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Abstract. Many compactly generated pseudo-groups of local transfor-
mations on 1-manifolds are realizable as the transverse dynamic of a foliation
of codimension 1 on a compact manifold of dimension 3 or 4.

Introduction.

After C. Ehresmann, [2], given a foliation F of codimension q on a compact manifold
M , its transverse dynamic is represented by its holonomy pseudo-group of local trans-
formations on any exhaustive transversal T . The inverse problem has been raised by
A. Haefliger: given a pseudo-group of local transformations of some manifold of dimen-
sion q, realize it, if possible, as the dynamic of some foliation of codimension q on some
compact manifold. The difficulty here lies in the compactness. More precisely, Haefliger
discovered a necessary condition: the pseudo-group must be compactly generated [5], [7].
He asked if this condition is sufficient.

The present paper intends to study the case q = 1.
A counterexample is known: there exists a compactly generated pseudo-group of

local transformations of the line, which is not realizable. It contains a paradoxical Reeb
component : a full subpseudo-group equivalent to the holonomy of a Reeb component,
but whose boundary orbit has some complicated isotropy group on the exterior side [9].

The object of the present paper is, on the contrary, to give a positive answer to
Haefliger’s question for many pseudo-groups of dimension one.

Recall that a codimension 1 foliation is (topologically) taut if through every point
there passes a transverse loop, or a transverse path with extremities on ∂M (we refer
e.g. to [1] for the elements on foliations). Equivalently, the foliation has no dead end
component. These notions are easily translated for pseudo-groups: one has the notions
of tautness and of dead end components for a pseudo-group of dimension 1 (see Subsection
1.3 below). For example, every pseudo-group of dimension 1 without closed orbit is taut.
It turns out that, to realize a given compactly generated pseudo-group of dimension 1,
the extra necessary and/or sufficient conditions that we find, bear on the isotropy groups
of the closed orbits bounding the dead end components, if any.

We also pay attention to the dimension of the realization. Of course, a pseudo-group
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which is realized by some foliation F on some manifold M , is also realized by the pullback
of F into M × S1. One can ask to realize a pseudo-group, if possible, in the smallest
possible dimension. The dynamics of the foliations on surfaces being very restrictive, the
dimension 3 will be in general the first candidate.

There is a well-known constraint specific to dimension 3 in the nontaut case. Namely,
remember that for elementary Euler characteristic reasons, in every compact foliated 3-
manifold which is not taut, every leaf bounding a dead end component is a 2-torus or
an annulus (S. Goodman) [1]. This phenomenon has a counterpart in the holonomy
pseudo-group: for every orbit bounding a dead end component, its isotropy group is
commutative of rank at most two.

A few precisions must be given before the results.
Equivalence: the pseudo-groups must be considered up to an equivalence called

Haefliger equivalence. Given two different exhaustive transversals for a same foliated
manifold, the two holonomy pseudo-groups are Haefliger-equivalent [5], [6], [7]. A foli-
ated manifold is said to realize a pseudo-group G if its holonomy pseudo-group on any
exhaustive transversal is Haefliger-equivalent to G.

Differentiability: the given pseudo-group being of class Cr, 0 ≤ r ≤ ∞, the realizing
foliation will be C∞,r, that is, globally Cr and tangentially smooth [1]. We also consider
the pseudo-groups of class PL: the realizing foliations will be C∞,PL.

Orientation: for simplicity, all pseudo-groups are understood orientable, that is,
orientation-preserving. All foliations are understood tangentially orientable and trans-
versely orientable.

Boundaries: by a “foliated manifold”, we understand a manifold M with a smooth
boundary (maybe empty), endowed with a foliation F such that each connected com-
ponent of ∂M is either a leaf of F or transverse to F . So, ∂M splits into a tangential
boundary ∂‖M , which is seen in the holonomy pseudo-group, and a transverse boundary
∂tM , which is not. However, in the realization problem, the choice of allowing a trans-
verse boundary or not, only affects the dimension of the realization. For, if G is realized
by some foliation F on some manifold M , with some transverse boundary components,
then it is also realized, without transverse boundary components, by the pullback of F
in a manifold of one more dimension, namely:

(M × S1) ∪(∂tM×S1) (∂tM ×D2).

