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Abstract. In this paper, we study Mobius characterizations of submanifolds
without umbilical points in a unit sphere S™*P(1). First of all, we proved that,
for an n-dimensional (n > 2) submanifold x : M +— S"*P(1) without umbilical

points and with vanishing Mébius form ®, if (n — 2)||A]| < V ”T_l{nR — %[(n -1)
(2 - %) — 1]} is satisfied, then, x is M&bius equivalent to an open part of either

the Riemannian product S?~1(r) x S1(v/1—r2) in S™*1(1), or the image of the
conformal diffeomorphism o of the standard cylinder S"~1(1) x R in R"*1, or the
image of the conformal diffeomorphism 7 of the Riemannian product S™~1(r) x
H!'(v/1+r2) in H™! or x is locally Mdbius equivalent to the Veronese surface in
S4(1). When p = 1, our pinching condition is the same as in Main Theorem of Hu
and Li [6], in which they assumed that M is compact and the Mdbius scalar curvature
n(n — 1)R is constant. Secondly, we consider the Mobius sectional curvature of the
immersion x. We obtained that, for an n-dimensional compact submanifold x : M +—
S™*+P(1) without umbilical points and with vanishing form ®, if the M&bius scalar
curvature n(n—1) R of the immersion x is constant and the Mobius sectional curvature
K of the immersion x satisfies K > 0 when p = 1 and K > 0 when p > 1. Then,
x is Mébius equivalent to either the Riemannian product S*¥(r) x S"~F(v/1 = r2),
fork=1,2,--- ,n—1,in S"*l(l); or x is M6bius equivalent to a compact minimal
submanifold with constant scalar curvature in S"+P(1).

1. Introduction.

Let x : M +— S™"P(1) be an n-dimensional immersed submanifold in an (n + p)-
dimensional unit sphere S™*?(1). In [11], Wang introduced a Mdobius metric, Mdbius
form and the Mobius second fundamental form of the immersion x. By making use of
these Mobius invariants, he founded the fundamental formulas on M6bius geometry of
submanifolds in S™*?(1). By following these results of Wang, the Mdbius geometry on
submanifolds in S™*P(1) was researched by many mathematicians (see. [6], [7], [8] and
[9]). In particular, Li, Wang and Wu [8] studied the M&bius characterization of Veronese
surface. They proved that if x : $2(1) — S™(1) is an immersion without umbilical points
of the 2-sphere with vanishing M&bius form, then there exists a Mobius transformation
71 8™(1) — S™(1) such that 7 ox : S%(1) — S%(1) is the Veronese surface, where
S2k(1) ¢ S™(1) with 2 < k < [m/2]. Furthermore, a kind of pinching problems on
Mobius geometry of submanifolds in S"*P(1) was studied by Akivis and Goldberg [2],
Hu and Li [6] and so on.
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Let x : M +— S"*P(1) be an n-dimensional immersed submanifold in S™"*7(1). We
choose a local orthonormal basis {e;} for the induced metric I = dx - dx with dual basis
(0:}. Let IT =%
H=% o H%eq the mean curvature vector of the immersion x, where {e,} is a local
orthonormal basis for the normal bundle of x. By putting p* = 25{ >, . (h%)* —

n—1

i h%@zﬂj eq be the second fundamental form of the immersion x and

nHﬁHQ}, the M&bius metric of the immersion x is defined by g = p2?dx - dx, which
is a Mobius invariant. ® = %, ,C?0;e, and A = p? Z” A;i;j0;0; are Mobius form
and Blaschke tensor of the immersion x, respectively, where C¢* and A;; are defined by
formulas (2.13) and (2.14) in section 2. It was proved that ® and A are M&bius invariants
(cf. [11]).

In particular, Akivis and Goldberg [1], [2] and Wang [11] proved that two hyper-
surfaces x : M — S"t1(1) and % : M — S™t1(1) are Mdbius equivalent if and only if
there exists a diffeomorphism o’ : M — M which preserves the Mobius metric and the
Mobius shape operator such that x = o’ o x.

Let H™*? be an (n + p)-dimensional hyperbolic space defined by

H"?P = {(yoﬁlh) ER"XR"™P| —yd +y1-y1 = —1}-
We denote the open hemisphere in S™TP(1) whose first coordinate is positive by

S%P(1). We consider conformal diffeomorphisms o, : R"? +— S™+7(1)\{(~1,0)} and
7p : H"*P — S"*P(1) defined by:

1—|ul> 2u
_ RtP 1.1
Up(u) (1 + ‘u|27 1 + |u|2)7 u € ) ( )
Ly n
Tp(y07y1) = (y()? y(l))7 (y07y1) €H +p’ (12>

respectively. The conformal diffeomorphisms o, and 7, assign any submanifold in R"*?
or H™*? to a submanifold in S"*?(1). If p = 1, we denote o1 and 71 by ¢ and 7. In [7],
Li, Liu, Wang and Zhao classified M&bius isoparametric hypersurfaces with two distinct
principal curvatures. They obtained the following:

THEOREM 1.1. Letx : M — S"1(1) be a Mébius isoparametric hypersurface with
two distinct principal curvatures. Then x is Mébius equivalent to an open part of one of
the following Mébius isoparametric hypersurfaces in S™+1(1):

1. the Riemannian product S*(r) x S"~F(v/1 —12) in S"+1(1),
2. the image of o of the standard cylinder S*(1) x R*~* in R"+1,
3. the image of T of the Riemannian product S*(r) x H" *(v/1 +r2) in H"+1.

