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Abstract. In this paper, we study various topological properties of generic
smooth maps between manifolds whose regular fibers are disjoint unions of homotopy
spheres. In particular, we show that if a closed 4-manifold admits such a generic map
into a surface, then it bounds a 5-manifold with nice properties. As a corollary, we
show that each regular fiber of such a generic map of the 4-sphere into the plane is a
homotopy ribbon 2-link and that any spun 2-knot of a classical knot can be realized
as a component of a regular fiber of such a map.

1. Introduction.

Let f : M → N be a smooth map between manifolds of dimensions n and p with
n ≥ p. Suppose that M is compact and has no boundary. If f is a submersion, then it
is a fiber bundle and the topology of the source manifold M can be studied by using the
classical theory of fiber bundles. However, if f is not a submersion, then the topology of
such a map is not easy to understand because of the presence of singularities.

The simplest one among the generic singularities is the definite fold point, and a
smooth map with only this kind of singularities is called a special generic map. This
type of maps was first studied by Burlet and de Rham [1] and then a systematic study
was made by the first named author in [24]. One of the most important features of
special generic maps is that a regular fiber of such a map is always diffeomorphic to a
disjoint union of standard spheres.

In this paper, we carry out a systematic study of the topology of smooth maps whose
regular fibers are unions of homotopy spheres. Such maps are said to be spherical or have
sphere fibers. This is a generalization of the class of special generic maps. The smooth
maps which we consider will have (not necessarily definite) fold points and cusp points
as their singularities. Since these singularities are more complicated than the definite
fold singularity, the same argument cannot be directly applied. In this paper, we mainly
concentrate on such maps of 4-dimensional manifolds into surfaces. We also assume that
they are generic, or more precisely C∞ stable.

The paper is organized as follows. In §2 we recall some basic concepts necessary
for the global study of generic maps. One of the most important tools is the Stein
factorization or the quotient space. For a special generic map this quotient space is a
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smooth manifold with boundary, and this fact enabled us to obtain various interesting
properties of such maps in [24]. In our case of generic maps, the quotient space is a
2-dimensional polyhedron, and its local forms were classified by Porto and Furuya [21].
As an easy application, we give an Euler characteristic formula for generic maps of sphere
fibers.

In §3, before going to the 4-dimensional case, we study spherical Morse functions
on 3-manifolds. We give a complete list of those closed 3-manifolds which admit such
functions. We will see that this list completely coincides with that of those closed 3-
manifolds which admit special generic maps into the plane. This is not a coincidence,
and we will explain the reason using orthogonal projections of the plane onto the line.
As a byproduct, we give a new proof of a result of Burlet and de Rham [1].

In §4 we first state our main theorem (Theorem 4.1): for a generic map f : M → N of
a 4-manifold into a surface with sphere fibers, the quotient map qf : M → Wf in its Stein
factorization can be extended to a map rf : Vf → Wf from a 5-manifold Vf with ∂Vf = M

such that the fibers of rf are all contractible and that rf is a homotopy equivalence. This
result has various interesting corollaries. For example, this shows that those 4-manifolds
which admit such spherical maps should be null-cobordant. Furthermore, the quotient
map qf : M → Wf induces an isomorphism between the fundamental groups (this result
itself has been obtained by the second named author in [27]). We also show that if the
source manifold M is the 4-sphere, then every regular fiber should be a homotopy ribbon
2-link in the sense of [2]. Moreover, by combining a result obtained in [12], we give a
characterization of the standard 4-sphere in terms of spherical maps.

In §5, we prove the main theorem. We first decompose the quotient space Wf into
some pieces by using its simplicial structure and then construct 5-dimensional manifolds
piece by piece. Finally we glue them together to obtain the desired 5-manifold.

In §6, we give a systematic method to construct spherical smooth maps. As an
example, we show that every spun 2-knot in S4 of a classical knot in S3 can be realized
as a component of a regular fiber of a generic spherical map of S4 into the plane.

Throughout the paper, we mainly work in the smooth category. The homology
and cohomology groups are with integer coefficients unless otherwise indicated. For a
topological space X, idX denotes the identity map of X. For an n-dimensional closed
connected manifold X and a positive integer k, X(k) denotes the manifold X with k

open n-disks removed, where we assume that the closures of the n-disks do not intersect
with each other. The symbol “∼=” denotes a diffeomorphism between manifolds or an
appropriate isomorphism between algebraic objects.

The authors would like to express their sincere gratitude to Yukio Matsumoto for
his invaluable comments together with his constant encouragement1. They would also
like to thank Masamichi Takase for stimulating discussions, and to the referee for his/her
kind suggestions.

2. Preliminaries.

In this section, we recall some fundamental definitions and properties of generic

1Some of the results in this paper were obtained in the second author’s PhD thesis [27] under the

supervision of Yukio Matsumoto.
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smooth maps between manifolds. We also specify the class of maps which we study in
this paper.

Let M and N be smooth manifolds of dimensions n and p respectively, and f : M →
N a smooth map. We set

S(f) = {x ∈ M | rank dfx < min {n, p}},

which is called the singular set of f . A point of S(f) is called a singular point of f .

Definition 2.1. Suppose that n ≥ p. A singular point x ∈ S(f) of f is called a
fold singular point (or a fold point) if there exist local coordinates (x1, x2, . . . , xn) around
x and (y1, y2, . . . , yp) around f(x) such that f has the form

yi ◦ f =

{
xi, 1 ≤ i ≤ p− 1,

−x2
p − · · · − x2

p+λ−1 + x2
p+λ + · · ·+ x2

n, i = p,

for some λ with 0 ≤ λ ≤ [(n−p+1)/2], where for α ∈ R, [α] denotes the greatest integer
not exceeding α (see, for example, [3], [4], [5]). We call λ the (reduced) index of x. We
say that x is a definite fold singular point (or a definite fold point) if λ = 0; otherwise, it
is an indefinite fold singular point (or an indefinite fold point).

A smooth map f : M → N is called a fold map if S(f) consists only of fold singular
points. A fold map is called a special generic map if S(f) consists only of definite fold
singular points (see [1], [24]).

For example, a nondegenerate critical point of a smooth function on a manifold is a
fold singular point and its reduced index is equal to min {λ, n− λ}, where λ is the index
as a nondegenerate critical point of a function and n is the dimension of the manifold.
In particular, a Morse function f : M → R on a manifold M is always a fold map.

