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A Möbius characterization of submanifolds
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Abstract. In this paper, we study Möbius characterizations of submanifolds
without umbilical points in a unit sphere Sn+p(1). First of all, we proved that,
for an n-dimensional (n ≥ 2) submanifold x : M 7→ Sn+p(1) without umbilical

points and with vanishing Möbius form Φ, if (n − 2)‖Ã‖ ≤
p

n−1
n

˘
nR − 1

n
[(n − 1)`

2 − 1
p

´ − 1]
¯

is satisfied, then, x is Möbius equivalent to an open part of either

the Riemannian product Sn−1(r) × S1(
√

1− r2) in Sn+1(1), or the image of the
conformal diffeomorphism σ of the standard cylinder Sn−1(1) ×R in Rn+1, or the
image of the conformal diffeomorphism τ of the Riemannian product Sn−1(r) ×
H1(

√
1 + r2) in Hn+1, or x is locally Möbius equivalent to the Veronese surface in

S4(1). When p = 1, our pinching condition is the same as in Main Theorem of Hu
and Li [6], in which they assumed that M is compact and the Möbius scalar curvature
n(n − 1)R is constant. Secondly, we consider the Möbius sectional curvature of the
immersion x. We obtained that, for an n-dimensional compact submanifold x : M 7→
Sn+p(1) without umbilical points and with vanishing form Φ, if the Möbius scalar
curvature n(n−1)R of the immersion x is constant and the Möbius sectional curvature
K of the immersion x satisfies K ≥ 0 when p = 1 and K > 0 when p > 1. Then,
x is Möbius equivalent to either the Riemannian product Sk(r) × Sn−k(

√
1− r2),

for k = 1, 2, · · · , n− 1, in Sn+1(1); or x is Möbius equivalent to a compact minimal
submanifold with constant scalar curvature in Sn+p(1).

1. Introduction.

Let x : M 7→ Sn+p(1) be an n-dimensional immersed submanifold in an (n + p)-
dimensional unit sphere Sn+p(1). In [11], Wang introduced a Möbius metric, Möbius
form and the Möbius second fundamental form of the immersion x. By making use of
these Möbius invariants, he founded the fundamental formulas on Möbius geometry of
submanifolds in Sn+p(1). By following these results of Wang, the Möbius geometry on
submanifolds in Sn+p(1) was researched by many mathematicians (see. [6], [7], [8] and
[9]). In particular, Li, Wang and Wu [8] studied the Möbius characterization of Veronese
surface. They proved that if x : S2(1) 7→ Sm(1) is an immersion without umbilical points
of the 2-sphere with vanishing Möbius form, then there exists a Möbius transformation
τ : Sm(1) 7→ Sm(1) such that τ ◦ x : S2(1) 7→ S2k(1) is the Veronese surface, where
S2k(1) ⊂ Sm(1) with 2 ≤ k ≤ [m/2]. Furthermore, a kind of pinching problems on
Möbius geometry of submanifolds in Sn+p(1) was studied by Akivis and Goldberg [2],
Hu and Li [6] and so on.
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curvature, Blaschke tensor and Möbius form.
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Let x : M 7→ Sn+p(1) be an n-dimensional immersed submanifold in Sn+p(1). We
choose a local orthonormal basis {ei} for the induced metric I = dx · dx with dual basis
{θi}. Let II =

∑
i,j,α hα

ijθiθjeα be the second fundamental form of the immersion x and
~H =

∑
α Hαeα the mean curvature vector of the immersion x, where {eα} is a local

orthonormal basis for the normal bundle of x. By putting ρ2 = n
n−1

{ ∑
α,i,j(h

α
ij)

2 −
n‖ ~H‖2}, the Möbius metric of the immersion x is defined by g = ρ2dx · dx, which
is a Möbius invariant. Φ = Σi,αCα

i θieα and A = ρ2
∑

i,j Aijθiθj are Möbius form
and Blaschke tensor of the immersion x, respectively, where Cα

i and Aij are defined by
formulas (2.13) and (2.14) in section 2. It was proved that Φ and A are Möbius invariants
(cf. [11]).

In particular, Akivis and Goldberg [1], [2] and Wang [11] proved that two hyper-
surfaces x : M 7→ Sn+1(1) and x̃ : M̃ 7→ Sn+1(1) are Möbius equivalent if and only if
there exists a diffeomorphism σ′ : M 7→ M̃ which preserves the Möbius metric and the
Möbius shape operator such that x = σ′ ◦ x̃.

Let Hn+p be an (n + p)-dimensional hyperbolic space defined by

Hn+p =
{
(y0, y1) ∈ R+ ×Rn+p| − y2

0 + y1 · y1 = −1
}
.

We denote the open hemisphere in Sn+p(1) whose first coordinate is positive by
Sn+p

+ (1). We consider conformal diffeomorphisms σp : Rn+p 7→ Sn+p(1)\{(−1, 0)} and
τp : Hn+p 7→ Sn+p

+ (1) defined by:

σp(u) =
(

1− |u|2
1 + |u|2 ,

2u

1 + |u|2
)

, u ∈ Rn+p, (1.1)

τp(y0, y1) =
(

1
y0

,
y1

y0

)
, (y0, y1) ∈ Hn+p, (1.2)

respectively. The conformal diffeomorphisms σp and τp assign any submanifold in Rn+p

or Hn+p to a submanifold in Sn+p(1). If p = 1, we denote σ1 and τ1 by σ and τ . In [7],
Li, Liu, Wang and Zhao classified Möbius isoparametric hypersurfaces with two distinct
principal curvatures. They obtained the following:

Theorem 1.1. Let x : M 7→ Sn+1(1) be a Möbius isoparametric hypersurface with
two distinct principal curvatures. Then x is Möbius equivalent to an open part of one of
the following Möbius isoparametric hypersurfaces in Sn+1(1):

1. the Riemannian product Sk(r)× Sn−k(
√

1− r2) in Sn+1(1),
2. the image of σ of the standard cylinder Sk(1)×Rn−k in Rn+1,
3. the image of τ of the Riemannian product Sk(r)×Hn−k(

√
1 + r2) in Hn+1.

A submanifold x : M 7→ Sn+p(1) is called Möbius isotropic if Φ ≡ 0 and A = λdx·dx
for some function λ. In [9], Liu, Wang and Zhao proved the following:

Theorem 1.2. Any Möbius isotropic submanifolds in Sn+p(1) is Möbius equivalent
to an open part of one of the following Möbius isotropic submanifolds:
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1. a minimal submanifold with constant scalar curvature in Sn+p(1),
2. the image of σp of a minimal submanifold with constant scalar curvature in Rn+p,
3. the image of τp of a minimal submanifolds with constant scalar curvature in Hn+p.

