uv? (q% = O), V‘X’l(qfOl = O) U Ve (q2°°2 = 0)

each of which except V° is a C*-bundle over P'. Since any C?-bundle over P' is a
disjoint union of C® and C?, we have

Es(s) =C*u2(C?®uC?).

The Hamiltonians H;(x) = H;(x;q¢*,p*,s), i = 1,2 in every chart V* x By are
polynomials of ¢* = (qf,q3) and p* = (p}, p5) whose coefficients are rational functions of
s = (81, 82) holomorphic in Bs.

3. Proof of theorems.

3.1. Compactification of the original phase spaces.

We first explain the four dimensional Hirzebruch manifold 3, which we choose as a
compactification of the original phase space C*x s, v being a complex constant depending
on the system 5#7. The manifold is a P2-bundle over P2.

Let ¢ := (&,&1,&) be the homogeneous coordinates of P2, U; :=
{(0/&,61/6i,&2/&) | & # 0} ~ C? be the i-th affine chart. Set W; := U; x P%(i = 0,1,2)
and let n; := t(mo, i1, Ni2) be the homogeneous coordinates of the second component P?
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of W;. Then we define ¥, to be the quotient space of |—|0§i§2 W; by the relations

i = gio " Mo,
&3 0 0 & 0 0
g0 = | —véo&s —& —&& |, g0 = 0 & 0
0 0 &é& —v€oés —&1& —&3

up to multiplication of nonzero constant. Set
Wij = {(&0/& €1/&, /& mio /i mir /migs miz /i) | &avmig # 0} =~ C*, 0<d, j <2,

then we see that {W;;}o<i j<2 form an atlas consisting of affine charts of the manifold
¥, and

We notice that ¥, is isomorphic to T*P? L (P? x P') if v = 0 and to P? x P? if
v #0.

Let us extend the original system .5#7 defined on C* x B; > (q1, q2, p1, P2, 1, $2) to
that on X, x By assuming that (¢,p) = (q1, g2, p1,p2) is the coordinate system of Wy
namely

_a 8

= q2 = o1
o’

o2
D1 9 p2=—

q1 )
o Moo Moo

Denote by %pJ(O) the extended system on ¥, x Bj. Notice that the patching matrices
gi0, ¢ = 1,2 are given by

1 0 0 1 0 0
go=|-v —¢& —qa2 |, goo= 0 q2 0
0 0 Q —vg —q1q2 —43

up to nonzero constant multiplication.
We see that the transformations from the original chart Wyy to the charts W,
1 = 1,2 are symplectic. In fact, by setting

1 o 1 & 1_ 1_ e

q1 = > qs = ’ b1 = ’ )
g T a " o M0

2 & s o 9 M1 9 M2
G=>, ¢=2, pl=", ph=-2
L 720

s
)
|

(V]
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we have
_i _ﬁ _ 1 1.1 1.1 _ 1.1
n=- @=-—, p1=-q¢V+api+aep), p2=aqps,
q1 4
a

1
W= g R= g P= épi, p2=—6V+ Gl + 63,
2 2

which yield
dpy A dgy + dps A dge = dpl A dqi + dp% A dq% =dp? Ndg? + dp% A dqg.

Therefore the original Hamiltonian system is written also as a Hamiltonian system on
each Wiy > (qi,¢4,p%,ps), i = 1,2. Moreover, we can verify that the Hamiltonians
become polynomials of the dependent variables (¢%, p’) = (q%, ¢4, p%, ps) whose coefficients
are rational functions of s = (s1, $2) holomorphic in By if the values of v = v; are chosen
as

1 1
V11111 = —5(040 +totoartaz—1+as), vine= —5(040 +ar+ar—1+a),

1 1
V113 = V122 = *§(Oto +a1—1+ax), Via=ls3=—0r, Vs=a-+ 3

Hereafter, we fix the values of v; as above.

We see however that the differential systems on W;; x By, j # 0 are not Hamiltonian
systems and have pole singularities on W;;\Wjo.

Setting

2
WO = Wi,
i=0

we state these facts as

PROPOSITION 3.1.  For every J, the extended differential system L%”J(O) onY,, x By
is a polynomial Hamiltonian system on WO x B with coefficients holomorphic in By 3
s = (81, 82) but it has pole singularities on Dy x By where

D; =%, \W"

3.2. Accessible singularities on Dy X Bj.

Let us next determine the set of accessible singular points of the system %ﬂJ(O) on
D x Bj. By definition, an accessible singular point is a point through which (potentially
infinitely many) solution surfaces of the system %”}m in W9 x B pass holomorphically.

For example, let us investigate the form of the system ‘%01(101)11 on Wy1 X Bii111(C
Wy x Bi1111). By setting & = 101 = 1, we take (&1, &2, 700, M02) as the coordinates of
Wo1. In terms of them, the system is written as
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e(s)noodér = Z P;(&1, €25 m00, 102, 8)ds;,

i=1,2

e(s)noodéz = Z Qi(&1, &2, 100, M02, 8)ds;,
i=1,2

e(s)noodnoo = Xi(&1,&2,m00, Moz, 8)dsi,
i=1,2

e(s)moodnoz = z Yi(&1, €2, 005 02, $)dsi,

i=1,2

where e(s) = s152(s1 — 1)(s2 — 1)(s1 — s2) and P, Q;, X;,Y; € C[&1,£2,M00, M02, 51, 52]
(polynomial ring) are given by
P1 =0(noo) + 2s2(s2 — )€1 [{(s1 — s2)& + s1(s2 — 1) }&amoz
+ (& —1)(& = s1)(s1 = s2) = s1(s1 — &),
Py =0(noo) + 2s1(s1 — D& & [{(s1 — s2)& — s2(s1 — 1)}noz + (51— s2)& + s1(s2 — 1)],
Q1 =0(noo) + 2s2(s2 — 1)&1& [{(s1 — s2)€ — s2(s1 — 1)}mo2 + (51 — $2)&1 + s1(s2 — 1)],
Q2 =O0(noo) + 2s1(s1 — )& [{(s2 — s1)&2 + s2(s51 — 1)}&1
+ {(& — 1)(& — s2) (52 — s1) — s2(s2 — )& }moz],
X1 =X5 = O0(noo),
Y1 =O0(noo) + sa(s2 — 1) [{(s1 — s2)€2 — s2(s1 — 1) }a1t
+{2(s1 — 52)&162 + s2(s1 — 1)&1 + 251 (52 — 1)52}77(2)2
+{(s1 — 82)5% - Q(Sf — 52)&1 — s1(s1 — 1)§2 + s1(s1 — s2) }102
+s1(s1 — 1)51]7
Yo =0(noo) + s1(s1 — 1) [32(32 - 1)527732
— {(s1 = 52)& + s2(s2 — 1)&1 — 2(s1 — 53)&2 + s2(s1 — 52) }7oa
—{2(s1 — 52)&1&2 — 252(51 — 1)&1 — s1(s2 — 1)&2}n02
— (51— 52)&7 — s1(s2 — 1)&1],