Note that a fold singular point can be characterized in terms of its jets just as
a nondegenerate critical point of a smooth function is characterized in terms of the
associated Hessian matrix. Accordingly, a fold map can be characterized in terms of its
jet extension as follows.

Let Σr denote the submanifold of the 1-jet bundle J1(M, N) consisting of the jets
of corank r, where the corank of a smooth map f between manifolds of dimensions n and
p means min {n, p} − rank df . Then a smooth map f : M → N with n ≥ p is a fold map
if and only if the following conditions are satisfied.

(1) The 1-jet extension j1f : M → J1(M, N) does not hit Σr with r ≥ 2.
(2) The smooth map j1f : M → J1(M, N) is transverse to Σ1 so that S(f) =

(j1f)−1(Σ1) is a smooth submanifold of M (of dimension p− 1).
(3) The restriction f |S(f) : S(f) → N is an immersion.

(For details, see [7, Chapter III, §4]. Note that a fold map is called a submersion with
folds in [7]).

Fold singularities are the simplest, i.e. have the smallest codimension, among the
generic singularities of corank one, i.e. among the Morin singularities [20].

Let us now consider smooth maps into surfaces.
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Definition 2.2. Let M be a manifold of dimension n ≥ 2 and f : M → N a
smooth map into a surface N . A singular point x ∈ S(f) of f is called a cusp singular
point (or a cusp point) if there exist local coordinates (x1, x2, . . . , xn) around x and
(y1, y2) around f(x) such that f has the form

yi ◦ f =

{
x1, i = 1,

x1x2 + x3
2 ± x2

3 ± · · · ± x2
n, i = 2.

A smooth map f : M → N is called a generic map if S(f) consists only of fold and
cusp singular points.

Note that the set of generic maps is open and dense in the mapping space C∞(M, N)
equipped with the Whitney C∞ topology (for example, see [7]). It is known that for a
generic map f : M → N , the singular set S(f) is a 1-dimensional closed submanifold of
M , that the cusp points are discrete, and that f |S(f) is an immersion except exactly at
cusp singular points.

Recall that a smooth map f : M → N between smooth manifolds is a (C∞) stable
map if there exists an open neighborhood U of f in the mapping space C∞(M, N)
such that every g ∈ U is C∞ right-left equivalent to f ; i.e. there exist diffeomorphisms
Φ : M → M and ϕ : N → N such that g ◦ Φ = ϕ ◦ f .

The following characterization of stable maps into surfaces is well-known (for exam-
ple, see [7]).

Proposition 2.3. Let f : M → N be a proper smooth map of an n-dimensional
manifold M with n ≥ 2 into a surface N . Then f is stable if and only if f is generic
and the following two conditions are satisfied.

(1) For a cusp point x ∈ S(f), we have f−1(f(x)) ∩ S(f) = {x}.
(2) The map f |(S(f)r{cusp points}) is an immersion with normal crossings.

Let us recall the following notion of a Stein factorization, which will play an essential
role in this paper.

Definition 2.4. Let f : M → N be a smooth map between smooth manifolds.
For two points x, x′ ∈ M , we define x ∼f x′ if f(x) = f(x′) and x and x′ belong to the
same connected component of a fiber of f . We define Wf = M/∼f to be the quotient
space with respect to this equivalence relation and qf : M → Wf the quotient map.
Then it is easy to see that there exists a unique continuous map f̄ : Wf → N such that
the diagram

M
f−−−−−→ N

qf
↘ ↗f̄

Wf

commutes. The space Wf or the above commutative diagram is called the Stein factor-
ization of f (see [15]).
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It is known that if f is a proper stable map, then Wf is a polyhedron and all the
maps appearing in the above diagram are triangulable (for details, see [9]).

The Stein factorization is a very useful tool for studying topological properties of
fold maps or generic maps. For example, for special generic maps, the following is known
(see, for example, [1], [24]).

Lemma 2.5. Let f : M → N be a proper special generic map of an n-dimensional
manifold into a p-dimensional manifold with n > p. Then we have the following.

(1) The quotient space Wf admits a structure of a smooth p-dimensional manifold with
boundary such that f̄ : Wf → N is an immersion.

(2) The quotient map qf : M → Wf is a smooth map such that qf |S(f) is a diffeomor-
phism onto ∂Wf .

(3) For each connected component W of Wf with ∂W 6= ∅, qf |q−1
f (Int W ) :

q−1
f (IntW ) → IntW is a smooth fiber bundle with fiber the standard (n − p)-

dimensional sphere.

Furthermore, for stable maps of closed 3-manifolds into the plane, the local struc-
tures of their Stein factorizations have been completely determined (see [14], [15]). See
also [12] for stable maps of higher dimensional manifolds into the plane.

Now let us specify the class of maps which we consider in this paper.

Definition 2.6. Let f : M → N be a proper smooth map between smooth
manifolds of dimensions n and p with n ≥ p. For y ∈ f(M) r f(S(f)), f−1(y) is a
smooth submanifold of M of dimension n−p. If every component of f−1(y) is homotopy
equivalent to the (n−p)-dimensional sphere Sn−p for all y, then we say that f is spherical
(or f has sphere fibers). Note that a proper special generic map which has no submersion
component is always spherical (for example, see [1], [21], [24]). Furthermore, if dimM =
dimN + 1, then a proper smooth map f : M → N is always spherical.

In this paper, we mainly study spherical maps of 4-dimensional manifolds into sur-
faces. For the Stein factorizations of such maps we have the following lemma, which is a
direct consequence of a result of Porto and Furuya [21], and which plays an essential role
in this paper. For a detailed proof, see [6]. (One can also find a detailed argument for
general dimensions in [12].) Note also that this can be considered as a generalization of
the description due to Kushner, Levine and Porto [14], [15] for the Stein factorizations
of stable maps of 3-manifolds into the plane.

Lemma 2.7. Let f : M → N be a proper stable map with sphere fibers of a 4-
manifold into a surface. Then Wf has the structure of a 2-dimensional polyhedron, and
for every point x ∈ M , qf (x) ∈ Wf has one of the regular neighborhoods as depicted in
Figure 1.

We call a point qf (x) ∈ Wf whose neighborhood is as in the last figure of Figure 1
a trident.

To end this section, let us give an immediate application of the above lemma. In
the following, χ will denote the Euler characteristic.
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Figure 1. Neighborhoods of qf (x) ∈ Wf .