On the other hand, Hu and Li [6] studied a pinching problem on the squared norm
of the Blaschke tensor of the immersion x and obtained the following:

Theorem 1.3. Let x : M → Sn+p(1) be an n-dimensional (n ≥ 3) compact
submanifold without umbilical points and with vanishing Möbius form Φ in Sn+p(1). If
the Möbius scalar curvature n(n− 1)R ≥ (n−1)(n−2)

n is constant and if

‖Ã‖ ≤
√

n− 1
n

(
n

n− 2
R− 1

n

)
,

then, either x is Möbius equivalent to a minimal submanifold with constant scalar
curvature in Sn+p(1) or x is Möbius equivalent to S1(r) × Sn−1

(√
1

1+c2 − r2
)

in
Sn+1(1/

√
1 + c2) for some constant c ≥ 0, r =

√
nR

(n−2)(1+c2) , where Ã = ρ2
∑

ij Ãijθiθj

with Ãij = Aij − 1
n

∑
k Akkδij.

Remark 1.4. In the original statement of the theorem 1.3 of Hu and Li [6], they
did not write out the condition that M has no umbilical points. But this condition is
necessary for their proof. Further, We should note that these assumptions that M is
compact and the Möbius scalar curvature n(n− 1)R is constant plays an important role
in the proof of Theorem 1.3 of Hu and Li [6].

In this paper, first of all, we prove the following:

Main Theorem 1. Let x : M → Sn+p(1) be an n-dimensional (n ≥ 2) submani-
fold without umbilical points and with vanishing Möbius form Φ, if

(n− 2)‖Ã‖ ≤
√

n− 1
n

{
nR− 1

n

[
(n− 1)

(
2− 1

p

)
− 1

]}
, (1.3)

then x is locally Möbius equivalent to either the Veronese surface in S4(1), or x is Möbius
equivalent to an open part of one of the following Möbius isoparametric hypersurfaces in
Sn+1(1):

1. the Riemannian product Sn−1(r)× S1(
√

1− r2) in Sn+1(1),
2. the image of σ of the standard cylinder Sn−1(1)×R in Rn+1,
3. the image of τ of the Riemannian product Sn−1(r)×H1(

√
1 + r2) in Hn+1,

where n(n − 1)R denotes the Möbius scalar curvature of the immersion x and Ã =
ρ2

∑
ij Ãijθiθj with Ãij = Aij − 1

n

∑
k Akkδij.

Remark 1.5. In our Main Theorem 1, we do not assume the global condition
that M is compact and we do not need to assume that the Möbius scalar curvature is
constant. Further, when p = 1 and (n ≥ 3) our pinching condition is the same as in Hu
and Li [6]. Since Hu and Li [6] assumed that M is compact, the cases of 2 and 3 above
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in Main Theorem 1 do not appear in their theorem. If n = 2, since the Möbius metric g

is flat, we know that R ≡ 0. Main Theorem 1 reduces to the Theorem 5.1 in [11].

Since Riemannian product Sk(r) × Sn−k(
√

1− r2), for k = 1, 2, · · · , n − 1, have
nonnegative Möbius sectional curvature and they do not satisfy the inequality in Theorem
1.3 of Hu and Li [6] except k = 1 or k = n − 1 (see Proposition 3.2 and Remark 3.3 in
section 3), we will consider the immersion x with nonnegative Möbius sectional curvature
and prove the following:

Main Theorem 2. Let x : M 7→ Sn+p(1) be an n-dimensional compact subman-
ifold without umbilical points and with vanishing Möbius form Φ and constant Möbius
scalar curvature n(n−1)R in Sn+p(1). If the Möbius sectional curvature K of M satisfies

{
K ≥ 0, if p = 1

K > 0, if p > 1,

then, x is Möbius equivalent to the Riemannian product Sk(r) × Sn−k(
√

1− r2), for
k = 1, 2, · · · , n− 1, in Sn+1(1); or x is Möbius equivalent to an n-dimensional compact
minimal submanifold with constant scalar curvature in Sn+p(1).

2. Preliminaries and fundamental formulas on Möbius geometry.

In this section, we review the definitions of Möbius invariants and give the funda-
mental formulas on Möbius geometry of submanifolds in Sn+p(1), which can be found in
[11].

Let Rn+p+2
1 be the Lorentzian space with inner product

〈x,w〉 = −x0w0 + x1w1 + · · ·+ xn+p+1wn+p+1, (2.1)

where x = (x0, x1, · · · , xn+p+1) and w = (w0, w1, · · · , wn+p+1). Let x : M 7→ Sn+p(1)
be an n-dimensional submanifold of Sn+p(1) without umbilical points. Putting

Y = ρ(1,x), ρ2 =
n

n− 1
(‖II‖2 − n‖ ~H‖2) > 0, (2.2)

then, Y : M 7→ Rn+p+2
1 is called Möbius position vector of x. It is easy to prove that

g = 〈dY, dY 〉 = ρ2dx · dx

is a Möbius invariant which is recalled Möbius metric of the immersion x. Let ∆ denote
the Laplacian on M with respect to the Möbius metric g. Defining

N = − 1
n

∆Y − 1
2n2

(1 + n2R)Y, (2.3)

we can infer
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〈∆Y, Y 〉 = −n, 〈∆Y, dY 〉 = 0, 〈∆Y,∆Y 〉 = 1 + n2R, (2.4)

〈Y, Y 〉 = 0, 〈N, Y 〉 = 1, 〈N, N〉 = 0, (2.5)

where n(n − 1)R denotes the Möbius scalar curvature of the immersion x. Let
{E1, · · · , En} denote a local orthonormal frame on (M, g) with dual frame {ω1, · · · , ωn}.
Putting Yi = Ei(Y ), then we have, from (2.2), (2.4) and (2.5),

〈Yi, Y 〉 = 〈Yi, N〉 = 0, 〈Yi, Yj〉 = δij , 1 ≤ i, j ≤ n. (2.6)

Let V be the orthogonal complement to the subspace Span{Y, N, Y1, · · · , Yn} in Rn+p+2
1 .

Along M , we have the following orthogonal decomposition:

Rn+p+2
1 = Span{Y, N} ⊕ Span{Y1, · · · , Yn} ⊕ V, (2.7)

where V is called Möbius normal bundle of the immersion x. It is not difficult to prove
that

Eα = (Hα,Hαx + eα), n + 1 ≤ α ≤ n + p, (2.8)

is a local orthonormal frame of V . Then {Y, N, Y1, · · · , Yn, En+1, · · · , En+p} forms a
moving frame in Rn+p+2

1 along M . We use the following range of indices throughout this
paper:

1 ≤ i, j, k, l, m ≤ n, n + 1 ≤ α, β ≤ n + p.