Theorem A. Every pseudo-group of dimension 1 which is compactly generated
and taut, is realized by some foliated compact 3-manifold, without transverse boundary.

Essentially, our method is that the pseudo-group is first easily realized as the dy-
namic of a Morse-singular foliation on a compact 3-manifold. The singularities are of
Morse indices 1 and 2, in equal number. Then, thanks to tautness, from every singularity
of index 2 there is a positively transverse path to some (distant) singularity of index 1.
Thanks to some geometric manifestation of compact generation, the pair is cancelled, not
in Morse’s way, but rather by the means of an elementary surgery of index 2 performed
on the manifold, without changing the dynamic of the foliation.

An analogous construction can also be made inside a given foliated manifold; this
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leads to the following dimension reduction.

Proposition 0.1. Let (M,F) be a compact manifold of dimension n ≥ 4, endowed
with a foliation of codimension 1 which is topologically taut.

Then, there is a proper compact submanifold M ′ ⊂ M of dimension n− 1 transverse
to F , such that :

• Every leaf of F meets M ′;
• Every two points of M ′ which lie on the same leaf of F , lie on the same leaf of
F|M ′.

In particular, the holonomy pseudo-group of F|M ′ is Haefliger-equivalent to the
holonomy pseudo-group of F . Here, proper means that ∂tM ′ = ∅ and that ∂‖M ′ =
M ′ ∩ ∂‖M . Of course, from Proposition 0.1, it follows by induction on n, that M

contains a proper compact submanifold of dimension 3 transverse to F , with the same
two properties.

Recently, Martinez Torres, Del Pino and Presas have obtained by very different
means a similar result in the particular case where M admits a global closed 2-form
inducing a symplectic form on every leaf [8]. I thank Fran Presas for pointing out to me
the general problem.

We also get a characterization of the dynamics of all foliations, taut or not, on
compact 3-manifolds.

Theorem B. Let G be a pseudo-group of dimension 1. Then, the following two
properties are equivalent.

(1) G is realizable by some foliated compact 3-manifold (possibly with a transverse
boundary);

(2) G is compactly generated ; and for every orbit of G in the boundary of every dead
end component, its isotropy group is commutative of rank at most 2.

As a basic but fundamental example, the nontaut pseudo-group of local transfor-
mations of the real line generated by two homotheties t 7→ λt, t 7→ µt, with λ, µ > 0
and log µ/log λ /∈ Q, verifies the properties of Theorem B, and is not realizable by any
foliated compact 3-manifold without boundary—see Paragraph 3.1 below. We know no
simple, necessary and sufficient conditions for realizing a nontaut pseudo-group on a
compact 3-manifold without transverse boundary.

More generally, skipping the condition of rank at most 2:

Theorem C. Let G be a pseudo-group of dimension 1 which is compactly generated
and such that, for every orbit in the boundary of every dead end component, its isotropy
group is commutative. Then, G is realizable by some foliated compact 4-manifold, without
transverse boundary.

Corollary 0.2. Every pseudo-group of dimension 1 and of class PL which is
compactly generated, is realizable (in dimension 4).

There remain several open questions between these positive results and the negative
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result of [9].
Regarding the isotropy groups of the orbits bounding the dead end components, the

zoology of the groups that always allow a realization in high dimension, remains obscure
(and may be intractable).

Consider a pseudo-group G of dimension 1 which is compactly generated. If G is
real analytic, is it necessarily realizable? If G is realizable, is it necessarily realizable in
dimension 4?

Also, beyond the realization problem itself, one can ask for a more universal prop-
erty. Call G universally realizable if there is a system of foliated compact manifolds, each
realizing G, and of foliation-preserving embeddings, whose inductive limit is a Haefliger
classifying space for G. One can prove (not tackled in the present paper) that every com-
pactly generated pseudo-group of dimension one and class PL is universally realizable.
What if we change PL for “taut”? for “real analytic”?