O(noo) denoting a polynomial of &1, &2, 100, 02, S1, S2 with a factor 9. Therefore, acces-
sible singular points are those satisfying the equations

7700:0, PZ:QZ:}/;ZO, i:1,2.

We see that the equations have the following three solutions
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Moo =0, 5152 — 5261 —51&2 =0, 51— s2m02 = 0;
No=0, 1-& —8& =0, 1—mng=0;

Noo = 07 51 = 07 Tlo2 = 0)

which are denoted by Ag(s) N Woi, A1(s) N Wy and Aa(s) N Wo respectively. Observing
the system %”1(101)11 on all Wi; x Bii111, j # 0, we can determine the accessible singular

; (0)
points of J#]3711-
By the same way as above, we can obtain

PROPOSITION 3.2.

The set of accessible singular points of the system ,}ffo) for

each s = (s1,82) € By is a disjoint union of |J| connected components Ay (s) ~ P! given

by
%(101)11 :
Ao(s)

A1 (S)

AQ(S)

Ag(s)

A (8)

%01(101)2 :
Ao(s)

Al (S)

AQ(S)

={(&m0,5) € Wo x B | 515060 — s261 — 5182 = 0,100 = 0, 517001 — S2702 = 0}

U {(&m,s) € Wi x B s182&0 — s261 — s182 = 0,710 = 0,711 + s2712 = 0}
U{(& m2,8) € Wa x B | 515280 — 5261 — 51&2 = 0,120 = 0, 51721 + 122 = 0},

={(&m0,5) € Wo x B | & — & — & = 0,m00 = 0,701 — 102 = 0}

U{(&m,s) e Wi x B|& —& —& =0,m0=0,m1 +m2 =0}
U{(&m2,8) € Wa x B | & — &1 — & = 0,120 = 0,721 + 122 = 0},

={(&no,5) € Wo x B | & = oo = o2 = 0}

U {(&m2,5) € Wa x B| & =190 = 122 = 0},

={(&n0,5) € Wo x B | & =100 = 1o = 0}

U{(&m,s) e Wi x B|& =m0 =m1 =0},

={(&m,s) € W1 x B| & =mo =ma2 =0}

U{(&n2,5) € Wa X B | & =n20 =121 = 0},

={(& 10, 5) € Wo x B| 51528 — 5281 — s1&2 = 0,100 = 0, 51701 — 27002 = 0}

U {(&m,5) € W1 x B s182&0 — 5261 — 5162 = 0,710 = 0,711 + 52712 = 0}
U{(&n2,5) € Wa X B | s15260 — 5261 — 5162 = 0,120 = 0, 81721 + 7122 = 0},

={(&m0,5) € Wo x B| & =190 = no2 =0}

U{(&m2,8) € Wa x B| & =m0 =122 =0},

={(&mo,5) € Wo x B | & =noo =no1 =0}

U {(&m,s) € W1 x B| & =mo =nu =0},



Spaces of initial conditions of Garnier system in two variables 1097

As(s) ={(&m,s) € Wi x B| & =1mo =ma2 =0}
U {(&,7m2,5) € Wa x B | & = n20 = 121 = 0},

A Ao(s) ={(E . 5) € Wo x B | 260+ (251 + 53)61 + 28262 = 0,
oo = 0,282m01 — (251 + 53)102 = 0}
U{(&m,s) € Wi x B |28 + (251 + 53)€1 + 25260 = 0,
mo =0, s2m11 — 112 = 0}
U{(&n2,8) € Wa x B | 28 + (251 + 53)€1 + 25260 = 0,
20 = 0,2n21 — (251 + 83)n22 = 0},
Ai(s) ={(&m0,s) € Wo x B | & =100 =102 = 0}
U {(&,m2,5) € Wa X B | & = nag = 122 = 0},
As(s) ={(&m,s) € Wi x B| & =mo =ma2 =0}
U {(&,m2,5) € Wa X B | & = 20 = 121 = 0},

sy Ao(s) = {(&mo,) € Wo x B | & = 10 = 1101 = 0}
U{(&m,s) € Wi x B| & =m0 =m1 =0},

Ai(s) ={(&m0,s) € Wo x B | & =100 =102 = 0}
U{(&m2,5) € Wa X B | & =20 =122 = 0},

As(s) ={(&m,s) € Wi x B| & =m0 =ma2 =0}
U{(&n2,5) € Wa X B | & =m0 =121 = 0},

Ao(s) ={(&,m0,5) € Wo x B| (514 55/2)& + 5261 + &2 = 0,100 = 0,701 — 52702 = 0}
U{(&m,s) € W1 x B (s1+ s3/2)& + s261 + & =0,
Mo = 0,71 — (514 55/2)m2 = 0}
U{(&m2,5) € Wa X B | (s1 4 53/2)&0 + s261 + & =0,
n20 =0, (s1 4 53/2)n21 — s2m22 = 0},
Aoo(s) ={(&;m.5) € Wi x B| & =mo =m2 =0}
U{(&m2,8) € Wa x B | & =n20 =121 =0},

A Ao(s) ={(&m0,5) € Wo x B | & = oo =101 = 0}
U{(&m,s) € Wi x B[ & =mo=nu =0},
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Aso(s) ={(&m,s) € Wi x B| & =mo =ma =0}
U {(&,m2,5) € Wa X B | & = 120 = 121 = 0},

A0 Aso(s) ={(&m,s) € Wi x B| & =mo =ma =0}
U {(&,m2,5) € Wa X B | & = 120 = 121 = 0}.

