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Abstract. LetT =U|T| be a bounded linear operator with the associated polar decompo-
sition on a separable infinite dimensional Hilbert space. Fart< 1, letT; = |T['U|T|*" and
gt andgy, be the principal functions of andT;, respectively. We show that, T is an invertible
semi-hyponormal operator with trace class commutgidrU], thengr = gy, almost everywhere
onC. As a biproduct we reprove Berger’s theorem and index properties of inveptitponormal
operators.

1. Introduction.

An operator below means a bounded linear operator on a separable infinite dimensional
Hilbert space” and%) stands for the trace class operatorsih The commutator of two op-
eratorsA, Bis denoted byA, B = AB—BA. In the analysis of an operatdrwith self-commutator
[T*,T] € 61, the principal functiory of T is one of the most important tools. It is known that
the principal functiory gives much information about the structureTo{see, for example 5,
[9], [11], [14], [17]). The construction of depends on the Cartesian decomposifica X +iY.
There exists another approach to the principal functipirelated to the polar decomposition
T =U|T| (see, for exampled], [8], [15], [17]). In the theory of operator inequalities, the gen-
eralized Aluthge transformatior = |T|'U|T|*! (0 <t < 1) are proved to be very useful. It
is a natural problem to consider relations between the functipgs andgy, . In this article we
discuss this problem.

An operatorT is called p-hyponormal if(T*T)P > (TT*)P (see []). If p=1andl/2,
thenT is called hyponormal and semi-hyponormal, respectively. An invertible opefatsr
said to be log-hyponormal ibg T*T > log TT* (see P, [16]). If T is hyponormal, then the
principal functiong(x,y) is obtained from the Cartesian decompositiba= X +iY (see, for
example, 17)). If T is semi-hyponormal, then the principal functigp(€®,r) is obtained from
the polar decompositiof = U|T| (see, for example1[7]). By Lowner-Heinz inequality, if
0<g< p<landT is p-hyponormal, thef is g-hyponormal. We often use the following
result: For0 < p<1/2and0<t < 1, if T =U|T|is p-hyponormal, therf; = |T|'U|T|* is
g-hyponormal, wherg = p+ min{t,1—t} ([10, §3.4.1, Theorem 2]).

Following [17], we introduced the principal functions fprhyponormal operators and log-
hyponormal operators€]). In this paper, we show that, i is an invertible semi-hyponormal
operator with trace class commutafdr|,U] € 41, thengr = g1, almost everywhere o@. More-
over, we show that, iT = U|T| is hyponormal with unitaryJ, theng = g; almost everywhere
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onC. As applications of this result, we extend Berger’'s theorem in the capehgbonormal
operators. Throughout this papewill satisfy 0 <t < 1.

2. Relations with principal functions associated with polar decompositions.

We denote by the linear space of all Laurent polynomialg(r,z) with polynomial co-
efficients such that?(r,z) = SR\ pk(r)Z, whereN is a non-negative integer armi(r) is a
polynomial. ForT = U|T| with unitary operatot, put 2(|T|,U) = SR p(|THUK. We
denote byd(o, ) the Jacobian of functiong(r,z), Y(r,z) defined orR x C, that is,

J((P7 Ll-’)(r,ée) = (pf(r’em) : wz(r’eie) - (pl(rveie) ’ lauf(ra ei@).

THEOREMA ([17, Chapter 7, Theorem 3.3B[Theorem 9]) Let an operatorT = U|T|
be semi-hyponormal with unitaty. Assumd|T|,U] € 41. Then there exists a summable func-
tion gt such that, for?(r,z), 2(r,z) € «,

T 2(TLU),2(TLV)) = 5 [[ 37, 2)(r,89)d%r (¢°.r)drde.

DEFINITION 1. The functiong; in Theorem A is called therincipal functionof T. Let
T =U|T| be ap-hyponormal operator with unitaky such thaf|T|?P,U] € %1. PutS=U|T|?P.
ThenSis semi-hyponormal. By Theorem A, there exists the principal fungjipof Sand we
define the principal functiogy of T by

9T (eiev r) = gS(eiev rl/(2p))

(see B, Definition 3]).

We begin with a well-known important property of commutators (see, for example, [
Chapter 7, 1.2 and 3.1]).

