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Abstract. Let T = U |T| be a bounded linear operator with the associated polar decompo-
sition on a separable infinite dimensional Hilbert space. For 0< t < 1, let Tt = |T|tU |T|1−t and
1T and1Tt

be the principal functions ofT andTt , respectively. We show that, ifT is an invertible
semi-hyponormal operator with trace class commutator[|T|,U ], then1T = 1Tt

almost everywhere
onCCC. As a biproduct we reprove Berger’s theorem and index properties of invertiblep-hyponormal
operators.

1. Introduction.

An operator below means a bounded linear operator on a separable infinite dimensional
Hilbert spaceH andC1 stands for the trace class operators onH . The commutator of two op-
eratorsA, B is denoted by[A,B] = AB−BA. In the analysis of an operatorT with self-commutator
[T∗,T] ∈ C1, the principal function1 of T is one of the most important tools. It is known that
the principal function1 gives much information about the structure ofT (see, for example, [5],
[9], [11], [14], [17]). The construction of1 depends on the Cartesian decompositionT = X + iY.

There exists another approach to the principal function1T related to the polar decomposition
T = U |T| (see, for example, [5], [8], [15], [17]). In the theory of operator inequalities, the gen-
eralized Aluthge transformationsTt = |T|tU |T|1−t (0 < t < 1) are proved to be very useful. It
is a natural problem to consider relations between the functions1, 1T and1Tt

. In this article we
discuss this problem.

An operatorT is called p-hyponormal if(T∗T)p ≥ (TT∗)p (see [1]). If p = 1 and1/2,
then T is called hyponormal and semi-hyponormal, respectively. An invertible operatorT is
said to be log-hyponormal iflog T∗T ≥ log TT∗ (see [2], [16]). If T is hyponormal, then the
principal function1(x,y) is obtained from the Cartesian decompositionT = X + iY (see, for
example, [17]). If T is semi-hyponormal, then the principal function1T(eiθ , r) is obtained from
the polar decompositionT = U |T| (see, for example, [17]). By Löwner-Heinz inequality, if
0 < q≤ p≤ 1 andT is p-hyponormal, thenT is q-hyponormal. We often use the following
result: For0 < p≤ 1/2 and0 < t < 1, if T = U |T| is p-hyponormal, thenTt = |T|tU |T|1−t is
q-hyponormal, whereq = p+min{t,1− t} ([10, §3.4.1, Theorem 2]).

Following [17], we introduced the principal functions forp-hyponormal operators and log-
hyponormal operators ([6]). In this paper, we show that, ifT is an invertible semi-hyponormal
operator with trace class commutator[|T|,U ]∈C1, then1T = 1Tt

almost everywhere onCCC. More-
over, we show that, ifT = U |T| is hyponormal with unitaryU , then1 = 1T almost everywhere
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on CCC. As applications of this result, we extend Berger’s theorem in the case ofp-hyponormal
operators. Throughout this paper,t will satisfy 0 < t < 1.

2. Relations with principal functions associated with polar decompositions.

We denote byA the linear space of all Laurent polynomialsP(r,z) with polynomial co-
efficients such thatP(r,z) = ∑N

k=−N pk(r)zk, whereN is a non-negative integer andpk(r) is a
polynomial. ForT = U |T| with unitary operatorU , put P(|T|,U) = ∑N

k=−N pk(|T|)Uk. We
denote byJ(φ ,ψ) the Jacobian of functionsφ(r,z), ψ(r,z) defined onRRR×CCC, that is,

J(φ ,ψ)(r,eiθ ) = φr(r,eiθ ) ·ψz(r,eiθ )−φz(r,eiθ ) ·ψr(r,eiθ ).

THEOREM A ([17, Chapter 7, Theorem 3.3], [8, Theorem 9]). Let an operatorT = U |T|
be semi-hyponormal with unitaryU. Assume[|T|,U ] ∈ C1. Then there exists a summable func-
tion 1T such that, forP(r,z),Q(r,z) ∈A ,

Tr([P(|T|,U),Q(|T|,U)]) =
1

2π

∫∫
J(P,Q)(r,eiθ )eiθ1T(eiθ , r)drdθ .

