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Abstract. Bounded-cohomological dimension of groups is a relative of

classical cohomological dimension, defined in terms of bounded cohomology
with trivial coefficients instead of ordinary group cohomology. We will discuss

constructions that lead to groups with infinite bounded-cohomological dimen-

sion, and we will provide new examples of groups with bounded-cohomological
dimension equal to 0. In particular, we will prove that every group functorially

embeds into an acyclic group with trivial bounded cohomology.

1. Introduction.

Bounded cohomology H∗b ( · ;R) is a functional-analytic version of ordinary group

cohomology, defined in terms of cocycles that are bounded with respect to the `1-norm

on the bar complex [8], [11], [19], [3] (Section 2). Bounded cohomology has various

applications in geometry and geometric group theory [8], [14], [19], [20]. There is a

natural comparison map between bounded cohomology and ordinary group cohomology

with R-coefficients; however, this comparison map in general is neither surjective nor

injective, and bounded cohomology usually is hard to calculate.

We will consider the following bounded analogue of classical cohomological dimen-

sion of groups with trivial coefficients (which should not be confused with the bounded-

cohomological dimension with varying coefficients [20]):

Definition 1.1 (bounded-cohomological dimension [9]). The bounded-cohomolo-

gical dimension of a group G is defined by

bcd(G) := sup
{
n ∈ N

∣∣ Hn
b (G;R) 6∼= 0

}
∈ N ∪ {∞}.

In contrast with the corresponding invariant for ordinary group cohomology, not

much is known about bounded-cohomological dimension. For example, bounded-coho-

mological dimension does not admit an obvious bound in terms of the geometric dimen-

sion of groups.

In this article, we will provide new examples of groups with bounded-cohomological

dimension equal to 0 as well as of basic constructions that lead to groups with infinite

bounded-cohomological dimension.

2010 Mathematics Subject Classification. Primary 55N35, 20J06, 20E99.
Key Words and Phrases. bounded cohomology, cohomological dimension, mitotic groups.
This work was supported by the CRC 1085 Higher Invariants (Universität Regensburg, funded by

the DFG).

http://dx.doi.org/10.2969/jmsj/06920715


716 C. Löh

For all amenable groups G one has bcd(G) = 0 [8], [11]. For all groups G we

have H1
b (G;R) ∼= 0 [18] and hence bcd(G) 6= 1. Free groups F of rank at least 2

satisfy bcd(F ) ≥ 3 [21], [22], [24]; however, the exact value of bcd(F ) is unknown.

If M is an oriented closed connected n-manifold with non-zero simplicial volume,

then bcdπ1(M) ≥ n [8]; this happens, for example, if M admits a metric of negative

sectional curvature [10]. More generally, if G is a hyperbolic group, then the comparison

map H∗b (G;R) −→ H∗(G;R) is surjective in degree at least 2 [17], which gives lower

bounds on bcdG. Bounded cohomology in degree 2 is rather well understood in terms

of quasi-morphisms/pseudo-characters [6]. For example, bcdG ≥ 2 whenever G is a

sufficiently non-trivial amalgamated free product [6], [7], [5].

No examples of groups G with bcd(G) 6∈ {0,∞} seem to be known.

Groups with small bounded cohomology.

Mather [15] showed that the (discrete) group HomeoK(Rn) of homeomor-

phisms Rn −→ Rn with compact support is acyclic for all n ∈ N>0, i.e.,

Hk(HomeoK(Rn);Z) ∼= 0 for all k ∈ N>0. Matsumoto and Morita [16] refined Mather’s

proof in the normed setting to obtain bcd HomeoK(Rn) = 0. This was the first example

of a non-amenable group with trivial bounded-cohomological dimension.

Baumslag, Dyer, and Heller [1, Section 4] considered so-called mitotic groups (see

Section 4.1 for the definition); mitotic groups have all the algebraic properties necessary

to carry out Mather’s argument and Baumslag, Dyer, Heller [1, Theorem 4.2] proved

that all mitotic groups are acyclic.

Based on the normed refinement of Matsumoto and Morita of Mather’s proof, we

will adapt the argument of Baumslag, Dyer, Heller to show that mitotic groups have

trivial bounded cohomology (Section 4):

Theorem 1.2 (bounded cohomology of mitotic groups). If G is a mitotic group,

then bcdG = 0.

Corollary 1.3 (embedding groups into very acyclic groups). There is a func-

tor M : Group −→ Group and a natural transformation i : idGroup =⇒ M with the

following properties:

(1) For all groups G the group M(G) is mitotic; in particular, M(G) is acyclic

and bcdM(G) = 0.

(2) For all groups G, the homomorphism iG : G −→M(G) is injective.

(3) If G is an infinite group, then |M(G)| = |G|, where | · | denotes the cardinality.

Proof. Baumslag, Dyer, Heller [1, Section 5, Theorem 4.2] constructed a func-

tor M with these properties; Theorem 1.2 is only needed to deduce that bcdM(G) = 0

for all groups G. �

In particular, mitotic groups in general are not amenable: For instance, M(F2)

contains the non-amenable group F2 as subgroup. Moreover, all algebraically closed

groups are mitotic [1, Corollary 4.4].



Bounded-cohomological dimension of groups 717

Example 1.4. Clearly, not every group G with bcdG = 0 is acyclic: For every n ∈
N ∪ {∞} there is a group G that is not acyclic and satisfies

bcdG = 0 and cdZG = n = cdRG,

e.g., one can consider the amenable group G = Z⊕n.

Groups with large bounded cohomology.

On the other hand, it is not hard to construct groups with large bounded cohomology,

and hence of infinite bounded-cohomological dimension. For example, even though there

does not seem to be a general Künneth theorem for bounded cohomology, we can use

the interplay between bounded cohomology and `1-homology and (co)homological cross-

products to propagate non-trivial classes:

Proposition 1.5. For each n ∈ N let Gn be a group with H2
b (Gn;R) 6∼= 0, and let

G ∈ {
⊕

n∈NGn,
∏
n∈NGn}. Then

bcdG =∞.