The structure equations on M with respect to the Möbius metric g can be written as
follows:

dY =
∑

i

Yiωi, (2.9)

dN =
∑

i,j

AijωjYi +
∑

i,α

Cα
i ωiEα, (2.10)

dYi = −
∑

j

AijωjY − ωiN +
∑

j

ωijYj +
∑

j,α

Bα
ijωjEα, (2.11)

dEα = −
∑

i

Cα
i ωiY −

∑

i,j

Bα
ijωjYi +

∑

β

ωαβEβ , (2.12)

where ωij is the connection form with respect to the Möbius metric g, ωαβ is the normal
connection form of x : M → Sn+p(1), which is a Möbius invariant. A =

∑
i,j Aijωi ⊗ ωj

and Φ =
∑

i,α Cα
i ωi(ρ−1eα) are called Blaschke tensor and Möbius form of the immersion

x, respectively, where
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Cα
i = − ρ−2

{
Hα

,i +
∑

j

(
hα

ij −Hαδij

)
ej(log ρ)

}
, (2.13)

Aij = − ρ−2

{
Hessij(log ρ)− ei(log ρ)ej(log ρ)−

∑
α

Hαhα
ij

}

− 1
2
ρ−2

(‖∇(log ρ)‖2 − 1 + ‖ ~H‖2)δij . (2.14)

Here Hessij and ∇ are the Hessian matrix and the gradient with respect to the induced
metric dx · dx. It was proved that Φ = Σi,αCα

i θieα and A = ρ2
∑

i,j Aijθiθj are Möbius
invariants. B =

∑
i,j,α Bα

ijωiωj(ρ−1eα) is called Möbius second fundamental form of the
immersion x, where

Bα
ij = ρ−1

(
hα

ij −Hαδij

)
. (2.15)

Hence, we have

∑

i

Bα
ii = 0,

∑

i,j,α

(
Bα

ij

)2 =
n− 1

n
. (2.16)

We define the covariant derivative of Cα
i , Aij , B

α
ij by

∑

j

Cα
i,jωj = dCα

i +
∑

j

Cα
j ωji +

∑

β

Cβ
i ωβα,

∑

k

Aij,kωk = dAij +
∑

k

Aikωkj +
∑

k

Akjωki, (2.17)

∑

k

Bα
ij,kωk = dBα

ij +
∑

k

Bα
ikωkj +

∑

k

Bα
kjωki +

∑

β

Bβ
ijωβα. (2.18)

From the structure equations (2.9), (2.10), (2.11) and (2.12), we can infer

Aij,k −Aik,j =
∑
α

(
Bα

ikCα
j −Bα

ijC
α
k

)
, (2.19)

Cα
i,j − Cα

j,i =
∑

k

(
Bα

ikAkj −Bα
kjAki

)
, (2.20)

Bα
ij,k −Bα

ik,j = δijC
α
k − δikCα

j , (2.21)

Rijkl =
∑
α

(
Bα

ikBα
jl −Bα

ilB
α
jk

)
+

(
δikAjl + δjlAik − δilAjk − δjkAil

)
, (2.22)

Rαβij =
∑

k

(
Bα

ikBβ
kj −Bβ

ikBα
kj

)
, (2.23)

where Rijkl and Rαβij denote the curvature tensor with respect to the Möbius metric g
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on M and the normal curvature tensor of the normal connection. n(n−1)R =
∑

i,j Rijij

is the Möbius scalar curvature of the immersion x : M → Sn+p(1). From (2.3) and the
structure equation (2.11), we have, (cf. [11]),

trA =
1
2n

(1 + n2R). (2.24)

By taking exterior differentiation of (2.17) and (2.18), and defining

∑

l

Aij,klωl = dAij,k +
∑

l

Alj,kωli +
∑

l

Ail,kωlj +
∑

l

Aij,lωlk,

∑

l

Bα
ij,klωl = dBα

ij,k +
∑

l

Bα
lj,kωli +

∑

l

Bα
il,kωlj +

∑

l

Bα
ij,lωlk +

∑

β

Bβ
ij,kωβα,

we have the following Ricci identities

Aij,kl −Aij,lk =
∑
m

AmjRmikl +
∑
m

AimRmjkl, (2.25)

Bα
ij,kl −Bα

ij,lk =
∑
m

Bα
mjRmikl +

∑
m

Bα
imRmjkl +

∑

β

Bβ
ijRβαkl. (2.26)

For a matrix A = (aij) we denote by N(A) the square of the norm of A, i.e.,

N(A) = tr(AAt) =
∑

i,j

(aij)2,

where At denotes the transposed matrix of A. It is obvious that N(A) = N(T tAT ) holds
for any orthogonal matrix T .

The following algebraic lemmas will be used in order to prove our Main Theorems.

Lemma 2.1 ([5]). Let A and B be symmetric (n× n)-matrices. Then

N(AB −BA) ≤ 2N(A) ·N(B) (2.27)

and the equality holds for nonzero matrices A and B if and only if A and B can be trans-
formed simultaneously by an orthogonal matrix into multiples of Ã and B̃, respectively,
where

Ã =




0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




B̃ =




1 0 0 · · · 0
0 −1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




.

Moreover, if A1, A2 and A3 are (n× n)-symmetric matrices and satisfy



910 Q.-M. Cheng and S. Shu

N(AαAβ −AβAα) = 2N(Aα) ·N(Aβ), 1 ≤ α, β ≤ 3,

then at least one of the matrices Aα must be zero.

Lemma 2.2 (Cheng [4] and Santos [10]). Let A and B be n×n-symmetric matrices
satisfying trA = 0, trB = 0 and AB −BA = 0. Then,

tr(B2A) ≥ − n− 2√
n(n− 1)

(trB2)(trA2)1/2, (2.28)

and the equality holds if and only if (n−1) of the eigenvalues xi of B and the corresponding
eigenvalues yi of A satisfy |xi| = (trB2)1/2

√
n(n−1)

, xixj ≥ 0, yi = (trA2)1/2
√

n(n−1)
.

3. Möbius invariants on typical examples.

In this section, we shall study Möbius invariants on typical examples. These results
in this section will be used in the proof of Main Theorem 1 and the results in the following
proposition 3.2 will support our assumption in Main Theorem 2. Throughout this section,
we shall make the following convention on the ranges of indices:

1 ≤ i, j ≤ n, 1 ≤ a, b ≤ k, k + 1 ≤ s, t ≤ n.