A submanifold x : M +— S™*P(1) is called Mobius isotropic if ® = 0 and A = Adx-dx
for some function A. In [9], Liu, Wang and Zhao proved the following;:

THEOREM 1.2.  Any Mdébius isotropic submanifolds in S"P(1) is Mébius equivalent
to an open part of one of the following Mdbius isotropic submanifolds:
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1. a minimal submanifold with constant scalar curvature in S™P(1),
2. the image of o, of a minimal submanifold with constant scalar curvature in R™ P,
3. the image of T, of a minimal submanifolds with constant scalar curvature in H™ 1P,

On the other hand, Hu and Li [6] studied a pinching problem on the squared norm
of the Blaschke tensor of the immersion x and obtained the following;:

THEOREM 1.3. Let x : M — S"P(1) be an n-dimensional (n > 3) compact
submanifold without umbilical points and with vanishing Mébius form ® in S™P(1). If
the Mébius scalar curvature n(n — 1)R > %75”72) s constant and if

~ -1 1
1A < /™ ( n R—)
n n—2 n

then, either x is Mdbius equivalent to a minimal submanifold with constant scalar
curvature in S"P(1) or x is Mdébius equivalent to S'(r) x S™( 1_&62 —7?) in

Sn+1(~1/\/1 + c2) for some constant ¢ > 0,7 = V %, where A = p? > A;;60,0,
with Aij = Aij — % Zk Akkéij-

REMARK 1.4. In the original statement of the theorem 1.3 of Hu and Li [6], they
did not write out the condition that M has no umbilical points. But this condition is
necessary for their proof. Further, We should note that these assumptions that M is
compact and the Mobius scalar curvature n(n — 1) R is constant plays an important role
in the proof of Theorem 1.3 of Hu and Li [6].

In this paper, first of all, we prove the following:

MAIN THEOREM 1. Let x : M — S"™*P(1) be an n-dimensional (n > 2) submani-
fold without umbilical points and with vanishing Mobius form @, if

(n—2)| 4| < \/’17{713_”(”_1)(2_;) _1]}, (1.3)

then x is locally Mdobius equivalent to either the Veronese surface in S*(1), or x is Mébius

equivalent to an open part of one of the following Mébius isoparametric hypersurfaces in
SnrL(1):

1. the Riemannian product S"~1(r) x S*(v/1 —r2) in S"F1(1),
2. the image of o of the standard cylinder S"~1(1) x R in R"*!,
3. the image of T of the Riemannian product S~ (r) x H*(v/1 +r2) in H"*!,

where n~(n - 1R denotes the Mobius scalar curvature of the immersion x and A =
P2 305 Aijbi0; with Ay = Aij — =37, Aprdi.

REMARK 1.5. In our Main Theorem 1, we do not assume the global condition
that M is compact and we do not need to assume that the Md&bius scalar curvature is
constant. Further, when p =1 and (n > 3) our pinching condition is the same as in Hu
and Li [6]. Since Hu and Li [6] assumed that M is compact, the cases of 2 and 3 above
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in Main Theorem 1 do not appear in their theorem. If n = 2, since the Mdbius metric g
is flat, we know that R = 0. Main Theorem 1 reduces to the Theorem 5.1 in [11].

Since Riemannian product S*(r) x S"~*(v/1 —7r2), for k = 1,2,--- ,n — 1, have
nonnegative Mobius sectional curvature and they do not satisfy the inequality in Theorem
1.3 of Hu and Li [6] except K =1 or k = n — 1 (see Proposition 3.2 and Remark 3.3 in
section 3), we will consider the immersion x with nonnegative Mobius sectional curvature
and prove the following:

MAIN THEOREM 2. Let x : M — S"*P(1) be an n-dimensional compact subman-
ifold without umbilical points and with vanishing Mébius form ® and constant Mobius
scalar curvature n(n—1)R in S"P(1). If the Mobius sectional curvature K of M satisfies

K>0, ifp=1
K >0, ifp>1,

then, x is Mdbius equivalent to the Riemannian product S*(r) x S"=F(v/1—1r2), for
k=1,2,--- ,n—1, in S"TY(1); or x is Mdbius equivalent to an n-dimensional compact

7

minimal submanifold with constant scalar curvature in S™TP(1).

2. Preliminaries and fundamental formulas on M6bius geometry.

In this section, we review the definitions of Md&bius invariants and give the funda-
mental formulas on Mobius geometry of submanifolds in S™*7(1), which can be found in
[11].

Let R} T"*? be the Lorentzian space with inner product

(T, w) = —wowo + T1W1 + - + Tpgpr1Wnppi1, (2.1)

where z = (anxh' o 7$n+]9+1) and w = (w()awla T 7wn+1)+1)' Let x : M — S’n+p(1)
be an n-dimensional submanifold of S™*?(1) without umbilical points. Putting

n _
Y =p(lx), o= (T2 = nl ) >0, (2.2)

then, Y : M — R"P%2 is called Mébius position vector of x. Tt is easy to prove that
g =(dY,dY) = p*dx - dx

is a Mobius invariant which is recalled Mébius metric of the immersion x. Let A denote
the Laplacian on M with respect to the Mobius metric g. Defining