More precisely : There exists a sequence (ϕn)n∈N ⊂ H2
b (G;R) such that for all n ∈ N we

have

ϕ0 ∪ · · · ∪ ϕn−1 6= 0 ∈ H2·n
b (G;R).

Here,
⊕

n∈NGn denotes the subgroup of
∏
n∈NGn of families with finite support.

The proof of Proposition 1.5 is given in Section 3.2, where we also give further classes

of examples whose bounded cohomology can be easily calculated to a large extent.

Example 1.6. Let G :=
⊕

N F2. Then G clearly is not acyclic and because

of H2
b (F2;R) 6∼= 0 and H1(F2;R) 6∼= 0 we obtain

bcdG =∞ and cdZG =∞ = cdRG.

Example 1.7. There are acyclic groups with infinite bounded-cohomological di-

mension: For example, we can consider Higman’s group

H := 〈a, b, c, d | b−1ab = a2, c−1bc = b2, d−1cd = c2, a−1da = d2〉;

it is well known that H is acyclic and that H can be decomposed as a non-trivial amal-

gamated free product [1, Section 3]. Hence, H2
b (H;R) 6∼= 0 [6], [5]. Therefore,

bcd
(⊕

N
H
)

=∞.

On the other hand, acyclicity of H, the Künneth theorem, and the compatiblity of

homology with colimits shows that
⊕

NH is acyclic.

However, so far, no examples of finitely generated non-amenable groups G seem to

be known where bcdG can be computed explicitly.
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Question 1.8. What can be said about the bounded-cohomological dimension

of (
⊕

Z F2) o Z, where Z acts on
⊕

Z F2 by shifting the summands?

Organisation of this article.

In Section 2, we briefly recall the definition of bounded cohomology and `1-homology

of discrete groups, as well as some basic properties and constructions. In Section 3, we

will give simple examples of groups with large bounded cohomology; in particular, we will

prove Proposition 1.5. Finally, in Section 4, we will compute the bounded cohomology

of mitotic groups, which proves Theorem 1.2.

2. Bounded cohomology and `1-homology.

We briefly review the definitions and basic properties of bounded cohomology and

`1-homology of (discrete) groups with constant coefficients:

2.1. Bounded cohomology and `1-homology.

Bounded cohomology and `1-homology are normed refinements of classical group

(co)homology: We will use the following concrete description:

Definition 2.1 (`1-norm, bounded cohomology, `1-homology). Let G be a group.

We denote the standard chain complex by C∗(G;R); more precisely, for k ∈ N we

write Ck(G;R) :=
⊕

g∈Gk R · g and

∂k : Ck(G;R) −→ Ck−1(G;R)

Gk 3 (g1, . . . , gk) 7−→ (g2, . . . , gk)

+

k−1∑
j=1

(−1)j · (g1, . . . , gj · gj+1, . . . , gk)

+ (−1)k · (g1, . . . , gk−1).

We denote the `1-norm on Ck(G;R) associated with the basis Gk by ‖ · ‖1. Notice

that ‖∂k‖ ≤ k + 1 with respect to the `1-norms.

– The completion of C∗(G;R) with respect to the `1-norm is denoted by C`
1

∗ (G;R),

the `1-chain complex of G.

– The topological dual of C∗(G;R) with respect to the `1-norm is denoted

by C∗b (G;R), the bounded cochain complex of G.

– The homology H`1

∗ (G;R) of C`
1

∗ (G;R) is called `1-homology of G. The reduced

homology H
`1

∗ (G;R) (i.e., kernel modulo closure of the image of the boundary

operator) of C`
1

∗ (G;R) is called reduced `1-homology of G.

– The cohomology H∗b (G;R) of C∗b (G;R) is bounded cohomology of G. The reduced

cohomology H
∗
b(G;R) of C∗b (G;R) is called reduced bounded cohomology of G.
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Clearly, all these constructions are functorial with respect to group homomorphisms

and the inclusion C∗b ( · ;R) ↪→ C∗( · ;R) induces a natural transformation between

bounded cohomology and ordinary group cohomology, the so-called comparison map.

The `1-norm and its dual norm induce semi-norms on `1-homology and bounded

cohomology, respectively. By definition, these semi-norms are norms on reduced `1-

homology and reduced bounded cohomology, which then consist of Banach spaces.

More background on (co)homology of normed (co)chain complexes and on descrip-

tions of bounded cohomology and `1-homology in terms of homological algebra can be

found in the literature [8], [11], [19], [16], [12], [3].

2.2. Evaluation and duality.

Evaluation gives rise to a weak form of duality between bounded cohomology and

`1-homology. If G is a group and k ∈ N, then the evaluation map

〈 · , · 〉 : Ckb (G;R)⊗R Ck(G;R) −→ R
(f, c) 7−→ f(c)

is compatible with the (co)boundary operators and it is continuous with respect to the

(dual) `1-norm and hence induces a well-defined natural Kronecker product

〈 · , · 〉 : Hk

b (G;R)⊗R H
`1

k (G;R) −→ R.

Proposition 2.2 (weak duality principle [16], [12]). Let G be a group and let

k ∈ N. Then the map

H
k

b (G;R) −→
(
H
`1

k (G;R)
)′

induced by the Kronecker product is surjective.

Proposition 2.3 (bounded cohomology and `1-acyclicity [16]). Let G be a group.

Then bcdG = 0 if and only if G is `1-acyclic, i.e., H`1

k (G;R) ∼= 0 for all k ∈ N>0.

2.3. The cross-product in bounded cohomology and `1-homology.

The explicit descriptions of the (co)homological cross-products are continuous with

respect to the (dual) `1-norm and lead to well-defined cross-products in bounded coho-

mology and `1-homology:

For groups G, H the homological cross-product is induced from the maps

· × · : Cp(G;R)⊗R Cq(H;R) −→ Cp+q(G×H;R)

(g1, . . . , gp)⊗ (h1, . . . , hq) 7−→
∑

σ∈Sp,q

(−1)|σ| ·
(
gσ1(j), hσ2(j)

)
j∈{1,...,p+q}.

