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Abstract. In this paper we consider the one-dimensional quantum random
walk Xϕ

n at time n starting from initial qubit state ϕ determined by 2 × 2 unitary
matrix U . We give a combinatorial expression for the characteristic function of Xϕ

n .
The expression clarifies the dependence of it on components of unitary matrix U and
initial qubit state ϕ. As a consequence, we present a new type of limit theorems for
the quantum random walk. In contrast with the de Moivre-Laplace limit theorem,
our symmetric case implies that Xϕ

n /n converges weakly to a limit Zϕ as n → ∞,

where Zϕ has a density 1/π(1 − x2)
√

1− 2x2 for x ∈ (−1/
√

2, 1/
√

2). Moreover we
discuss some known simulation results based on our limit theorems.

1. Introduction.

The classical random walk on the line is the motion of a particle which inhabits the
set of integers. The particle moves at each time step either one unit to the left with
probability p or one unit to the right with probability q = 1 − p. The directions of
different steps are independent of each other. This classical random walk is often called
the simple random walk. For general random walks on a countable space, there is a
beautiful theory (see Spitzer [12]). In the presnet paper, we consider quantum variations
of the classical random walk and refer to such processes as quantum random walks.

Very recently quantum random walks have been widely investigated by a number of
groups in connection with the quantum computing, for exmples, [1], [3], [4], [5], [6], [8],
[9], [13], [14]. For more general setting including quantum cellular automata, see Meyer
[7]. This paper is an extended version of our previous short letter with no proof (Konno
[4]).

In Ambainis et al. [1], they gave two general ideas for analyzing quantum random
walks. One is the path integral approach, the other is the Schrödinger approach. In this
paper, we take the path integral approach, that is, the probability amplitude of a state
for the quantum random walk is given as a combinatorial sum over all possible paths
leading to that state.

The quantum random walk considered here is determined by 2 × 2 unitary matrix
U stated in the next section. The new points of this paper is to introduce 4 matrices,
P, Q, R and S given by the unitary matrix U , to obtain a combinatorial expression for
the characteristic function by using them, and to clarify the dependence of the mth
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moment and symmetry of distribution for the quantum random walk on the unitary
matrix U and initial qubit (quantum bit) state ϕ. Furthermore we give a new type of
limit theorems for the quantum random walk by using our results. Our limit theorem
shows that the behavior of quantum random walk is remarkably different from that of
the classical ramdom walk. As a corollary, it reveals whether some simulation results
already known are accurate or not.

The rest of the paper is organized as follows. In Section 2, we introduce a definition
of the quantum random walk and explain our results. Section 3 gives the characteristic
function. In Section 4, we present a condition for symmetry of the distribution. Section
5 is devoted to a proof of the limit theorem. In Section 6, we consider the Hadamard
walk case.

2. Definition and results.

The time evolution of the one-dimensional quantum random walk studied here is
given by the following unitary matrix:

U =
[

a b

c d

]
,

where a, b, c, d ∈ C and C is the set of the complex numbers. So we have |a|2 + |c|2 =
|b|2 + |d|2 = 1, ac + bd = 0, c = −4b, and d = 4a, where z is the complex conjugate of
z ∈ C and 4 = det U = ad− bc. We note that the unitarity of U gives |4| = 1.

The quantum random walk is a quantum generalization of the classical random walk
in one dimension with an additional degree of freedom called the chirality. The chirality
takes values left and right, and means the direction of the motion of the particle. The
evolution of the quantum random walk is given by the following way. At each time
step, if the particle has the left chirality, it moves one unit to the left, and if it has the
right chirality, it moves one unit to the right. More precisely, we present the left and
right chirality states as |L〉 = t[1, 0] and |R〉 = t[0, 1], where t indicates the transposed
operator. So the unitary matrix U acts on two chirality states |L〉 and |R〉 as

U |L〉 = a|L〉+ c|R〉, U |R〉 = b|L〉+ d|R〉.

Figure 1 depicts the move in a quantum random walk where the chirality undergoes a
unitary transformation.

The study on the dependence of some important quantities (e.g., characteristic func-
tion, the mth moment, limit density) on initial qubit state is one of the essential parts,
so we define the set of initial qubit states as follows:

Φ = {ϕ = t[α, β] ∈ C2 : |α|2 + |β|2 = 1}.

From now on, we will give a precise definition of the quantum random walk Xϕ
n at time

n starting from initial qubit state ϕ ∈ Φ. First we decompose U = P + Q, where
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Figure 1. The dynamics of the quantum random walk.