Proposition 2.8. Let f : M → N be a spherical stable map of a closed 4-manifold
into a surface. Then we have χ(M) = 2χ(Wf ).

Proof. Let us consider the decomposition of Σ = qf (S(f)) ⊂ Wf , Σ = (C ∪
T )∪ (Fd ∪ Fi), where C is the qf -image of cusp points, T is the set of tridents, Fd is the
qf -image of definite fold points, and Fi is the qf -image of indefinite fold points minus T .
Note that C and T are finite set of points and that Fd and Fi are finite unions of open
arcs and circles, where the end points of the open arcs are in C ∪ T .

Let us introduce the following notation:

v0
c : number of cusp points,

v0
t : number of tridents,

v1
d : number of open arcs in Fd,

v1
cc : number of open arcs γ in Fi such that γ ⊂ Fi ∪ C,

v1
ct : number of open arcs γ in Fi such that γ ∩ C 6=∅ 6= γ ∩ T ,

v1
tt : number of open arcs γ in Fi such that γ ⊂ Fi ∪ T .

It is easy to see that

v0
c = 2v1

d = 2v1
cc + v1

ct, (2.1)

4v0
t = v1

ct + 2v1
tt. (2.2)

Let N(Σ) be a regular neighborhood of Σ = (C∪T )∪(Fd∪Fi) in Wf (for a detailed
description of N(Σ), see the proof of Theorem 4.1 in §5). Then we see easily that

χ(N(Σ)) = χ(Σ) = v0
c + v0

t − v1
d − v1

cc − v1
ct − v1

tt. (2.3)

On the other hand, by carefully examining the fibers of qf over the points of Σ, we see
that
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χ
(
q−1
f (N(Σ))

)
= 2v0

c + 4v0
t − v1

d − 3v1
cc − 3v1

ct − 3v1
tt

= 2
(
v0

c + v0
t − v1

d − v1
cc − v1

ct − v1
tt

)

+
1
2
v1

ct + v1
tt + v1

cc +
1
2
v1

ct − v1
cc − v1

ct − v1
tt

= 2χ(N(Σ))

holds by (2.1), (2.2) and (2.3). Since f has sphere fibers, we also have

χ(q−1
f (Wf rN(Σ))) = 2χ(Wf rN(Σ)).

Hence, we have the conclusion, since χ(M) = χ(q−1
f (N(Σ))) + χ(q−1

f (Wf rN(Σ))) and
χ(Wf ) = χ(N(Σ)) + χ(Wf rN(Σ)). ¤

Later we will give another proof of the above proposition (see Remark 4.3).

3. Spherical Morse functions on 3-manifolds.

In this section, we give a characterization of those closed 3-manifolds which admit
spherical fold maps into R, or equivalently spherical Morse functions. As a corollary, we
will give a new proof of a result of Burlet and de Rham [1] about special generic maps
of closed 3-manifolds into R2.

In the following, S1×̃S2 denotes the total space of the unique nontrivial (and hence
nonorientable) S2-bundle over S1.

Recall that a Morse function on a closed manifold is stable if and only if the values
at its critical points are all distinct (for example, see [7]). Such a function is called a
stable Morse function.

Proposition 3.1. A connected closed 3-manifold M admits a spherical stable
Morse function f : M → R if and only if it is diffeomorphic to

(]k(S1 × S2))](]`(S1×̃S2)) (3.1)

for some k, ` ≥ 0, where the connected sum over the empty set is understood to be the
3-sphere S3.

Proof. It is easy to see that the 3-manifolds (3.1) admit spherical stable Morse
functions. For example, see §6. See also the proof of Theorem 3.2 below.

Let f : M → R be a spherical stable Morse function on a connected closed 3-
manifold M , i.e. f is a stable Morse function whose regular fiber always consists of a
finite disjoint union of 2-spheres. Let c1 < c2 < · · · < c` be its critical values. Take real
numbers ti, i = 0, 1, . . . , `+1, such that t0 < c0 < t1 < c1 < t2 < · · · < t` < c` < t`+1 and
set Mi = f−1[t0, ti], i = 1, 2, . . . , ` + 1. Since f is spherical, Mi is a compact 3-manifold
such that each connected component of ∂Mi is diffeomorphic to the 2-sphere. Let us
denote by M̂i the closed 3-manifold obtained by attaching 3-disks to Mi along all the
boundary components.
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Let us show, by induction on i, that each connected component of M̂i is diffeomorphic
to a 3-manifold as in (3.1).

For i = 1, this is clear, since M1 is diffeomorphic to the 3-disk by the standard Morse
theory.

Suppose that each connected component of M̂i is diffeomorphic to a 3-manifold
as in (3.1). First note that Mi+1 is obtained by attaching f−1[ti, ti+1] to Mi along
the union of 2-spheres f−1(ti). Furthermore, since f has exactly one critical point on
f−1[ti, ti+1], it is diffeomorphic to the disjoint union of S3

(1)
∼= D3 (or S3

(3)) and some
copies of S3

(2)
∼= S2 × [0, 1] (for the notation, see the end of §1).

Attaching a copy of S3
(2) along a 2-sphere does not affect the diffeomorphism type

of Mi. As to S3
(1), either it does not change the diffeomorphism type of M̂i or it adds S3

to M̂i.
As to S3

(3), it is attached to Mi either along a 2-sphere or along a union of two
2-spheres. In the former case, the number of boundary components of Mi+1 is larger
than that of Mi by one, but M̂i+1 is diffeomorphic to M̂i. In the latter case, we have
two subcases. If the two attaching 2-spheres belong to the same connected component of
Mi, then M̂i+1 is diffeomorphic to M̂i](S1×S2) or M̂i](S1×̃S2), which can be proved by
an elementary 3-manifold theory technique (for example, see [8]). If the two attaching
2-spheres belong to different connected components of Mi, then M̂i+1 is diffeomorphic
to the closed 3-manifold obtained from M̂i by taking connected sum of two of the com-
ponents.

In any case, each component of M̂i+1 is diffeomorphic to a 3-manifold as in (3.1).
Since M̂`+1 = M , we have the desired conclusion. ¤

As an interesting corollary, we obtain a new proof of the following characterization
of those closed 3-manifolds which admit a special generic map into the plane, originally
due to Burlet and de Rham [1] (see also [24]).

Theorem 3.2 ([1]). A connected closed 3-manifold admits a special generic map
into R2 if and only if it is diffeomorphic to

(]k(S1 × S2))](]`(S1×̃S2)) (3.2)

for some k, ` ≥ 0, where the connected sum over the empty set is understood to be the
3-sphere S3.