REMARK 1. We notice that, although some Ag/(s) are expressed by three cordinate
systems Wy, W7 and W5, they can be expressed by any two of them. We used the three
systems in order to hold a symmetry. In the procedures of quadratic transformations,
we use the coordinate systems Wy and Wi.

REMARK 2. We assign positive integers ny to the above Ag(s) as follows: ng =1
for all k in case of J = 11111; ny = 1 for k£ # 1 and ny = 2 in case of J = 1112; ni =1
for kK # 1 and n; = 3 in case of J = 113; no, = 1 and ng = n; = 2 in case of J = 122;
ny =1 and ny, = 4 in case of J = 14; ng = 2 and ny, = 3 in case of J = 23; ny = 5 in
case of J = 5. These integers indicate the numbers of quadratic transformations.

3.3. Coordinate systems for ng = 1.

In the following two subsections, we show how to make quadratic transformations
along the components Aj(s) of the accessible singular points, namely how to obtain co-
ordinate systems which separate completely the solution surfaces passing through A (s).
As was stated in Introduction, the number of quadratic transformations along Ag(s) is
2nyg where ny is an element of the partition J given in Remark 2 after Proposition 3.2.
In this subsection, we explain the case of ny = 1 while the case of ny > 2 is studied in
the next subsection.

The quadratic transformation along a set A is denoted by Q4. We remark the
superscript (n) of a letter indicates that it is concerned with an n-th quadratic trans-
formation. Notice that we need two affine coordinate systems for each Ag(s), because
Ag(s) is isomorphic to P1.

In this subsection, we only show the quadratic transformations along As(s), namely
along As(s) N Wy and As(s) N Way of S 1111 as an example of the case of ny = 1. The
corrdinate systems for other Ag(s) with ny = 1 are obtained in the same way as in the
example in this subsection.

3.3.1. Coordinate system for A3(s) N Wy of J11111-
The first quadratic transformation along A2(s) N Wy. Note that Aa(s) N
Wy C Wyt and

Az(s) N Wo = {(51752,7700,7702) €Wor ~C* [ & € C & =mo0 =102 = 0}.
We replace every point (&1, &2, 00, 7702) (0,£2,0,0) with & € C by P? simultaneously.

Let (fg,xm ,y%),zéé)) € C4, (fg,xm ,yéll), ;)) € C* and (fg,xm ,yéQ), éé)) € C* be
coordinate systems of 1/2(11)(5) = Qa,(s)nw, (Wor x s) defined by
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_ (1) (1), (1) (1) (1)
§1 =y, 100 = Tog Yo' »  T02 = Tog 225

1 1 1 1
51 = xél)yél)v oo = yél)u Tlo2 = yél)zél)7

1) (1 1) (1 1
&1 = xéz Z§2)a Moo = 952)352)7 No2 = Zéz)a

then exceptinal divisor D( )( ) = Qa,(s)nw, (A2(s) N Wo) is given by
(1 (1 n o1 1

{ (6o e o8 0 ) = 0} 0 { (e a0 082 =) ) = )

0 { (6o 122 |8 =),

Let us write our system in the three coordinate systems near the exceptional divisor.
In the first coordinate system, it is written as

Oz 0] 17(1)
e(s)zly dgy = ((12)0)d81 + ((1) )d827
Y20 Y20
D gD O(w4) O(w4o)
( ) dx Loy = m d81 + m dSQ,
Y20 Y20
e(s)x%)dy%) = {O(x%)) + (agy —1)Pai (&, )}d51

+ {O(m%)) + (agyé(l)) - 1)P22(§2, s)}dsz,

(1) (1)
(i) = Lem) gy, Oloao)

dSQ
1 1
yéo) ( )
in a neighborhood of D(1 {x%) =0}, in the second coordinate system, it is written
as
e(s)us'dé2 = O (v )ds1 + O(u3y)ds»,
()b dofy) = {O(Y) + (a2 — o)) Pas (2, ) by
+ {O(y§1)) (02 — 25)) Pas(£n, 8)}d82a
e(s)yar dysr’ = O (u)ds1 + Oy} ds
e(s)us'dzsy) = O(usy))dsi + O (v ) ds
in a neighborhood of D = {y(l) = O}, and in the third coordinate system it is

written as
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O( (1)) ( (1))
(1)
( ) d£2 yéz)Q dsl + (1) ds 52,

(1) (1) x(l)
e(s )222 dryy = {0(222 ) + (ag >021( )}dsl
y22

- {O(zéz)) + <a2 - 55(1))022( )}d82,

y22

()55 dysy) = {O(253)) + (0awly) — 2%) Pas (62,085 5) sy

+{O(4) + (o) — aby)) Pog (62,285 ) s,

1 1
s s

P ) P )
e(s)d2SY) = <O(z§§)) | Por(&m8) ’8)>d51 + (O(z%)) | P2y 09) ’S)>dsz

in a neighborhood of D {z = O}. Here Py, (%) denote a polynomial of x
and Co,y,(s) denotes a polynomlal of s = (s1,2). Note that there is no points satisfying
Py, (52, mg?, s) = 0 and Py (52, a?(212), s) =0, and Co,,(s) # 0 for s € By1111. In the follow-
ing, Pim (%) and Ch,, (%) always denotes polynomials of some variables * and Cp,(s) # 0
for s € By. Investigating carefully these systems in a neighborhood of D( )( ) in the
same way as in the deriving Proposition 3.1, we can verity that the set of accessible
singular points Aéll) (s) is given by

Aéll)( ) = {(f x21 ,y£1)>zé1)> = (527a2,072’$))} C Dg)(s)

The second quadratic transformation along Ag;)(s). Let (&, 221), a:go), y%))
€ C* and (52, 23, ,xézl),yg)) € C* be coordinate systems of Vy2 (s) = QAu)(S)(VQ(l)( ))
21
defined by