Here, Sp,q is the set of all (p, q)-shuffles σ = (σ1, σ2) [4], and |σ| denotes the sign of

shuffles σ ∈ Sp+q.
This cross-product is bounded in every degree with respect to the norms induced

from the `1-norm. Because the compatibility with the boundary operators carries over
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to the completed chain complexes, we obtain a corresponding well-defined natural cross-

product on (reduced) `1-homology.

Dually, for groups G and H the cohomological cross-product is induced from the

maps

· × · : Cp(G;R)⊗R C
q(H;R) −→ Cp+q(G×H;R)

ϕ⊗ ψ 7−→ (−1)p·q ·
(
((g1, h1), . . . , (gp+q, hp+q))

7→ ϕ(g1, . . . , gp) · ψ(hp+1, . . . , hp+q)
)
,

as suggested by the Alexander–Whitney map. These maps preserve boundedness and are

continuous and thus induce a well-defined natural cross-product on (reduced) bouneded

cohomology.

Definition 2.4 (cross-product on bounded cohomology/`1-homology). Let G and

H be groups and let p, q ∈ N. Then the cross-product on reduced `1-homology and

reduced bounded cohomology are defined via:

· × · H`1

p (G;R)⊗R H
`1

q (H;R) −→ H
`1

p+q(G×H;R)

[c]⊗ [d] 7−→ [c× d],

· × · Hp

b(G;R)⊗R H
q

b(H;R) 7−→ H
p+q

b (G×H;R)

[f ]⊗ [g] 7−→ [f × g].

As in the case of ordinary group (co)homology these cross-products are compatible

in the following sense:

Proposition 2.5 (compatibility of cross-products). Let G and H be groups, let

p, q ∈ N and let ϕ ∈ Hp

b(G;R), ψ ∈ Hq

b(H;R) as well as α ∈ H`1

p (G;R), β ∈ H`1

q (H;R).

Then

〈ϕ× ψ, α× β〉 = (−1)p·q · 〈ϕ, α〉 · 〈ψ, β〉.

Proof. For classical group (co)homology this can be deduced from the above

explicit descriptions of the cross-products on the (co)chain level and the fact that the

Alexander–Whitney map A satisfies A ◦ ( · × · ) ' id on the (co)chain level (Lemma 2.6

below).

Because this natural chain homotopy Ω can be chosen to be bounded in each degree

(Lemma 2.6), the corresponding arguments carry over to the `1-chain complex and the

bounded cochain complex:

Let f ∈ Cpb (G;R), g ∈ Cqb (H;R), c ∈ C`1p (G;R), d ∈ C`1q (H;R) be (co)cycles repre-

senting ϕ,ψ, α, β, respectively. Let C∗ be the completion of C`
1

∗ (G;R) ⊗R C
`1

∗ (H;R)

with respect to the norm induced by the `1-norms. Then A extends to a chain

map A : C`
1

∗ (G × H;R) −→ C∗ that is bounded in each degree, and also Ω extends

to Ω satisfying

A ◦ ( · × · )− id = ∂Ω + Ω ◦ ∂.
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Moreover, f⊗g also can be evaluated on elements of Cp+q because f and g are bounded.

Therefore,

(−1)p·q · (f × g)(c× d) = (f ⊗ g)
(
A ◦ ( · × · )(c⊗ d)

)
= (f ⊗ g)

(
A ◦ ( · × · )(c⊗ d)

)
= (f ⊗ g)(c⊗ d)

− (f ⊗ g)
(
∂ ◦ Ω(c⊗ d)

)
− (f ⊗ g)

(
Ω ◦ ∂(c⊗ d)

)
= (f ⊗ g)(c⊗ d)

= f(c) · g(d),

as desired. �

Lemma 2.6. Let G be a group. Then the cross-product

· × · : C∗(G;R)⊗R C∗(G;R) 7−→ C∗(G×G;R)

and the Alexander–Whitney map given by

A : Cq(G×G) −→
(
C∗(G)⊗R C∗(G)

)
q

(G×G)q 3
(
(g1, h1), . . . , (gq, hq)

)
7−→

q∑
j=0

(g1, . . . , gj)⊗ (hj+1, . . . , hq)

are natural chain maps that are mutually chain homotopy inverses of each other. More

precisely, there exist natural chain homotopies

Ξ: ( · × · ) ◦A ' id,

Ω: A ◦ ( · × · ) ' id

that are bounded in each degree (with respect to the norms induced from the respective

`1-norms), where the bounds in every degree q depend only on q and not on the group G.

Proof. This is a consequence of the classic proof via the acyclic model theo-

rem [4]. �

A more systematic study of acyclic models in the context of `1-homology was car-

ried out by Bouarich [2]. Moreover, for sufficiently well-behaved products the spectral

sequence of Monod applies [19].

Furthermore, (reduced) bounded cohomology carries a natural ring structure via the

cup-product:

Definition 2.7 (cup-product on bounded cohomology). Let G be a group, and

let p, q ∈ N. Then the cup-product on H
∗
b(G;R) is given by

· ∪ · : H
p

b(G;R)⊗R H
q

b(G;R) −→ H
p+q

b (G;R)

ϕ⊗ ψ 7−→ H
p+q

b (∆G;R)(ϕ× ψ),
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where ∆G : G −→ G×G is the diagonal map.

As in classical group cohomology, also the relation

ϕ× ψ = H
p

b(pG;R)(ϕ) ∪Hq

b(pH ;R)(ψ) ∈ Hp+q

b (G×H;R)

holds for all ϕ ∈ Hp

b(G;R), ψ ∈ Hq

b(H;R), where pG : G×H −→ G and pH : G×H −→ H

are the projections onto the factors.