DEFINITION 1. The function1T in Theorem A is called theprincipal functionof T. Let
T = U |T| be ap-hyponormal operator with unitaryU such that[|T|2p,U ] ∈ C1. PutS= U |T|2p.
ThenS is semi-hyponormal. By Theorem A, there exists the principal function1S of Sand we
define the principal function1T of T by

1T(eiθ , r) = 1S(e
iθ , r1/(2p))

(see [8, Definition 3]).

We begin with a well-known important property of commutators (see, for example, [17,
Chapter 7, 1.2 and 3.1]).

LEMMA 1. If operatorsA,B,C satisfy[A,C], [B,C] ∈ C1, then we have[AB,C] ∈ C1.

Let ‖A‖1 = Tr(|A|) for A∈ C1, that is,‖A‖1 is the trace norm ofA.

THEOREM 2. If a positive invertible operatorA and an operatorD satisfy[A,D] ∈ C1,
then, for any real numberα, we have

[Aα ,D] ∈ C1.

PROOF. We use the following expansion known as the binomial series: Forz (|z|< 1),

(1+z)α =
∞

∑
m=0

(
α
m

)
zm,

where
(α

m

)
= (α(α−1) · · ·(α−m+1))/(m!).
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Considering‖βA‖< 1 with some positive numberβ , we may assume that‖A‖< 1. Since
A is an invertible positive operator and‖A‖< 1, we have‖A− I‖< 1 and

Aα = (I +(A− I))α = lim
n→∞

n

∑
m=0

(
α
m

)
(A− I)m. (1)

Let An = [∑n
m=0

(α
m

)
(A− I)m,D] for n = 1,2,3, · · · . Thenlimn→∞ An = [Aα ,D] with respect

to the operator norm. By [11, p. 158 (3.3)], for a positive integerm, it holds that

‖[(A− I)m,D]‖1 ≤m‖A− I‖m−1‖[(A− I),D]‖1,

so that, forn,

‖An‖1 ≤
( n

∑
m=1

∣∣∣∣
(

α
m

)∣∣∣∣m‖A− I‖m−1
)
‖[A,D]‖1.

Since‖A− I‖< 1, (1) converges absolutely and hence

( ∞

∑
m=1

∣∣∣∣
(

α
m

)∣∣∣∣m‖A− I‖m−1
)

< ∞.

Therefore,{An} is a Cauchy sequence with respect to the norm‖ · ‖1. Let B denote the limit
of the sequence{An} in C1. For any unit vectorξ ∈ H , we define an operatorC on H by
Cη = (η ,ξ )ξ (η ∈ H ). Let {ej} be a complete orthonormal basis ofH such thate1 = ξ .
SinceTr(SC) = ∑∞

j=1(SCej ,ej) = (Sξ ,ξ ), then

(Bξ ,ξ ) = Tr(BC) = lim
n→∞

Tr(AnC) = lim
n→∞

(Anξ ,ξ ) = ([Aα ,D]ξ ,ξ ).

Sinceξ is an arbitrary vector, it follows that

[Aα ,D] = B∈ C1. ¤

THEOREM 3. Let T = U |T| be an invertible operator. PutTt = |T|tU |T|1−t . If [|T|,U ] ∈
C1, thenT∗t Tt −TtT∗t ∈ C1.