LEmmA 1. |If operatorsA,B,C satisfy[A,C], [B,C| € %1, then we havéAB,C] € 4.
Let ||All1 = Tr(|A|) for A€ %1, that is,||Al|1 is the trace norm oh.

THEOREM2. If a positive invertible operatoA and an operatoD satisfy[A, D] € %1,
then, for any real numbear, we have

[A% D] € €.

PrROOF. We use the following expansion known as the binomial serieszFaf < 1),

(1+2)% = f (r‘Dzm

m=0

where(f) = (a(a—1)---(a —m+1))/(m!).



Relations between principal functionswhyponormal operators 607

Considering|BA|| < 1 with some positive numbgB, we may assume thd#\|| < 1. Since
Ais an invertible positive operator afjé|| < 1, we havel|A—1|| < 1and

AT = (I + (A—1)% = lim i @) (A—1)™ 0

n—oo
m=0

Let An = [Ymo (7)) (A—1)™ D] for n=1,2,3,---. Thenlimp_.., Ay = [A%,D] with respect
to the operator norm. Byifl, p. 158 (3.3)], for a positive integen, it holds that

I[(A=1)™,D][|2 < m|A— 1™ *|[[(A~1), D],

so that, fom,

n

Al < ( 5

m=1

@) ‘m”A"”m‘1> I[A.D]1.

Since||A—1]|| < 1, (1) converges absolutely and hence

(3 n-1m) <=

Therefore,{An} is a Cauchy sequence with respect to the ngrrii;. Let B denote the limit
of the sequencéA,} in €. For any unit vecto€ € s#, we define an operatd®@ on s# by

Cn=(n,&)& (nes). Let{g;} be a complete orthonormal basis.¢f such thate; = &.

SinceTr(SC) = y7.1(SCsq,€j) = (,¢), then

(BE,&) = Tr(BO) = lim Tr(AC) = lim (Acé, &) = (A7, D]E, £).
Sinceé is an arbitrary vector, it follows that
[AY.D] =B € %1. O

THEOREM3. LetT =U|T| be an invertible operator. Puk = |T|'U|T|*L If [|T|,U] €
¢1, thenT Ty — i T € 61.

PROOF.  Since|T| is invertible, by Theorem 2 we have, for aoy> 0,
HT|07U] € e,
so that

U*|TI2 = |T]2U* € € andU|T P YU* — T2 e 4.
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Therefore,

T =TT = (T U TRUITS = T2 = (T[T PO T = TP
= [T U TP = [TPUHUIT [T UT PRI — [T T
€ 61. O

THEOREM4. LetT =U|T| be an invertible operator an® = |T|'U|T|*~*. For the polar
decompositiol; =V|Ti| of T, if [| T|,U] € 631, then, for every real number,

[|Tt|,V] € €1
PrROOF.  SinceT; = V|Ti| is the polar decomposition, by Theorem 3 we have
RE-VRAV =TT =TT € %1

SinceT is invertible, so isl;. Hence the operatdf:| is invertible and/ is unitary. Therefore, by
the above we have

[Te2V] = (1> = V[TV € 21,
Since|T;| is an invertible positive operator, by Theorem 2 we obtain, for every real nuenber
[|T|%,V] € 1. O

THEOREMS5. LetT =U|T| be an invertible operator an® = |T|'U|T|**. For the polar
decompositio; = V|Ti| of T, if [|T|,U] € %1, then, for a positive integer, it holds that

Tr((UMT(™[TP) = Tr(VO T [ TI2)),
Te(U T [TP)) = Tr(V "R, [T )
and
Tr(UHTLUIT]) = Tr(V* [T |, V[T]).

PrROOF. If operatorsA, B,C, D andE satisfy[ABCD, E] € %1, [ACBD, E] € %1 and[B,C] €
%1, then we have

Tr([ABCD,E]) = Tr(|ACBD,E)). )

By Theorem 4, we geliTi|,V] € 1. Then Lemma 1 yields thdtV|T|)™"™ M| T&|"™,
ITi|?] € 61 and[V™, | T[] € 61 (m=0,1,---,n). And by equality (2) it follows that
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Tr(VP IR [RIZ) = Tr(VV RIS 1)
= Tr(V TV T2)
= Tr((RV™ 4R T [2)
= Tr([%" 7).