The following Lemma 3.1 due to Li, Liu, Wang and Zhao [7] will be used.

Lemma 3.1. Let x : M 7→ Sn+1(1) be an n-dimensional hypersurface with two dis-
tinct principal curvatures with multiplicities k and n−k, respectively. Then the principal
curvatures of the Möbius second fundamental form B of x are constant, which are given
by

µ1 =
1
n

√
(n− 1)(n− k)

k
, µ2 = − 1

n

√
(n− 1)k
(n− k)

.

Proposition 3.2. Let x1 : Sk(1) 7→ Rk+1 and x2 : Sn−k(1) 7→ Rn−k+1 be the
standard embeddings of the unit spheres. Then, for Riemannian product x : Sk(r) ×
Sn−k(

√
1− r2) 7→ Sn+1(1) defined by x = (rx1,

√
1− r2x2), for any 1 ≤ k ≤ n − 1 and

any 0 < r < 1, we have

Φ = 0, (3.1)

R =
k − 1

n(n− k)
+

(n− 1)(n− 2k)
nk(n− k)

r2, (3.2)

(n− 2k)2‖Ã‖2 =
k(n− k)

n

(
nR− n− 2

n

)2

, (3.3)

Rabab =
n− 1

k(n− k)
(1− r2), Rasas = 0, Rstst =

n− 1
k(n− k)

r2, (3.4)



A Möbius characterization of submanifolds 911

where Rijij denotes the Möbius sectional curvature of the plane section spanned by
{Ei, Ej}.

Proof. Since Riemannian product x : Sk(r) × Sn−k(
√

1− r2) 7→ Sn+1(1) is the
standard embedding, we know that the second fundamental form of x has two distinct
principal curvatures

√
1−r2

r and − r√
1−r2 with multiplicities k and n − k, respectively.

Putting c =
√

1−r2

r , we have

hab = cδab, has = 0, hst = −1
c
δst, (3.5)

H =
1
n

n∑

i=1

hii =
1
n

{
kc− (n− k)

1
c

}
, (3.6)

‖II‖2 = kc2 + (n− k)
1
c2

, (3.7)

ρ2 =
n

n− 1
(‖II‖2 − nH2) =

k(n− k)
n− 1

(c2 + 1)2

c2
. (3.8)

Hence, the Möbius metric g of x is given by

g = ρ2dx · dx.

Since ρ2 is constant, from (2.13) and (2.14), we have Ci = 0 and Aij = − 1
2ρ−2{(H2 − 1)

δij − 2Hhij}, where Ci and Aij denote components of Möbius form Φ and components
of the Blaschke tensor A. Hence, we infer Φ = 0 and

Aab =
n− 1

2k(n− k)n2
{k(2n− k)− n2r2}δab, (3.9)

Aas = 0, (3.10)

Ast =
n− 1

2k(n− k)n2
{n2r2 − k2}δst. (3.11)

Thus, we have

trA =
n− 1

2k(n− k)n
{k2 + n(n− 2k)r2}. (3.12)

From (2.24), we obtain

R =
k − 1

n(n− k)
+

(n− 1)(n− 2k)
k(n− k)n

r2. (3.13)

According to

Ãij = Aij − 1
n

(trA)δij ,
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we have

Ãab =
n− 1
kn2

{k − nr2}δab, (3.14)

Ãas = 0, (3.15)

Ãst =
n− 1

(n− k)n2
{nr2 − k}δst. (3.16)

Therefore, we infer

‖Ã‖2 =
(n− 1)2

k(n− k)n

(
r2 − k

n

)2

. (3.17)

From (3.13) and (3.17), we obtain

(n− 2k)2‖Ã‖2 =
k(n− k)

n

(
nR− n− 2

n

)2

. (3.18)

From Lemma 3.1, (2.22), (3.9), (3.10) and (3.11), we have

Rabab = BaaBbb + Aaa + Abb =
n− 1

k(n− k)
(1− r2), (3.19)

Rasas = BaaBss + Aaa + Ass = 0, (3.20)

Rstst = BssBtt + Ass + Att =
n− 1

k(n− k)
r2. (3.21)

This completes the proof of Proposition 3.2. ¤

Remark 3.3. From (3.3), we know that (n − 2)‖Ã‖ =
√

n−1
n

(
nR − n−2

n

)
if and

only if k = 1 or k = n− 1.

Proposition 3.4. Let x̂ : Sk(1)×Rn−k 7→ Rn+1 be the standard cylinder. Then,
the hypersurface x = σ ◦ x̂ : Sk(1)×Rn−k 7→ Sn+1(1) satisfies

Φ = 0, (3.22)

R =
k − 1

n(n− k)
, (3.23)

‖Ã‖2 =
k(n− 1)2

n3(n− k)
, (3.24)

Rabab =
n− 1

k(n− k)
, Rasas = 0, Rstst = 0, (3.25)

where σ is the conformal diffeomorphism defined by (1.1) with p = 1.
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Proof. Since x̂ : Sk(1) ×Rn−k 7→ Rn+1 is the standard cylinder, we know that
the second fundamental form of x̂ has two distinct principal curvatures 1 and 0 with
multiplicities k and n− k, respectively. Let ĥij and Ĥ denote components of the second
fundamental form ÎI and the mean curvature of x̂, respectively. Then, we have

ĥab = δab, ĥas = 0, ĥst = 0, (3.26)

Ĥ =
k

n
, ‖ÎI‖2 = k. (3.27)

By defining

ρ̂2 =
n

n− 1
(‖ÎI‖2 − nĤ2

)
=

k(n− k)
n− 1

,

then, the Möbius metric ĝ of x̂ is given by

ĝ = ρ̂2dx̂ · dx̂.

Let {êi} be an orthonormal basis for the first fundamental form Î = dx̂ · dx̂ with the
dual basis {θ̂i}. Define

Ĉi = − ρ̂−2

{
Ĥ,i +

∑

j

(
ĥij − Ĥδij

)
êj(log ρ̂)

}
, (3.28)

Âij = − ρ̂−2
{
Hessij(log ρ̂)− êi(log ρ̂)êj(log ρ̂)− Ĥĥij

}

− 1
2
ρ̂−2

(‖∇(log ρ̂)‖2 + Ĥ2
)
δij , (3.29)

B̂ij = ρ̂−1
(
ĥij − Ĥδij

)
. (3.30)

Here Hessij and ∇ are the Hessian matrix and the gradient with respect to the induced
metric Î = dx̂ · dx̂. Φ̂ =

∑
i Ĉiθ̂iên+1, Â = ρ̂2

∑
i,j Âij θ̂iθ̂j and B̂ =

∑
i,j B̂ij θ̂iθ̂j

(ρ̂−1ên+1) is called Möbius form, Blaschke tensor and Möbius second fundamental form
of the immersion x̂, respectively (cf. [9]).