PROOF. Since|T| is invertible, by Theorem 2 we have, for anyα > 0,

[|T|α ,U ] ∈ C1,

so that

U∗|T|2t −|T|2tU∗ ∈ C1 andU |T|2(1−t)U∗−|T|2(1−t) ∈ C1.
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Therefore,

T∗t Tt −TtT
∗

t = (|T|1−tU∗|T|2tU |T|1−t −|T|2)− (|T|tU |T|2(1−t)U∗|T|t −|T|2)
= |T|1−t(U∗|T|2t −|T|2tU∗)U |T|1−t −|T|t(U |T|2(1−t)U∗−|T|2(1−t))|T|t

∈ C1. ¤

THEOREM 4. LetT = U |T| be an invertible operator andTt = |T|tU |T|1−t . For the polar
decompositionTt = V|Tt | of Tt , if [|T|,U ] ∈ C1, then, for every real numberα,

[|Tt |α ,V] ∈ C1.

PROOF. SinceTt = V|Tt | is the polar decomposition, by Theorem 3 we have

|Tt |2−V|Tt |2V∗ = T∗t Tt −TtT
∗

t ∈ C1.

SinceT is invertible, so isTt . Hence the operator|Tt | is invertible andV is unitary. Therefore, by
the above we have

[|Tt |2,V] = (|Tt |2−V|Tt |2V∗)V ∈ C1.

Since|Tt | is an invertible positive operator, by Theorem 2 we obtain, for every real numberα,

[|Tt |α ,V] ∈ C1. ¤

THEOREM 5. LetT = U |T| be an invertible operator andTt = |T|tU |T|1−t . For the polar
decompositionTt = V|Tt | of Tt , if [|T|,U ] ∈ C1, then, for a positive integern, it holds that

Tr([Un|T|n, |T|2]) = Tr([Vn|Tt |n, |Tt |2]),
Tr([U−n|T|n, |T|2]) = Tr([V−n|Tt |n, |Tt |2])

and

Tr([U∗|T|,U |T|]) = Tr([V∗|Tt |,V|Tt |]).

PROOF. If operatorsA,B,C,D andE satisfy[ABCD,E]∈C1, [ACBD,E]∈C1 and[B,C]∈
C1, then we have

Tr([ABCD,E]) = Tr([ACBD,E]). (2)

By Theorem 4, we get[|Tt |,V] ∈ C1. Then Lemma 1 yields that[(V|Tt |)mVn−m|Tt |n−m,

|Tt |2] ∈ C1 and[Vm, |Tt |] ∈ C1 (m= 0,1, · · · ,n). And by equality (2) it follows that
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Tr([Vn|Tt |n, |Tt |2]) = Tr([VVn−1|Tt‖Tt |n−1, |Tt |2])
= Tr([V|Tt |Vn−1|Tt |n−1, |Tt |2])
= Tr([TtV

n−1|Tt |n−1, |Tt |2])
...

= Tr([Tn
t , |Tt |2]).

Since[|T|s,U ] ∈ C1 for s> 0, similarly we have

Tr([Tn
t , |Tt |2]) = Tr([|T|tU |T|U · · ·U |T|1−t , |T|1−t(U∗|T|2t)U |T|1−t ])

= Tr([|T|tU |T|U · · ·U |T|1−t , |T|1−t(|T|2tU∗)U |T|1−t ])

= Tr([(|T|tU)|T|U · · ·U |T|1−t , |T|2])
= Tr([(U |T|t)|T|U · · ·U |T|1−t , |T|2])
...

= Tr([U |T|U · · ·U |T|t |T|1−t , |T|2])
= Tr([Un|T|n, |T|2]).

Therefore, we obtain

Tr([Un|T|n, |T|2]) = Tr([Vn|Tt |n, |Tt |2]).

We also have

Tr([V−n|Tt |n, |Tt |2]) = Tr([|Tt |nV−n, |Tt |2]) = Tr([|Tt |2,Vn|Tt |n]∗).

By the above result, we get

Tr([|Tt |2,Vn|Tt |n]∗) = Tr([|T|2,Un|T|n]∗),

so that

Tr([|T|2,Un|T|n]∗) = Tr([U−n|T|n, |T|2]).

Hence, we obtain

Tr([V−n|Tt |n, |Tt |2]) = Tr([U−n|T|n, |T|2]).