Proof. It is easy to see that the 3-manifolds (3.2) admit special generic maps into
R2 (for example, see [1] or [24]).

Conversely, let f : M → R2 be a special generic map of a connected closed 3-manifold
M into the plane. By choosing an orthogonal projection π : R2 → R generically, we may
assume that the composition g = π ◦ f : M → R is a stable Morse function (see [16] and
[5]). Take a regular value y ∈ g(M) r g(S(g)). Since g = π ◦ f = π ◦ f̄ ◦ qf , we have
g−1(y) = q−1

f (f̄−1(π−1(y))). Note that π−1(y) is a line in R2 and that f̄ : Wf → R2

is an immersion of a compact surface with boundary such that f̄ |∂Wf
is transverse to

π−1(y). Therefore, each connected component γ of f̄−1(π−1(y)) is a properly embedded
arc in Wf . Furthermore, the map qf |q−1

f (γ) : q−1
f (γ) → γ ∼= [0, 1] is a Morse function
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with exactly one maximum and one minimum. Hence q−1
f (γ) is diffeomorphic to S2.

Therefore, g : M → R is a spherical stable Morse function. Hence by Proposition 3.1,
we see that M is diffeomorphic to a closed 3-manifold as in (3.2). This completes the
proof. ¤

By an argument similar to that in the above proof, we can also show the following.

Proposition 3.3. If a closed n-dimensional manifold with n ≥ 3 admits a special
generic map into R2, then it admits a spherical stable Morse function.

Note that those closed manifolds which admit special generic maps into R2 have
been completely determined in [24] (see also [21]). Probably, we can give a new proof of
this result by using Proposition 3.3.

The above construction of a spherical fold map into R will be generalized in a more
general setting in §6 (see Proposition 6.1 and Corollary 6.2).

We end this section by posing a problem.

Problem 3.4. Let f : M → R be an arbitrary spherical stable Morse function on
a closed 3-manifold and π : R2 → R an orthogonal projection. Then, does there exist a
special generic map f̃ : M → R2 such that f = π ◦ f̃?

4. Main results.

In this section, we will state our main result and its consequences.

Theorem 4.1. Let f : M → N be a spherical stable map of a closed 4-manifold
into a surface. Then there exist a smooth compact 5-manifold Vf with ∂Vf = M and
a continuous map rf : Vf → Wf with rf |∂Vf

= qf : M → Wf satisfying the following
properties.

(1) For every point z ∈ Wf r qf (S(f)), r−1
f (z) is diffeomorphic to D3.

(2) The composition f̄ ◦ rf : Vf → N is a smooth submersion.
(3) There exist a smooth triangulation of Vf and a triangulation of Wf such that rf

is a simplicial map.
(4) Each fiber of rf collapses to a point and rf is a homotopy equivalence.
(5) The PL 5-manifold Vf collapses to a 2-dimensional polyhedron W̃f such that

rf |fWf
: W̃f → Wf is a PL homeomorphism outside of a neighborhood of the

tridents.

We will prove Theorem 4.1 in §5.

Remark 4.2. We can prove a similar result for “simple” fold maps of closed
orientable n-dimensional manifolds into (n − 1)-dimensional manifolds. For details see
[23, Proposition 3.12].

Remark 4.3. By using Theorem 4.1, we can easily prove Proposition 2.8, since
χ(Vf ) = χ(Wf ) and 2χ(Vf )− χ(M) = 0.
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Remark 4.4. For spherical stable Morse functions on closed 3-manifolds, we also
have a result similar to Theorem 4.1. Using this, we can prove Proposition 3.1 more
easily, since for a spherical stable Morse function f : M → R on a closed 3-manifold M ,
Vf is a compact 4-manifold consisting only of 0- and 1-handles, and hence its boundary
M is easily seen to be diffeomorphic to a manifold as in (3.1).

Remark 4.5. In Theorem 4.1, the inclusion map iM : M → Vf induces a
monomorphism i∗M : Hi(Vf ;Z2) → Hi(M ;Z2) for i ≤ 2, since Hi(Vf ,M ;Z2) ∼=
H5−i(Vf ;Z2) vanishes. Therefore, if M is orientable, then so is Vf , since i∗Mw1(Vf ) =
w1(M), where wi denotes the i-th Stiefel-Whitney class. Furthermore, if M is spin (i.e.
if w2(M) = 0), then so is Vf , since i∗Mw2(Vf ) = w2(M).

Remark 4.6. The smooth map f̄ ◦ rf : Vf → N is a stable map, since f : M → N

is a stable map (for example, see [25]). Thus the map f̄ ◦ rf is a nonsingular stable map
in the terminology of [25].

As an immediate corollary to Theorem 4.1 and Remark 4.5, we have the following.

Corollary 4.7. Let M be a closed 4-manifold. If it admits a spherical stable
map into a surface, then it is null-cobordant. If, in addition, M is oriented, then it is
oriented null-cobordant and its signature vanishes.

Corollary 4.8. Let f : M → N be a spherical stable map of a closed 4-manifold
into a surface. Then qf∗ : π1(M) → π1(Wf ) is an isomorphism.

Proof. Let iM : M → Vf be the inclusion map. Since we have qf = rf ◦ iM
and rf is a homotopy equivalence, we have only to show that iM∗ : π1(M) → π1(Vf )
is an isomorphism. Since Vf collapses to a 2-dimensional polyhedron, it admits a (PL)
handlebody decomposition consisting of 0-, 1- and 2-handles. Dualizing the handles, we
see that Vf can be obtained from M × [0, 1] by attaching 3-, 4- and 5-handles along
M × {1}. Hence, iM∗ : π1(M) → π1(Vf ) is an isomorphism. This completes the proof.

¤

Remark 4.9. When f is a spherical fold map, Corollary 4.8 has been obtained by
the second named author [27] by using a different method.

Corollary 4.10. Let f : M → N be a spherical stable map of a closed 4-manifold
into a surface. Then H2(Wf ) is free of rank rankH2(M)/2.