1 1
N=—-ZAY - —(1+n%R)Y. 2.
SAY — o5 (10’ R)Y, (2:3)

we can infer
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(AY,Y) = —n, (AY,dY)=0, (AY,AY)=1+n’R, (2.4)
(Y,Y)=0, (N,Y)=1, (N,N)=0, (2.5)

where n(n — 1)R denotes the Mobius scalar curvature of the immersion x. Let
{E1,---, E,} denote a local orthonormal frame on (M, g) with dual frame {wy, - ,wp}.
Putting Y; = E;(Y), then we have, from (2.2), (2.4) and (2.5),

Let V be the orthogonal complement to the subspace Span{Y, N, Y1, ---,Y,} in RI"P*2,
Along M, we have the following orthogonal decomposition:

R — Span{Y, N} & Span{Y1,--- , Y, } &V, (2.7)

where V' is called Mébius normal bundle of the immersion x. It is not difficult to prove
that

E,=(H* H%+e,), n+l1<a<n+np, (2.8)
is a local orthonormal frame of V. Then {Y,N,Y1,---,Y,, Epy1, -, Epypt forms a
+p+2

moving frame in R}
paper:

along M. We use the following range of indices throughout this

1<i,j,kilm<n, n+l<aB<n+p.

The structure equations on M with respect to the Mobius metric g can be written as
follows:

dy =) Yiw, (2.9)
dN = Z Agjw;Yi + Z CPw;E,, (2.10)
i,j i0
dY; = —ZAijij—wiN—i—Zwinj +ZB%(U]’EQ, (211)
j j jrax
dEo = =Y CfwY =Y BlwYi+ Y wapbgs, (2.12)
i i,j B

where w;; is the connection form with respect to the Moébius metric g, wqg is the normal
connection form of x : M — S™*P(1), which is a Mdbius invariant. A = Ei’j Ajjwi ® wj
and ® =37, CPwi(p~tey) are called Blaschke tensor and Mébius form of the immersion
X, respectively, where
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CY = —2{Ha+z — H);; ej(logp)} (2.13)

Ajj = — {Hess”(logp) — ¢e;(log p)e;(log p) — ZHa a}
- B}
LIV 0z )2~ 1 + 1) (214)

Here Hess;; and V are the Hessian matrix and the gradient with respect to the induced
metric dx - dx. It was proved that ® =%, ,C0;e, and A =p Z . A;;0;0; are Mobius
invariants. B = Zm’a
immersion x, where

Bfiwiw i(p~teq) is called Mdbius second fundamental form of the

B = p~ ' (h§; — H*6;5). (2.15)

Hence, we have

> B; =0, 2(33)2:”;1. (2.16)

2,7,

We define the covariant derivative of Cf*, A;;, B{; by
D Cw =dCr +> Cowii+ > Clwga,
J J B
Z Ajjpwr = dAg; + Z Ajpwrj + Z AgjWhi, (2.17)
k k k

> O BSjwe = dBS 4+ Bhwk+ Y Bijwki+ Y Bliwa. (2.18)
k k k 8

From the structure equations (2.9), (2.10), (2.11) and (2.12), we can infer

Aijg. = iy = Y (BR.Cs = BiCR), (2.19)
@

Cy = Cf = (BiAkj — BijAi), (2.20)
k

Bk = Bik; = 0;CF — 0 Cy, (2.21)

Rijir =Y _ (BG.BS — BiBS%) + (0indj + 6jAin — 0l — 5Au),  (2.22)

[

Ragij = Y (B4By, — BB, (2.23)
k

where R and R,g;; denote the curvature tensor with respect to the Mobius metric g
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on M and the normal curvature tensor of the normal connection. n(n—1)R =}, ; Riji;
is the Mobius scalar curvature of the immersion x : M — S™*P(1). From (2.3) and the
structure equation (2.11), we have, (cf. [11]),

1
trA = —(1+n’R). 2.24
tA = (1 4nR) (2.24)
By taking exterior differentiation of (2.17) and (2.18), and defining
> Aimwr = dAgk + Y Aijrwn + Y Augwr; + > Ak,
l l l l

Y Biwwr = dBp+ > Bfj g + By + ) B e + Y Bl jwpa
] 7 7 ! 3

we have the following Ricci identities

Aijt = Aijak = AmjRonikt + Y Aim Rt (2.25)
m m

B = BE = B iBmin+ > B Rkt + Y _ Bl Rgant. (2.26)
m m B

For a matrix A = (a;;) we denote by N(A) the square of the norm of A4, i.e.,

N(A) = tr(AA"Y) = (a;)?,

(2]

where A? denotes the transposed matrix of A. It is obvious that N(A) = N(T*AT) holds
for any orthogonal matrix T
The following algebraic lemmas will be used in order to prove our Main Theorems.

LEMMA 2.1 ([5]). Let A and B be symmetric (n x n)-matrices. Then
N(AB - BA) <2N(A)-N(B) (2.27)
and the equality holds for nonzero matrices A and B if and only zfA and B can be trans-

formed simultaneously by an orthogonal matriz into multiples of A and B, respectively,
where

010 - 0 1 0 0 0
100 - 0 0 -10 0
A=1000 - 0 B=]10 0 0 0
000 ---0 0 0 0 0

Moreover, if Ay, As and As are (n X n)-symmetric matrices and satisfy
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N(AaAs — AsAs) = 2N(Aa) - N(4g),  1<a,B<3,

then at least one of the matrices A, must be zero.