Similarly, we have

Tr([U∗|T|,U |T|]) = Tr([|T|U∗,U |T|]) = Tr([T∗,T])
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and

Tr([V∗|Tt |,V|Tt |]) = Tr([|Tt |V∗,V|Tt |]) = Tr([T∗t ,Tt ])

= Tr([|T|1−tU∗|T|t , |T|tU |T|1−t ]) = Tr([|T|U∗,U |T|])
= Tr([T∗,T]). ¤

Let T = U |T| be an invertiblep-hyponormal operator such that[|T|,U ] ∈ C1. Let Tt =
|T|tU |T|1−t andTt =V|Tt | be the polar decomposition. If0< p≤ 1/2, putq= p+min{t,1−t};
if 1/2 < p≤ 1, putq = 1/2+min{t,1− t}. By [10, §3.4.1, Theorem 2],Tt is q-hyponormal. By
Theorem 2 we have[|Tt |2q,V]∈ C1. Hence, by Definition 1 there exists the principal function1Tt

of Tt . If Tt is q-hyponormal, thenTt is s-hyponormal(0< s< q). Hence we can consider the prin-
cipal function ofTt with respect tos-hyponormality. The trace formula implies the uniqueness
of the principal function ofTt = V|Tt | (cf. [14, Chapter X,§3]).

THEOREM 6. Let T = U |T| be an invertible semi-hyponormal operator such that
[|T|,U ] ∈ C1. For Tt = |T|tU |T|1−t , let 1T and 1Tt

be the principal functions ofT and Tt , re-
spectively. Then we have

1T = 1Tt

almost everywhere onCCC.

PROOF. Let Tt = V|Tt | be the polar decomposition ofTt . For a non-zero integern, let
pn(r,z) = r2, qn(r,z) = znr |n|, p0(r,z) = z−1r andq0(r,z) = zr. Then by Theorem 5 we have

Tr([pn(|T|,U),qn(|T|,U)]) = Tr([|T|2,Un|T||n|]) = Tr([pn(|Tt |,V),qn(|Tt |,V)])

and

Tr([p0(|T|,U),q0(|T|,U)]) = Tr([U∗|T|,U |T|]) = Tr([p0(|Tt |,V),q0(|Tt |,V)]).

By Theorem A, we have

Tr([pn(|T|,U),qn(|T|,U)]) =
1

2π

∫∫
2nei(n−1)θ r |n|+1eiθ1T(eiθ , r)drdθ

and

Tr([p0(|T|,U),q0(|T|,U)]) =
1

2π

∫∫
2re−iθ eiθ1T(eiθ , r)drdθ .

SinceTt is invertible, we can choose a positive integermsuch thatTt is 1/(2m)-hyponormal and
[|Tt |1/m,V] ∈C by Theorem 2. By [8, Theorem 10], we have

Tr([pn(|Tt |,V),qn(|Tt |,V)]) =
1

2π

∫∫
2nei(n−1)θ r |n|+1eiθ1Tt

(eiθ , r)drdθ
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and

Tr([p0(|Tt |,V),q0(|Tt |,V)]) =
1

2π

∫∫
2re−iθ eiθ1Tt

(eiθ , r)drdθ ,

so that

∫∫
r |n|(eiθ )nr1T(eiθ , r)drdθ =

∫∫
r |n|(eiθ )nr1Tt

(eiθ , r)drdθ

and

∫∫
r1T(eiθ , r)drdθ =

∫∫
r1Tt

(eiθ , r)drdθ .

Sincen is arbitrary, we obtain1T = 1Tt
almost everywhere onCCC. ¤

Next we recall the principal functions for log-hyponormal operators.

DEFINITION 2. Let T = U |T| be log-hyponormal withlog|T| ≥ 0 such that[log|T|,U ] ∈
C1. Put S= U log|T|. Then S is semi-hyponormal with unitaryU . Hence there exists the
principal function1S of Sand we define the principal function1T of T by

1T(eiθ , r) = 1S(e
iθ , logr)

(see [6, Definition 4]).