Since ρ̂2 is constant, from (3.28) and (3.29), we have Ĉi = 0 and Âij = − 1
2 ρ̂−2

{
Ĥ2δij − 2Ĥĥij

}
. Hence, we infer Φ̂ = 0 and

Âab = − (n− 1)(k − 2n)
2(n− k)n2

δab,

Âas = 0,

Âst = − (n− 1)k
2(n− k)n2

δst.

Thus, from Theorem 4.1 of Liu, Wang and Zhao [9], we know Φ = Φ̂ = 0 and
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Aab = Âab = − (n− 1)(k − 2n)
2(n− k)n2

δab, (3.31)

Aas = Âas = 0, (3.32)

Ast = Âst = − (n− 1)k
2(n− k)n2

δst. (3.33)

Thus, we infer

trA =
(n− 1)k
2(n− k)n

. (3.34)

From (2.24), we obtain

R =
k − 1

n(n− k)
. (3.35)

From

Ãij = Aij − 1
n

trAδij ,

we have

Ãab =
n− 1
n2

δab,

Ãas = 0,

Ãst = − (n− 1)k
(n− k)n2

δst.

Therefore, we infer

‖Ã‖2 =
(n− 1)2k
(n− k)n3

. (3.36)

From (3.35) and (3.36), we obtain

(n− 2k)2‖Ã‖2 =
k(n− k)

n

(
nR− n− 2

n

)2

. (3.37)

From Lemma 3.1, (2.22), (3.31), (3.32) and (3.33), we have

Rabab = BaaBbb + Aaa + Abb =
n− 1

k(n− k)
,

Rasas = BaaBss + Aaa + Ass = 0,

Rstst = BssBtt + Ass + Att = 0.
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This completes the proof of Proposition 3.4. ¤

Remark 3.5. From (3.23) and (3.24), we know that (n−2)‖Ã‖ =
√

n−1
n

(
nR−n−2

n

)
if and only if k = n− 1.

Proposition 3.6. Let x̄ : Sk(r) × Hn−k(
√

1 + r2) 7→ Hn+1 be the standard
embedding. Then, the hypersurface x = τ ◦ x̄ : Sk(r) × Hn−k(

√
1 + r2) 7→ Sn+1(1)

satisfies

Φ = 0, (3.38)

R =
k − 1

n(n− k)
− (n− 1)(n− 2k)

nk(n− k)
r2, (3.39)

(2k − n)‖Ã‖ =

√
k(n− k)

n

(
nR− n− 2

n

)
, (3.40)

Rabab =
n− 1

k(n− k)
(1 + r2), Rasas = 0, Rstst = − n− 1

k(n− k)
r2, (3.41)

where τ is the conformal diffeomorphism defined by (1.2) with p = 1.

Proof. Since x̄ : Sk(1) ×Hn−k(
√

1 + r2) 7→ Hn+1 is the standard embedding,
we know that the second fundamental form of x̄ has two distinct principal curvatures√

1+r2

r = d and r√
1+r2

with multiplicities k and n − k, respectively. Let h̄ij and H̄

denote the components of the second fundamental form ĪI and the mean curvature of x̄,
respectively. Then, we have

h̄ab = dδab, h̄as = 0, h̄st =
1
d
δst,

H̄ =
1
n
{kd + (n− k)d}, ‖ĪI‖2 = kd2 + (n− k)

1
d2

.

By defining

ρ̄2 =
n

n− 1
(‖ĪI‖2 − nH̄2

)
=

k(n− k)
n− 1

(d2 − 1)2

d2
,

then, the Möbius metric ḡ of x̄ is given by

ḡ = ρ̄2dx̄ · dx̄.

Let {ēi} be an orthonormal basis for the first fundamental form Ī = dx̄ · dx̄ with the
dual basis {θ̄i}. Define

C̄i = − (ρ̄)−2

{
H̄,i +

∑

j

(
h̄ij − H̄δij

)
ēj(log ρ̄)

}
, (3.42)
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Āij = − (ρ̄)−2
{
Hessij(log ρ̄)− ēi(log ρ̄)ēj(log ρ̄)− H̄h̄ij

}

− 1
2
(ρ̄)−2

(‖∇(log ρ̄)‖2 + 1 + H̄2
)
δij , (3.43)

B̄ij = (ρ̄)−1
(
h̄ij − H̄δij

)
. (3.44)

Here Hessij and ∇ are the Hessian matrix and the gradient with respect to the in-
duced metric Ī = dx̄ · dx̄. Φ̄ = ΣiC̄iθ̄iēn+1, Ā = ρ̄2

∑
ij Āij θ̄iθ̄j and B̄ =

∑
i,j B̄ij θ̄iθ̄j

((ρ̄)−1ēn+1) is called Möbius form, Blaschke tensor and Möbius second fundamental form
of the immersion x̄, respectively (cf. [9]).

Since ρ̄2 is constant, from (3.42) and (3.43), we have C̄i = 0 and Āij = − 1
2 (ρ̄)−2{(1+

H̄2)δij − 2H̄h̄ij}. Hence, we infer Φ̄ = 0 and

Āab =
n− 1

2k(n− k)n2
{k(2n− k) + n2r2}δab,

Āas = 0,

Āst = − n− 1
2k(n− k)n2

{k2 + n2r2}δst.

Thus, from Theorem 4.4 of Liu, Wang and Zhao [9], we know Φ = Φ̄ = 0 and

Aab = Āab =
n− 1

2k(n− k)n2
{k(2n− k) + n2r2}δab, (3.45)

Aas = Āas = 0, (3.46)

Ast = Āst = − n− 1
2k(n− k)n2

{k2 + n2r2}δst. (3.47)

Thus, we infer

trA =
n− 1

2k(n− k)n
{k2 − n(n− 2k)r2}. (3.48)

From (2.24), we obtain

R =
k − 1

n(n− k)
− (n− 1)(n− 2k)

nk(n− k)
r2. (3.49)

From

Ãij = Aij − 1
n

trAδij ,

we have
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Ãab =
n− 1
kn2

(k + nr2)δab,

Ãas = 0,

Ãst = − n− 1
(n− k)n2

(k + nr2)δst.