LEMMA 2.2 (Cheng [4] and Santos [10]). Let A and B be nxn-symmetric matrices
satisfying trA = 0,trB =0 and AB — BA =0. Then,

n—2

tr(B2A) > —
nin—1

(trB?)(trA%)/2, (2.28)

and the equality holds if and only if (n—1) of the eigenvalues x; of B and the corresponding

. ) trB2)1/2 rA2)1/2
eigenvalues y; of A satisfy |z;| = (\/’;ﬁ, zix; >0, y; = (\/ﬁ

3. Mobius invariants on typical examples.

In this section, we shall study Mobius invariants on typical examples. These results
in this section will be used in the proof of Main Theorem 1 and the results in the following
proposition 3.2 will support our assumption in Main Theorem 2. Throughout this section,
we shall make the following convention on the ranges of indices:

1<i,57<n, 1<a,b<k, k+1<s,t<n.

The following Lemma 3.1 due to Li, Liu, Wang and Zhao [7] will be used.

LEMMA 3.1. Letx: M + S"TY(1) be an n-dimensional hypersurface with two dis-
tinct principal curvatures with multiplicities k and n— k, respectively. Then the principal
curvatures of the Mébius second fundamental form B of x are constant, which are given

by

Ml:% (n—l)k(n—k:)7 M2:—% ((r;—llz)k

PROPOSITION 3.2.  Let x; : S¥(1) — RFF! and x5 : S"7F(1) — R"**1 be the
standard embeddings of the unit spheres. Then, for Riemannian product x : S*(r) x
Sk (V1 —72) = S"FL(1) defined by x = (rx1, V1 —r2x3), for any 1 <k <n—1 and
any 0 < r <1, we have

d=0, (3.1)
E—1 (n—1)(n—2k) ,
= 2
R n(n—k)Jr nk(n — k) " (32)
- k(n—k) n—2\?
_ 2 2 _ Fn—F) _
(n—2k)*|A|l - (nR - ) , (3.3)
n—1 9 n—1 ,
Ropap = (1 - )7 Rosas =0, Rgpsp = 7717, (34)

k(n—k) k(n —k)
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where R;j;; denotes the Méobius sectional curvature of the plane section spanned by
{E;, E;}.

PROOF. Since Riemannian product x : S¥(r) x S"7#(v/1 — r2) s S"+1(1) is the
standard embedding, we know that the second fundamental form of x has two distinct

principal curvatures Y 1;"2 and — \/ﬁ with multiplicities k& and n — k, respectively.
Putting ¢ = ¥ lT_Tz, we have
1
hab = C(Saba has = 07 hst = _Eésta (35)

H:iihii:i{kc—(n—k)i}, (3.6)
=1

1
11 = ke + (0 — b, (37)
2 n 2 2 k(n —k) (¢ +1)?
= II||* —nH?*) = . .
¢ = () = npr?) = KR (5:5)

Hence, the Mobius metric g of x is given by
_ 2
g = p°dx - dx.
Since p? is constant, from (2.13) and (2.14), we have C; = 0 and A;; = —3p 2{(H? — 1)

dij —2Hh;;}, where C; and A;; denote components of Mébius form ® and components
of the Blaschke tensor A. Hence, we infer ® = 0 and

__n—-1 Y 2,2
Agp = (0 = k)2 {k(2n — k) — n°r=}da, (3.9
Aas = 07 (310)
n—1
Ay = == {n*r? —k*}0q. 11
"7 2k(n — k)n? (71" = k7 }0u (3.11)
Thus, we have
A= "l g2y n— 2k (3.12)
~ 2k(n—k)n ' '

From (2.24), we obtain

b1l e,
h= n(n — k) * k(n —k)n ) (3:13)

According to

Ayj = Ay — %(UA)%',
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we have

< n—1 9

Agp = 2 {k — nr*}da, (3.14)

Ay =0, (3.15)

- n—1

Ast——(n ko”Z{nTQ——k}éﬂ. (3.16)
Therefore, we infer

. —1)2 k\?

Ap= iz (2 FYT 3.17

14l = = (- - (317)
From (3.13) and (3.17), we obtain

2
m—zmwAP::“ﬁlm(nR—”n2>. (3.18)

From Lemma 3.1, (2.22), (3.9), (3.10) and (3.11), we have

n—1
abab = BaaB Aaa Ap = ——~(1 — 2 y 3.19
Rapab bo + + Awp k(n—k)( ) (3.19)
Rasas == BaaBss + Aaa + Ass == Oa (320)
Rytst = BusBu + Ags + A n-l . (3.21)
stst — Dss ss =7 I - .
stst tt tt k(’I’L — k)
This completes the proof of Proposition 3.2. 0

REMARK 3.3.  From (3.3), we know that (n — 2)||A| = V21 (nR — 2=2) jf and

n

onlyifk=1lork=n-—1.

PROPOSITION 3.4. Let % : S¥(1) x R* % s R™*! be the standard cylinder. Then,
the hypersurface x = o ox : S¥(1) x R" %+ S"+1(1) satisfies

o =0, (3.22)
R:g%E%y (3.23)
e = K2 (3:24)
Rt = % Rosas =0, Rupay =0, (3.25)

where o is the conformal diffeomorphism defined by (1.1) with p = 1.
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PROOF. Since % : S¥(1) x R" % +— R"*! is the standard cylinder, we know that
the second fundamental form of x has two distinct principal curvatures 1 and 0 with
multiplicities k£ and n — k, respectively. Let ﬁij and H denote components of the second
fundamental form /7 and the mean curvature of X, respectively. Then, we have

Bab = Jaba iLas = 07 hst = 0, (326)
A k N
H=-, I11))* = k. (3.27)
By defining
2 N Frn2 2 _k(n—k)
7= (T = i) = TR

then, the Mobius metric g of X is given by
A A2 94 ~
g = p-dx - dx.