1 2 1 2) (2
$é1) =z + méo)’ yél) = xéo)yéo)a

2 1 2
o) = an+ iy, s =Y,

then the exceptional divisor Dg)(s) = QA<1)(S) (A(Qll)(s)) is given by
21 \°

{(527221)733%)»?/20 ) | 5’320 = 0} {(5%25?795221)»?/53)) | y§21) = 0}~

We can verify that our system is written in the second coordinate system as
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6(8)d£2 = Z P21(§2aZ;i)axgzl)ayg?’s)ds“
i=1,2

e(s)dzg) = Z Qai 52,221 »%1 ,y21 8)dsi,
i=1,2

e(s)dal? = Z Xoi (52,2& 25y, sy s)dsi,
i=1,2

B = 3 V(o0 4D ).
1=1,2

Here Py;, Qo;, Xo;,Yo;, i = 1,2 are certain polynomials of &9, zéi),xg),yg) and s. This

means that the differential system has no singular points in (&2, 20,28 452 s)-space

C* x Bi111. On the other hand, we can verify that the points (&, zé}),x%),y%), s) =

1 . . . . .
({2, zgl), 0, O) are inaccessible singular points, because our system is written as

e(s)d§2 = Z P22 52aZ21 7x20 7y20 ’ )ds“
1=1,2
1 1 (2 (2 Ca;(s)
e(s)dzél) = Z (Q/Qi(g%zél)axéo)vyéo)v )+ y(z) )dSh
i=1,2 20

2 1y (@ Pyi(&2)
B(S)dl’go) = Z (Xéi(f%zél)vl"go):yéo)v )"’ @ dsi,

i=1,2 Y20

1 (2 (2
20 = Z Yzz 527251)75550)&20)» )dsi
1=1,2

in a neighborhood of (&, Zé?,xéo), Y20 ) (52, 221 ,0,0) and Co;(s) # 0, i = 1,2, where
P, Qb X%, Y], i =1,2 are certain polynomials of fg, zé}), xéo), yéo and s.
Thus we have obtained a coordinate system (52, ,221), xg), yg)) € C* which separates

the solution surfaces passing through Aa(s) N Wy = Aa(s) N Woy. If we set

1 2 1 2
(11 _3351) Q2 = y§1)7 p1 _wé1)a pglzzél)

then we have
dqi N dpy 4+ dgs N dpy = dqf1 A dp%1 + dq%1 A dpgl.

We should notice that the transformation from (q,p) to (¢?!,p?!)

and then our system 5771111 is also written as an Hamiltonian system in the variables

(¢*',p?!). In our teminology, (¢**, p*!)

that the Hamiltonians in (¢*!, p?!) are polynomials of the variables whose coefficients are
rational functions of s = (s1, s2) holomorphic in Bi1111-

is symplectic

is a symplectic coordinate system. We can verify
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3.3.2. Coordinate system for Ay(s) N Wy of J11111-
The first quadratic transformation along As(s) N Wy. Note that As(s) N
Wy C Way and

As(s) N Wa = {(€0,&1,1m20,122) € War = C* | &g € C, & = n29 = 122 = 0}.
We replace every point (&g, 1,120, 722) = (€0, 0,0,0) with & € C by P? simultaneously.

Let (60, X5, Va0, Z8)) € €, (60, X5, V3!, Z87) € €t amd (g0, X85, Yy, 283)) € €
be coordinate systems of ‘/2(21)(5) = Qa,(s)nw, (Wa1 x s) defined by

&1 = X20 ) 20 = Xz((l))yz(ol)a 22 = Xéo)Zz(l)
& =XV, mo =Y, o = Y3 Z3),
g = Xéé)Zéé)v 20 = Y( )222 y T2 = 22(2)a
then the exceptional divisor D( (8) = Qa,(s)nws (A2(s) N Wy) is given by
1 1 1
(x5 =0} u v =0} u{z) =0}
and the set of accessible singular points A( )( ) is given by

A5 () = { (€0, X80 Vi Z)) = (€1,02,0,28) } © D (s).

The second quadratic transformation along Aglz)(s). We next replace the
points (fl,XQ(}),YQ(ll), ZQ(P) = (&1, 02,0, Zéi)) with (&1, ZQ(P) € C? by P! simultaneously.
Let (&, ZQ(P,X%),YQ(OQ)) € C* and (&, Zéi),Xg),YQ(f)) € C* be coordinate systems of
Vi3 (5) = Qa0 o) (Vaz (5)) defined by

1 2 1 2)y(2
Xél) =az+ Xz(o)v Y2(1) = XQ(O)YQ(O)’

1 2)y-(2 1 2
X2(1) =0z + X2(1)Y2(1)7 Yz(l) = Y2(1),
then the exceptional divisor D ( )= QA<1)( (A )( )) is given by

{x5 =0} u{¥Y =0},

We see that the differential system has no singular points in the
(50,Zéi),Xg),YQ(f),s)—space C* x B and moreover the points (ﬁo,Zg),XQ((Q)),YQ(g)) =
(ﬁo, Zéi), 0, 0) are inaccessible.

Thus we have obtained a coordinate system (61, Zéi), XQ(?), Y(Q)) € C* which sepa-
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rates the solution surfaces passing through As(s) N Wy = As(s) N Way. By setting
2 2 1
@2 =-x3, F=q P=v, 2=z

we obtain a symplectic coordinate system (g2, p?2) for A(s) N W,. We can also verify
that the Hamiltonians with respect to the coordinates are polynomials of these variables.

3.3.3. Coordinate systems for A3(s) of 11111-

Here we summarize the results obtained in 3.3.1 and 3.3.2 for the later convenience.

The set Aa(s) = (Aa2(s) N Wy) U (Az(s) N Wa) C Diji11 X s is a component of
the accessible singular points. Let @ 4,(s) be the quadratic transformation defined by
Q 45(s)nw, and Q 4, (s)nw,- Then Dél)(s) = Déi)(s) U DéIQ)(S) is the exceptional divisor
defined by Q 4, (s)(A2(s)). The set Aél)(s) = Aéll)(s) u ASQ)(S) is that of accessible sin-
gular points in Dél)(s). Let QA(l)(g) be the quadratic transformation defined by QA(“(S)

2 h 21 \*©
and QA(l)(9)7 then D;Q)(s) = Dgi)(s) U Dg) (s) is the exceptional divisor defined by
22 \©

QAQ)(S) (Aél)(s)). The set D§2)(5) \ Dél)(s) is a parameter space which separates the

solution surfaces passing through As(s), where Dél)(s) also denotes its proper image by
QA<1)(S). The neighborhood of the parameter space Déz)(s) \ Dgl)(s) is covered by two
2

affine charts C* whose coordinate systems are (q%l,qgl,pflvpgl) and (Q%Q,qu,p?,p?).
We note

D (5)\ DV (s) = {p3 =0} U {p?? = 0}.