Proof. We have

χ(Wf ) = b0(Wf )− b1(Wf ) + b2(Wf ),

χ(M) = 2b0(M)− 2b1(M) + b2(M),

where bi denotes the rank of the i-th homology group with integer coefficients. By
Proposition 2.8, we have 2χ(Wf ) = χ(M), and by Corollary 4.8, we have b1(M) =
b1(Wf ). Furthermore, we have b0(M) = b0(Wf ). Combining these equalities, we easily
obtain b2(Wf ) = b2(M)/2. Furthermore, since Wf is a 2-dimensional polyhedron, its
2nd homology group is torsion free. Hence the required result follows. ¤
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Lemma 4.11. Let f : M → N be a spherical stable map of a closed 4-manifold
into a surface. Then M is a homotopy 4-sphere if and only if Wf is contractible.

Proof. Suppose that M is a homotopy 4-sphere. By Corollary 4.8, Wf is a simply
connected 2-dimensional polyhedron. Furthermore, by Corollary 4.10, H2(Wf ) = 0.
Hence, Wf is contractible.

Conversely, if Wf is contractible, then M is simply connected with b2(M) = 0.
Hence, M is a homotopy 4-sphere. ¤

Compare the above result with [24, Proposition 4.1].
Let us introduce the following notion, which is originally due to Cochran [2].

Definition 4.12. A finite disjoint union of smoothly embedded 2-spheres in S4

is called a 2-link. When it is connected, we also call it a 2-knot. A 2-link or a 2-knot is
said to be homotopy ribbon if it bounds disjoint smoothly embedded 3-disks in D5 whose
exterior has a handlebody decomposition with only 0-, 1- and 2-handles.

Note that any sublink of a homotopy ribbon 2-link is again homotopy ribbon, which
is a direct consequence of the above definition.

Corollary 4.13. Let f : S4 → N be a spherical stable map into a surface. Then
for every y ∈ f(S4)r f(S(f)), f−1(y) is a homotopy ribbon 2-link in S4.

Proof. Let Vf be the 5-manifold as in Theorem 4.1 associated with the spherical
stable map f . By Lemma 4.11, Wf is contractible, and hence so is Vf . Therefore, Vf is
diffeomorphic to the 5-dimensional disk D5 (for example, see [17]).

By Theorem 4.1, r−1
f (z) is a 3-disk for every z ∈ Wfrqf (S(f)). Therefore, f−1(y) ⊂

S4 bounds the disjoint union of 3-disks r−1
f (f̄−1(y)) in Vf

∼= D5. Furthermore, the

exterior of the 3-disks collapses to a 2-dimensional polyhedron of the form W̃f r IntU ,
where U is a small regular neighborhood of the finite set of points in W̃f corresponding to
f̄−1(y) in Wf . Therefore, the exterior of the 3-disks admits a handlebody decomposition
consisting only of 0-, 1- and 2-handles. Hence f−1(y) ⊂ S4 is a homotopy ribbon 2-
link. ¤

For explicit examples, see §6.

Remark 4.14. For an arbitrary 2-link L in S4, there exists a stable map f : S4 →
R2 (not necessarily with sphere fibers) and a regular value y such that f−1(y) contains L.
This can be seen by first constructing a map on a tubular neighborhood of L, extending
it arbitrarily to the whole S4, and then approximating it by a stable map.

Remark 4.15. In the situation of Corollary 4.13, let α : [0, 1] → R2 be a smooth
embedding transverse to f such that α(0) = y, α(1) 6∈ f(S4) and α does not pass through
the image of the cusp points or the double points of f |S(f). Then F = f−1(α([0, 1]))
is a compact orientable 3-manifold embedded in S4 such that ∂F = f−1(y). Since the
map g = α−1 ◦ f |F : F → [0, 1] is a stable Morse function whose regular fibers are all
disjoint unions of 2-spheres, we can show, by an argument similar to that in the proof
of Proposition 3.1, that each connected component of F̂ is diffeomorphic to S3 or to the
connected sum of some copies of S1 × S2, where F̂ is the closed 3-manifold obtained by
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attaching 3-disks to F along all the boundary components. In particular, if f−1(y) is
connected, then it bounds (]k(S1×S2))(1) in S4 as a Seifert hypersurface for some k ≥ 0.
However, we do not know if f−1(y) is a ribbon 2-knot in general. See [31], [10].

In [12, §7], it has been shown the following. Let f : M → R2 be a spherical stable
fold map of a closed simply connected 4-manifold. If H2(Wf ) = 0 and Wf contains no
trident, then M is diffeomorphic to the standard 4-sphere. Hence, by Corollary 4.10, we
have the following.

Corollary 4.16. Let f : Σ4 → R2 be a spherical stable fold map of a homotopy
4-sphere Σ4 into the plane. If Wf contains no trident, then Σ4 is diffeomorphic to the
standard 4-sphere S4.

Remark 4.17. Let S2×̃S2 be the total space of the unique nontrivial S2-bundle
over S2 (for example, see [11]), and set M = (]k(S2×S2))](]`(S2×̃S2)) for some k, ` ≥ 0.
(We will see in Example 6.6 that M admits a spherical stable fold map into the plane.)
Suppose that we are given a spherical stable map f : M → N into a surface. Then we
can show that the 5-manifold Vf is diffeomorphic to (\k(S2 ×D3))\(\`(S2×̃D3)), where
S2×̃D3 is the total space of the unique nontrivial D3-bundle over S2. This follows from
a result of Kreck [13] on 5-dimensional h-cobordisms together a result of Wall [28] on
self-diffeomorphisms of M .

We end this section by posing a problem.

Problem 4.18. Let M be the Moishezon-Teicher surface with zero signature [18],
[19]. It is known that it is homeomorphic to the connected sum of (a big number of)
copies of S2×S2, but not diffeomorphic to it. Does M admit a spherical stable map into
a surface? Or more generally, if a simply connected closed 4-manifold admits a spherical
stable map into a surface, then is it diffeomorphic to the connected sum of some copies
of S2 × S2 and some copies of S2×̃S2?

5. Proof of Theorem 4.1.

In this section, we will prove Theorem 4.1. For this, we will first consider a decom-
position of Wf into certain nice pieces and then construct a 5-manifold together with a
map corresponding to rf for each piece. Finally, we will piece them together to get the
required 5-manifold Vf and the map rf : Vf → Wf .

Proof of Theorem 4.1. We divide the proof into five steps as follows.

Step 1. Trident.
Let t ∈ Wf be a trident. We take its regular neighborhood N(t) in Wf as in Figure 2.