Let {é;} be an orthonormal basis for the first fundamental form I = dx - d% with the
dual basis {6;}. Define

Ci = H; +Z ij — Hoy eJ(IOgP)} (3.28)
Ajj= —p~ *{Hess;;(log p) — &;(log p)é;(log p) — }AIB”}
1,
= 52 (IV(og p)|* + H?) 35, (3.29)
Byj = p~" (hyj — Hbij). (3.30)

Here Hess” and V are the Hessian matrix and the gradlent with respect to the induced
metric [ = dx - dk. ® = > Ci0;¢ i€ntl, A = p? Z” AUH 9 and B = Z” B”Q 9
(p~téni1) is called Mobius form, Blaschke tensor and Mdébius second fundamental form
of the immersion X, respectively (cf. [9]).

Since p? is constant, from (3.28) and (3.29), we have C; = 0 and A;; =
{ﬁ251-j - 2]EIfL”} Hence, we infer ® =0 and

ﬁ 2

I\J\H

i (n—1)(k—2n)
A(Lb - 2(n _ k)’n,2 6(lb7
Aas =0,

- n— 1k

Ast = " 2(n — k)n? ot

Thus, from Theorem 4.1 of Liu, Wang and Zhao [9], we know ® = & = 0 and
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- (n—=1)(k —2n)
Aap = Aap = =775 0ab,
b b 2(n — k)n? b
Aas = Aas = O,
L (n-k
Ast - Ast 2(n — k) 26515
Thus, we infer
(n—1)k
trA =
g 2(n —k)n
From (2.24), we obtain
k-1
~n(n—k)
From
1
Aij = Ay ntrAéu,
we have
~ n—1
Aab = p) 5ab7
Aas = Oa
N _(n—-1)k 5
st (’I’L k)n2 st-
Therefore, we infer
~ —1)%k
A 2 _ (TL
R

From (3.35) and (3.36), we obtain

e (L
n n
From Lemma 3.1, (2.22), (3.31), (3.32) and (3.33), we have

n—1
Rabab = BaaBbb + Aaa + Abb =

Rasas = BaaBss + Aaa + Ass = 07
Rgtst = Bss Bt + Ags + Ay = 0.

k(n —k)’

(3.31)
(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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This completes the proof of Proposition 3.4. O

REMARK 3.5. From (3.23) and (3.24), we know that (n—2)| A|| = v 2=l (pR—2=2)
if and only if k =n — 1.

PROPOSITION 3.6.  Let X : S¥(r) x H" *(y/1+72) — H"! be the standard
embedding. Then, the hypersurface x = Tox : S*(r) x H" *(/1+72) s S"FL(1)
satisfies

® =0, (3.38)
k-1 (n—1)(n—2k) ,

h= nin—Fk)  nk(n—k) " (3:39)
- k(n—k) n—2
2k — Al =/ —= — A
k=l Al = H (g - 222, (3.40)
Rvap = "1 (14712),  Ruwws =0, Rupr = —— =1 ;2 (3.41)
abab = k(n — k) ) asas — U, stst = k(n — ]f)r s .

where T is the conformal diffeomorphism defined by (1.2) with p = 1.

PROOF. Since x : S¥(1) x H" #(\/1+1r2) — H"*! is the standard embedding,
we know that the second fundamental form of x has two distinct principal curvatures

v 1T+T2 = d and \/% with multiplicities k& and n — k, respectively. Let ﬁij and H
1+r

denote the components of the second fundamental form 77 and the mean curvature of X,

respectively. Then, we have

_ _ - 1
hab = déaby has = 07 hst = E68t7
71 T2 2 1
H:ﬁ{der(n—k)d}, I1I]|* = kd +(n—k)ﬁ.
By defining
—2 n T2 72 k(n —k) (d* — 1)
= 11| —nH") =
p = (I - i) = 2= S
then, the M6bius metric g of X is given by
_ 23 _
g = p°dx-dx.

Let {é;} be an orthonormal basis for the first fundamental form I = dx - dx with the
dual basis {6;}. Define

Ci= — (p)Q{Hﬂ‘ + Z (hij — Haij)ej(bgp)}’ (3.42)

J
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Ajj = — (p)”*{Hess;;(log p) — ei(log p)e;(log p) — Hhy;}
— S (IV g DI + 1+ F2)s3; (3.43)
Bij = (ﬁ)_l(ﬁij — H(SU) (344)

Here Hess;; and V are the Hessian matrix and the gradient with respect to the in-
duced metric j = dx - dX. &) = ZiéiéiénJrla A = ﬁ2 Zij Aljézéj and B = Zi,j Bzyézéj
((p)"t€n11) is called Mébius form, Blaschke tensor and Mabius second fundamental form
of the immersion X, respectively (cf. [9]).

Since p? is constant, from (3.42) and (3.43), we have C; = 0 and 4;; = —1(p)~2{(1+
H?)8;; — 2Hh;;}. Hence, we infer ® = 0 and

- n—1
Ap = ———{k(2n 2
b = Sy R b
Aus =0,
A —o_n=l {k? +n*r?}s
T 2k(n — k)n? st

Thus, from Theorem 4.4 of Liu, Wang and Zhao [9], we know ® = ® = 0 and

- n—1

Aab = Aab = m{k(Qn - k) + 7127‘2}5,117, (3.45)
Aas = Aas = 07 (346)
Ag=Ayg=——""1 g2 p22)5 (3.47)

st — 4dst — 2]€(7’l — k‘)’I’LQ st .