It is known that, if T = U |T| is log-hyponormal, then the Aluthge transformT1/2 =
|T|1/2U |T|1/2 is semi-hyponormal (see [16]). Hence there exists the principal function1T1/2

of T1/2.

THEOREM 7. Let T = U |T| be a log-hyponormal operator such thatlog|T| ≥ 0 and
[log|T|,U ] ∈ C1. For T1/2 = |T|1/2U |T|1/2 = V|T1/2|, let 1T and1T1/2

be the principal functions
of T andT1/2, respectively. Then we have

1T = 1T1/2

almost everywhere onCCC.

PROOF. Since ‖[U, |T|]‖1 = ‖[U,elog|T|]‖1 ≤ ‖[U, log|T|]‖1e‖ log|T‖|, we have[U, |T|] ∈
C1. Hence we have

|T1/2|2−V|T1/2|2V∗ = T∗1/2T1/2−T1/2T∗1/2 = |T|1/2U∗|T|U |T|1/2−|T|1/2U |T|U∗|T|1/2

= |T|1/2(U∗|T|U−U |T|U∗)|T|1/2 = |T|1/2(U∗[|T|,U ]+ [|T|,U ]U∗)|T|1/2

∈ C1.

Therefore, by Theorem 2, we have
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|T1/2|−V|T1/2|V∗ ∈ C1.

By [10, §3.4.2, Theorem 2], sinceT1/2 is semi-hyponormal, there exists the principal function

1T1/2
of T1/2. For a non-zero integern, let pn(r,z) = r2, qn(r,z) = znr |n|, p0(r,z) = z−1r and

q0(r,z) = zr. By the same argument of the proof of Theorem 5, we obtain, for an integerm,

Tr([pm(|T|,U),qm(|T|,U)]) = Tr([pm(|T1/2|,V),qm(|T1/2|,V)]).

By [6, Theorem 8], we have

Tr([pn(|T|,U),qn(|T|,U)]) =
1

2π

∫∫
2nei(n−1)θ r |n|+1eiθ1T(eiθ , r)drdθ

and

Tr([p0(|T|,U),q0(|T|,U)]) =
1

2π

∫∫
2r1T(eiθ , r)drdθ .

SinceT1/2 is semi-hyponormal, by Theorem A we have

Tr([pn(|T1/2|,V),qn(|T1/2|,V)]) =
1

2π

∫∫
2nei(n−1)θ r |n|+1eiθ1T1/2

(eiθ , r)drdθ

and

Tr([p0(|T1/2|,V),q0(|T1/2|,V)]) =
1

2π

∫∫
2r1T1/2

(eiθ , r)drdθ ,

so that

∫∫
r |m|(eiθ )mr1T(eiθ , r)drdθ =

∫∫
r |m|(eiθ )mr1T1/2

(eiθ , r)drdθ

for any integerm. Sincem is arbitrary, this implies1T = 1T1/2
almost everywhere onCCC. ¤

Now we generalize Theorem 6 as follows.

THEOREM 8. Let T = U |T| be an invertiblep-hyponormal operator such that[|T|,U ] ∈
C1. For Tt = |T|tU |T|1−t , let1T and1Tt

be the principal functions ofT andTt , respectively. Then
we have1T = 1Tt

almost everywhere onCCC.