3. Groups with large bounded cohomology.

We will now construct groups with large bounded cohomology by taking (free) prod-

ucts and exploiting the relation with `1-homology. In particular, we will prove Proposi-

tion 1.5 and related results.

3.1. `1-Betti numbers.

We introduce (reduced) `1-Betti numbers of groups and discuss their basic properties

as well as their influence on bounded cohomology.

Definition 3.1 (`1-Betti numbers). Let G be a group and let k ∈ N. Then the

k-th `1-Betti number b
`1

k (G) is defined as the cardinality of an R-basis of H
`1

k (G;R); we

also write b
`1

k (G) =∞ if this cardinality is infinite.

For example, `1-Betti numbers satisfy the following simple inheritance properties:

Proposition 3.2. Let G be a group and let k ∈ N>0.

(1) We have dimRH
k
b (G;R) ≥ b

`1

k (G). In particular : If b
`1

k (G) 6= 0, then we

have bcdG ≥ k.

(2) Conversely, if H2
b (G;R) 6∼= 0, then b

`1

2 (G) 6= 0.

(3) If H is a group that is a retract of G, i.e., there are group homomorphisms i : H −→
G and r : G −→ H with r ◦ i = idH , then

b
`1

k (G) ≥ b`
1

k (H).

(4) If H is a group, then

b
`1

k (G ∗H) ≥ b`
1

k (G) + b
`1

k (H).

In particular: If b
`1

k (G) 6= 0, then b
`1

k

(
FNG

)
=∞.

(5) If G is countable and b
`1

k (G) =∞, then

dimRH
`1

k (G;R) = dimRH
`1

k (G;R) = |R|,

dimRH
k
b (G;R) = dimRH

k

b (G;R) = |R|.
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Proof. The first part follows from Proposition 2.2. The second part follows from

an observation of Matsumoto and Morita [16, Corollary 2.7 and Theorem 2.3]. The third

part is a direct consequence of functoriality of reduced `1-homology.

The fourth part can be shown as follows: From Proposition 2.2 we deduce that

there exist families (ϕi)i∈I ⊂ H
k

b (G;R), (αi)i∈I ⊂ H
`1

k (G;R) and (ψj)j∈J ⊂ H
k

b (H;R),

(βj)j∈J ⊂ H
`1

k (H;R) with |I| = b
`1

k (G) and |J | = b
`1

k (H) that satisfy

〈ϕi, αi′〉 = δi,i′ and 〈ψj , βj′〉 = δj,j′

for all i, i′ ∈ I and all j, j′ ∈ J . Let iG : G −→ G∗H, iH : H −→ G∗H, pG : G∗H −→ G,

pH : G ∗ H −→ H be the canonical inclusions and projections associated with the free

factors. Then〈
H
k

b (pG;R)(ϕi), H
`1

k (iG;R)(αi′)
〉

= 〈ϕi, αi,i′〉 = δi,i′ ,〈
H
k

b (pG;R)(ϕi), H
`1

k (iH ;R)(βj)
〉

=
〈
ϕi, H

`1

k (1;R)(βj)
〉

= 〈ϕi, 0〉 = 0

etc. for all i, i′ ∈ I, j, j′ ∈ J . Hence, b
`1

k (G ∗H) ≥ |I|+ |J | = b
`1

k (G) + b
`1

k (H).

We now prove the last part: By definition, H
`1

k (G;R) and H
k

b (G;R) are Banach

spaces, and Banach spaces of infinite dimension have dimension at least |R|. On the

other hand, countability of G implies that we have both dimR C
`1

k (G;R) ≤ |R| and

dimR C
k
b (G;R) ≤ |R|. Hence,

|R| ≤ dimRH
`1

k (G;R) ≤ dimRH
`1

k (G;R) ≤ dimR C
`1

k (G;R) ≤ |R|,

|R| ≤ dimRH
k

b (G;R) ≤ dimRH
k
b (G;R) ≤ dimR C

k
b (G;R) ≤ |R|. �

While it is not clear whether `1-homology or bounded cohomology satisfy a simple

Künneth theorem, we at least have the following weak version:

Proposition 3.3. Let G and H be groups and let p, q ∈ N. Then

b
`1

p+q(G×H) ≥ b`
1

p (G) · b`
1

q (H).

In particular: If b
`1

p (G) 6= 0 and b
`1

q (H) 6= 0, then bcd(G×H) ≥ p+ q.

Proof. From Proposition 2.2 we deduce that there exist families (ϕi)i∈I ⊂
H
p

b(G;R), (αi)i∈I ⊂ H
`1

p (G;R) and (ψj)j∈J ⊂ H
k

b (H;R), (βj)j∈J ⊂ H
`1

k (H;R)

with |I| = b
`1

p (G) and |J | = b
`1

q (H) that satisfy

〈ϕi, αi′〉 = δi,i′ and 〈ψj , βj′〉 = δj,j′

for all i, i′ ∈ I and all j, j′ ∈ J . Hence, the compatibility of the cross-products (Proposi-

tion 2.5) yields

(−1)p·q · 〈ϕi × ψj , αi′ × βj′〉 = 〈ϕi, αi′〉 · 〈ψj , βj′〉 = δi,i′ · δj,j′ = δ(i,j),(i′,j′)



724 C. Löh

for all (i, j), (i′, j′) ∈ I × J ; thus, b
`1

p+q(G×H) ≥ |I| · |J | ≥ b`
1

p (G) · b`
1

q (H).

The second part follows then with help of Proposition 3.2. �

3.2. Examples.

The observations from Section 3.1 are now applied to concrete examples:

Definition 3.4 (infinite chains of cup-products in bounded cohomology). Let G

be a group. Then G admits infinite chains of cup-products in bounded cohomology if

there exists a sequence (ϕn)n∈N ⊂ H
∗
b(G;R) of non-zero degree such that for all n ∈ N

we have

ϕ0 ∪ · · · ∪ ϕn−1 6= 0 ∈ H∗b(G;R).