More precisely, N(t) is a component of f̄−1(N(f̄(t))) containing t, where N(f̄(t)) ∼= I×J

(I = J = [0, 1]) is a neighborhood of f̄(t) in N as depicted in Figure 3 (for a more detailed
description, see [15, §1.2, Proposition 1]). Let p : N(t) → I (resp. h : N(t) → J) be the
composition of f̄ |N(t) : N(t) → N(f̄(t)) and the projection N(f̄(t)) → [0, 1] to the first
(resp. second) factor as in Figure 2.
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Figure 2. Neighborhood of a trident in Wf .

Figure 3. Neighborhood N(f̄(t)) of f̄(t) in N .

Then we see that H = p ◦ qf |q−1
f (N(t)) : q−1

f (N(t)) → I is a submersion (or more

precisely, a trivial bundle), and that for each s ∈ I, Ls = H−1(s) is diffeomorphic to
S3

(4). Furthermore,

fs = h ◦ qf |Ls
: Ls → J, s ∈ I, (5.1)

defines a one parameter family of Morse functions such that each fs has exactly two
critical points of index 2. This family of Morse functions corresponds to exchanging the
two critical values.

We see easily that the family of Morse functions (5.1) can be extended to a family
of submersions f̃s : L̃s → J , s ∈ I, such that

(1) for each regular value u ∈ J of fs, f̃−1
s (u) is a disjoint union of one, two or three

3-disks,
(2) f̃−1

s (0) is a 3-disk and f̃−1
s (1) is a disjoint union of three 3-disks,

(3) L̃s is a smooth 4-manifold with corners along ∂(f̃−1
s (0)) and ∂(f̃−1

s (1)),
(4) L̃s is diffeomorphic to D4 after the corners being smoothed.
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Figure 4. Submersion efs for a trident.

Figure 5. The 2-dimensional polyhedron eN(t).

(See Figure 4.)
In fact, we can construct a smooth compact 5-manifold Vt

∼= D4 × I with corners
and a map rt : Vt → N(t) such that (p ◦ rt)−1(s) = L̃s and h ◦ rt|eLs

= f̃s for all
s ∈ I, and that rt|q−1

f (N(t)) = qf |q−1
f (N(t)). Note that there is also a 2-dimensional

polyhedron Ñ(t) ⊂ Vt such that Vt collapses to Ñ(t) and that rt| eN(t) : Ñ(t) → N(t) is a
PL homeomorphism outside of a 1-dimensional polyhedron containing t. (See Figure 5.
Note that the shadowed 2-simplices are mapped to 1-dimensional simplices of N(t) and
that outside of them, the map rt| eN(t) is a homeomorphism.)

Step 2. Cusp.
Let c ∈ Wf be the qf -image of a cusp point of f . We take N(c), N(f̄(c)), p, h,

H, Ls, etc. as in Step 1 (see Figure 6). Then Ls is diffeomorphic to S3
(2)

∼= S2 × [0, 1]
for each s ∈ I. Furthermore, fs : Ls → J , s ∈ I, defines a one parameter family of
functions which are Morse functions except for a unique parameter s0 ∈ I. This family
corresponds to a birth or a death of critical points of Morse functions.

By an argument similar to that in Step 1, we can extend the family of functions fs,
s ∈ I, to a family of submersions f̃s : L̃s → J , s ∈ I, such that

(1) for each regular value u ∈ J of fs, f̃−1
s (u) is a 3-disk or a disjoint union of two

3-disks,
(2) f̃−1

s (i) is a 3-disk for i = 0, 1,
(3) L̃s is a smooth 4-manifold with corners along ∂(f̃−1

s (0)) and ∂(f̃−1
s (1)),

(4) L̃s is diffeomorphic to D4 after the corners being smoothed.
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Figure 6. Neighborhood of the qf -image of a cusp point in Wf .

Figure 7. Submersion efs for a cusp.

(See Figure 7.)
In fact, we can construct a smooth compact 5-manifold Vc

∼= D4 × I and a map
rc : Vc → N(c) such that (p ◦ rc)−1(s) = L̃s and h ◦ rc|eLs

= f̃s for all s ∈ I, and that
rc|q−1

f (N(c)) = qf |q−1
f (N(c)). Note that there is also a 2-dimensional polyhedron Ñ(c) ⊂ Vc

such that Vc collapses to Ñ(c) and that rc| eN(c) : Ñ(c) → N(c) is a PL homeomorphism.

Step 3. Definite fold.
In Steps 1 and 2, we can choose N(t) and N(c) for each trident t and for each

qf -image c of a cusp point so small that they are mutually disjoint. Let Ntc denote the
union of all N(t) and N(c).

Let α be a component of qf (S(f))rNtc which consists of qf -images of definite fold
points. Note that α is either an arc or a circle. Let N(α) ∼= α× [0, 1] be a small regular
neighborhood of α in Wf rNtc. Note that α corresponds to α× {0}.

For each s ∈ α, Ks = q−1
f ({s} × [0, 1]) is diffeomorphic to D3, and gs = qf |Ks

:
Ks → {s} × [0, 1] is a Morse function with exactly one minimum. Then gs, s ∈ α, can
be extended to a family of submersions g̃s : K̃s → {s} × [0, 1], s ∈ α, such that

(1) for each regular value u ∈ {s} × [0, 1] of gs, g̃−1
s (u) is a 3-disk,
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(2) g̃−1
s (0) is a point and g̃−1

s (1) is a 3-disk,
(3) K̃s is a 4-manifold with corners along ∂(g̃−1

s (1)),
(4) K̃s is diffeomorphic to D4 after the corners being smoothed.

In fact, we can construct a smooth compact 5-manifold Vα and a map rα :
Vα → N(α) such that r−1

α ({s} × [0, 1]) = K̃s and rα| eKs
= g̃s for all s ∈ α, and

that rα|q−1
f (N(α)) = qf |q−1

f (N(α)). Note that there is also a 2-dimensional polyhedron

Ñ(α) ⊂ Vα such that Vα collapses to Ñ(α) and that rα| eN(α) : Ñ(α) → N(α) is a PL
homeomorphism.

Note that Vα is diffeomorphic to D4 × [0, 1] if α is an arc, and is diffeomorphic to
the total space of a D4-bundle over S1 if α is a circle.