PROOF. Let Tt = V|Tt | be the polar decomposition ofTt . For a non-zero integern, let
pn(r,z) = r2, qn(r,z) = znr |n|, p0(r,z) = z−1r andq0(r,z) = zr. Then by Theorem 5 we have for
any integerm,

Tr([pm(|T|,W),qm(|T|,W)]) = Tr([pm(|Tt |,V),qm(|Tt |,V)]).
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By Theorem 2, we have[|T|2p,U ] ∈ C1. By [10, §3.4.1. Theorem 2],Tt is q-hyponormal(0 <

q≤ 1). We choose a positive integerm such that1/2m< q. ThenTt is 1/2m-hyponormal. By
Theorem 4, we have[|Tt |1/m,V] ∈ C1. It follows from [8, Theorem 10] that

Tr([pn(|T|,W),qn(|T|,W)]) =
1

2π

∫∫
2nei(n−1)θ r |n|+1eiθ1T(eiθ , r)drdθ ,

Tr([pn(|Tt |,V),qn(|Tt |,V)]) =
1

2π

∫∫
2nei(n−1)θ r |n|+1eiθ1Tt

(eiθ , r)drdθ ,

Tr([p0(|T|,W),q0(|T|,W)]) =
1

2π

∫∫
2r1T(eiθ , r)drdθ ,

and

Tr([p0(|Tt |,V),q0(|Tt |,V)]) =
1

2π

∫∫
2r1Tt

(eiθ , r)drdθ .

Hence, we have, for any integerm,

∫∫
r |m|(eiθ )mr1T(eiθ , r)drdθ =

∫∫
r |m|(eiθ )mr1Tt

(eiθ , r)drdθ .

Sincem is arbitrary, we obtain1T = 1Tt
almost everywhere onCCC. ¤

3. Relation with principal functions associated with two decompositions.

Next, we show the following theorem (cf. [5, Theorem 7.1]).

THEOREM 9. Let T = X + iY = U |T| be hyponormal with unitaryU. Suppose that
[|T|,U ] ∈ C1. Let 1 and1T be the principal functions corresponding to the Cartesian and the
polar decompositions ofT, respectively. Forx+ iy = reiθ , let 1T(x,y) = 1T(eiθ , r). Then1= 1T

almost everywhere onCCC.

PROOF. Since[|T|,U ] ∈ C1, by Lemma 1 we have[|T|2,U ] ∈ C1. Hence

T∗T−TT∗ = |T|2−U |T|2U∗ = [|T|2,U ]U∗ ∈ C1.

Theorem A yields that, for a polynomialq(x,y) = y and an arbitrary polynomialp(x,y),

Tr([p(X,Y),q(X,Y)]) =
1

2π i

∫∫

σ(T)
J(p,q)1(x,y)dxdy

=
1

2π i

∫∫

σ(T)
px(x,y)1(x,y)dxdy

=
1

2π i

∫∫

M
px(r cosθ , r sinθ)1(r cosθ , r sinθ)rdrdθ ,
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where M= {(r,θ) : reiθ ∈ σ(T), 0≤ θ < 2π}. On the other hand, we have

Tr([p(X,Y),q(X,Y)]) = Tr

([
p

(
U |T|+ |T|U−1

2
,
U |T|− |T|U−1

2i

)
,
U |T|− |T|U−1

2i

])
.

Let

p̃(r,z) = p

(
zr+ rz−1

2
,
zr− rz−1

2i

)
and q̃(r,z) =

zr− rz−1

2i
.

Then we get

J(p̃, q̃) =
(

px · z+z−1

2
+ py · z−z−1

2i

)(
r
2i

(
1+

1
z2

))

− r
2

{
px ·

(
1− 1

z2

)
+

1
i

py ·
(

1+
1
z2

)}
z−z−1

2i
.

Therefore,

J(p̃, q̃)(r,eiθ ) ·eiθ = (px ·cosθ + py ·sinθ)(−ir cosθ)− r(ipx ·sinθ − ipy ·cosθ)sinθ

=−irpx.

Hence we have

Tr

([
p

(
U |T|+ |T|U−1

2
,
U |T|− |T|U−1

2i

)
,
U |T|− |T|U−1

2i

])

=
1

2π

∫∫

M
J(p̃, q̃)(r,eiθ )eiθ1T(eiθ , r)drdθ

=
1

2π

∫∫

M
−irpx(r cosθ , r sinθ)1T(eiθ , r)drdθ ,

so that

1
2π i

∫∫

M
px(r cosθ , r sinθ)1(r cosθ , r sinθ)rdrdθ

=
1

2π

∫∫

M
−irpx(r cosθ , r sinθ)1T(eiθ , r)drdθ .