We remark that Dq1111 X s and Dél)(s) denoting their proper images by quadratic trans-
formations are inaccessible singular points which may contain the points of the so-called
vertical leaves.

3.4. Coordinate systems for ng > 2.

In this subsection, we explain the quadratic transformations along Ag(s) in the case
of ny > 2. Being different from the case of ny = 1, we insert a simple change of variables
after the ng-th quadratic transformation and make a suitable change of variables after the
last quadratic transformation, in order to obtain a good symplectic coordinate system.
The last procedure is very important because it not only produces symplectic coordinates
but also resolves a kind of singularity of the differential system.

Here, we only show the case of A;(s) of 112 with ny = 2 as an example of the
case of n; > 2. In this case, note that A;(s) = (A1(s) N Wy) U (A1(s) N W3). We can
study the other cases in the same way as this example.

3.4.1. Coordinate system for A;(s) N Wy of 1112.
The first quadratic transformation along A;(s) N Wy. Note that A;(s) N
Wy € Wy and

A1 (s) NWo = {(&1,&2,m00,02) € Wor = C* | & € C,& = noo = 102 = 0}.
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We replace every point (&1, &2, m00, M02) = (0, &2,0,0) with & € C by P? simultaneously.
1) ) @ _( ) @ (1
Let (5273310 7950)7%0)) € CY, (§g,x§1),y§1), %1)) € C* and (fg,xgg),y§2),z§2)) € C* be
coordinate systems of Vl(ll)(s) = Qa,(s)nw, (Wo1 x s) defined by
1 1) (1 1
&1 = fgo)v Moo = x§0>y§0), No2 = 3350)2%0)7

&1 = 335?@9, Moo = yﬁ)v o2 = y%l)Zﬁ),

& =22, Mo =vid Ay me =21y,
then the exceptional divisor D§1 (8) = Qa,(s)nw, (A1(5) N W) is give by
M =0tu{yy =0}u 0
{z19 =0} U } {212 =0}

Let us write our system in the three coordinate systems near the exceptional divisor.
In the first coordinate system, it is written as

O(x (1)
( )xlo d£2 ($%)))d81 + <( 1) >d S9,

Y10

e(s )Ilo)dx%) = O(m%))dsl + O(xlo )dsa,
e()al dyly) = {0 () + yi Pra(a, 5) sy + {O (D) + oy Prs (62, 5) s,

e(s)aDdzly) = {O(x%)) +Cn(s){ (& — D2y + 1}}d5

O(zY
+< (( ) ) +P14(§27z10, ))dsz

in a neighborhood of D = {x = 0}. Here e(s) = s?s2(sz — 1). In the second
coordinate system, it is ertten as

e(s)yiydes = O(y1y))dsi + O (y\)) dsa,
e(s)idaty) = {O(17) + Prs(€a.) sy + {OY) + Pro(a.5) pase
e(s )911 dyn = O(yﬁ))dsl + O(yﬂ))df‘%

e(s)yi)d=yy = {O(yﬁ)) + 012(3)}d51 + {O(yﬁ)) + 013(8)}1182

in a neighborhood of D {y = O}, and in the third coordinate system it is
written as
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o2
e(s )zlz)dgg (zg))dsl + 3(/(1) )d 52,
12

()23 daty) = {O(=(3) + Crals) (2} +& — 1) sy

1o} (1)
+ ((2(11)2) + P17(£2,$12 ) )>d82d823
Y12

e(s)217 dyly = {O(=1) + 92 Cus(3) sy + {O(=17)) + 413 Cros) sz,

e(s )le)dz(l) O(z (1))d51 + O(Z12 )d52

in a nelghborhood of D {212 = O}. We can verity that the set of accessible
singular points A11 (s) is given by

AR (8) = { (@22l 00 210)) = (€2:0.0.-1/(&2 ~ 1))} € D).

The second quadratic transformation along Aﬁ)(s). We next replace the
points (fg,zgt),y%),z%)) = (£2,0,0,—1/(&2 — 1)) with & € C\ {& = 1} by P? simul-
taneously. For a while, we assume that £ # 1, namely we exclude the point & = 1.
Let (€2,2% 315,210 ) € O (62,27 17, ﬁ’) € C" and (€21 1. 47) € C* be
coordinate systems of Vl(lz)( )= QA<1)( )(V( (s)) defined by

1 _ .2 L _ .2 2) 1 _ )+ 22 ,(2)

Ti9 = Z10 > Yio = Tig Y0, 210 = —1/(&2—1 T10 %10 >
1 2 1 2 1 2) (2
ffgo) = xgl)y§1)7 y%o) = y§1)7 Z( ) = —1/(&—-1)+ 51)251),
1 2 1 2 1) 2
3650) = 3752)2§2)7 ygo) = ygz)ziz)a 2{0 =—1/(&—1)+ z§2),

then the exceptional divisor D( (s) = QA(1>( )(A( )( )) is given by

{3710 = O} U {yﬁ) = 0} U {zg) = O}.

Let us write our system in the three coordinate systems near the exceptional divisor.
In the first coordinate, it is written as

O(x (2) 0 x(2)
e(s )xlo (€2 — 1)d&2 = ((2) )d 51+ ((2) )d52,
Y10 Y10

(2) (2)
O(xw)dsl i 0(3510)ds27
(2) (2)
Y10 Y10

e(s)2'2) (& — 1)da'?) =
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e(s )mw (&2 —1) d?ho [O 5510 + {n(& - 1)?/10 + 1} Py (&, )}déﬁ

+ [0(9@10 )+ {n(& 1)?/%) + 1}P12(§275)}d527

2 n(&s — 1)yd) + 1} Pig (&, 242,
e(s)(x%)) (62 —1) dzlo —< { 2 — Do (2)} (&2, 210, 8) ds,
Y10
+<o< ST SR
2
y%o)
in a neighborhood of D { x 0}, in the second coordinate system, it is written
as