Since[|T|5,U] € 1 for s> 0, similarly we have

Tr([T [Tf2]) = Tr([TFU[TU - U T TR O T PUIT )

(
r(TIUITIY U T T T PuU T )
(
(

T
Tr([(ITIO)ITIU U T [T2))
Tr([(UTHITIY - UT [ T2)

[
[
[
[

=Tr([U[TIU - UT[YTE %)
= Tr(U"[T["[TI?).

Therefore, we obtain
Tr(UNT [T ) = Tr(VPIT " T )
We also have
Tr(V RN TP = Tr((IV " 717 = Tr(IRI2 VORI,

By the above result, we get

Tr([ T2 VORI = Tr(| T2 UM T ),
so that

Tr([[ T2, U T (") = Tr(U T [TI%).
Hence, we obtain

Tr(V "R (Tl?) = Tr(U T T 2).
Similarly, we have

Tr(UATLUIT]) = Tr([ TV U T = Tr([T7,T])
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and

Tr(VATLVIT]) = Tr([I TV VITRI]) = Tr([T7, T))
=Tr([TOA T TIOT ) =Tr(| TV, UlT])
=Tr([T*,T]). O

Let T = U|T| be an invertiblep-hyponormal operator such thfT | U] € 1. LetT; =
IT['U|T|* andT; = V|T;| be the polar decomposition.0f< p < 1/2, putq = p-+min{t,1—t};
if 1/2<p<1,putq=1/2+min{t,1—t}. By [10, §3.4.1, Theorem 2]f; is g-hyponormal. By
Theorem 2 we havgT;|%,V] € %1. Hence, by Definition 1 there exists the principal functign
of T;. If T; is g-hyponormal, thef; is s-hyponormal 0 < s< ). Hence we can consider the prin-
cipal function ofT; with respect tos-hyponormality. The trace formula implies the uniqueness
of the principal function off; = V|T;| (cf. [14, Chapter X§3]).

THEOREMG6. Let T = U|T| be an invertible semi-hyponormal operator such that
[[T|,U] € €1. For Ty = |T|'U|T|*™, let gr and gy, be the principal functions of and T;, re-
spectively. Then we have

9T = 91

almost everywhere d@.

PROOF. Let Ty = V|T;| be the polar decomposition . For a non-zero integen, let
Pn(r,2) =12, gn(r,2) = 2°r!", po(r,2) = 2 r andap(r, 2) = zr. Then by Theorem 5 we have

TP T1U).n(TLU))) = Tr([T2.UPT(]) = Tr({pn( V). n( [T V))
and
Tr([pof(T1.U). ol T1.U)]) = Tr((U* [T, U [T} = Tr({po .. Go([TI.V)).
By Theorem A, we have
TH(pn(ITI V). Ga(TLU)) = 5 [ 209 id 0 2. r)drdo
and
TH(Po(IT1 W), col[TIU))) = - [[ 2re-%6r(&?,rydrde.

SinceT; is invertible, we can choose a positive integesuch thafl; is 1/(2m)-hyponormal and
[[T|¥™ V] € C by Theorem 2. By$, Theorem 10], we have

TH([Pn( [T V), (T V)) = - [[ 20 H9rin+160. (6, e
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and
TH([Po([ V), ol V))) = - [[ 2re %€y, (¢, r)arde,
so that
//r\“\(ée)"rgT(ée,r)drde — _//r\“l(ée)”rgn (€°,r)drde
and
//rg-r 1)drd6 = //rth r)drde.
Sincenis arbitrary, we obtaig; = gy, almost everywhere o8. O

Next we recall the principal functions for log-hyponormal operators.

DEFINITION 2. LetT =U|T| be log-hyponormal withog|T| > 0 such thaflog|T|,U] €
¢1. PutS=Ulog|T|. ThenSis semi-hyponormal with unitaryy. Hence there exists the
principal functiongg of Sand we define the principal functien of T by

g7(€°,1) = gs(€°,logr)

(see b, Definition 4]).

It is known that, if T = U[T| is log-hyponormal, then the Aluthge transforfp,, =
IT|Y2U|T |2 is semi-hyponormal (se€l§]). Hence there exists the principal functign, ,
of Tl/2-

THEOREM7. LetT =U|T| be alog-hyponormal operator such thang|T| > 0 and
log|T|,U] € %1. For Ty p = [T|Y2U T Y2 =V|Ty ), letgr andgr, , be the principal functions
of T and Ty ,, respectively. Then we have

g7 = ng/z

almost everywhere o@.