P =
[

a b

0 0

]
, Q =

[
0 0
c d

]
.

The important point is that P (resp. Q) represents that the particle moves to the left
(resp. right). We define the (4N + 2)× (4N + 2) matrix by

UN =




0 P 0 . . . . . . 0 Q

Q 0 P 0 . . . . . . 0
0 Q 0 P 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 Q 0 P 0
0 . . . . . . 0 Q 0 P

P 0 . . . . . . 0 Q 0




, with 0 =
[

0 0
0 0

]
.

Then we see that UN becomes also unitary matrix, since P and Q satisfy

PP ∗ + QQ∗ = P ∗P + Q∗Q =
[

1 0
0 1

]
, PQ∗ = QP ∗ = Q∗P = P ∗Q =

[
0 0
0 0

]
,

where ∗ means the adjoint operator. Here an initial qubit state is given by

Ψ (0)(ϕ) =




0N

ϕ

0N


 ∈ C4N+2,

where 0N = t[0, . . . , 0] ∈ C2N is the zero vector and ϕ = t[α, β]. The qubit state at time
n, Ψ (n)(ϕ), is determined by

Ψ (n)(ϕ) = (UN )nΨ (0)(ϕ). (2.1)

We write



1182 N. Konno

Ψ (n)(ϕ) = t[Ψ (n)
−N (ϕ), Ψ (n)

−(N−1)(ϕ), . . . , Ψ (n)
N (ϕ)],

Ψ
(n)
k (ϕ) =

[
Ψ

(n)
L,k(ϕ)

Ψ
(n)
R,k(ϕ)

]
= Ψ

(n)
L,k(ϕ)|L〉+ Ψ

(n)
R,k(ϕ)|R〉 ∈ C2.

Then Ψ
(n)
k (ϕ) is the two component vector of amplitudes of the particle being at site k and

at time n with the chirality being left (upper component) and right (lower component).
We see that (2.1) implies

Ψ
(n+1)
k (ϕ) = (UNΨ (n)(ϕ))k = QΨ

(n)
k−1(ϕ) + PΨ

(n)
k+1(ϕ). (2.2)

We define the quantum random walk Xϕ
n with state space {−N, . . . , N} by

P (Xϕ
n = k) = ‖Ψ (n)

k (ϕ)‖2.

By construction P (Xϕ
0 = 0) = 1. We remark P (Xϕ

n = k) is independent of N as far as
n ≤ N . Hence we naturally regard Xϕ

n as a Z-valued random variable, where Z is the
set of the integers, and denote by the same symbol Xϕ

n .
In contrast with classical random walks, Xϕ

n can not be written as Xϕ
n = Y1+· · ·+Yn,

where Y1, Y2, . . . are independent and identically distributed random variables. It is also
noted that the quantum random walk is not a stochastic process. It is a sequence of
distributions arising from products of the unitary matrix UN . The unitarity of UN

ensures

∑

k∈Z

P (Xϕ
n = k) = ‖(UN )nϕ‖2 = ‖ϕ‖2 = |α|2 + |β|2 = 1,

for any 1 ≤ n ≤ N and initial state ϕ = t[0N , ϕ, 0N ]. That is, the amplitude always
defines a probability distribution for the location. For initial state ϕ = t[0N , ϕ, 0N ], we
have

UNϕ = t[0N−1, Pϕ, 0, Qϕ, 0N−1],

U
2

Nϕ = t[0N−2, P
2ϕ, 0, (PQ + QP )ϕ, 0, Q2ϕ, 0N−2],

U
3

Nϕ = t[0N−3, P
3ϕ, 0, (P 2Q + PQP + QP 2)ϕ, 0,

(Q2P + QPQ + PQ2)ϕ, 0, Q3ϕ, 0N−3].

This shows that expansion of Un = (P +Q)n for the quantum random walk corresponds
to that of 1n = (p + q)n for the classical random walk.

We now explain our results briefly. Using an explicit form of P (Xϕ
n = k) (Lemma

3), we obtain the characteristic function of Xϕ
n (Theorem 4) and the mth moment of it

(Corollary 5). One of the interesting facts is that, when m is even, the mth moment of
Xϕ

n is independent of the initial qubit state ϕ ∈ Φ. On the other hand, when m is odd,
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the mth moment depends on the initial qubit state. So the standard deviation of Xϕ
n

depends on the initial qubit state ϕ ∈ Φ. Our main theorem is as follows:

Theorem 1. Suppose abcd 6= 0. Then we have

lim
n→∞

Xϕ
n

n
= Zϕ in law,

where Zϕ is a random variable whose distribution has a density fα,β(x)dx such that

fα,β(x) =

√
1− |a|2 (1− λα,βx)

π(1− x2)
√
|a|2 − x2

, with λα,β = |α|2 − |β|2 +
aαbβ + aαbβ

|a|2 ,

for x ∈ (−|a|, |a|), and fα,β(x) = 0 for |x| ≥ |a|. Here ϕ = t[α, β] as before.