Sincep is arbitrary, we obtain

r1T(eiθ , r) = r1(r cosθ , r sinθ) a.e.

Hence,1T = 1 almost everywhere onCCC. ¤
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Though the results above can be generalized to operators with trace-class self-commutator,
we confine ourselves to deal only with thep-hyponormal case (cf. [5]).

4. Application: Berger’s Theorem and index.

In this section, we apply previous results to Berger’s Theorem [3] and an index property
[11]. First we show the following:

LEMMA 10. Let operatorsS= V|S| andT = U |T| be invertible. Assume that|S|− |S∗|,
|T| − |T∗| ∈ C1 and there exists a trace class operatorA such thatSA= AT and ker(A) =
ker(A∗) = {0}. Then, forS1/2 = |S|1/2V|S|1/2 and T1/2 = |T|1/2U |T|1/2, there existsB ∈ C1

such thatS1/2B = BT1/2 andker(B) = ker(B∗) = {0}.

PROOF. Let B = |S|1/2A|T|−1/2. Then it is clear thatB∈ C1 andker(B) = ker(B∗) = {0}.
SinceS1/2 = |S|1/2V|S|1/2 andT1/2 = |T|1/2U |T|1/2, we have

S1/2B = S1/2|S|1/2A|T|−1/2 = |S|1/2SA|T|−1/2 = |S|1/2AT|T|−1/2

= |S|1/2A|T|−1/2T1/2 = BT1/2. ¤

THEOREM 11. Let SandT be invertible semi-hyponormal operators. Assume that|S|−
|S∗|, |T|− |T∗| ∈ C1 and there exists a trace class operatorA such thatSA= AT andker(A) =
ker(A∗) = {0}. Then1S≤ 1T almost everywhere onCCC.

PROOF. Let 1 andh be the principal functions ofS1/2 andT1/2 related to the Cartesian
decompositions ofS1/2 andT1/2, respectively. SinceS1/2 andT1/2 are invertible hyponormal
operators with trace class self-commutators, by Lemma 10 and Theorem 2 of [3] (or Theorem
X.4.3 of [14]), we have1≤ h almost everywhere onCCC. Moreover, Theorem 9 implies

1= 1S1/2
and h = 1T1/2

almost everywhere onCCC.

And Theorem 6 implies1S = 1S1/2
and1T = 1T1/2

almost everywhere onCCC, so that,1S≤ 1T

almost everywhere onCCC. ¤

COROLLARY 12. Let SandT be invertiblep-hyponormal orlog-hyponormal operators.
Assume that|S|−|S∗|, |T|−|T∗| ∈C1 and there exists a trace class operatorA such thatSA= AT
andker(A) = ker(A∗) = {0}. Then1S≤ 1T almost everywhere onCCC.

PROOF. SinceS1/2 andT1/2 are invertible semi-hyponormal operators, by Theorem 11 we
have1S1/2

≤ 1T1/2
almost everywhere onCCC. Moreover, Theorems 7 or 8 imply1S1/2

= 1S and
1T1/2

= 1T almost everywhere onCCC. ¤

THEOREM 13. Let T = U |T| be an invertible cyclicp-hyponormal operator. Assume
[|T|,U ] ∈ C1. Then

1T ≤ 1 almost everywhere onCCC.
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PROOF. If T = U |T| has a cyclic vector, thenT1/2 also has a cyclic vector by Lemma 3
of [7]. Hence, letp≥ 1/2. Since thenT1/2 is a cyclic hyponormal operator, by Corollary 4.4 of
[14] we have1T1/2

≤ 1. By Theorem 8, it follows that1T ≤ 1. Similarly, the theorem holds for

0≤ p≤ 1/2. ¤

Let Rat(σ) be the set of all rational functions with poles offσ .