PROOF.  Since |[[U, [T[]]l1 = [I[U,€°9T]]|1 < [[[U,log|T]]||l'"9/Tll, we havelu, |T|] €
%1. Hence we have

ITual? = V[TyalV* =Ty Tup — TyaTyp = [TIY20TIU T Y2 — T Y20 T|U*[T|Y/2

= [TIM2(U*[TU —U[TU")[T[Y2 = [TM2 (O[T, U]+ [ T,UJU) [T
€ 61.

Therefore, by Theorem 2, we have
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Tyj2l =VI[Ty2V* € 61
By [10, §3.4.2, Theorem 2], sinc&,, is semi-hyponormal, there exists the principal function

972 of Ty/». For a non-zero integem, let pn(r,z) = r?, on(r,2) = 2r", po(r,2) = z"*r and
Qo(r,z) = zr. By the same argument of the proof of Theorem 5, we obtain, for an integer

Tr([Pm(|T[,U), am(IT],U)]) = Tr([pm([Ta/2[, V), Gm(|Ta 2], V)))-

By [6, Theorem 8], we have
Tr([pa(T1U), an(IT1,U)]) = / ond(n- VO nl+1¢0y (O 1)drde
and

Tr([po(|T1,U). o[ TLU)) = - [[ 2r+(°.r)drde.

SinceTy; is semi-hyponormal, by Theorem A we have

TH([Pn(Taj2 V), Gn([Ty2 V) = 5 [[ 2ndv 90116, (&9 r)drde
and
TH([Po(Ty/2l: V). 00l To 2 V) = 5. [ 2067, (€9, 1)dlde,
so that
//r‘m‘(ée)mrgT(ei97r)drd6 ://r|m‘(eie)mngl/2(ée,r)drde
for any integem. Sincemis arbitrary, this implieg; = 9Ty almost everywhere o@. O

Now we generalize Theorem 6 as follows.

THEOREMS8. LetT =U|T| be an invertiblep-hyponormal operator such th@fT |,U] €
€. ForT = |T['U|T|Y, letgr andgy, be the principal functions of andT;, respectively. Then
we haveyy = gy, almost everywhere do@.

PROOF. Let Ty = V|T;| be the polar decomposition . For a non-zero integen, let
Pn(r,2) =12, gn(r,2) = 2", po(r,2) = z 1r andqo(r,z) = zr. Then by Theorem 5 we have for
any integem,

Tr([Pm(T[, W), am(IT[,W)]) = Tr([pm(|Te|,V), Am([Te[,V)])-
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By Theorem 2, we havgT|?P,U] € %1. By [10, §3.4.1. Theorem 2J}; is g-hyponormal(0 <
g < 1). We choose a positive integersuch thatl/2m < g. ThenT; is 1/2m-hyponormal. By
Theorem 4, we havgT|¥/™ V] € . It follows from [8, Theorem 10] that

Tr([pn(IT, W), an (T, W)]) = /Zné DO 1d0 (€9, r)drde,
TH([pn( [T V), (T V) = - [[ 2nd- 891 (6, drae,
Tr([Po(ITI, W), qo(ITLW)]) = 5 //ngT (€9 r)drde,
and
Tr([po(I T, V), Go(| el V)] / 2rgr (6°,r)drde.
Hence, we have, for any integes,
- 9T - ) = m (g g1 / s .
//r‘”“(e'e)mr (€%, r)drde //r‘ (€%)Mrgy (€9,r)drde

Sincemis arbitrary, we obtaig = gy, almost everywhere o8. O

3. Relation with principal functions associated with two decompositions.
Next, we show the following theorem (ch,[Theorem 7.1]).

THEOREMY9. LetT = X+iY =U|T| be hyponormal with unitaryJ. Suppose that
[IT|,U] € 61. Letg andgy be the principal functions corresponding to the Cartesian and the
polar decompositions df, respectively. Fok+ iy = re', letgr (x,y) = g1 (€%,r). Theng = g¢
almost everywhere o@.