It can be confirmed that fα,β(x) satisfies the property of a density function. Indeed,
we see that fα,β(x) ≥ 0 since 1± λα,β |a| ≥ 0, and that

∫ |a|

−|a|
fα,β(x)dx =

√
1− |a|2

π

∫ 1

0

t−1/2(1− t)−1/2(1− |a|2t)−1dt

=

√
1− |a|2

π
Γ (1/2)22F1(1/2, 1; 1; |a|2)

= 1.

Here 2F1(a, b; c; z) is the hypergeometric function (see Section 5). The last equality comes
from Γ (1/2) =

√
π and 2F1(1/2, 1; 1; |a|2) = 1/

√
1− |a|2. Remark that

E(Zϕ) = −(1−
√

1− |a|2) λα,β , E((Zϕ)2) = 1−
√

1− |a|2.

Moreover, an easy computation shows that |E((Zϕ)m)| ≤ 2|a|m for any m ≥ 1.
It should be noted that, if |a| = 1, then b = c = 0 and |d| = 1. So this case is

trivial. In fact, Corollary 5 (ii) implies that limn→∞Xϕ
n /n = Wϕ, in law, where Wϕ is

determined by P (Wϕ = −1) = |α|2 and P (Wϕ = 1) = |β|2. Theorem 1 suggests the
following result on symmetry of distribution for the quantum random walk (Theorem 6).
Define

Φs = {ϕ ∈ Φ : P (Xϕ
n = k) = P (Xϕ

n = −k) for any n ∈ Z+ and k ∈ Z},
Φ0 = {ϕ ∈ Φ : E(Xϕ

n ) = 0 for any n ∈ Z+},
Φ⊥ = {ϕ = t[α, β] ∈ Φ : |α| = |β| = 1/

√
2, aαbβ + aαbβ = 0},

where Z+ is the set of the positive integers. For ϕ ∈ Φs, the probability distribution of
Xϕ

n is symmetric for any n ∈ Z+. Using explicit forms of distribution of Xϕ
n (Lemma 3)

and E(Xϕ
n ) (Corollary 5 (i) for m = 1 case), we have Φs = Φ0 = Φ⊥.
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3. Characteristic function.

This section gives a combinatorial expression of the characteristic function of the
quantum random walk Xϕ

n . As a corollary, we obtain the mth moment of Xϕ
n . For fixed

l and m, we consider

Ξ(l, m) =
∑

lj ,mj≥0:l1+···+ln=l,m1+···+mn=m

P l1Qm1P l2Qm2 · · ·P lnQmn .

It should be noted that for l + m = n and −l + m = k, we see that Ψ
(n)
k (ϕ) = Ξ(l, m)ϕ,

since Ψ
(n)
k (ϕ) = t[Ψ (n)

L,k(ϕ), Ψ (n)
R,k(ϕ)](∈ C2) is a two component vector of amplitudes of

the particle being at site k at time n for initial qubit state ϕ ∈ Φ and Ξ(l, m) is the sum
of all possible paths in the trajectory consisting of l steps left and m steps right with
l = (n− k)/2 and m = (n + k)/2 (see (2.2)). For example, in the case of P (Xϕ

4 = −2),
we have the following expression (see Figure 2):

Ξ(3, 1) = QP 3 + PQP 2 + P 2QP + P 3Q.

Figure 2. Four different paths corresponding to Ξ(3, 1).

Here we find a nice relation: P 2 = aP . By using this, we have Ξ(3, 1) = a2QP +aPQP +
aPQP + a2PQ. Moreover, to compute general Ξ(l, m), it is convenient to introduce

R =
[

c d

0 0

]
, S =

[
0 0
a b

]
.

Then we obtain the following table of products of the matrices P, Q, R and S:

Table 1.

P Q R S

P aP bR aR bP

Q cS dQ cQ dS

R cP dR cR dP

S aS bQ aQ bS
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where PQ = bR, for example. Since P, Q, R and S form an orthonormal basis of the
vector space of complex 2× 2 matrices with respect to the trace inner product 〈A|B〉 =
tr(A∗B), Ξ(l, m) has the following form:

Ξ(l, m) = pn(l, m)P + qn(l, m)Q + rn(l, m)R + sn(l, m)S.