The problem is that the method of the present paper, essentially the cancellation
of a pair of distant singularities of indices 1 and n − 1 in a Morse-singular foliation on
a n-manifold by an elementary surgery without changing the dynamic, is very specific
to these indices, and we know no equivalent e.g. for a pair of singularities of index 2 in
ambient dimension 4.

1. Preliminaries on pseudo-groups.

In Paragraphs 1.1 and 1.2, we recall concepts and facts about Haefliger equivalence
and compact generation, in a form that fits our purposes. The material here is essentially
due to Haefliger. In Paragraph 1.3, we translate into the frame of pseudo-groups of
dimension 1, the notion of topological tautness, which is classical in the frame of foliations
of codimension 1.

In Rn, one writes Dn the compact unit ball; Sn−1 its boundary; ∗ the basepoint
(1, 0, . . . , 0) ∈ Sn−1; and dxn the foliation xn = constant. “Smooth” means C∞.

1.1. Pseudo-groups and Haefliger equivalences.
An arbitrary differentiability class is understood. Let T , T ′ be manifolds of the same

dimension, not necessarily compact. Smooth boundaries are allowed.
A local transformation from T to T ′ is a diffeomorphism γ between two nonempty,

topologically open subsets Dom(γ) ⊂ T , Im(γ) ⊂ T ′. Note that the boundary is neces-
sarily invariant:

Dom(γ) ∩ ∂T = γ−1(∂T ′).

Given also a local transformation γ′ from T ′ to T ′′, the composite γ′γ is defined whenever
Im(γ) meets Dom(γ′) (an inclusion is not necessary), and one has:

Dom(γ′γ) = γ−1(Dom(γ′)).

Given two sets of local transformations A, B, as usual, AB denotes the set of the compos-
ites of all composable pairs αβ, where α ∈ A and β ∈ B. Also, 1U denotes the identity
map of the set U .
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Definition 1.1 ([11]). A pseudo-group on a manifold T is a set G of local self-
transformations of T such that:

(1) For every nonempty, topologically open U ⊂ T , the identity map 1U belongs to G;
(2) GG = G−1 = G;
(3) For every local self-transformation γ of T , if Dom(γ) admits an open cover (Ui) such

that every restriction γ|Ui belongs to G, then γ belongs to G.

Then, by (1) and (2), G is also stable by restrictions: if γ belongs to G and if
U ⊂ Dom(γ) is nonempty open, then γ|U belongs to G.

Example 1. Every set S of local self-transformations of T is contained in a small-
est pseudo-group 〈S〉 containing S, called the pseudo-group generated by S. A local
transformation γ of T belongs to 〈S〉 if and only if, in a neighborhood of every point in
its domain, γ splits as a composite σ` . . . σ1, with ` ≥ 0 and σ1, . . . , σ` ∈ S ∪ S−1.

Example 2. Given a pseudo-group (G,T ), and a nonempty open subset U ⊂ T ,
one has on U a restricted pseudo-group G|U := 1UG1U : the set of the elements of G

whose domains and images are both contained in U .

Example 3. More generally, given a pseudo-group (G,T ), a manifold T ′, and a
set F of local transformations from T ′ to T , one has on T ′ a pullback pseudo-group
F ∗(G) := 〈F−1GF 〉.

Under a pseudo-group (G,T ), every point t ∈ T has:

(1) An orbit G(t): the set of the images γ(t) through the local transformations γ ∈ G

defined at t;
(2) An isotropy group Gt: the group of the germs at t of the local transformations γ ∈ G

defined at t and fixing t.

Call an open subset T ′ ⊂ T exhaustive if T ′ meets every orbit. Call the pseudo-group
G cocompact if T admits a relatively compact exhaustive open subset. Call the pseudo-
group G connected if every two points of T are linked by a finite sequence of points of
T , of which every two consecutive ones lie in the same orbit or in the same connected
component of T . Obviously, every pseudo-group splits as a disjoint sum of connected
ones.

Let (M,F) be a manifold foliated in codimension q. A smooth boundary is allowed,
in which case each connected component of ∂M must be tangent to F or transverse to F .
One writes ∂‖M the union of the tangential components. By a transversal, one means
a q-manifold T immersed into M transversely to F , not necessarily compact, and such
that ∂T = T ∩ ∂‖M . One calls T exhaustive (or total) if it meets every leaf.