Proposition 3.5. Let G0 be a group with b
`1

3 (G0) =∞ and for each n ∈ N>0 let

Gn be a group with b
`1

2 (Gn) =∞. Let G be
⊕

n∈NGn or
∏
n∈NGn. Then

b
`1

k (G) =


1 if k = 0,

0 if k = 1,

∞ if k ∈ N≥2,
and dimRH

k

b (G;R) =


1 if k = 0,

0 if k = 1,

∞ if k ∈ N≥2,

for all k ∈ N, and thus bcd(G) =∞. Moreover, G admits infinite chains of cup-products

in bounded cohomology and for all k ∈ N≥4 there exist non-trivial classes in Hk
b (G;R)

that decompose as cup-products of classes in degree 2 and 3.

Proof. We only need to consider the case k ≥ 2. Every k ∈ N≥2 can be written

in the form k = 2 · r + 3 · s with r ∈ N and s ∈ {0, 1}. Because

G1 × · · · ×Gr and G0 ×G1 × · · · ×Gr

are retracts of G, the calculation of the dimensions follows from Proposition 3.2 and

Proposition 3.3. The assertion on the cup-products follows from the argumentation via

iterated cross-products and the relation between the cohomological cross-product and

the cup-product on bounded cohomology. �

Remark 3.6 (exact cardinality). If G0, G1, . . . are countable groups that satisfy

the assumptions of Proposition 3.5 and G :=
⊕

n∈NGn, then

dimRH
k
b (G;R) = dimRH

k

b (G;R) = |R|

for all k ∈ N≥2 by Proposition 3.5 and Proposition 3.2.

Furthermore, by taking the infinite free product with the examples by Soma [22],

we can also enforce that the difference between reduced and non-reduced bounded coho-

mology is infinite-dimensional in degree 3, 5, 6, . . . .

Proposition 3.7. For each n ∈ N let Gn be a group such that there exists a

degree kn ∈ N>1 with b
`1

kn(Gn) 6= 0. Then
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bcd
(⊕
n∈N

Gn

)
=∞ and bcd

(∏
n∈N

Gn

)
=∞,

and
⊕

n∈NGn and
∏
n∈NGn admit infinite chains of cup-products in bounded cohomology.

Proof. Similarly to the proof of Proposition 3.5 this follows inductively from

Proposition 3.2 and Proposition 3.3. �

We can now also easily deduce a proof for Proposition 1.5:

Proof of Proposition 1.5. Because H2
b (Gn;R) 6∼= 0, we know that b

`1

2 (G) 6= 0

(Proposition 3.2). Therefore, Proposition 3.7 provides the desired conclusion. �

Some concrete groups with large `1-Betti numbers or large bounded-cohomological

dimension are:

Example 3.8. Let n ∈ N≥2 and let (Mk)k∈N be a sequence of oriented closed

connected n-manifolds with positive simplicial volume, e.g., hyperbolic manifolds [8],

[23]. Then b
`1

n (π1(Mk)) 6= 0 [8], and so Proposition 3.2 shows that

b
`1

n

(
F
k∈N

π1(Mk)
)

=∞.

Moreover, Proposition 3.7 tells us that

bcd
(⊕
k∈N

π1(Mk)
)

=∞ and bcd
(∏
k∈N

π1(Mk)
)

=∞.

Example 3.9. It is well known that b
`1

2 (F2) =∞ [18]. If M is an oriented closed

connected hyperbolic 3-manifold, then b
`1

3 (π1(M)) 6= 0 (as in the previous example). Let

H :=FN π1(M). Hence, we have b
`1

3 (H) =∞ by Proposition 3.2. So, Proposition 3.5 al-

lows us to compute the size of (reduced) bounded cohomology and (reduced) `1-homology

of H ×
⊕

N F2 in all degrees. In particular,

bcd
(
H ×

⊕
N
F2

)
=∞.

Furthermore, by Proposition 3.7,

bcd
(⊕

N
F2

)
=∞ and bcd

(∏
N
F2

)
=∞,

but because the exact structure of H∗b (F2;R) is unknown, it is currently out of reach to

calculate the bounded cohomology ring of
⊕

N F2 or
∏

N F2 completely.

If we are not interested in having many non-trivial cup-products, then we can also

take large free products:
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Example 3.10. For n ∈ N let Gn be a group with b
`1

kn(Gn) 6= 0 for some kn ≥ n;

e.g., we could take the fundamental group of an oriented closed connected hyperbolic

n-manifold of dimension at least n. Then Proposition 3.2 shows that

bcd
(
F
n∈N

Gn

)
=∞.

4. Groups with small bounded cohomology.

We will first recall the notion of mitotic groups and their basic properties (Sec-

tion 4.1). We will prove Theorem 1.2 in Section 4.3, i.e., that mitotic groups have

bounded-cohomological dimension equal to 0. As a preparation for this proof, we recall

the uniform boundary condition in Section 4.2.

4.1. Mitotic groups.

We recall the notion of mitotic groups, due to Baumslag, Dyer, Heller [1, Section 4].

Roughly speaking, a mitosis of a group G is an ambient group that allows to divide G

into two copies of itself by means of conjugation (Figure 1). For group elements g, h we

use the conjugation notation gh := h · g · h−1.

G

G G

conjugation by d conjugation by s

Figure 1. A mitosis of a group, schematically; the original group G com-
mutes with Gs inside M and g commutes with gd for all g ∈ G.

Definition 4.1 (mitotic group). Let G be a subgroup of a group M . Then M is

a mitosis of G if there exist s, d ∈M with the following properties:

(1) The group M is generated by G ∪ {s, d}.

(2) For all g ∈ G we have gd = g · gs.

(3) For all g, g′ ∈ G we have [g′, gs] = 1.