Suppose α is an arc and let us denote by a0 and a1 its end points. Furthermore, let us
denote by c0 and c1 the qf -images of cusp points corresponding to the end points a0 and
a1 of α respectively. Then, by the construction of Vc and rc in Step 2, we see that there
exist embeddings ϕi : K̃ai → ∂Vci such that rci◦ϕi = rα| eKai

and ϕi(K̃ai∩Ñ(α)) = Ñ(ci),
i = 0, 1. Therefore, we can attach Vα to Vci by ϕi to obtain the 5-manifold

Vα ∪ϕ0 Vc0 ∪ϕ1 Vc1 (5.2)

which admits the map

rα ∪ rc0 ∪ rc1 (5.3)

onto N(α) ∪ N(c0) ∪ N(c1). Furthermore, Ñ(α) ∪ Ñ(c0) ∪ Ñ(c1) is a 2-dimensional
polyhedron such that the 5-manifold (5.2) collapses to it and that the map (5.3) restricted
to it is a PL homeomorphism outside of a neighborhood of the tridents.

Step 4. Indefinite fold.
Let α be a component of qf (S(f))rNtc which consists of qf -images of indefinite fold

points. Note that α is either an arc or a circle. Let N(α) be a small regular neighborhood
of α in Wf rNtc. Note that N(α) is homeomorphic to the total space of a Y -bundle
over α, where

Y = {r exp (2π
√−1θ) ∈ C | 0 ≤ r ≤ 1, θ = 0, 1/3, 2/3}.

Let τ : Y → Y be the involution defined by the complex conjugation. When α is a circle,
N(α) is homeomorphic either to Y ×S1 or to the total space E of the Y -bundle over S1

whose monodromy is given by τ , i.e.

E = Y × [0, 1]/(z, 1) ∼ (τ(z), 0). (5.4)

Then, by an argument similar to those in Steps 1, 2 and 3, we can construct a
smooth compact 5-manifold Vα, a map rα : Vα → N(α) and a 2-dimensional polyhedron
Ñ(α) ⊂ Vα which satisfy the similar properties. Furthermore, these are compatible with
those constructed in Steps 1 and 2 so that we can attach them consistently.
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Step 5. Regular part.
Now we carry out the constructions of Steps 3 and 4 for each connected component

of qf (S(f))rNtc and then glue all of them to those constructed in Steps 1 and 2. In
this way, we obtain a smooth compact 5-manifold VS , a map rS : VS → NS and a 2-
dimensional polyhedron ÑS ⊂ VS with some nice properties, where NS is the union of
Ntc and the regular neighborhood of qf (S(f))rNtc in Wf rNtc.

Set R = Wf rNS , which is a compact surface with boundary. Since f has sphere
fibers, qf |q−1

f (R) : q−1
f (R) → R is a smooth S2-bundle over R. Since the diffeomorphism

group of S2 is homotopy equivalent to the orthogonal group O(3) (see [26]), the structure
group of this S2-bundle can be reduced to O(3). Let rR : VR → R be the D3-bundle
associated with the S2-bundle, and R̃ ⊂ VR the zero section.

Since rS |r−1
S (∂R) is a smooth D3-bundle over the 1-dimensional manifold ∂R, and it

admits a zero section ÑS ∩ r−1
S (∂R), its structure group can also be reduced to O(3).

Then it is easy to check that we can glue VS and VR together to give a smooth compact
5-manifold Vf , and the maps rS : VS → NS and rR : VR → R (resp. the 2-dimensional
polyhedrons ÑS and R̃) glue together to give the map rf : Vf → Wf (resp. the 2-
dimensional polyhedron W̃f ). From the construction, it is now easy to verify all the
required conditions stated in Theorem 4.1. This completes the proof. ¤

Remark 5.1. With a little bit more effort, we can take W̃f inside M = ∂Vf . This
can be considered to be a kind of a section of qf : M → Wf .

Remark 5.2. We can prove a result similar to Theorem 4.1 for spherical stable
maps f : M → N of a closed manifold of an even dimension n ≥ 6 into a surface.
However, the manifold Vf is only a topological manifold and is not a smooth manifold
in general. Compare this with a result in [24] for special generic maps.

Remark 5.3. We do not know if we can generalize Theorem 4.1 to generic maps
with sphere fibers into p-dimensional manifolds with p ≥ 3.

6. Examples.

In this section, we give a systematic method to construct spherical smooth maps.

Proposition 6.1. Let f : M → N be a special generic map and π : N → P a
submersion, where M , N and P are smooth manifolds with dimM > dimN > dimP .
We assume that

(1) M is a closed manifold and that
(2) for every y ∈ π ◦f(M)rπ ◦f(S(π ◦f |S(f))), each component of (π ◦ f̄)−1(y) ⊂ Wf

is contractible.

Then π ◦ f : M → P has sphere fibers.

Proof. Set g = π ◦ f . Since π is a submersion, we have S(g) = S(g|S(f)). Take
a point y ∈ g(M) r g(S(g)) as in (2) above. Since g = π ◦ f = π ◦ f̄ ◦ qf , we have
g−1(y) = q−1

f ((π ◦ f̄)−1(y)). By our assumption, every component of Wy = (π ◦ f̄)−1(y)
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is contractible. Note that π ◦ f̄ : Wf → P is a submersion and y is a regular value of
π ◦ f̄ |∂Wf

. Therefore, Wy is a proper smooth submanifold of Wf which is transverse to
∂Wf . Then it is easy to see that qf |q−1

f (Wy) : q−1
f (Wy) → Wy is a special generic map.

Note that its Stein factorization can be identified with Wy. Then by [24], each connected
component of g−1(y) = q−1

f (Wy) is a homotopy sphere, since each connected component
of the Stein factorization Wy is contractible. Hence g has sphere fibers. ¤

We have the following direct consequence of the above proposition.

Corollary 6.2. Every smooth closed n-dimensional manifold that admits a spe-
cial generic map into Rp with 2 ≤ p < n admits a smooth spherical map into Rp−1.

Remark 6.3. The converse of the above corollary does not hold in general. For
example, there is a stable Morse function f : CP 2 → R with exactly three critical points,
whose indices are equal to 0, 2 and 4. It is easy to see that f has sphere fibers. However,
CP 2 does not admit any special generic map into R2 according to [24].

The following lemma is implicitly proved in [5].

Lemma 6.4. Let f : M → N be a fold map and π : N → P a submersion, where M ,
N and P are smooth manifolds with dimM ≥ dimN > dimP . If π ◦ f |S(f) : S(f) → P

is a fold map, then g = π ◦ f : M → P is also a fold map and S(g) = S(π ◦ f |S(f)).

As a corollary, we have the following.