Definition 1.2 ([2]). The holonomy pseudo-group Hol(F , T ) of a foliation F on
an exhaustive transversal T is the pseudo-group generated by the local transformations
γ of T for which there exists a map

fγ : [0, 1]×Dom(γ) → M
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such that:

• fγ t F and f∗γF is the slice foliation on [0, 1] × Dom(γ), whose leaves are the
([0, 1]× t)’s (t ∈ Dom(γ));

• fγ(0, t) = t and fγ(1, t) = γ(t), for every t ∈ Dom(γ).

We may call fγ a fence associated to γ. This holonomy pseudo-group does represent
the dynamic of the foliation: there is a one-to-one correspondence L 7→ L ∩ T between
the leaves of F and the orbits of Hol(F , T ); a topologically closed orbit corresponds to a
topologically closed leaf; the isotropy group of Hol(F , T ) at any point is isomorphic with
the holonomy group of the corresponding leaf; etc.

Definition 1.3 ([4]). A Haefliger equivalence between two pseudo-groups (Gi, Ti)
(i = 0, 1) is a pseudo-group G on the disjoint union T0tT1, such that G|Ti = Gi (i = 0, 1)
and that every orbit of G meets both T0 and T1.

Example 1. The two holonomy pseudo-groups of a same foliation on two exhaus-
tive transversals are Haefliger equivalent.

Example 2. The restriction of a pseudo-group (G,T ) to any exhaustive open
subset of T is Haefliger-equivalent to (G,T ).

Example 3. More generally, let (G,T ) be a pseudo-group, and let F be a set of
local transformations from T ′ to T . Assume that:

(1) FF−1 ⊂ G;

(2)
⋃

φ∈F Dom(φ) = T ′;

(3)
⋃

φ∈F Im(φ) is G-exhaustive in T .

Then, the pseudo-group 〈F ∪G〉 on T tT ′ is a Haefliger equivalence between (G,T ) and
(F ∗(G), T ′).

The Haefliger equivalence is actually an equivalence relation between pseudo-groups.
Given two Haefliger equivalences: G between (G0, T0) and (G1, T1), and G′ between
(G1, T1) and (G2, T2), one forms the pseudo-group 〈G ∪ G′〉 on T0 t T1 t T2. Then,
〈G ∪G′〉|(T0 t T2) is a Haefliger equivalence between (G0, T0) and (G2, T2).

Every Haefliger equivalence induces a one-to-one correspondence between the orbit
spaces Ti/Gi (i = 0, 1). A closed orbit corresponds to a closed orbit. The isotropy groups
at points on corresponding orbits are isomorphic.

1.2. Compact generation.
Let (G,T ) be a pseudo-group. We say that γ ∈ G is (G-) extendable if there exists

some γ̄ ∈ G such that Dom(γ) is contained and relatively compact in Dom(γ̄), and that
γ= γ̄|Dom(γ). The composite of two extendable elements is also extendable. The inverse
of an extendable element is also extendable.

Definition 1.4 (Haefliger [5]). A pseudo-group (G,T ) is compactly generated if
there are an exhaustive, relatively compact, open subset T ′ ⊂ T , and finitely many
elements of G|T ′ which are G-extendable, and which generate G|T ′.
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Proposition 1.5 (Haefliger [5], [7]). Compact generation is invariant by Haefliger
equivalence.

Proposition 1.6 (Haefliger [5], [7]). The holonomy pseudo-group of every foliated
compact manifold is compactly generated.

We shall also use the following fact, which amounts to say that the choice of T ′ is
arbitrary.

Lemma 1.7 ([5], [7]). Let (G,T ) be a compactly generated pseudo-group, and
T ′′ ⊂ T be any exhaustive, relatively compact, open subset. Then there are finitely many
elements of G|T ′′ that are extendable in G, and that generate G|T ′′.