Thus, we infer

A= "l g oy (3.48)

- 2k(n—k)n ’ '

From (2.24), we obtain

_ k=1 (71—1)(7”L—2lc)r2
r= n(n — k) nk(n — k) ' (349)

From
R

~ 1
Aij = A” — EtI‘A(S

we have
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n—1

Aa = 2 a
b nZ (k + nr°)dap,
Aas :0,
~ n—1 9
st — —m(k+nT )6St-

Therefore, we infer

- —1)2 kN’
AlI2 = (n 2 M)
Al k(n —k)n (T +n>
From (3.49) and (3.50), we obtain

(2k —n)||A|| = k(n_k)(nR n- 2).

n n

From Lemma 3.1, (2.22), (3.45), (3.46) and (3.47), we have

n—1
Raa :BaaB Aaa Apy = —=(1 2;
bab bb + + Apb k:(nfk:)< +77)
Rasas = BaaBss + Aaa + Ass = Oa
n—1
Re st — BSQB Ass Ay = ————+ 2-
stst ssDtt + Ags + Apt k(n—k)r
This completes the proof of Proposition 3.6. O

REMARK 3.7.  From (3.40), we know that (n — 2)||A| = V2L (nR — 2=2) if and
only if k =n — 1.

4. Proofs of Main Theorems.

In this section, we will prove our Main Theorems.

PROOF OF MAIN THEOREM 1. Since the Mo6bius form & = ZW Cfe, =0, we
have, by (2.19), (2.20) and (2.21), that

Aijr = Aij, B =B, > BhAw =) BpjAy, forany a. (4.1)
k k

From the definition ABf; = >, Bf ;, of the Laplacian of the Mobius second fundamental
form of the immersion x, we have

LAY (B = Y (B 4 Y BIABY, (1.2

], 0,9,k 1,5,
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From (2.16), we have

Z ( z('lj,k)Q + Z BYAB = 0. (4.3)

.9,k ;0

From (2.16), (2.22), (2.23), (2.26) and (4.1), we have, by a direct calculation, that

Y BABG = —23  [r(BIBj) — tr{(BaBs)}]

7,0 a,B

S " {t(BaBg)} + 0 tr(AB?) + ol (4.4)
a3 «

n

where B, and A denote the n x n-symmetric matrices (Bf;) and (A;;) respectively.
Putting A = (4;;) with

~ 1
Aij = Aij - g(tI‘A)éi]ﬁ (45)
we have
~ 2 1 ~ 1
JAI2 = D7 (A4)* = 3 () + (AP = JAIP + S (A, (46)
Z"j /L’J
From (4.5), we have
A =0, t(AB2) = tx(AB2) — (trA)(trB2). @7)

From (4.1), we know that B,A = AB,. Therefore B,A = AB, holds. From Lemma
2.2, we have

n—2 ~ 1
tr(AB2) > —————trB2||A| + —(trA) (trB2). 4.8
CASE (i) where p=1. Put BZ’H = B;; and B,y = B. Since BA = AB holds
from (4.1), we can choose a local orthonormal basis {E1, Es,--- , E,} such that B;; =

pi0i; and A;; = X\;0;;. Thus, we have from (4.4), (2.16) and (4.8)

-1
n trA
n

S ‘(n;1>2— \/”Tlm—z)nAH +2" L
nﬁl [\/7(“{ ”;2) - <n2>A||] (4.9)

Z BZ]AB” = —(tr32)2 + ntr(ABQ) —|—

]
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where ||A||? = ||A||> and trA = trA are used. From the assumption (1.3) in Main
Theorem 1, we know that the right hand side of formula (4.9) is nonnegative. Therefore,
from (4.3) and (4.9), we obtain

Bijr =0, forall 4,5,k and ZBijABij =0. (4.10)

0,J

Hence the equality in (4.9) holds. We have

n n

(=222 - (-2l =o. (1)

Further, the inequality (4.8) becomes equality. From Lemma 2.2, we know that (n — 1)
of the eigenvalues u; of B satisfy |u;| = (trf(ii)li = % and p;p; > 0, which yields that
the (n — 1) of p;’s are equal and constant. Since trB = 0 and }_, ; B} = 2=1 hold, we
know that B has two distinct principal curvatures, which are all constant. Therefore,
we obtain x : M +— S"T1(1) is a Mobius isoparametric hypersurface with two distinct
principal curvatures. By the result of Li, Liu, Wang and Zhao [7], we have that x is
Mobius equivalent to an open part of the Riemannian product S*(r) x S"=%(v/1 —r2)
in S"*1(1), or an open part of the image of o of the standard cylinder S*¥(1) x R"~*
in R or an open part of the image of 7 of S*(r) x H" *(v/1+r2) in H"*!, for
k=1,2---,n—1. From Remark 3.3, Remark 3.5 and Remark 3.7, we know that
formula (4.11) holds if and only if K = n— 1. Hence, Main Theorem 1 is true in this case.