Next problem is to obtain explicit forms of pn(l, m), qn(l, m), rn(l, m), and sn(l, m). The
above example of n = l + m = 4 case, we have

Ξ(4, 0) = a3P, Ξ(3, 1) = 2abcP + a2bR + a2cS,

Ξ(2, 2) = bcdP + abcQ + b(ad + bc)R + c(ad + bc)S,

Ξ(1, 3) = 2bcdQ + bd2R + cd2S, Ξ(2, 2) = d3Q.

So, for example, p4(3, 1) = 2abc, q4(3, 1) = 0, r4(3, 1) = a2b, and s4(3, 1) = a2c. The
following holds in general.

Lemma 2. We write l ∧m = min{l, m}. Suppose abcd 6= 0. Then
(i) for l ∧m ≥ 1, we have

Ξ(l, m) = alam4m
l∧m∑
γ=1

(
− |b|2
|a|2

)γ(
l − 1
γ − 1

)(
m− 1
γ − 1

)

×
[
l − γ

aγ
P +

m− γ

4aγ
Q− 1

4b
R +

1
b
S

]
,

(ii) for l ≥ 1 and m = 0, we have Ξ(l, 0) = al−1P,

(iii) for l = 0 and m ≥ 1, we have Ξ(0,m) = 4m−1am−1Q.

Proof. We first calculate explicit forms of pn(l, m). To begin, we assume l ≥ 2
and m ≥ 1. From Table 1, it is sufficient to consider only the following case:

C(w)γ,l,m = Pw1Qw2Pw3 · · ·Qw2γ Pw2γ+1 ,

where w = (wi) ∈ Z2γ+1
+ , with l =

∑γ
k=0 w2k+1 and m =

∑γ
k=1 w2k. For example, we

take w1 = w2 = w3 = 1 and γ = 1 as PQP . We remark that 2γ + 1 is the number of
clusters of P ’s and Q’s. Next we consider the range of γ. The minimum is γ = 1, that
is, 3 clusters. This case is P · · ·PQ · · ·QP · · ·P . The maximum is γ = (l− 1) ∧m. This
case includes the patterns for example:

PQPQPQ · · ·PQPQPP · · ·PP (l − 1 ≥ m),

PQPQPQ · · ·PQPQQ · · ·QQP (l − 1 ≤ m).

We introduce a set of sequences with 2γ + 1 components: for fixed γ ∈ [1, (l − 1) ∧m],
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Wγ,l,m =
{

w = (wi) ∈ Z2γ+1
+ :

γ∑

k=0

w2k+1 = l,

γ∑

k=1

w2k = m

}
.

By a standard combinatorial argument, we have

|Wγ,l,m| =
(

l − 1
γ

)(
m− 1
γ − 1

)
. (3.1)

Let w ∈ Wγ,l,m. Then by using Table 1, we have

C(w)γ,l,m = aw1−1Pdw2−1Qaw3−1P · · · dw2γ−1Qaw2γ+1−1P

= al−(γ+1)dm−γ(PQ)γP

= al−(γ+1)dm−γbγcγP. (3.2)

Combining (3.1) and (3.2), we obtain

pn(l, m)P =
(l−1)∧m∑

γ=1

∑

w∈Wγ,l,m

C(w)γ,l,m

=
(l−1)∧m∑

γ=1

(
l − 1

γ

)(
m− 1
γ − 1

)
al−(γ+1)bγcγdm−γP.

When l ≥ 1 and m = 0, it is easy to see that pn(l, 0)P = P l = al−1P . Furthermore,
when l = 1,m ≥ 1 and l = 0,m ≥ 0, it is clear that pn(l, m) = 0.

As in the case of pn(l, m), we compute qn(l, m), rn(l, m), and sn(l, m)
by considering the patterns Qw1Pw2Qw3 · · ·Pw2γ Qw2γ+1 , Pw1Qw2Pw3 · · ·Qw2γ , and
Qw1Pw2Qw3 · · ·Pw2γ , respectively. Then we obtain

qn(l, m) =





∑l∧(m−1)
γ=1

(
l−1
γ−1

)(
m−1

γ

)
al−γbγcγdm−(γ+1) for l ≥ 1,m ≥ 2,

dm−1 for l = 0,m ≥ 1,

0 for m = 1, l ≥ 1 and

m = 0, l ≥ 0,

rn(l, m) =





∑l∧m
γ=1

(
l−1
γ−1

)(
m−1
γ−1

)
al−γbγcγ−1dm−γ for l, m ≥ 1,

0 for l ∧m = 0,

sn(l, m) =





∑l∧m
γ=1

(
l−1
γ−1

)(
m−1
γ−1

)
al−γbγ−1cγdm−γ for l, m ≥ 1,

0 for l ∧m = 0.
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For l ∧m ≥ 1, the above explicit forms of p(l, m), qn(l, m), rn(l, m), and sn(l, m) imply