Note: pseudo-groups vs. groupoids. The above definition of compact generation,
although it may look strange at first look, is relevant; in particular because it is preserved
through Haefliger equivalences. N. Raimbaud has shown that compact generation has
a somewhat more natural generalization in the frame of topological groupoids. Write
Γ(T ) the topological groupoid of the germs of local transformations of T . Let G be any
pseudo-group on T . Then, the set Γ of germs [g]t, for all g ∈ G and all t ∈ Dom(g), is in
Γ(T ) an open subgroupoid whose space of objects is the all of T . It is easily verified that
one gets this way a bijection between the set of pseudo-groups on T and the set of open
subgroupoids in Γ(T ) whose space of objects is T . The pseudo-group G is compactly
generated if and only if the topological groupoid Γ contains an exhaustive, relatively
compact, open subset, which generates a full subgroupoid [10].

1.3. Tautness for pseudo-groups of dimension 1.
We now consider a pseudo-group (G,T ) of dimension 1, that is, dimT = 1; and

oriented, that is, T is oriented and G is orientation-preserving. From now on, all pseudo-
groups will be understood of dimension 1 and oriented.

By a positive arc [t, t′] of origin t and extremity t′, we mean an orientation-preserving
embedding of the interval [0, 1] into T sending 0 to t and 1 to t′.

A positive chain is a finite sequence of positive arcs, such that the extremity of each
(but the last) lies on the same orbit as the origin of the next. A positive loop is a positive
chain such that the extremity of the last arc lies on the same orbit at the origin of the
first.

Definition 1.8. A pseudo-group (G,T ) of dimension 1 is taut if every point of T

lies either on a positive chain whose origin and extremity belong to ∂T , or on a positive
loop.

Proposition 1.9. Let (G,T ) be a cocompact pseudo-group of dimension 1. Then,
(G,T ) is taut if and only if it is Haefliger-equivalent to some pseudo-group (G′, T ′) such
that T ′ is a finite disjoint union of compact intervals and circles.

Proof. One first easily verifies that tautness is invariant by Haefliger equivalence.
“If” follows.

Conversely, given a taut cocompact pseudo-group (G,T ), by cocompactness there is
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a finite family C of positive chains, each being a loop or having extremities on ∂T , such
that every orbit of G meets on at least one of them.

Consider one of these chains c = ([ti, t′i]) (0 ≤ i ≤ `(c)) which is not a loop: its
origin t0 and extremity t′`(c) lie on ∂T . For every 1 ≤ i ≤ `(c), one has ti = gi(t′i−1) for
some gi ∈ G whose domain and image are small. Let

U0 := [t0, t′0] ∪Dom(g1)

U`(c) := Im(g`(c)) ∪ [t`(c), t′`(c)]

and for each 1 ≤ i ≤ `(c)− 1, let

Ui := Im(gi) ∪ [ti, t′i] ∪Dom(gi+1).

One makes an abstract copy U ′
i of each Ui. Write fc,i : U ′

i → Ui for the identity.
These abstract copies are glued together by means of the gi’s into a single compact
segment T ′c. Thus, T ′c has an atlas of maps which are local transformations fc,i (0 ≤ i ≤
`(c)) from T ′c to T , such that every change of maps gi = fc,ifc,i−1

−1 belongs to G. The
images of the fc,i’s cover the chain c.

In the same way, for every c ∈ C which is a loop, one makes a circle T ′c together
with an atlas fc,i (0 ≤ i ≤ `(c)) of maps which are local transformations from T ′c to T ,
such that every change of maps belongs to G. The images of the maps cover the chain c.

Let T ′ be the disjoint union of the T ′c’s, for c ∈ C. By Example 3 above after Defi-
nition 1.3, G is Haefliger-equivalent to the pseudo-group F ∗(G) of local transformations
of T ′. ¤

In case (G,T ) is connected, one can be more precise (left as an exercise):

Proposition 1.10. Let (G,T ) be a connected, cocompact pseudo-group of dimen-
sion 1. Then, (G,T ) is taut if and only if it is Haefliger-equivalent to some pseudo-group
(G′, T ′) such that T ′ is either a finite disjoint union of compact intervals, or a single
circle.