Therefore, we infer

‖Ã‖2 =
(n− 1)2

k(n− k)n

(
r2 +

k

n

)2

.

From (3.49) and (3.50), we obtain

(2k − n)‖Ã‖ =

√
k(n− k)

n

(
nR− n− 2

n

)
.

From Lemma 3.1, (2.22), (3.45), (3.46) and (3.47), we have

Rabab = BaaBbb + Aaa + Abb =
n− 1

k(n− k)
(1 + r2),

Rasas = BaaBss + Aaa + Ass = 0,

Rstst = BssBtt + Ass + Att = − n− 1
k(n− k)

r2.

This completes the proof of Proposition 3.6. ¤

Remark 3.7. From (3.40), we know that (n− 2)‖Ã‖ =
√

n−1
n

(
nR − n−2

n

)
if and

only if k = n− 1.

4. Proofs of Main Theorems.

In this section, we will prove our Main Theorems.

Proof of Main Theorem 1. Since the Möbius form Φ =
∑

i,α Cα
i eα ≡ 0, we

have, by (2.19), (2.20) and (2.21), that

Aij,k = Aik,j , Bα
ij,k = Bα

ik,j ,
∑

k

Bα
ikAkj =

∑

k

Bα
kjAki, for any α. (4.1)

From the definition ∆Bα
ij =

∑
k Bα

ij,kk of the Laplacian of the Möbius second fundamental
form of the immersion x, we have

1
2
∆

∑

i,j,α

(
Bα

ij

)2 =
∑

i,j,k,α

(
Bα

ij,k

)2 +
∑

i,j,α

Bα
ij∆Bα

ij . (4.2)
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From (2.16), we have
∑

i,j,k,α

(
Bα

ij,k

)2 +
∑

i,j,α

Bα
ij∆Bα

ij = 0. (4.3)

From (2.16), (2.22), (2.23), (2.26) and (4.1), we have, by a direct calculation, that

∑

i,j,α

Bα
ij∆Bα

ij = − 2
∑

α,β

[
tr

(
B2

αB2
β

)− tr
{
(BαBβ)2

}]

−
∑

α,β

{
tr(BαBβ)

}2 + n
∑
α

tr
(
AB2

α

)
+

n− 1
n

trA, (4.4)

where Bα and A denote the n × n-symmetric matrices (Bα
ij) and (Aij) respectively.

Putting Ã = (Ãij) with

Ãij = Aij − 1
n

(trA)δij , (4.5)

we have

‖A‖2 =
∑

i,j

(Aij)2 =
∑

i,j

(
Ãij

)2 +
1
n

(trA)2 = ‖Ã‖2 +
1
n

(trA)2, (4.6)

From (4.5), we have

trÃ = 0, tr
(
ÃB2

α

)
= tr

(
AB2

α

)− 1
n

(trA)
(
trB2

α

)
. (4.7)

From (4.1), we know that BαA = ABα. Therefore BαÃ = ÃBα holds. From Lemma
2.2, we have

tr
(
AB2

α

) ≥ − n− 2√
n(n− 1)

trB2
α‖Ã‖+

1
n

(trA)
(
trB2

α

)
. (4.8)

Case (i) where p = 1. Put Bn+1
ij = Bij and Bn+1 = B. Since BA = AB holds

from (4.1), we can choose a local orthonormal basis {E1, E2, · · · , En} such that Bij =
µiδij and Aij = λiδij . Thus, we have from (4.4), (2.16) and (4.8)

∑

i,j

Bij∆Bij = −(trB2)2 + ntr(AB2) +
n− 1

n
trA

≥ −
(

n− 1
n

)2

−
√

n− 1
n

(n− 2)‖Ã‖+ 2
n− 1

n
trA

=

√
n− 1

n

[√
n− 1

n

(
nR− n− 2

n

)
− (n− 2)‖Ã‖

]
, (4.9)
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where ‖Ã‖2 = ‖Ã‖2 and trA = trA are used. From the assumption (1.3) in Main
Theorem 1, we know that the right hand side of formula (4.9) is nonnegative. Therefore,
from (4.3) and (4.9), we obtain

Bij,k = 0, for all i, j, k and
∑

i,j

Bij∆Bij = 0. (4.10)

Hence the equality in (4.9) holds. We have

√
n− 1

n

(
nR− n− 2

n

)
− (n− 2)‖Ã‖ = 0. (4.11)

Further, the inequality (4.8) becomes equality. From Lemma 2.2, we know that (n− 1)
of the eigenvalues µi of B satisfy |µi| = (trB2)1/2√

n(n−1)
= 1

n and µiµj ≥ 0, which yields that

the (n − 1) of µi’s are equal and constant. Since trB = 0 and
∑

i,j B2
ij = n−1

n hold, we
know that B has two distinct principal curvatures, which are all constant. Therefore,
we obtain x : M 7→ Sn+1(1) is a Möbius isoparametric hypersurface with two distinct
principal curvatures. By the result of Li, Liu, Wang and Zhao [7], we have that x is
Möbius equivalent to an open part of the Riemannian product Sk(r) × Sn−k(

√
1− r2)

in Sn+1(1), or an open part of the image of σ of the standard cylinder Sk(1) × Rn−k

in Rn+1 or an open part of the image of τ of Sk(r) × Hn−k(
√

1 + r2) in Hn+1, for
k = 1, 2, · · · , n − 1. From Remark 3.3, Remark 3.5 and Remark 3.7, we know that
formula (4.11) holds if and only if k = n−1. Hence, Main Theorem 1 is true in this case.

Case (ii) where p ≥ 2. Define σαβ =
∑

i,j Bα
ijB

β
ij . Since the (p× p)-matrix (σαβ)

is symmetric, we can choose En+1, · · · , En+p such that (σαβ) is diagonal, that is,

σαβ = σαδαβ . (4.12)

From Lemma 2.1, we have

−
∑

α,β

N(BαBβ −BβBα)−
∑

α,β

{
tr(BαBβ)

}2 ≥ −2
∑

α6=β

σασβ −
∑
α

σ2
α

= −2
( ∑

α

σα

)2

+
∑
α

σ2
α

≥ −2
(

n− 1
n

)2

+
1
p

( ∑
α

σα

)2

= −
(

2− 1
p

)(
n− 1

n

)2

. (4.13)

From (4.4), (4.8), (4.13), we have
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∑

i,j,α

Bα
ij∆Bα

ij ≥ −
(

2− 1
p

)(
n− 1

n

)2

+ n
∑
α

tr
(
AB2

α

)
+

n− 1
n

trA

= −
(

2− 1
p

)(
n− 1

n

)2

− n(n− 2)√
n(n− 1)