Ξ(l, m) = aldm
l∧m∑
γ=1

(
bc

ad

)γ(
l − 1
γ − 1

)(
m− 1
γ − 1

)[
l − γ

aγ
P +

m− γ

dγ
Q +

1
c
R +

1
b
S

]
.

From c = −4b and d = 4a, the proof of Lemma 2 (i) is complete. Furthermore, parts
(ii) and (iii) are easily shown, so we will omit the proofs of them. ¤

The distribution of Xϕ
n can be derived from Lemma 2 by direct computation. Let

[x] denote the maximal integer smaller than or equal to x. Let

κγ,δ,n,k =
(

k − 1
γ − 1

)(
k − 1
δ − 1

)(
n− k − 1

γ − 1

)(
n− k − 1

δ − 1

)
.

Lemma 3. For k = 1, 2, . . . , [n/2], we have

P (Xϕ
n = n− 2k) = |a|2(n−1)

k∑
γ=1

k∑

δ=1

(
− |b|2
|a|2

)γ+δ(
κγ,δ,n,k

γδ

)

×
[
{k2|a|2 + (n− k)2|b|2 − (γ + δ)(n− k)}|α|2

+ {k2|b|2 + (n− k)2|a|2 − (γ + δ)k}|β|2

+
1
|b|2

[{(n− k)γ − kδ + n(2k − n)|b|2}aαbβ

+ {−kγ + (n− k)δ + n(2k − n)|b|2}aαbβ + γδ
]]

,

P (Xϕ
n = −(n− 2k)) = |a|2(n−1)

k∑
γ=1

k∑

δ=1

(
− |b|2
|a|2

)γ+δ(
κγ,δ,n,k

γδ

)

×
[
{k2|b|2 + (n− k)2|a|2 − (γ + δ)k}|α|2

+ {k2|a|2 + (n− k)2|b|2 − (γ + δ)(n− k)}|β|2

+
1
|b|2

[{kγ − (n− k)δ − n(2k − n)|b|2}aαbβ

+ {−(n− k)γ + kδ − n(2k − n)|b|2}aαbβ + γδ
]]

,

P (Xϕ
n = n) = |a|2(n−1){|b|2|α|2 + |a|2|β|2 − (aαbβ + aαbβ)},

P (Xϕ
n = −n) = |a|2(n−1){|a|2|α|2 + |b|2|β|2 + (aαbβ + aαbβ)}.

By using Lemma 3, we obtain a combinatorial expression for the characteristic
function of Xϕ

n as follows. This result will be used in order to obtain a limit the-
orem of Xϕ

n . Let µα,β = (|a|2 − |b|2)(|α|2 − |β|2) + 2(aαbβ + aαbβ) and νγ,δ,n,k =
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(n− k)2 + k2 − n(γ + δ) + 2γδ/|b|2.
Theorem 4. (i) Suppose abcd 6= 0. Then we have

E(eiξXϕ
n ) = |a|2(n−1)

[
cos(nξ)− iµα,β sin(nξ) +

[ n−1
2 ]∑

k=1

k∑
γ=1

k∑

δ=1

(
− |b|2
|a|2

)γ+δ(
κγ,δ,n,k

γδ

)

×
[
νγ,δ,n,k cos((n− 2k)ξ)− (n− 2k)

×
{

µα,β n +
γ + δ

2|b|2 (|α|2 − |β|2 − µα,β)
}

i sin((n− 2k)ξ)
]

+ I

(
n

2
−

[
n

2

])
×

n
2∑

γ=1

n
2∑

δ=1

(
− |b|2
|a|2

)γ+δ(κγ,δ,n,n/2

2γδ

)
νγ,δ,n,n/2

]
,

where I(x) = 1 (resp. = 0) if x = 0 (resp. x 6= 0).
(ii) Let b = 0. Then we have

E(eiξXϕ
n ) = cos(nξ) + i(|β|2 − |α|2) sin(nξ).

(iii) Let a = 0. Then we have

E(eiξXϕ
n ) =

{
cos ξ + i(|α|2 − |β|2) sin ξ if n is odd,

1 if n is even.