Our last lemma has no relation to tautness. For a compactly generated pseudo-group
of dimension one, one can give a more precise form to the generating system defining
compact generation:

Lemma 1.11. Let (G,T ) be a compactly generated pseudo-group of dimension 1.
Then:

(1) There is a G-exhaustive, open, relatively compact T ′ ⊂ T which has finitely many
connected components;

(2) For every T ′ as above, G|T ′ admits a finite set of G-extendable generators whose
domains and images are intervals.

Proof. (1) The pseudo-group G, being compactly generated, is in particular co-
compact: there is a compact K ⊂ T meeting every orbit. Being compact, K meets
only finitely many connected components Ti of T . For each i, let T ′i ⊂ Ti be relatively
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compact, open, connected, and contain K ∩Ti. Then, T ′ :=
⋃

i T ′i is G-exhaustive, open,
relatively compact, and has finitely many connected components.

(2) By Lemma 1.7, G|T ′ admits a finite set (gi) (i = 1, . . . , p) of G-extendable
generators. For each 1 ≤ i ≤ p, let ḡi be a G-extension of gi. Let Ui ⊂ Dom(ḡi) be open,
relatively compact, contain Dom(gi), and have finitely many connected components.
Then, Ui ∩ T ′ has finitely many connected components. Each of these components is
either an interval or a circle. In the second case, we cover this circle by two open intervals.
We get a cover of Ui ∩ T ′ by a finite family (Ij) (j ∈ Ji) of intervals open and relatively
compact in Dom(ḡi). The finite family (ḡi|Ij) (1 ≤ i ≤ p, j ∈ Ji) is G-extendable and
generates G|T ′. ¤

2. Proof of Theorem A and of Proposition 0.1.

2.1. Proof of Theorem A.
We are given a taut, compactly generated pseudo-group (G,T ) of dimension 1 and

class Cr, 0 ≤ r ≤ ∞, or PL. We have to realize G as the holonomy pseudo-group of some
foliated compact 3-manifold. By Proposition 1.9, we can assume that T is compact: a
finite disjoint union of compact intervals and circles. By Lemma 1.11 applied to T ′ = T ,
the pseudo-group G admits a finite system g1, . . . , gp of G-extendable generators whose
domains and images are intervals.

The proof uses Morse-singular foliations. It would be natural to define them as the
Haefliger structures whose singularities are quadratic, but this would lead to irrelevant
technicalities. A simpler concept will do.

Definition 2.1. A Morse foliation F on a smooth n-manifold M is a foliation of
codimension one and class C∞,r on the complement of finitely many singular points, such
that on some open neighborhood of each, F is conjugate to the level hypersurfaces of
some nondegenerate quadratic form on some neighborhood of 0 in Rn. The conjugation
must be C0; it must be smooth except maybe at the singular point.

We write Sing(F) ⊂ M for the finite set of singularities. Note that F is smooth
on some neighborhood of Sing(F), minus Sing(F). The holonomy pseudo-group of F is
defined, on any exhaustive transversal disjoint from the singularities, as the holonomy
pseudo-group of the regular foliation F|(M \ Sing(F)).

We shall first realize (G,T ) as the holonomy pseudo-group of a Morse foliation on
a compact 3-manifold. Then, compact generation will allow us to perform a surgery on
this manifold and regularize the foliation, without changing its transverse structure.

To fix ideas, at first we assume that T is without boundary: that is, a finite disjoint
union of circles.

Let M0 := S2 × T and let F0 be the foliation of M0 by 2-spheres: its holonomy
pseudo-group on the exhaustive transversal ∗ × T is the trivial pseudo-group. Write
pr2 : M0 → T for the second projection.

For every 1 ≤ i ≤ p, write (ui, u
′
i) ⊂ T for the open interval that is the domain of

gi, and write (vi, v
′
i) the image of gi. Fix some extension ḡi ∈ G.

Choose two embeddings ei : D3 → M0 and fi : D3 → M0 such that
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(1) ei(D3) and fi(D3) are disjoint from each other and from ∗ × T ;
(2) pr2(ei(D3)) = [ui, u

′
i] and pr2(fi(D3)) = [vi, v

′
i];

(3) e∗iF0 = f∗i F0 is the trivial foliation dx3|D3;
(4) pr2 ◦fi = ḡi ◦ pr2 ◦ei.