∑
α

trB2
α‖Ã‖

+ trA
∑
α

trB2
α +

n− 1
n

trA

= −
(

2− 1
p

)(
n− 1

n

)2

−
√

n− 1
n

(n− 2)‖Ã‖+ 2
n− 1

n
trA

=

√
n− 1

n

{√
n− 1

n

(
nR− 1

n

[
(n− 1)

(
2− 1

p

)
− 1

])
− (n− 2)‖Ã‖

}
,

(4.14)

where ‖Ã‖2 = ‖Ã‖2 and trA = trA are used. From the assumption (1.3) in Main
Theorem 1, we know that the right hand side of (4.14) is nonnegative. Therefore, from
(4.3) and (4.14), we obtain Bα

ij,k = 0, for all i, j, k, α, and
∑

i,j,α Bα
ij∆Bα

ij = 0. Hence,
the above inequalities become equalities. Thus, we have

(n− 2)‖Ã‖ =

√
n− 1

n

{
nR− 1

n

[
(n− 1)

(
2− 1

p

)
− 1

]}
, (4.15)

and

σn+1 = σn+2 = · · · = σn+p (4.16)

because of 1
p (

∑
α σα)2 =

∑
α σ2

α. From Lemma 2.1, we know that at most two of the
matrices Bα = (Bα

ij) are nonzero. From (2.16), we have
∑

α σα = n−1
n . Hence, (4.16)

yields p = 2 and we may assume that

Bn+1 = λÃ, Bn+2 = µB̃, λ, µ 6= 0, (4.17)

where Ã and B̃ are defined in Lemma 2.1. Therefore, we have

Bn+1
12 = Bn+1

21 = λ, Bn+1
ij = 0, (i, j) 6∈ {(1, 2), (2, 1)}, (4.18)

Bn+2
11 = µ, Bn+2

22 = −µ, Bn+2
ij = 0, (i, j) 6∈ {(1, 1), (2, 2)}. (4.19)

Since the inequality (4.8) becomes equality, from Lemma 2.2, we know that, for each

α, (n − 1) of the eigenvalues µα
i of Bα = (Bα

ij) satisfy |µα
i | = (trB2

α)1/2
√

n(n−1)
and µα

i µα
j ≥ 0,

which infer that the (n − 1) of µα
i are equal. From (4.19), we have the eigenvalues of

Bn+2 = (Bn+2
ij ) are µ,−µ, 0, 0, · · · 0. Since µ 6= 0, we infer n = 2. From (4.18), we can

infer, by an algebraic method, that the eigenvalues of Bn+1 are λ,−λ. Since n = p = 2
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holds, from (4.1), (4.18) and (4.19), we have

A11 = A22, A12 = A21 = 0. (4.20)

Therefore, x : M2 7→ S4(1) is a Möbius isotropic submanifold in S4. Thus, we have
‖Ã‖ = 0. Since n = 2 and p = 2 hold, from (4.15), we have R = 1

8 . We obtain trA = 3
8 .

Hence A11 = A22 = 3
16 . From Liu, Wang and Zhao [9], we obtain that x : M2 7→ S4(1)

is Möbius equivalent to an open part of either a minimal surface x̃ : M2 7→ S4(1) with
constant scalar curvature in S4(1), or the image of σ2 of a minimal surface with constant
scalar curvature in R4 or the image of τ2 of a minimal surface with constant scalar
curvature in H4. For a surface, Gaussian curvature is constant if and only if the scalar
curvature is constant. From the Proposition 4.1 and Theorem 4.2 of Bryant [3], we know
that a minimal surface with constant scalar curvature in R4 is totally geodesic and a
minimal surface with constant scalar curvature in H4 is also totally geodesic. Since
x : M2 7→ S4(1) has no umbilical points, we infer that x : M2 7→ S4(1) is Möbius
equivalent to an open part of a minimal surface x̃ : M2 7→ S4(1) with constant scalar
curvature in S4(1). From the Gauss equation of the minimal surface x̃ : M2 7→ S4(1)
with constant scalar curvature in S4(1), we know that the squared norm of the second
fundamental form of this minimal surface is constant. According to the definition (2.2)
of ρ, ρ2 is constant. From (2.14), we have ρ2 = 8

3 . Thus, the squared norm of the second
fundamental form of x̃ must be 4

3 , i.e. ‖II‖2 = 4
3 . Therefore, from the result of Chern, do

Carmo and Kobayashi [5], we obtain that x̃ : M2 7→ S4(1) is locally a Veronese surface
in S4(1). This finishes the proof of Main Theorem 1.

Proof of Main Theorem 2. Since the Möbius form Φ =
∑

i,α Cα
i eα ≡ 0 holds,

we have

Aij,k = Aik,j , Bα
ij,k = Bα

ik,j ,
∑

k

Bα
ikAkj =

∑

k

Bα
kjAki. (4.21)

Hence, for any α, BαA = ABα, where A = (Aij) and Bα = (Bα
ik). For any fixed α, we

can choose the basis {Ei} such that A = (Aij) and Bα = (Bα
ik) are diagonal, that is,

Aij = λiδij , Bα
ij = µα

i δij . (4.22)

Since n(n− 1)R is constant, from (2.24), we have that trA = trA =
∑

i Aii is constant.
From (2.25), (4.21), (4.22), we infer

1
2
∆‖A‖2 =

∑

i,j,k

(Aij,k)2 +
∑

i,j,k

AijAij,kk

=
∑

i,j,k

(Aij,k)2 +
∑

i,j,k

AijAkk,ij +
∑

i,j,k,l

AijAliRlkjk +
∑

i,j,k,l

AijAklRlijk

=
∑

i,j,k

(Aij,k)2 +
1
2

∑

i,k

Rikik(λi − λk)2. (4.23)
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When p > 1, from the assumption K > 0 in Main Theorem 2, by integrating (4.23), we
have

Rikik(λi − λk)2 = 0.

Therefore, we know that λi = λk, that is, x : M 7→ Sn+p(1) is a Möbius isotropic
submanifold in Sn+p(1) with positive Möbius sectional curvature. From the result in [9],
we know that x is Möbius equivalent to the compact minimal submanifolds with constant
scalar curvature in Sn+p(1).