We should remark that the above expression of the characteristic function in part (i)
is not uniquely determined. From this theorem, we have the mth moment of Xϕ

n in
the standard fashion. The following result can be used in order to study symmetry of
distribution of Xϕ

n .

Corollary 5. (i) Suppose abcd 6= 0. When m is odd, we have

E((Xϕ
n )m) = −|a|2(n−1)

[
µα,β nm +

[ n−1
2 ]∑

k=1

k∑
γ=1

k∑

δ=1

(
− |b|2
|a|2

)γ+δ (n− 2k)m+1 κγ,δ,n,k

γδ

×
{

µα,β n +
γ + δ

2|b|2 (|α|2 − |β|2 − µα,β)
}]

.

When m is even, we have

E((Xϕ
n )m) = |a|2(n−1)

{
nm +

[ n−1
2 ]∑

k=1

k∑
γ=1

k∑

δ=1

(
− |b|2
|a|2

)γ+δ (n− 2k)mκγ,δ,n,k νγ,δ,n,k

γδ

}
.
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(ii) Let b = 0. Then we have

E((Xϕ
n )m) =

{
nm(|β|2 − |α|2) if m is odd,

nm if m is even.

(iii) Let a = 0. Then we have

E((Xϕ
n )m) =





|α|2 − |β|2 if n and m are odd,

1 if n is odd and m is even,

0 if n is even.

For any case, when m is even, E((Xϕ
n )m) is independent of initial qubit state ϕ.

Therefore a parity law of the mth moment can be derived from the above result.

4. Symmetry of distribution.

In this section, we give a necessary and sufficient condition for the symmetry of the
distribution of Xϕ

n .

Theorem 6. Let Φs, Φ0, and Φ⊥ be as in Section 2. Suppose abcd 6= 0. Then we
have Φs = Φ0 = Φ⊥.

This is a generalization of the result given by [5] for the Hadamard walk introduced
in Section 6. Nayak and Vishwanath [9] discussed the symmetry of distribution and
showed that t[1/

√
2, ±i/

√
2] ∈ Φs for the Hadamard walk.

Proof. (i) Φs ⊂ Φ0. This is obvious by definition.
(ii) Φ0 ⊂ Φ⊥. By Corollary 5 (i) with m = 1, we see that E(Xϕ

1 ) = E(Xϕ
2 ) = 0 if and

only if µα,β = 0. Then this implies that for n ≥ 3, Corollary 5 (i) with m = 1 can be
rewritten as

E(Xϕ
n ) = −|a|

2(n−1)(|α|2 − |β|2)
2|b|2

[ n−1
2 ]∑

k=1

k∑
γ=1

k∑

δ=1

(
− |b|2
|a|2

)γ+δ

× (n− 2k)2(γ + δ)κγ,δ,n,k

γδ
.

Therefore E(Xϕ
n ) = 0 (n ≥ 3) gives |α| = |β|. Combining |α| = |β| with µα,β = 0, we

have the desired result.
(iii) Φ⊥ ⊂ Φs. We assume that |α| = |β| = 1/

√
2 and aαbβ + aαbβ = 0. By using these

and Lemma 3, we see that for k = 1, 2, . . . , [n/2],

P (Xϕ
n = n− 2k) = P (Xϕ

n = −(n− 2k)) =
|a|2(n−1)

2

k∑
γ=1

k∑

δ=1

(
− |b|2
|a|2

)γ+δ
κγ,δ,n,k νγ,δ,n,k

γδ
,

and P (Xϕ
n = n) = P (Xϕ

n = −n) = |a|2(n−1)|α|2. So the desired conclusion is obtained.
¤
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5. Proof of Theorem 1.

Let P ν,µ
n (x) denote the Jacobi polynomial. Then it is well known that P ν,µ

n (x) is
orthogonal on [−1, 1] with respect to (1 − x)ν(1 + x)µ with ν, µ > −1, and that the
following relation holds:

P ν,µ
n (x) =

Γ (n + ν + 1)
Γ (n + 1)Γ (ν + 1) 2F1(−n, n + ν + µ + 1; ν + 1; (1− x)/2), (5.1)

where Γ (z) is the gamma function and 2F1(a, b; c; z) is the hypergeometric function:

2F1(a, b; c; z) =
∞∑

n=0

Γ (a + n)
Γ (a)

Γ (b + n)
Γ (b)

Γ (c)
Γ (c + n)

· zn

n!
.