We perform on M0 an elementary surgery of index 1 by cutting the interiors of
ei(D3) and of fi(D3), and by pasting their boundary 2-spheres. The points ei(x) and
fi(x) are pasted, for every x ∈ ∂D3.

We perform such a surgery on M0 for every 1 ≤ i ≤ p, choosing of course the
embeddings ei, fi two by two disjoint. Let M1 be the resulting manifold.

Obviously, F0 induces on M1 a Morse foliation F1, with 2p singularities, one at
every point si := ei(0, 0,−1) = fi(0, 0,−1), of Morse index 1; and one at every point
s′i := ei(0, 0,+1) = fi(0, 0,+1), of Morse index 2. It is easy and standard to endow M1

with a smooth structure, such that F1 is of class C∞,r, and smooth in a neighborhood
of the singularities, minus the singularities.

By (4), the holonomy of F1 on the transversal ∗ × T ∼= T is generated by the local
transformations gi. That is, it coincides with G.

Up to now, we have not used fully the fact that G is compactly generated. Now, we
point a consequence of this fact, which is actually its geometric translation.

Consider in general some Morse foliation X on some 3-manifold X, and some sin-
gularity s of index 1. On some neighborhood of s, the Morse foliation X admits the first
integral Q := −x2

0 + x2
1 + x2

2 in some continuous local coordinates x0, x1, x2, smooth
except maybe at the singularity. The two components of the singular cone at s, namely
Q−1(0) ∩ {x0 < 0} and Q−1(0) ∩ {x0 > 0}, may either belong to the same leaf of the
regular foliation X|(X \ Sing(X )), or not. If they do, then there is a loop λ : [0, 1] → X

such that

• λ(0) = λ(1) = s;
• λ is tangential to X ;
• λ(t) /∈ Sing(X ) for every 0 < t < 1;
• x0(λ(t)) ≤ 0 (resp. ≥ 0) for every t close enough to 0 (resp. 1).

Such a loop has a holonomy germ h(λ) on the pseudo-transversal arc x0 = x1 = 0,
x2 ≥ 0. This is the germ at 0 of some homeomorphism of the nonnegative half-line.

Definition 2.2. If moreover the holonomy h(λ) is the identity, then we call λ a
Levitt loop for X at s.

In the same way, at every singularity of index 2, the Morse foliation X admits the
first integral Q′ := x2

0 − x2
1 − x2

2 in some local coordinates x0, x1, x2. The notion of a
Levitt loop is defined symmetrically by reversing the transverse orientation of X .

Lemma 2.3. The Morse foliation F1 admits a Levitt loop at every singularity.

Proof. Consider e.g. a singularity si of index 1. In M0, let a be a path from the
point (∗, ui) to the point ei(0, 0,−1) in the sphere S2×ui; and let b be a path from (∗, vi)
to fi(0, 0,−1) in the sphere S2× vi. Then, in M1, the path ab−1 is tangential to F1 and
passes through si. Obviously, the holonomy h(ab−1) of F1 on ∗× T ∼= T along this path
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is well-defined on the right-hand side of ui. That is, h(ab−1) is a germ of homeomorphism
of T from some interval [ui, ui + ε) ⊂ T onto some interval [vi, vi +η) ⊂ T . By properties
(2) through (4) above,

h(ab−1) = gi|[ui, ui + ε).