PROOF. Since|[|T|,U] € %1, by Lemma 1 we havT|?,U] € 1. Hence
TT-TT = [T]*-U[T|2U* = [|IT|?,UJU* € %.
Theorem A yields that, for a polynomig(x,y) =y and an arbitrary polynomigl(x,y),
TH([p(X.Y).00X V) = o [ (b y)dxay
_ 1 / (%,y)g(x y)dxd
= o Gmpx ,Y)9(XY y

1 : :
= E//M px(r cosB, rsinB)g(r cosd, rsin)rdrd O,
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where M= {(r,8) : 1€'® € g(T), 0 < 8 < 2m1}. On the other hand, we have

Tr([p(X,Y),q(X,Y)]) = Tr({p(U”' +2|T|U*1’ UIT|- 'TU1>7U|T| - 'T|U1]>.

2i 2i
Let
« zr+rz7t zr—rzt N zr—rzt
p(nz)( . )andq(nz) S
Then we get
L z+z1 z—zN\/r 1
N e e A I CICE )
r 1 1 1\)z-2z1
‘z{px (1‘zz>+ipy'<1+zz)} 5
Therefore,

J(B,6)(r,€9) - €% = (px-cosh + py - sinB) (—ir cosh) —r(ipy - sin@ — ipy - cosP) sin@

= —irpy.

Hence we have

Tr UIT|+[TU~t UIT|—|TUu=\ UIT|—|TIu?
P 2 ’ 2 7 2

L e e
_ 2n.//MJ(p’q)(r’é )e9- (€, r)drd6
1 . i . .
- ET//M —irpx(rcos, rsinf)gr (¢9,r)drde,
so that

1 : .
o /M px(r cosB, rsinB)g(r cosd, rsinO)rdrd 6

1 _ _ .
— 5_[//M —irpx(rcosd, rsin)gr (€°,r)drde.
Sincep is arbitrary, we obtain
rg1(€%,r)=rg(rcosd, rsinf)  a.e.

Hence gt = g almost everywhere 0B.
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Though the results above can be generalized to operators with trace-class self-commutator,
we confine ourselves to deal only with thehyponormal case (cf5]).

4. Application: Berger's Theorem and index.

In this section, we apply previous results to Berger's Theorghaiid an index property
[11]. First we show the following:

LEMMA 10. LetoperatorsS=V|S andT =U|T| be invertible. Assume th&f — |Sf|,
|T| —|T*| € %1 and there exists a trace class operatarsuch thatSA= AT and ker(A) =
ker(A*) = {0}. Then, forS;, = [SY2V|§%2 and Ty, = |T|Y2U|T|V/2, there existsB € 61
such thatS, ,B = BT, , andker(B) = ker(B*) = {0}.

PROOF. LetB=|SY2A|T|"¥2. Thenitis clear thaB c ¥; andker(B) = ker(B*) = {0}.
SinceS, , = |§Y2V|gY/2 andT; ), = |T|Y2U[T|*/2, we have

Si/2B = Sy/2|SYPAIT| V2 = |§Y/2SAT| Y2 = |gV2AT|T| /2

= |9Y2AIT| V2T, = BTy . O

THEOREM11. LetSandT be invertible semi-hyponormal operators. Assume [Bat
|S*|,|T| —|T*| € 1 and there exists a trace class operaosuch thatSA= AT andker(A) =
ker(A*) = {0}. Thengg < g almost everywhere o@.

PrROOF. Letg andh be the principal functions d;, and Ty, related to the Cartesian
decompositions 08, , and Ty ,, respectively. Sinc&,, and T, are invertible hyponormal
operators with trace class self-commutators, by Lemma 10 and Theoren8p(of Theorem
X.4.3 of [14]), we havey < h almost everywhere o8. Moreover, Theorem 9 implies

9=9s, and h= 97,2 almost everywhere o@.

And Theorem 6 impliegig = 95,/2 andgt = 972 almost everywhere o€, so that,gg < g
almost everywhere 08. O

COROLLARY 12. LetSandT be invertiblep-hyponormal odog-hyponormal operators.
Assume thaS| — |S*|, |T| — |T*| € 1 and there exists a trace class operafosuch thatSA= AT
andker(A) = ker(A*) = {0}. Thengg < g1 almost everywhere do@.