Let ρn,k,i = P i,n−2k
k−1 (2|a|2 − 1) for i = 0, 1. Then we see that

k∑
γ=1

(
− |b|2
|a|2

)γ−1 1
γ

(
k − 1
γ − 1

)(
n− k − 1

γ − 1

)
= 2F1(−(k − 1),−{(n− k)− 1}; 2;−|b|2/|a|2)

= |a|−2(k−1)
2F1(−(k − 1), n− k + 1; 2; 1− |a|2)

=
1
k
|a|−2(k−1)ρn,k,1.

The first equality is given by the definition of the hypergeometric function (see p.35 in
[11]). The second equality comes from the relation: 2F1(a, b; c; z) = (1− z)−a

2F1(a, c−
b; c; z/(z − 1)). The last equality follows from (5.1). In a similar way, we have

k∑
γ=1

(
− |b|2
|a|2

)γ−1(
k − 1
γ − 1

)(
n− k − 1

γ − 1

)
= |a|−2(k−1)ρn,k,0.

By using the above relations and Theorem 4, we obtain the following asymptotics of
characteristic function E(eiξXϕ

n /n):

Lemma 7. If n →∞ with k/n = x ∈ (−(1− |a|)/2, (1 + |a|)/2), then

E(eiξXϕ
n /n) ∼

[ n−1
2 ]∑

k=1

|a|2n−4k−2|b|4

×
[{

2x2 − 2x + 1
x2

ρ2
n,k,1 −

2
x

ρn,k,0ρn,k,1 +
2
|b|2 ρ2

n,k,0

}
cos((1− 2x)ξ)

−
(

1− 2x

x

){
µα,β

x
ρ2

n,k,1 +
|α|2 − |β|2 − µα,β

|b|2 ρn,k,0 ρn,k,1

}
i sin((1− 2x)ξ)

]
,
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where f(n) ∼ g(n) means f(n)/g(n) → 1 (n →∞).

Next we use an asymptotic result on the Jacobi polynomial Pα+an,β+bn
n (x) derived

by Chen and Ismail [2]. By using (2.16) in their paper with α → 0 or 1, a → 0, β = b →
(1−2x)/x, x → 2|a|2−1 and 4→ 4(1−|a|2){(2x−1)2−|a|2}/x2, we have the following
lemma. It should be noted that there are some minor errors in (2.16) in that paper, for
example,

√
(−4) →

√
(−4)

−1
.

Lemma 8. If n →∞ with k/n = x ∈ (−(1− |a|)/2, (1 + |a|)/2), then

ρn,k,0 ∼ 2|a|2k−n

√
πn
√−Λ

cos(An + B),

ρn,k,1 ∼ 2|a|2k−n

√
πn
√−Λ

√
x

(1− x)(1− |a|2) cos(An + B + θ),

where Λ = (1−|a|2){(2x−1)2−|a|2}, A and B are some constants (which are independent
of n), and θ ∈ [0, π/2] is determined by cos θ =

√
(1− |a|2)/4x(1− x).

Proof of Theorem 1. From the Riemann-Lebesgue lemma and Lemmas 7 and
8, we see that

lim
n→∞

E(eiξ
X

ϕ
n

n ) =
1− |a|2

π

∫ 1
2

1−|a|
2

cos((1− 2x)ξ)− iλα,β(1− 2x) sin((1− 2x)ξ)
x(1− x)

√
(|a|2 − 1)(4x2 − 4x + 1− |a|2) dx

=

√
1− |a|2

π

∫ |a|

−|a|

cos(xξ)− iλα,β x sin(xξ)
(1− x2)

√
|a|2 − x2

dx

=
∫ |a|

−|a|

√
1− |a|2 (1− λα,βx)

π(1− x2)
√
|a|2 − x2

eiξx dx.

Hence Xϕ
n /n converges weakly to the limit Zϕ. ¤

6. Hadamard walk case.

In this section, we focus on the Hadamard walk, which has been extensively inves-
tigated in the study of quantum random walks. The unitary matrix U of the Hadamard
walk is defined by the following Hadamard gate (see Nielsen and Chuang [10]):

U =
1√
2

[
1 1
1 −1

]
.

The dynamics of this walk corresponds to that of the symmetric random walk in the
classical case. However the symmetry of the walk depends heavily on initial qubit state,
see [5].
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Figure 3. Symmetric distribution. Figure 4. Asymmetric distribution.

For example, in the case of the Hadamard walk with initial qubit state ϕ =
t[1/

√
2, i/

√
2] (symmetric case), direct computation gives

P (Xϕ
4 = −4) = P (Xϕ

4 = 4) = 1/16,

P (Xϕ
4 = −2) = P (Xϕ

4 = 2) = 6/16, P (Xϕ
4 = 0) = 2/16.