()17 (&2 — 1)z = O(y17 )dsi + O(y} ) dse,
ey (€2 — 1)%dal? = [0(uD) + {n(& — 1) + o} Prs (62,07, 5) | s

+ {O(yﬁ)) +{n&-1)+ xll)}Plﬁ(&,l?n , ):|d523

0 y(2) 1o} y(2)
<@M@4wﬁ=(g%ﬁ((h%
Ly1 3711

(212 5.2 _ (@) O(y?)
e(s)(117) (&2 — 1)°dzyy = O(yy )ds1 + — 57" ds2
T1q

in a neighborhood of D11

- {?Ju = 0}, and in the third coordinate system it is
written as

02 0(+2
( )Z§§)(£2 - 1)d§2 = ((1)2 )dsl + (( ) )d 52,

Y12 Y12
? Pi7(&,2%) s
e~ = (0(e) + P Y
Y12

Prs(6n, 22,
+ (O( )+ 18(5;(;12 8)>d82’
12

O vy = (00 PolEs),,

L2

Prio(€2,93) s
(o) + P,

L12

(2) (2)
O(z P11 (&2, 215, 01s
()23 (€2 - m@—ﬁ%m+@%mfﬂzmu)y@

2
12 Y12 $§2)y§2)
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ina nelghborhood of Dﬁ) = {212 = 0}. We can verity that the set of accessible
singular points A11 (s) is given by

AR () = {(& 21808 28) = (&2.0,-1/(n(& — 1)), =) } © DY (s).

The third quadratic transformation along Aﬁ)(s). Here we insert a change
of variables

2 2 2 2 2
§2 = &, I10 = zgo)’ y%o) 1/“50)’ Zgo) = 250),

namely, a change of local coordinates of a neighborhood of the set Aﬁ) (s). The change
of variables is necessary for obtaing a symplectic coordinate system

We next replace the points (&2, zlo), :1:%),11%)) = (52, 210 ,0,—n(& — 1)) with
(52,213) € C?\ {& = 1} by P! simultaneously. Let (§g,z% ,x%),yio) € C* and
(&, zio), mﬁ),yﬁ’)) € C* be coordinate systems of V11 (s) = QA(I?(S) (Vl(l)( )) defined by

2 3 2 3) (3
xgo) = Sﬂgo), v( )= —n(€2—1)+ xgo)ygo)a

2 3) (3 2 3
xgo) = 37(11)y§1)> Ugo) =-n(é—-1)+ y§1)7

then the exceptional divisor D11 (s) = QA(2>( (A; AR )( )) is give by

{2ly =0} u (s =0}.

Let us write our system in the two coordinate systems near the exceptional divisor.
In the first coordinate, it is written as

e(s)2y) (&2 — 1)des = O (g )ds1 + O (2] ) dso,

9] I(S)
()21 (&2 — 1)°deig) = ( o) (3))dsl
n(2 — 1) + 275 Y1p
0(zy) + (a1 — 433 Pi1(E2, 5)
* RONG dsz,
—n(&2 — 1) + z15 Y1
e(s)x%%) (& — l)dx%) = O(m&%))dsl + O(x%))ds%

()2 (& — D2dyf) = {O(«f7) + (a1 = yiY) Pra(a. 5) sy

+{06) + (a1 = 110 Pra&e, 5) s

in a neighborhood of D(3 {x%) = O}, in the second coordinate system, it is written



1108 M. SUZUKI

as
e(s)uiy (€2 — Dz = Oy )ds + O(1 ) s,
(3)
e()yiy (& — 1)%defy) = ( Ol 5 )dsl
{—n(&-1) +yll }x
. (O(y%?) + (araf) — D) PG, s )) s,
{_77 §a—1 +y11)}($11)
eyl (€ — %) = {0(Y) + (araf) = 1) Pis(&.5) sy
+ {O(yg‘?)) + (Oéll'(l) - )P16(§27 )}dSQa
O(y® (3)
(o)) 6~ 17 = A g, A g,
T11 T11
in a nelghborhood of D(3) = {yﬁ) = O}. We can verity that the set of accessible

singular points A11 (s) is given by
3 3 2 3
Agl) (s) = {(£z7z10),x§0)7y§0’) = (5272§0)70’a1)} = Dgl)(s)-

The fourth quadratic transformation along A 3)(.s). We next replace the
points (ﬁg,zw ,xlo),ygg)) (§ 213),0,011) with (52,210) € C?\ {& = 1} by P! osi-
multaneously. Let (52,210),$§é),y§é)) € C* and (ﬁg,z%),xgl),ygl ) € C* be coordinate
systems of V() (s) = Qa® () (Vi (s)) defined by

3 4 3 4
9550) = 37(10)’ yg = =+ xgo)ygo)a

3 4) (4 3 4
xgo) = z(u)yil), y%o) =a; + ygl)

then the exceptional divisor D( )( )= QA<3)(9) (Aﬁ)(s)) is given by
11 \°

{afs =0} u{u} =0}

We can verify that the differential system is written as

e(s)(§2 — 1)d§z = Z Pu f2a210 75510 ,y%), )dsi,

1=1,2

(4)  (4)
e(s)(&2 — 1)3dz%) = Z Qll(f?’zlo »Z10 5 Y10 » )d

i=1,2 O(xgo) —n(& —1)

I3
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e(s)(&—1) dxl Z Xi; 527210 7x10 72/10 ) )dsw

7=1,2

4
e(s)(é2 — 1)? ( ) Z Yi; f2az10 ’xlo 7y10 ) )dsz
i=1,2

in the coordinates (52,z§0),x§0>,y§0)) and s where Pj,, Q},, X1,,Y{;, i = 1,2 are certain

polynomials of &, zlg), :cgo), yYé) and s. Therefore the differential system in the cordinates
(52, zlo), x%), y%é)) is holomorphic in a neighborhood of {5510 = O} except for & = 1. On

the other hand, we can verify that

e(s)(§2 — 1)dés = Z Plllz 5272%)73711 ayn ) )dsw

3=1,2

37 (2) (£2>Z10 71'11)7yﬁ)a )
e(s)(&e — 1)°dzy = E a ds;,
i=1,2 O(yll ) —n(§2—1)

4 2) (4) (4
e(s)(& — 1)2daly) = > X{i(&, 2y 27 iy, s)dsi,
i=1,2

C11(s)(& —1)?
e(s)(§2 - 1)2dy%) = <Ylli (52,2’10),$ﬁ),yﬁ), ) + 11()((42))>d317
T11

—1)2P,
i (Y{é (52’25(23)&51);9%)7 s) + W)dsz
11

in a neighborhood of (fg,zlo ,xﬁ),y& ) (52,,21% ,0, O) with & # 1, P/L, QY. X1, Y/l

i = 1,2 are certain polynomlals of &, 213),x§1),y1 and s, which shows that the points

(52, z%),x(ﬁ),yﬁ)) = (52, 210 ,O, O) with & # 1 are inaccessible singular points.