CasE (ii) where p > 2. Define 005 =3, ; Bf;BZ Since the (p x p)-matrix (0a3)
is symmetric, we can choose Ey41,- -, En4p such that (0,4) is diagonal, that is,

OaB = 0adag- (4.12)

From Lemma 2.1, we have

~ N N(BoBs — BsBa) — Y {tr(BaBg)} > 23 0uo5 — > 02
a,B

a,B a#fB «a

:—2<Zaa)2+%:a§

[e3%

From (4.4), (4.8), (4.13), we have
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%

Z BSABY,

2,7,

(2= Lyt 2+ Zt(ABz)Jrn*ltA
’ - na r p i

S (o)) T

9, n—1
—&—trA;trBa—i— - trA
2
- _(2_1)<”‘1> Y K YR ([ ity
p n n n
n—1 n—1 1 1 -
= - { - (nR—n[(n—l)(2—p)—1})—(n—2)||A||},

(4.14)

where ||A||2 = ||A||> and trA = trA are used. From the assumption (1.3) in Main
Theorem 1, we know that the right hand side of (4.14) is nonnegative. Therefore, from
(4.3) and (4.14), we obtain Bf:, = 0, for all 4,j, k,a, and }, ; , BEAB?: = 0. Hence,
the above inequalities become equalities. Thus, we have

(n—2)||A| = n_l{nR—l[(n—l)(2—1> —1”, (4.15)

2,7,

n n D
and

On+1 =0np42 =" =0n4p (416)
because of %(Za 00)? = >, 02. From Lemma 2.1, we know that at most two of the

matrices B, = (Bf}) are nonzero. From (2.16), we have > o, = 2=l Hence, (4.16)
yields p = 2 and we may assume that

Bn+1 = )\Avv Bn+2 = Uév )‘7M 7é 0, (417)
where A and B are defined in Lemma 2.1. Therefore, we have

Byt =Byt =X Bt =0, (i,5) ¢ {(1,2),(2, 1)}, (4.18)

B =p, By?=-p BT =0, (i) ¢{(1,1),(2,2)}. (4.19)

Since the inequality (4.8) becomes equality, from Lemma 2.2, we know that, for each
(trBi)l/Q d u®u® >0
Vnin—1) 4 HiH; =,
which infer that the (n — 1) of u are equal. From (4.19), we have the eigenvalues of
Bpio = (BZH) are f, —pt,0,0,--- 0. Since u # 0, we infer n = 2. From (4.18), we can
infer, by an algebraic method, that the eigenvalues of B, 1 are A\, —A. Since n =p = 2

@, (n — 1) of the eigenvalues uf* of B, = (Bf}) satisfy |uf| =
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holds, from (4.1), (4.18) and (4.19), we have
A = Az, Az = A =0. (4.20)

Therefore, x : M? +— S%(1) is a Mobius isotropic submanifold in S*. Thus, we have
| Al = 0. Since n = 2 and p = 2 hold, from (4.15), we have R = . We obtain trd = 2.
Hence A;; = Ay = . From Liu, Wang and Zhao [9], we obtain that x : M? — S%(1)
is Mobius equivalent to an open part of either a minimal surface x : M? — S%(1) with
constant scalar curvature in S4(1), or the image of o5 of a minimal surface with constant
scalar curvature in R* or the image of 75 of a minimal surface with constant scalar
curvature in H*. For a surface, Gaussian curvature is constant if and only if the scalar
curvature is constant. From the Proposition 4.1 and Theorem 4.2 of Bryant [3], we know
that a minimal surface with constant scalar curvature in R* is totally geodesic and a
minimal surface with constant scalar curvature in H? is also totally geodesic. Since
x : M? — S%(1) has no umbilical points, we infer that x : M? — S%(1) is Mobius
equivalent to an open part of a minimal surface x : M? +— S%(1) with constant scalar
curvature in S*(1). From the Gauss equation of the minimal surface x : M? — S%(1)
with constant scalar curvature in S%(1), we know that the squared norm of the second
fundamental form of this minimal surface is constant. According to the definition (2.2)
of p, p? is constant. From (2.14), we have p? = %. Thus, the squared norm of the second
fundamental form of X must be 3, i.e. |II]|? = 3. Therefore, from the result of Chern, do
Carmo and Kobayashi [5], we obtain that X : M? — S%(1) is locally a Veronese surface
in S%(1). This finishes the proof of Main Theorem 1.

PRrROOF OF MAIN THEOREM 2. Since the Mébius form ® =", Cfe, = 0 holds,
we have

Aijr = Aicj, Bfy =By > BiAw =) BpjAk. (4.21)
k k

Hence, for any «a, BoA = AB,, where A = (A;;) and B, = (Bg,). For any fixed «, we
can choose the basis {E;} such that A = (4;;) and B, = (B,)

<) are diagonal, that is,

Aij = Xibij,  Bjj = il 6ij.- (4.22)

Since n(n — 1)R is constant, from (2.24), we have that trA = trA = ), A;; is constant.
From (2.25), (4.21), (4.22), we infer

1
§A\|AH2 = (Aijn)* + > AijAijrk

1,5,k 1,5,k
2
= g (Aijx) +§ AijApkij + E Aij Ay Rigjr + E Aij Ak R
1,7,k 1,5,k 1,5,k,1 1,5,k,1

= (i) + % > Rigir(Ai — M) (4.23)

ijk ik
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When p > 1, from the assumption K > 0 in Main Theorem 2, by integrating (4.23), we
have