Next, we consider the case where p = 1. In this case, we know that the Möbius
sectional curvature of the immersion x is nonnegative. By integrating (4.23), we infer

Aij,k = 0, for any i, j, k, Rikik(λi − λk)2 = 0. (4.24)

From (2.22) and (4.22), we have Rikik = µiµk + λi + λk for i 6= k. Hence, we infer

(µiµk + λi + λk)(λi − λk)2 = 0. (4.25)

Form (4.24) and (2.17), we have

0 = dλiδij + (λi − λj)ωij , 1 ≤ i, j ≤ n. (4.26)

Setting i = j in (4.26), we obtain dλi = 0, that is, eigenvalues of (Aij) are all constant.
From (4.26), we infer that for λi 6= λj ,

ωij = 0. (4.27)

Let λ1, λ2, · · · , λl are these distinct eigenvalues of A = (Aij). We can assume λ1 < λ2 <

· · · < λl. From (4.25), we have

λi = λk, or µiµk + λi + λk = 0. (4.28)

In the second case, we will prove that A = (Aij) has at most three distinct eigenvalues.
In fact, if we assume λ1 < λ2 < λ3 < λ4 < · · · < λl are these distinct eigenvalues of
A = (Aij). Let λ1, λ2, λi are the three distinct eigenvalues of A = (Aij), we have

µiµ1 + λi + λ1 = 0.

µiµ2 + λi + λ2 = 0.

Hence, we have

µi = −λ1 − λ2

µ1 − µ2
, (4.29)

λi = −λ1 + µ1
λ1 − λ2

µ1 − µ2
. (4.30)
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Hence, for r = 3, 4, · · · , l, we have λr = λi. This is a contradiction. Therefore, A = (Aij)
has at most three distinct eigenvalues.

(1). In the first case, we consider the case that (Aij) only has one distinct eigenvalues.
Since the Möbius form Φ =

∑
i,α Cα

i eα ≡ 0, we know x : M 7→ Sn+1(1) is a Möbius
isotropic hypersurface in Sn+1(1) with nonnegative Möbius sectional curvature. By the
result in [9], we know that x is Möbius equivalent to a minimal hypersurface with constant
scalar curvature in Sn+1(1).

(2). We consider the second case that (Aij) has two or three distinct eigenvalues.
From (4.29), we know that at most three of the principal curvatures of (Bij) are distinct.
Since x has no umbilical points, we know that the distinct principal curvatures of (Bij)
is two or three.

(i) If two of the principal curvatures of (Bij) are distinct, without loss of generality,
we may assume µ1 < µ2. From (2.16), we know that µ1 and µ2 are constant, that is,
x : M 7→ Sn+1(1) is a Möbius isoparametric hypersurface with two distinct principal
curvatures in Sn+1(1). Since x is compact, from Theorem 1.1 in the introduction, we
infer that x is Möbius equivalent to the Riemannian product Sk(r)×Sn−k(

√
1− r2), for

k = 1, 2, · · · , n− 1.
(ii) If three of the principal curvatures of (Bij) are distinct, without loss of generality,

we may assume µ1 < µ2 < µ3. From (2.16) and (4.29), we know that µ1, µ2, µ3 are
constant. From the proof of Main Theorem 1, we infer

1
2
∆

∑

i,j

B2
ij =

∑

i,j,k

B2
ij,k +

∑

i,j

Bij∆Bij

=
∑

i,j,k

B2
ij,k − (trB2)2 + ntr(AB2) +

n− 1
n

trA

=
∑

i,j,k

B2
ij,k +

1
2

∑

i,j

(µi − µj)2Rijij ≥ 0.

Since
∑

i,j B2
ij is constant, we obtain Bij,k = 0 for any i, j, k. From (2.18), we have,　

for each µi 6= µj ,

ωij = 0. (4.31)

Hence, we know that the distributions of the eigenspaces with respect to µi are integrable.
Since the distinct principal curvatures of M is three, we can write M = M1 ×M2 ×M3,
where Mi (1 ≤ i ≤ 3) is the integrable manifold corresponding to the principal curvature
µi. Since µi’s are constant, we know that Mi, i = 1, 2, 3, are closed. Thus, they are
compact because M is compact. From (2.22), we have, for j, k, l ∈ [i],

Rijkl =
(
µ2

i + 2λi

)
(δikδjl − δilδjk), (4.32)

that is, Mi are constant curvature space with respect to the Möbius metric g. Putting
ki = µ2

i + 2λi, 1 ≤ i ≤ 3, then, we have
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k1 = (µ1 − µ2)(µ1 − µ3) > 0,

k2 = (µ2 − µ1)(µ2 − µ3) < 0,

k3 = (µ3 − µ1)(µ3 − µ2) > 0. (4.33)

Therefore, we may infer dim M2 = 1. In fact, if dim M2 ≥ 2 holds, by the assumption
that the Möbius sectional curvature of M is nonnegative, we have k2 ≥ 0. This is a
contradiction.

Let (u, v, w) be a coordinate system for M such that u ∈ M1, v ∈ M2, w ∈ M3 and
El = ∂

∂v , where l = dimM1 + 1. Then, from structure equations (2.9), (2.10), (2.11) and
(2.12) and (4.31), by a direct and simple calculation, we obtain

Nv = λ2Yv, (4.34)

Yvv = −λ2Y −N + µ2E, Yvj = 0, for j 6= l, (4.35)

Ev = −µ2Yv, (4.36)

where we denote En+1 by E. From (4.35), we can write Y = f(v) + F (u,w). Then, by
(4.34), (4.35) and (4.36), we have

f ′′′(v) + k2f
′(v) = 0, (4.37)

where k2 = µ2
2 + 2λ2 < 0. The solution of (4.37) can be easily written as

f(v) = C1
1√−k2

cosh
(√−k2v

)
+ C2

1√−k2

sinh
(√−k2v

)
, (4.38)

where C1, C2 ∈ Rn+3
1 are constant vectors. From (4.38), we know that M2 must be a

hyperbola. This is a contradiction because M2 is compact. Hence, the case (ii) does
not occur, that is, M is a Möbius isoparametric hypersurface with two distinct principal
curvatures. This completes the proof of Main Theorem 2.
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[11] C. P. Wang, Möbius geometry of submanifolds in Sn, Manuscripta Math., 96 (1998), 517–534.

Qing-Ming Cheng

Department of Mathematics

Faculty of Science and Engineering

Saga University

Saga, 840-8502, Japan

E-mail: cheng@ms.saga-u.ac.jp

Shichang Shu

Department of Mathematics

Xianyang Teachers College

Xianyang, 712000, Shaanxi

P.R.China.

Present address:

Department of Mathematics

Faculty of Science and Engineering

Saga University

Saga, 840-8502, Japan

E-mail: xysxssc@yahoo.com.cn