In contrast with the above result, as for the classical symmetric random walk Y o
n starting

from the origin, we see that

P (Y o
4 = −4) = P (Y o

4 = 4) = 1/16,

P (Y o
4 = −2) = P (Y o

4 = 2) = 4/16, P (Y o
4 = 0) = 6/16.

In fact, quantum random walks behave quite differently from classical random walks. For
the classical walk, the probability distribution is a binomial distribution. On the other
hand, the probability distribution in the quantum random walk has a complicated and
oscillatory form. Figure 3 shows symmetric probability distributions at time n = 100
for both classical (dashed) and quantum (solid) random walks. In Figure 4, asymmet-
ric probability distribution for the quantum random walk starting from ϕ = t[0, 1] is
presented.

Now we compare our analytical result (Theorem 1) with the numerical ones given
by Mackay et al. [6], Travaglione and Milburn [13] for the Hadamard walk. In this case,
Theorem 1 implies that for any initial qubit state ϕ = t[α, β],

lim
n→∞

P (a ≤ Xϕ
n /n ≤ b) =

∫ b

a

1− (|α|2 − |β|2 + αβ + αβ)x
π(1− x2)

√
1− 2x2

1(−1/
√

2,1/
√

2)(x) dx,

where 1(u,v)(x) is the indicator function, that is, 1(u,v)(x) = 1, if x ∈ (u, v), = 0, if
x /∈ (u, v). For the classical symmetric random walk Y o

n starting from the origin, the de
Moivre-Laplace theorem shows

lim
n→∞

P (a ≤ Y o
n /
√

n ≤ b) =
∫ b

a

e−x2/2

√
2π

dx.
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Figure 5. Symmetric density function.

If we take ϕ = t[1/
√

2, i/
√

2] (symmetric case), then we have the following quantum
version of the de Moivre-Laplace theorem:

lim
n→∞

P (a ≤ Xϕ
n /n ≤ b) =

∫ b

a

1
π(1− x2)

√
1− 2x2

1(−1/
√

2,1/
√

2)(x) dx.

The symmetric limit density function is shown in Figure 5. So there is a remarkable
difference between the quantum random walk Xϕ

n and the classical one Y o
n even in a

symmetric case. Noting that E(Xϕ
n ) = 0 (n ≥ 0) for any ϕ ∈ Φs, we have

lim
n→∞

sd(Xϕ
n )/n =

√
(2−

√
2)/2 = 0.54119 . . . ,

where sd(X) is the standard deviation of X. This rigorous result reveals that numerical
simulation result 3/5 = 0.6 given by [13] is not so accurate.

As in a similar way, if we take ϕ = t[0, eiθ] with θ ∈ [0, 2π) (asymmetric case), then
we see

lim
n→∞

P (a ≤ Xϕ
n /n ≤ b) =

∫ b

a

1
π(1− x)

√
1− 2x2

1(−1/
√

2,1/
√

2)(x) dx.

See Figure 6 for the asymmetric limit density function. So we have

lim
n→∞

E(Xϕ
n )/n = (2−

√
2)/2 = 0.29289 . . . ,

lim
n→∞

sd(Xϕ
n )/n =

√
(
√

2− 1)/2 = 0.45508 . . . .

When ϕ = t[0, 1] (θ = 0), Nayak and Vishwanath [9] and Ambainis et al. [1] gave
a similar result, but both papers did not treat weak convergence. The former paper
took the Schrödinger approach, and the latter paper took two approaches, that is, the
Schrödinger approach and the path integral approach. However both their results come
mainly from the Schrödinger approach by using a Fourier analysis. The details on the
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Figure 6. Asymmetric density function.

derivation based on the path integral approach in [1] are not so clear compared with this
paper.

In another asymmetric case ϕ = t[eiθ, 0] with θ ∈ [0, 2π), a similar argument implies

lim
n→∞

P (a ≤ Xϕ
n /n ≤ b) =

∫ b

a

1
π(1 + x)

√
1− 2x2

1(−1/
√

2,1/
√

2)(x) dx.

The symmetry of distribution gives the following same result as in the previous case ϕ =
t[0, eiθ]. So the standard deviation of the limit distribution Zϕ is given by

√
(
√

2− 1)/2 =
0.45508 . . .. Simulation result 0.4544 ± 0.0012 in [6] (their case is θ = 0) is consistent
with our rigorous result.
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