Corollary 6.5. Let f : M → N be a special generic map and π : N → P a
submersion, where M , N and P are smooth manifolds with dimM > dimN > dimP .
We assume that

(1) M is a closed manifold, that
(2) the map π ◦ f |S(f) : S(f) → P is a fold map, and that
(3) for every y ∈ π ◦f(M)rπ ◦f(S(π ◦f |S(f))), each component of (π ◦ f̄)−1(y) ⊂ Wf

is contractible.

Then π ◦ f : M → P is a spherical fold map.

Example 6.6. Let us give a typical application of Proposition 6.1.
Let W be a compact connected orientable 3-manifold with boundary. Then it can

be immersed into R3 (see [29]). Let π : W → R2 be the composition of an immersion
η : W # R3 and an orthogonal projection pr : R3 → R2. By choosing the projection
pr generically, we may assume that π|∂W : ∂W → R2 is a stable map (for this, refer to
[16], [30]). In the terminology of [25], the resulting map π is a nonsingular stable map.
Note that for every point y ∈ π(W ) r π(S(π|∂W )), π−1(y) is a finite disjoint union of
closed arcs. In particular, each of its connected components is contractible.

Let E be the total space of an arbitrary D2-bundle over W whose structure group is
O(2), and set M = ∂E, which is a closed 4-manifold. Then by [24], there exists a special
generic map f : M → R3 such that Wf is identified with W and that f̄ : Wf → R3 is
identified with the immersion η : W → R3.



Generic smooth maps with sphere fibers 899

Figure 8. Stein factorization Wg of the spherical fold map g.

Therefore, according to Proposition 6.1, g = π ◦ f : M → R2 is a spherical stable
map. Furthermore, if the stable map π|∂W : ∂W → R2 is a fold map, then g is a spherical
fold map by Corollary 6.5.

Note that the Stein factorization Wg of the spherical stable map g constructed
above is naturally identified with the Stein factorization Wπ of the nonsingular stable
map π : W → R2. For a local characterization of Stein factorizations of nonsingular
stable maps of 3-manifolds into surfaces, refer to [25].

As an explicit example, let us consider the standard embedding η : S2× [0, 1] → R3.
Then π|∂(S2×[0,1]) : ∂(S2 × [0, 1]) → R2 is a fold map. Let V be the total space of the
D2-bundle over S2 × [0, 1] with Euler number e ∈ Z and set M = ∂V . Note that M is
diffeomorphic to S2 × S2 if e is even and is diffeomorphic to S2×̃S2 if e is odd. Then
the map g : M → R2 constructed above is a spherical fold map. Note that its Stein
factorization Wg is a polyhedron as depicted in Figure 8.

By the connected sum construction along the definite folds, we can also show that
any connected sum of some copies of S2 × S2 and S2×̃S2 admits a spherical fold map
into R2 (see [24, Lemma 5.4]).

Remark 6.7. Not all spherical stable map of a closed 4-manifold into R2 can be
obtained as in Example 6.6. If a spherical stable map is obtained as in the example,
then its Stein factorization is homeomorphic to that of the nonsingular stable map π.
As remarked in [25], such a Stein factorization cannot contain the total space E of
the nontrivial Y -bundle over S1 defined in (5.4). A spherical fold map whose Stein
factorization contains E does exist. An explicit example is implicitly constructed in [27,
Theorem 4.4].

Recall the following definition of a spun 2-knot.

Definition 6.8. Let k ⊂ S3 be a classical knot. Take a point x ∈ k and its small
disk neighborhood Dx in S3 such that (Dx, Dx∩k) is diffeomorphic to the standard disk
pair (D3, D1). Set B = S3 r IntDx. Note that ∂B is naturally identified with S2. We
denote the two end points of B ∩ k ⊂ S2 by p0 and p1. Then (B × S1) ∪ (S2 ×D2) is
diffeomorphic to S4 and

k̃ = ((B ∩ k)× S1) ∪ ({p0, p1} ×D2)

gives a 2-knot in S4, which is called the (untwisted) spun 2-knot of k (for more details,
see [22], for example).
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Figure 9. Nonsingular stable map π : B → R2.

Note that (S4, k̃) can be identified with ∂(B×D2, (B∩k)×D2). The exterior of B∩k

in B is a compact 3-manifold with nonempty boundary and hence admits a handlebody
decomposition with 0-, 1- and 2-handles. Hence the exterior of the 3-disk (B∩k)×D2 in
the 5-disk B×D2 has a handlebody decomposition with 0-, 1- and 2-handles. Therefore,
a spun 2-knot is always homotopy ribbon. (In fact, it is known that a spun 2-knot is
always a ribbon 2-knot and hence is homotopy ribbon.)

The following theorem gives a plenty of examples of Corollary 4.13.

Theorem 6.9. For every knot k in S3, there exists a spherical stable fold map
g : S4 → R2 and a point y ∈ g(S4) r g(S(g)) such that a component of g−1(y) ⊂ S4 is
isotopic to the spun 2-knot k̃ of k.

Proof. Let B be as in Definition 6.8. Let us first construct a nonsingular stable
map π : B → R2 with B ∼= D3 such that a component of π−1(y) coincides with B ∩ k

for a point y ∈ π(B)r π(S(π|∂B)).
First, embed the 3-disk B standardly in R3. Then we isotope it in R3 so that we

make a “knotted hole” along B ∩ k. Furthermore, we can arrange so that a vertical line
passing through a bottom point of the “hole” cuts B in two line segments `1 and `2 such
that `1 coincides with B ∩ k. (See Figure 9 for the case of the figure eight knot k.) We
can further arrange so that an appropriate orthogonal projection R3 → R2 restricted to
∂B is a stable fold map. Then the projection restricted to B gives a required nonsingular
stable map. Note that for a point y ∈ π(B)r π(S(π|∂B)), we have π−1(y) = `1 ∪ `2.

Then apply the construction for M = S4 = ∂(B×D2) as described in Example 6.6.
The resulting spherical stable fold map g : S4 → R2 and the point y satisfy the required
conditions. This completes the proof. ¤
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Remark 6.10. We do not know if in Theorem 6.9, there exists a spherical stable
(fold) map h : S4 → R2 and a point z ∈ h(S4) r h(S(h)) such that h−1(z) coincides
with k̃. Note that in the above proof, g−1(y) is a two component 2-link each of whose
component is isotopic to the spun 2-knot k̃.
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