PROOF. SinceS;, andTy , are invertible semi-hyponormal operators, by Theorem 11 we
havegsl/2 < IT1/2 almost everywhere o€. Moreover, Theorems 7 or 8 |mplg/sl/2 =ggand
97, =97 almost everywhere o@G.

THEOREM13. LetT =U|T| be an invertible cyclicp-hyponormal operator. Assume
[|T|,U] € 1. Then

gr <1 almosteverywhere o@.



616 M. CHo and T. HURUYA

PrRooF. If T =U|T| has a cyclic vector, thef , also has a cyclic vector by Lemma 3
of [7]. Hence, letp > 1/2. Since therily, is a cyclic hyponormal operator, by Corollary 4.4 of
[14] we haveng/2 < 1. By Theorem 8, it follows thagr < 1. Similarly, the theorem holds for

0<p<1/2 O
Let Rat(o) be the set of all rational functions with poles off

DEFINITION 3. Therational multiplicity of T € B(.7) is the smallest cardinal number
with the property which there exists a e} ; of m-vectors ins such that

V{f(T)x; feRat(a(T)), 1<i<m}=.7.

THEOREM14. LetT =U|T| be an invertible cycligp-hyponormal operator with finite
rational cyclic multiplicitym. Assumeé|T|,U] € 1. Then

gr <m almost everywhere o@.

PROOF. Let Ty, =|T[Y2U|T|Y2=V|Ty| (the polar decomposition d ,). Since, by
Theorem 4, we hav{T, ,|,V] € 41, first we show thafl; , has an operator with finite ratio-
nal cyclic multiplicity m. It is easy to see tham(Tl/z)\TP/z = |T|Y/2p(T) for every polyno-
mial panda(T) = 0(Ty0). If {X1,---,Xm} is @ system of vectors such thig{ f(T)x ; f €
Rat(a(T)), 1<i<m} =2, then{|T|¥%x,---,|T|Y?xn} is a system of vectors such that
V{f(Ty2)[TIY2x ; f € Rat(a(Tyy2)), 1 <i<m}=.2. Hence, the operatdh , has a finite
rational cyclic multiplicitym. If p > 1/2, thenT, , is a hyponormal operator with finite rational
cyclic multiplicity m. Hence by Theorem 8 and Proposition 4.6 bf][we haveg; = 972 <m
almost everywhere o8. Similarly, the theorem holds f@ < p < 1/2. O

Finally, we show index properties. Let(T) be the essential spectrum®Dfand indT) the
index of T; i.e.,

ind(T) = dimker(T) — dimker(T*).

Then it is known the following result. L&t be a pure hyponormal operator agi@d) be the
principal function ofT. Then it holds that, foz ¢ ge(T),

g(z) = —ind(T — 2

[11, Theorem] (see als@ Theorem 4]).
An operatofT is calledpureif it has no nontrivial reducing subspace on which it is normal.
Then we need the following

LEMMA B (Lemma4 of f]). For an operatorT = U|T|, let Ty, = [T|Y2U|T|Y2. As-
sume thafl is an invertiblep-hyponormal operator. IT is pure, therl , is also pure.

THEOREM15. LetT =U|T| be a pure invertible semi-hyponormal operatorOl z ¢
0e(T), thengr (€9,r) = —ind(T — 2), wherez = re®,
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PROOF. Let Ty, =|T|Y2U|T|Y2. Then, by Lemma BTy, is a pure invertible hyponor-
mal operator. Sincee(Ty/2) = Te(T) by Theorem 1.5 of12], we havez ¢ 0e(Ty/»). Hence

91,,,(2) = —ind(Ty 2 - 2).
Theorem 1.10 off3] implies that
ind(Ty/» —2) = ind(T —2).

By Theorem 6, we havg; = 97,5 Therefore, we obtain that (€°,r) = —ind(T — 2). O

COROLLARY 16. LetT =U |T| be a pure invertiblep-hyponormal operatof0 < p <
1/2). 1§ 0# 2 ¢ 0e(T), theng; (€9,1) = —ind(T — 2), wherez = re'®.

PROOF. By Lemma BTy, = [T[¥/2U|T|¥2is a pure invertible semi-hyponormal opera-
tor. Hence a similar argument of the proof of Theorem 15 gives a proof of Corollary 16 ]
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