Thus we have obtained a coordinate system (52, z%), :c(f(l)), ygé)) € C* which separates
the solution surfaces passing through A;(s)NWy = A1 (s) N Wy with & # 1. Tt is related

to the original coordinate system (q1,ge, p1,p2) by

—1 «
n=aly, @=&, p= () 2) + i + o
(4) ( )
(#10)
Ui (2) ! (2) y%) (4) (2),,(4) (,.(4)
P2 = —y = (&2 — 1)z — &1 + | a1zyg — &1 Ty + 210 Y10 (xlo) :
Tig 2 2

Auxiliary transformation. We notice that the coordinate system (52, z%), x%),

y§0)) is not symplectic and the form of the differential system is very complicated. There-

fore we proceed to finding another good coordinate system. For this purpose, let us
calculate the 2-form dgq; A dp; + dgo A dps in this coordinate system:
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dqy N dp1 + dgs A dps

=da'¥) Adyld) + { —n(&a — 1)+ 285 (ar + 2{5yls )}d§2 A dz?

(4)
+ (sl 4 2l - 297 Yo naaly

()
+ (A ) - 29 )dea nay

(4), (4)
L9 Y
dﬂ?Adﬁ”+d@Ad{{M@1)+r@&v+x%%?ﬁ§? g_?}

= dx(f(l)) A dy(4) +déa A d{{ =€ —1)+ xgo) (a1 + mgo)y%))}z%)

ﬁ%@al}

-1 &1

Therefore, setting

4, (4)
2 4 4) (4 2) _ T ¥ a
wiy) = { — (& — 1) + 2y (o + xgo)y§0))}'z£0) 510*1(1) &

we have symplectic coordinates (52, w%), mgo), ygé)) Futhermore, in this coordinate sys-
tem, we can verify that our system is written as

s)déz = Z Pri( §Qaw§?))’x§%))7y§é)7 s)dsi,

1=1,2

( dw% Z le 527’“}10 ,$§0)7y§_0), )dS’L7
i=1,2

e(s)dx%) = Z X1 (52,111%)733%)72%10 5)dsi,

i=1,2

( )dy(4) Z le 52771}10 7:550)31/%0)7 )dszv
i=1,2

where Py;, Q14, X14, Y15, ¢ = 1,2 are certain polynomials of &5, w%), x%), y%) and s. This
means that the differential system has no singular points in (52, w%), 1’%), ygé), )—Space
C* X Bi112. We remark that the system has no singularity on & = 1. We write this

affine symplectic coordinate system as (q%l7 a1t p%l), namely

11 4 11 11 4 2
0 —$§0)> 9 =&, P1 —y§0)7 p2 w%o)-
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3.4.2. Coordinate system for A;(s) N Wy of J1112.
The first quadratic transformation along A;(s) N W5. Note that A;(s) N
Wy C Way and

A1 (s) N Wa = {(€0,&1,1m20,122) € Way = C* | &1 € C, & = n20 = 122 = 0}.

We replace every point (&0, €1,m20,m22) = (£0,0,0,0) with & € C by P? simultaneously.
Let (¢, X1o', Vi, 210) € €, (¢, X1V, Y, 21))) € C* and (60, X1, iy, 21y)) € ©*
be coordinate systems of Vl(z)( ) = Qa,(s)nw, (Wa1 x s) defined by

& =Xy, o = X{oY), e = X{§ 247,

& =XV, o =Y, e =Y\ 2L,

G=X15205, mo=v5'2, me =2,
then the exceptional divisor D ( ) = Qa,(s)nw, (A1(s) N W3) is given by
1 1 1
(X =0bu{vP =0} u{z) =0}

and the set of accessible singular points A:(é)(s) is given by

A () = { (€0, X101 Z40) = (€0,0,0,1/60 — 1)} € DR (s).

The second quadratic transformation along A%)(s). We next replace the

points (&0, X\, V{00, ZE)) = (£0,0,0,1/(¢ — 1)) with & € C\ {& = 1} by P2 si-

multaneously. Note that we assume &y # 1 for a while. Let ( 1((2)),}/1(02),2(2)) € C3,

(X(2) v\®, 73 ) € C? and (Xl(g),Yl(Q), Z(2)) € C3 be coordinate systems of V.3 (s) =
QAW () (V12 ( )) defined by

XY =XE, =XV, AD =1/ -1+ XP 2

1 2) (2 1 2 1 2) (2
X( )= Xfl)Yl(l)v Yl(O) = Y1(1)7 Zfo) = 1/(5 1) +Yl( )2{1)a

1 2
Xy = X573, i =v2y), 2 =16 - )+ 23,
then the exceptional divisor Dg)(s) = QA(1>(S) (A%)(s)) is given by
12
(XP =0} u{v? =0lu{z? =0}
10 11 12

and the set of accessible singular points Ag)(s) is given by
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2 2 2 (2
Agg)(s) - {(go’Xl(O)’YVl(O)aZ )) (5070 1/( 60 - 1))’Z( ))} C D( )( )

The third quadratic transformation along Ag)(s). Here we insert a change
of variables

2 2 2) 1 1
&o = o, Xfo)—Xl(o)a Y1(0 :1/ 107 ZI(O):Z£O)

namely, a change of local coordinates of a neighborhood of the set A%)(s). We next re-
place the points (€0, Z{p), Xi5), Vi) = (€0, Z{3), 0,n(é0—1)) with (&, Z7)) € C?\{& =
1} by P! simultaneously. Let (60,23, X3 V() e c* and (&, 20, xP v\P) e 4
be coordinate systems of V5 (s) = Q42 (4 (Vi$(s)) defined by