DEFINITION 3. Therational multiplicityof T ∈ B(H ) is the smallest cardinal numberm
with the property which there exists a set{xn}m

n=1 of m-vectors inH such that

∨
{ f (T)xi ; f ∈ Rat(σ(T)), 1≤ i ≤m}= H .

THEOREM 14. Let T = U |T| be an invertible cyclicp-hyponormal operator with finite
rational cyclic multiplicitym. Assume[|T|,U ] ∈ C1. Then

1T ≤m almost everywhere onCCC.

PROOF. Let T1/2 = |T|1/2U |T|1/2 = V|T1/2| (the polar decomposition ofT1/2). Since, by
Theorem 4, we have[|T1/2|,V] ∈ C1, first we show thatT1/2 has an operator with finite ratio-

nal cyclic multiplicity m. It is easy to see thatp(T1/2)|T|1/2 = |T|1/2p(T) for every polyno-
mial p andσ(T) = σ(T1/2). If {x1, · · · ,xm} is a system of vectors such that

∨{ f (T)xi ; f ∈
Rat(σ(T)), 1≤ i ≤ m} = H , then{|T|1/2x1, · · · , |T|1/2xm} is a system of vectors such that∨{ f (T1/2)|T|1/2xi ; f ∈ Rat(σ(T1/2)), 1≤ i ≤m} = H . Hence, the operatorT1/2 has a finite
rational cyclic multiplicitym. If p≥ 1/2, thenT1/2 is a hyponormal operator with finite rational
cyclic multiplicity m. Hence by Theorem 8 and Proposition 4.6 of [14] we have1T = 1T1/2

≤m

almost everywhere onCCC. Similarly, the theorem holds for0 < p≤ 1/2. ¤

Finally, we show index properties. Letσe(T) be the essential spectrum ofT and ind(T) the
index ofT; i.e.,

ind(T) = dimker(T)−dimker(T∗).

Then it is known the following result. LetT be a pure hyponormal operator and1(z) be the
principal function ofT. Then it holds that, forz 6∈ σe(T),

1(z) =−ind(T−z)

[11, Theorem] (see also [4, Theorem 4]).
An operatorT is calledpure if it has no nontrivial reducing subspace on which it is normal.

Then we need the following

LEMMA B (Lemma 4 of [7]). For an operatorT = U |T|, let T1/2 = |T|1/2U |T|1/2. As-
sume thatT is an invertiblep-hyponormal operator. IfT is pure, thenT1/2 is also pure.

THEOREM 15. Let T = U |T| be a pure invertible semi-hyponormal operator. If0 6= z 6∈
σe(T), then1T(eiθ , r) =−ind(T−z), wherez= reiθ .
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PROOF. Let T1/2 = |T|1/2U |T|1/2. Then, by Lemma B,T1/2 is a pure invertible hyponor-
mal operator. Sinceσe(T1/2) = σe(T) by Theorem 1.5 of [12], we havez /∈ σe(T1/2). Hence

1T1/2
(z) =−ind(T1/2−z).

Theorem 1.10 of [13] implies that

ind(T1/2−z) = ind(T−z).

By Theorem 6, we have1T = 1T1/2
. Therefore, we obtain that1T(eiθ , r) =−ind(T−z). ¤

COROLLARY 16. Let T = U |T| be a pure invertiblep-hyponormal operator(0 < p <

1/2). If 0 6= z 6∈ σe(T), then1T(eiθ , r) =−ind(T−z), wherez= reiθ .

PROOF. By Lemma B,T1/2 = |T|1/2U |T|1/2 is a pure invertible semi-hyponormal opera-
tor. Hence a similar argument of the proof of Theorem 15 gives a proof of Corollary 16.¤
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[ 6 ] M. Chō and T. Huruya, Mosaic and trace formulae of log-hyponormal operators, J. Math. Soc. Japan,55 (2003),

255–268.
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