Rikie(Xi — Ak)? = 0.
Therefore, we know that \; = Mg, that is, x : M +— S"P(1) is a Mobius isotropic
submanifold in S"*P(1) with positive Mobius sectional curvature. From the result in [9],
we know that x is Mobius equivalent to the compact minimal submanifolds with constant
scalar curvature in S"TP(1).
Next, we consider the case where p = 1. In this case, we know that the Md&bius
sectional curvature of the immersion x is nonnegative. By integrating (4.23), we infer
Aij,k = 07 for any iajv ka Rikik(Ai - Ak)Q =0. (424)
From (2.22) and (4.22), we have R;iir, = piftr + Ai + A for ¢ # k. Hence, we infer
(i + i + M) (i — M) = 0. (4.25)
Form (4.24) and (2.17), we have

Setting ¢ = j in (4.26), we obtain d\; = 0, that is, eigenvalues of (A4;;) are all constant.
From (4.26), we infer that for \; # A,

Wwij = 0. (427)

Let A1, A2, -+, A; are these distinct eigenvalues of A = (A4;;). We can assume A\; < Ay <
.-+ < A\ From (4.25), we have

)\i = )\lm or s Uk + )\z + )\k =0. (428)

In the second case, we will prove that A = (A4;;) has at most three distinct eigenvalues.
In fact, if we assume Ay < Ao < A3 < Ay < -+- < \; are these distinct eigenvalues of
A = (Aij). Let A\, A2, \; are the three distinct eigenvalues of A = (4;;), we have

pmipn + X+ A =0.
fifte + Xi + A2 = 0.

Hence, we have

AL — A
=N (4.20)
M1 — H2
A1 — A
A=A+ p 2 (4.30)
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Hence, for r = 3,4, --- , 1, we have A\, = \;. This is a contradiction. Therefore, A = (A4;;)
has at most three distinct eigenvalues.

(1). In the first case, we consider the case that (A;;) only has one distinct eigenvalues.
Since the Mébius form ® = Y, Cfe, = 0, we know x : M — S™"*1(1) is a Mdbius
isotropic hypersurface in S”+1(1) with nonnegative Mdbius sectional curvature. By the
result in [9], we know that x is M6bius equivalent to a minimal hypersurface with constant
scalar curvature in S™*1(1).

(2). We consider the second case that (A;;) has two or three distinct eigenvalues.
From (4.29), we know that at most three of the principal curvatures of (B;;) are distinct.
Since x has no umbilical points, we know that the distinct principal curvatures of (B;;)
is two or three.

(i) If two of the principal curvatures of (B;;) are distinct, without loss of generality,
we may assume i1 < po. From (2.16), we know that pq and po are constant, that is,
X : M +— S"1(1) is a Mobius isoparametric hypersurface with two distinet principal
curvatures in S"*1(1). Since x is compact, from Theorem 1.1 in the introduction, we
infer that x is Mobius equivalent to the Riemannian product S*(r) x S"~*(y/1 — r2), for
k=1,2,--- ,n—1

(i) If three of the principal curvatures of (B;;) are distinct, without loss of generality,
we may assume p1 < pg < pz. From (2.16) and (4.29), we know that pq, ps, pus are
constant. From the proof of Main Theorem 1, we infer

%A Z Bizj = Z Bizj,k + Z BijABij
2,

0,9,k 2%

-1
i trd

=Y B}, — (trB?)? + ntr(AB?) +

= n
.5,k

1
=) Blixts > (1 = 13)* Rijs > 0.
1,5,k ]

Since Z” ij is constant, we obtain B;j;, = 0 for any 4,7, k. From (2.18), we have, O

for each p; # iy,

Hence, we know that the distributions of the eigenspaces with respect to u; are integrable.
Since the distinct principal curvatures of M is three, we can write M = My x My x M3,
where M; (1 <14 < 3) is the integrable manifold corresponding to the principal curvature
;. Since p;’s are constant, we know that M;, i = 1,2,3, are closed. Thus, they are
compact because M is compact. From (2.22), we have, for j, k,l € [i],

Rijiu = (13 + 2X:) (6651 — 6udjk), (4.32)

that is, M; are constant curvature space with respect to the Mdbius metric g. Putting
ki = u? + 2\, 1 <i < 3, then, we have
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k1= (p1 — p2)(p — ps) >0,
ko = (p2 — pa)(p2 — pa) <0,
ks = (ns — pa) (13 — p2) > 0. (4.33)

Therefore, we may infer dim Ms = 1. In fact, if dim M> > 2 holds, by the assumption
that the Mobius sectional curvature of M is nonnegative, we have ky > 0. This is a
contradiction.

Let (u,v,w) be a coordinate system for M such that u € My, v € My, w € M3 and
E, = %, where [ = dimM; + 1. Then, from structure equations (2.9), (2.10), (2.11) and
(2.12) and (4.31), by a direct and simple calculation, we obtain

N, =AY, (4.34)
YUU = —AQY — N+ ,UQE, ij = O, for ] 7é l, (435)
E, = —psY,, (4.36)

where we denote E,, 1 by E. From (4.35), we can write Y = f(v) + F(u,w). Then, by
(4.34), (4.35) and (4.36), we have

() + ko f' (v) =0, (4.37)

where ko = p3 + 2\o < 0. The solution of (4.37) can be easily written as

flv)=0Cy

cosh (v/—kov) + 02; sinh (v/—kov), (4.38)

1
V—ks V—ks

where C1,Cy € R?+3 are constant vectors. From (4.38), we know that My must be a
hyperbola. This is a contradiction because My is compact. Hence, the case (ii) does
not occur, that is, M is a M&bius isoparametric hypersurface with two distinct principal
curvatures. This completes the proof of Main Theorem 2.
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