We then also call the inclusion G ↪→ M a mitosis and the elements d, s as above are

witnesses for this mitosis. A group M is mitotic, if for every finitely generated sub-

group G ⊂M there exists a subgroup M ′ ⊂M such that G ⊂M ′ is a mitosis of G.

If M is a mitosis of a group G, witnessed by s, d ∈M , then

µ : G×G −→M

(g′, g) 7−→ g′ · gs

is a well-defined group homomorphism; if ∆G : G −→ G×G denotes the diagonal, then

µ ◦ ∆G is nothing but conjugation with d. Using the Künneth theorem, the fact that
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conjugations act trivially on homology, and an induction argument, Baumslag, Dyer,

Heller [1, Theorem 4.2] established that mitotic groups are acyclic:

Theorem 4.2. All mitotic groups are acyclic.

In view of the universal coefficient theorem, we obtain that also group cohomology

with R-coefficients is trivial for mitotic groups.

4.2. The uniform boundary condition.

We we will now review the uniform boundary condition, as studied by Matsumoto

and Morita [16].

Definition 4.3 (uniform boundary condition). Let q ∈ N and let κ ∈ R>0. A

group G satisfies the (q, κ)-uniform boundary condition ((q, κ)-UBC ) if the following

holds: for all z ∈ im ∂q+1 ⊂ Cq(G;R) there is a chain c ∈ Cq+1(G;R) with

∂q+1(c) = z and ‖c‖1 ≤ κ · ‖z‖1.

A group G satisfies q-UBC if there exists a κ ∈ R>0 such that G satisfies (q, κ)-UBC.

For example, the uniform boundary condition allows to upgrade acyclicity of a group

to vanishing of bounded cohomology [16, Theorem 2.8]:

Theorem 4.4. Let G be a group and let q ∈ N. Then the following are equivalent :

(1) The group G satisfies q-UBC.

(2) The comparison map Hq+1
b (G;R) −→ Hq+1(G;R) is injective.

In particular : If G is acyclic and G satisfies q-UBC, then Hq+1
b (G;R) ∼= 0.

More geometrically, the uniform boundary condition also has applications in the

context of simplicial volume of non-compact manifolds [13].

We introduce the following version of the uniform boundary condition:

Definition 4.5 (uniform boundary condition). Let q ∈ N, κ ∈ R>0. A group

homomorphism ϕ : H −→ K satisfies the (q, κ)-uniform boundary condition ((q, κ)-UBC )

if there exists a linear map

S : ∂q+1

(
Cq+1(H;R)

)
−→ Cq+1(K;R)

with

∂q+1 ◦ S = Cq(ϕ;R)|im ∂q+1
and ‖S‖ ≤ κ.

Here, ‖S‖ denotes the norm of S with respect to the restricition of the `1-norm

to ∂q+1(Cq+1(H;R)) and the `1-norm on Cq+1(K;R).

Clearly, every group homomorphism satisfies (0, 0)-UBC.
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4.3. Bounded cohomology of mitotic groups.

We will now prove Theorem 1.2, i.e., that mitotic groups have trivial bounded coho-

mology. The proofs of Baumslag, Dyer, Heller and the normed refinement of Matsumoto

and Morita of Mather’s argument for HomeoK(Rn) serve as a blueprint.

In view of Theorem 4.4 and Theorem 4.2 we only need to show that mitotic groups

satisfy the uniform boundary condition in each positive degree. To this end, we first

prove that mitoses allow to increase the degree in which the uniform boundary condition

is satisfied. More precisely, following the arguments of Matsumoto and Morita [16] step

by step, one obtains the following (a detailed proof is given in Appendix A):

Proposition 4.6. Let q ∈ N, κ ∈ R>0. Then there is a constant cq,κ ∈ R>0 such

that : let

H
ϕ
// H ′

ϕ′
// K

ψ
// G

i // M

be a chain of group homomorphisms with the following properties:

– The homomorphism i : G ↪→M is a mitosis.

– For all k ∈ {1, . . . , q − 1} we have Hk(ϕ′;R) = 0.

– For all k ∈ {0, . . . , q−1} the group homomorphisms ϕ : H −→ H ′ and ψ : K −→ G

satisfy (k, κ)-UBC.

Then for all k ∈ {1, . . . , q} we obtain

Hk(i ◦ ψ ◦ ϕ′ ◦ ϕ;R) = 0

and the composition i ◦ ψ ◦ ϕ′ ◦ ϕ satisfies (k, cq,κ)-UBC for all k ∈ {0, . . . , q}.

We can then easily complete the proof of Theorem 1.2 by induction:

Proof of Theorem 1.2. Let M be a mitotic group, let q ∈ N>0, and let z ∈
Cq(M ;R) be a boundary, say z = ∂q+1(c) for some c ∈ Cq+1(M ;R). Because z and c are

finite linear combinations of tuples of M , there exists a finitely generated subgroup G0

such that z ∈ Cq(G0;R) and c ∈ Cq+1(G0;R); i.e., z is a boundary in G0.

As M is mitotic, we can extend G0 to a sequence G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ M of

finitely generated subgroups of M such that each step Gj ↪→ Gj+1 is a mitosis. We now

proceed by induction over q: If q = 1, then the sequence

G0
i0 // G1

i1 // G2
i2 // G3

i3 // G4

of mitoses satisfies the assumptions of Proposition 4.6 in degree 1, and hence the com-

position i3 ◦ i2 ◦ i1 ◦ i0 satisfies (1, c1,0)-UBC.

For the induction step, let q ∈ N>1, let

nq :=

q∑
j=0

3j
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and suppose that compositions of nq−1 mitoses in M satisfy (q − 1, κq−1)-UBC, where

κq−1 depends only on q, but not on the groups involved.