Xy = Xig Vig) =n — 1)+ X[g'1g,

)

Xi = X0 Vi =06 - 1)+ 0y
then the exceptional divisor D ( ) = QA<2>( (A} )(s)) is given by
(X' =0}u{rY =0}
and the set of accessible singular points A( )( ) is given by
AR () = {60, 210, XD Vi) = (80, 28),0,01) } < D ().
The fourth quadratic transformation along Ag?’z)(s). We next replace the
points (€0, Z{5), X3 V&) = (¢, 2 ,0 ap) with (&, 2%)) € €*\ {go = 1} by P!

simultaneously. Let (52, 13),X1(3),Y ) € C* and (52, 13),X1(411), ( ) € C* be coor-
dinate systems of V12 (s) = QA<3>( (Vl(g)( )) defined by

3 4 3 1), (4
X = X4, Y = a1+ XYY,

3 4)5-(4 3 4
X{O) = X1(1)Y1(1)7 Y1(0) =at Y1(1)7
then the exceptional divisor D'3(s) = Q404 (A(?’)( ) is given by
4 4
(x{y) =0t u (v =0}.
We see that, in the (&, Z{?,Xﬁ?, 1(61), s)-space C* x B, the differential system is

holomorphic in a neighborhood of {Xfé) = 0} except for £y = 1, moreover, the points
(¢, Z%%Xﬁ”, Yl({l)) ({0, 10 ,O 0) with & # 1 are inaccessible.
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Thus we have obtained a coordinate system (Eg, Z%), X%), Yl(g)) € C* which sepa-
rates the solution surfaces passing through A;(s) N Wy = A1(s) N Way with & # 1.

Auxiliary transformation. Setting

(2) ) Womn @ XoYe
Wiy = {77(50 — 1)+ X3y’ (a1 + X1 Vi )}ZIO g

we have symplectic coordinates (fo, Wl(g), Xl(é), Yl(él )) and so we write them as

4 4
a2 =X, @i=¢, p2=YYy, p2=w.

We notice that the differential system in this coordinate system has no singularity on
12
q5" = 50 =1.

3.4.3. Coordinate systems for A;(s) of J1112.

Now we summarize the results obtained in 3.4.1 and 3.4.2. The set A;(s) = (A1(s)N
Wo) U (A1(s) N Wa) C Di112 X s is a component of accessible singular points. Let Q 4, (s
be the quadratic transformation determined by Qa,(s)nw, and Qa,(s)nw,- Then the
set D§1)(s) = Dgll)(s) u Dg)(s) is the exceptional divisor @ 4, (s)(A1(s)) and Agl)(s) =
Agll)(s) U Agll) (s) is the set of accessible singular points. In the same way, for n = 2, 3,4,
let QAgnfl)(s) be the quadratic transformation determined by QAg,rl)(S) and QAgg—l)(s),
and set DI (s) := D™ (s) U D (s), A (s) = AW (s) U AW (s). Then D{(s) =
QAgnfl)(s) (A(lnfl)(s)) and A§n)(s) C Dgn)(s)7 n = 2,3 are the sets of accessible singular
points.

The set DYL) (s)\ D%g) (s) is a parameter space which separates the solution surfaces
passing through A;(s), where Dg?’)(s) also denotes the proper image of itself by QAgs)(s).

The neighborhood of D§4) (s)\Dgg) (s) is covered by two affine charts C* whose coordinate
systems are (¢i',¢3', 1", p3') and (¢1°, ¢3%, pi®, p3°). Note that

D{"(s)\ D (s) = {a}" = 0} U {qi* = 0}.

We remark that Dq112 X s and D§n) (s), n = 1,2 denoting their proper images by quadratic
transformations are also inaccessible singular points which may include the points of the
so-called vertical leaves.

3.5. Construction of spaces of initial conditions.

Here we explain how to construct spaces of initial conditions E;(s) for every J.

Let Ai(s) C Dyxs, s € B; be the components of the accessible singular points of the
extended differential system JL”J(O) on 3, x s. For each A (s), we have made a sequence
of quadratic transformations and defined the divisors D,in)(s) (n=1,2,...,2n).

Let @, be the composition of all quadratic transformations and let

E;(s) = 04(Z,, x s).
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Then we obtain the spaces of initial condisions F;(s) as

Ey(s) = Fys) \ ((DJ xs)ulJ (2@11)’5”)(3)))’

k n=1

which is covered by 2|J| + 3 affine charts: Wio(~ C*) > (¢t,q5,pi,pb), i = 0,1,2 and
VE (= CY) 3 (g1, ¢5", it p5h), VI (= C*) 3 (af?, 652, p}?, p5?) for k= 0,...,00. Here
Wop is the original chart whose coordinate system is (g1, g2, p1,p2).

By following the above calculations, we can obtain the pacting relations given in our
theorems. The other assertions are immediate consequences of these relations.

The following figures give some informations on the processes of quadratic transfor-
mations.

DY) D)  DP(s)  DV(s)  DL(s)

D) PP DP(s)  DP(s) DY)
1311111
Figure 1. J = 11111.

D(s) D (s) DM (s) DY (s)
Di)..... DP(s)  DR(s)
1)1112

1

DiV(s)
3 :
Di(s)
Di'(s)

Figure 2. J =1112.
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D{"(s) DP(s) DY (s)
Dg(s) DE(s)
D113
5
D (s)
4
D{Y(s)
DiV(s)
pPs) | D)
Figure 3. J =113.
D (s) DP(s) DY) (s)
DL (s)
Dio9
4 4
Dy (s) DV (s)
3 : 3 :
DP(s) DP(s)
DV (s) D(s)
Figure 4. J = 122.
D (s) DY (s)
DE(s)| .
D14
DY (s)
D) (s)
DY (s) DY (s)
D (s) DO (s) i
DY (s)

Figure 5. J = 14.
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DP(s) D (s)
Dos
T 5
D7 (s) DX (s)
3 : 4
DP(s) ! DY (s)
D (s)
DM(s) DL (s) D) .
Figure 6. J = 23.
DY)(s)
Dy
DY (s)
DY (s)
D (s) DY (s)
D®(s) DY (s)
D (s)
D (s) DL (s)

Figure 7. J =5.
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