Then the chain

G0
// Gnq−1

// G2·nq−1
// G3·nq−1=nq−1

inq−1
// Gnq

of inclusions satisfies the assumptions of Proposition 4.6 in degree q, and hence the

inclusion G0 ↪→ Gnq satisfies (q, cq,κq−1)-UBC where cq,κq−1 depends only on q, but not

on z or the chain G0 ⊂ G1 ⊂ · · · .
In particular, there is a chain c′ ∈ Cq+1(M ;R) with

∂q+1c
′ = z ∈ Cq(M ;R) and ‖c′‖1 ≤ κq · ‖z‖1.

Hence, M satisfies (q, κq)-UBC. Because M is acyclic by Theorem 4.2, we obtain

Hq
b (M ;R) ∼= 0 from Theorem 4.4. �

Appendix A. Detailed proof of Proposition 4.6.

For the convenience of the reader, we present a detailed proof of Proposition 4.6,

following the arguments of Matsumoto and Morita [16]:

Proof of Proposition 4.6. It suffices to prove the claims in degree q. We ab-

breviate f := ψ ◦ ϕ′ ◦ ϕ. The fact that Hq(i ◦ f ;R) = 0 was proved by Baumslag, Dyer,

Heller [1, Proposition 4.1]. However, in order to make the normed refinement more

transparent, we repeat the argument:

Let d, s ∈M be witnesses for the mitosis i : G ↪→M . Then

µ : G×G −→M

(g′, g) 7−→ g′ · gs

is a group homomorphism. Denoting the diagonal maps by ∆H , ∆G and the conjugations

on M by γd = · d, γs = · s, we obtain

γd ◦ i ◦ f = µ ◦∆G ◦ f = µ ◦ (f × f) ◦∆H .

On the other hand, the Künneth theorem (and its naturality) and the homological as-

sumption on H∗(f ;R) shows that the diagram

Hq(H ×H;R)

Hq(f×f ;R)
��

Hq(p1;R)⊕Hq(p2;R)

// Hq(H;R)⊕Hq(H;R)

Hq(f ;R)⊕Hq(f ;R)
��

Hq(G×G;R)

Hq(µ;R)
��

Hq(G;R)⊕Hq(G;R)

Hq(i;R)⊕Hq(γs◦i;R)
��

Hq(i1;R) +Hq(i2;R)

oo

Hq(M ;R) Hq(M ;R)⊕Hq(M ;R)
id+ id

oo
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is commutative; here, i1, i2, p1, p2 denote the corresponding inclusions and projections of

the factors. Hence, we obtain

Hq(γd;R) ◦Hq(i ◦ f) = Hq(µ;R) ◦Hq(f × f ;R) ◦Hq(∆H ;R)

= Hq(i ◦ f ;R) +Hq(γs;R) ◦Hq(i ◦ f ;R).

As conjugations act trivially on homology, Hq(γd;R) = id = Hq(γs;R), and so Hq(i ◦
f ;R) = 0.

We will now refine this argument and prove that i ◦ f satisfies a strong uniform

boundary condition in degree q:

Let S0, . . . , Sq−1 and T0, . . . , Tq−1 be sections that witness that ϕ and ψ satisfy

(0, κ)-UBC, . . . , (q − 1, κ)-UBC; for simplicity, we omit the indices and denote all these

maps by S or T respectively. Let z ∈ Bq(H) := ∂q+1(Cq+1(H;R)). We construct an

explicit ∂q+1-primitive for Cq(i ◦ f ;R) in two steps: We first deal with the Künneth

argument, and then we will take care of the conjugations.

Normed refinement of the Künneth argument. We first study the intermediate degree

part of z, viewed in C∗(H;R)⊗R C∗(H;R), i.e., the chain

D(z) := A ◦∆(z)− z ⊗ 1− 1⊗ z,

where, A : C∗(H × H;R) −→ C∗(H;R) ⊗R C∗(H;R) is the Alexander–Whitney map

(Lemma 2.6) and ∆ := C∗(∆H ;R). Moreover, we write ϕ∗ := C∗(ϕ;R) etc.

Similar to Matsumoto and Morita [16, p. 544] we define the map

E := (ψ∗ ⊗R ψ∗) ◦ (ϕ′∗ ⊗R ϕ
′
∗) ◦ (S ⊗R S) ◦ (id⊗R∂)

+
(
T ⊗R (ψ∗ − T ◦ ∂)

)
◦ (ϕ′∗ ⊗R ϕ

′
∗) ◦

(
ϕ∗ ⊗R ϕ∗ − ∂ ◦ (S ⊗R S) ◦ (id⊗R∂)

)
: Bq −→

(
C∗(G;R)⊗R C∗(G;R)

)
q+1

on Bq := im
(
∂q+1,C∗(H;R)⊗RC∗(H;R)

)
∩
⊕q−1

j=1 Cj(H;R)⊗R Cq−j(H;R).

Lemma A.1 (explicit primitives for D(z)). This map E has the following proper-

ties:

(1) The map E is well-defined.

(2) We have D(z) ∈ Bq and the map E produces explicit primitives, i.e.,

(f∗ ⊗R f∗)D(z) = ∂q+1E
(
D(z)

)
.

(3) Moreover,

‖E‖ ≤ κ+ 2 · (q + 1) · κ2 ·
(
1 + (q + 1) · κ+ (q + 1)2 · κ2

)
with respect to the norms induced by the respective `1-norms. Notice that this bound

does only depend on q and κ, but not on the groups or homomorphisms that are

involved.



Bounded-cohomological dimension of groups 731

The proof of this lemma is given below. We now continue with the proof of Proposi-

tion 4.6: In view of the naturality of the cross-product map B : C∗( · ;R)⊗RC∗( · ;R) −→
C∗( · × · ;R) and Lemma 2.6 we obtain

(f × f)∗ ◦∆(z) = (f × f)∗ ◦B ◦A ◦∆(z) + (f × f)∗(∂ ◦ Ξ + Ξ ◦ ∂) ◦∆(z)

= B ◦ (f∗ ⊗R f∗) ◦A ◦∆(z) + (f × f)∗ ◦ ∂ ◦ Ξ ◦∆(z).

The construction of D(z) and the explicit primitives from Lemma A.1 now lead to

(f × f)∗ ◦∆(z) = (f × f)∗ ◦B(z ⊗ 1) + (f × f)∗ ◦B(1⊗ z) + ∂E′(z),

where

E′ := B ◦ E ◦D + (f × f)∗ ◦ Ξ ◦∆;

notice that E′ is bounded and that ‖E′‖ admits a bound that only depends on q and κ,

but not on the specific groups or homomorphisms. By definition of the cross-product,

we have B(z ⊗ 1) = j1∗(z) and B(1 ⊗ z) = j2∗(z), where j1, j2 : H −→ H × H are the

inclusions of the factors. Therefore,

(f × f)∗ ◦∆(z) = (f × f)∗ ◦ j1∗(z) + (f × f)∗ ◦ j2∗(z) + ∂ ◦ E′(z)
= i1∗ ◦ f∗(z) + i2∗ ◦ f∗(z) + ∂ ◦ E′(z).

Normed refinement of the conjugation argument. Applying µ∗ to this equation and

using the chain homotopy Θ from Lemma A.2 below associated with the conjugation

by k := s · d−1 on M leads then to

(i ◦ f)∗(z) =
(
µ ◦ (f × f) ◦ j1

)
∗(z)

=
(
µ ◦ (f × f) ◦∆H

)
∗(z)−

(
µ ◦ (f × f) ◦ j2

)
∗(z)− µ∗ ◦ ∂ ◦ E

′(z)

= γd∗ ◦ (i ◦ f)∗(z)− γs∗ ◦ (i ◦ f)∗(z)− ∂ ◦ µ∗ ◦ E′(z)
= γd∗ ◦ (i ◦ f)∗(z)− γk∗ ◦ γd∗ ◦ (i ◦ f)∗(z)− ∂ ◦ µ∗ ◦ E′(z)
= (∂ ◦Θ + Θ ◦ ∂) ◦ (i ◦ f)∗(z)− ∂ ◦ µ∗ ◦ E′(z)
= ∂

(
Θ ◦ (i ◦ f)∗(z)− µ∗ ◦ E′(z)

)
.

Because ‖Θ ◦ (i ◦ f)∗ − µ∗ ◦ E′‖ admits a bound cq,κ on Bq(H) that only depends on q

and κ (as the same holds for E′ and Θ) we see that i◦f satisfies (q, cq,κ)-UBC, as desired.

�

Proof of Lemma A.1. We mainly follow the corresponding arguments by Mat-

sumoto and Morita.

Ad 1. Showing that E is well-defined is the most delicate point of the whole proof of

Theorem 1.2. Let x ∈ Bq. Because x is a boundary, a straightforward calculation shows

that
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(id⊗R∂)(x) ∈
q−1⊕
j=1

Bj(H)⊗R Bq−1−j(H);

here, one should also note that B0(H) = 0 by definition of the chain complex C∗(H;R).

In particular, (S ⊗R S) indeed can be applied to (id⊗R∂)(x). This takes care of the first

summand of E and the last part of the second summand of E.

For the remaining terms, we consider the element

U(x) :=
(
ϕ∗ ⊗ ϕ∗ − ∂ ◦ (S ⊗R S) ◦ (id⊗R∂)

)
(x).

Using the fact that the maps of type S are sections of ϕ∗ on boundaries, one readily

computes (id⊗R∂) ◦U(x) = 0. Exactness of the tensor product over R then implies that

U(x) ∈
q−1⊕
j=1

Cj(H;R)⊗R Zq−j(H),

where Z∗(H) denotes the cycles in C∗(H;R). On the other hand, we clearly also

have ∂U(x) = 0, and so (∂ ⊗R id) ◦ U(x) = 0 and (again by exactness of the tensor

product over R) it follows that

U(x) ∈
q−1⊕
j=1

Zj(H)⊗R Zq−j(H).

By assumption, Hk(ϕ′;R) = 0 for all k ∈ {1, . . . , q − 1}; thus,

(ϕ′∗ ⊗R ϕ
′
∗) ◦ U(x) ∈

q−1⊕
j=1

Bj(H)⊗R Bq−j(H).

In particular, we indeed can apply the maps of type T to all components of (ϕ′∗⊗Rϕ
′
∗)U(x)

and of (id⊗R∂) ◦ (ϕ′∗ ⊗R ϕ
′
∗) ◦ U(x). Therefore, E is well-defined.

Ad 2. Because z is a boundary, a straightforward calculation shows that also D(z) is

a boundary. Moreover, by construction of D(z), all summands of D(z) are of intermediate

degree. Hence, D(z) ∈ Bq, and so E can indeed be applied to D(z).

Because (id⊗R∂) ◦ U(D(z)) = 0, a calculation shows that

∂q+1E
(
D(z)

)
= (ψ∗ ⊗R ψ∗) ◦ (ϕ′∗ ⊗R ϕ

′
∗) ◦ (ϕ∗ ⊗R ϕ∗)

(
D(z)

)
= (f∗ ⊗R f∗)D(z).

Ad 3. The bound on ‖E‖ follows directly from the explicit definition of E and

corresponding bounds on the building blocks of E: Chain maps induced by group ho-

momorphisms have norm 1, the maps of type S and T have norms bounded by κ (by

assumption), and the boundary operator on Cq( · ;R) has norm bounded by q + 1. �

Lemma A.2. Let G be a group and let k ∈ G. Then
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Θq : Cq(G;R) −→ Cq+1(G;R)

Gq 3 (g1, . . . , gq) 7−→
q+1∑
j=1

(−1)j · (g1, . . . , gj−1, k, k−1 · gj · k, . . . , k−1 · gq · k)

defines a chain homotopy between the identity and C∗(γk;R), where γk denotes the con-

jugation on G by k. Moreover, for all q ∈ N we have

‖Θq‖ ≤ q + 1.

Proof. This is a straightforward computation. �
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