On the other hand, recall that ḡi ∈ G. Since G is the holonomy pseudo-group of F1

on ∗ × T , there is in M \ Sing(F1), a path c from ui to vi, tangential to F1, and whose
holonomy on ∗ × T is the germ of ḡi at ui. Then, λ := a−1cb is a Levitt loop at si. ¤

To simplify the argument in the rest of the construction, it is convenient (although
in fact not necessary) that F1 admit at each singularity a simple Levitt loop. We can
get this extra property as follows. Let s be a singularity of F1, let λ be a Levitt loop for
F1 at s, and let L be the leaf singular at s, containing λ. After a generic perturbation of
λ in L, the loop λ is immersed and self-transverse in L. Let x be a self-intersection point
of λ. Since F1 is taut, there passes through x an embedded transverse circle C ⊂ M1,
disjoint from ∗× T . We perform a surgery on M1, cutting a small tubular neighborhood
N ∼= D2×S1 of C in M1, in which F1 is the foliation by the D2×t’s; and we glue Σ×S1,
where Σ is the compact connected orientable surface of genus 1 bounded by one circle,
foliated by the (Σ × t)’s. The holonomy pseudo-group of the foliation F1 on ∗ × T is
not changed. After the surgery, there is at s a Levitt loop with one less self-intersection.
Of the two pieces of λ that passed through x, now one passes in the new handle and is
disjoint from the other.

After a finite number of such surgeries, for every 1 ≤ i ≤ p, the Morse foliation F1

admits at the singularity si (resp. s′i) a simple Levitt loop λi (resp. λ′i).
Fix some 1 ≤ i ≤ p. We shall somewhat cancel the pair of singularities si and s′i of

F1, at the price of a surgery on M1, without changing the transverse structure of F1.
First, we use fully the fact that G is taut: there is a path pi : [0, 1] → M1 from

pi(0) = s′i to pi(1) = si, and positively transverse to F1 except at its endpoints.
The geometry is as follows (Figure 1). Let Q(x1, x2, x3) be a quadratic form of

Morse index 1 with respect to some local system of coordinates at si, which is a local
first integral for F1. Then, pi arrives at si by one of the two components of the cone
Q < 0. Reversing if necessary the orientation of λi, one can arrange that λi quits si

in the boundary of the same half cone. Symmetrically, let Q′(x1, x2, x3) be a quadratic
form of Morse index 2 with respect to some local system of coordinates at s′i, which is
a local first integral for F1. Then, pi quits s′i by one of the two components of the cone
Q′ > 0. Reversing if necessary the orientation of λ′i, one can arrange that λ′i arrives at
s′i in the boundary of the same half cone.

We shall perform a surgery on M1, and modify F1, in an arbitrarily small neighbor-
hood of λ′i ∪ pi ∪ λi, to cancel the singularities si, s′i, without changing the holonomy
pseudo-group of the foliation.

To this aim, the composed path λ′ipiλi (that is, λ′i followed by pi followed by λi) is
homotoped, relatively to its endpoints, into some path qi also positively transverse to F1,
except at its endpoints qi(0) = s′i and qi(1) = si. The homotopy consists in pushing the
two tangential Levitt loops to some nearby, positively transverse paths, and in rounding
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Figure 1.

the two corners; it is C0-small.
Notice that pi and qi arrive at si by the two opposite components of the cone Q < 0.

Symmetrically, pi and qi quit s′i by the two opposite components of the cone Q′ > 0.
By construction, for a convenient choice of the parametrization t 7→ qi(t), the trans-

verse path qi is F1-equivalent to pi, that is, the diffeomorphism pi(t) 7→ qi(t) belongs
to the holonomy pseudo-group of F1 on the union of the two transversal open arcs
pi ∪ qi \ {si, s

′
i}.

After a small, generic perturbation of pi and qi relative to their endpoints si, s′i, we
arrange that pi and qi are two embeddings of the interval into M1; that they are disjoint,
but at their endpoints; and also that they are disjoint from pj , qj for every j 6= i, and
also disjoint from the transversal ∗ × T .

Recall (Definition 2.1) that F1 is smooth in a neighborhood of si and s′i (but maybe
at si and s′i). After a Cr-small perturbation of F1 in some small neighborhood of pi and
qi, relative to some small neighborhoods of si and s′i, the foliation F1 is smooth in some
neighborhood of pi ∪ qi (but maybe at si and s′i).

Now, we shall perform on M1 an elementary surgery of index 2 along every embedded
circle pi ∪ qi (1 ≤ i ≤ p) (Figure 2). That is, we cut some small tubular neighborhood
Ni

∼= S1 × D2 of pi ∪ qi, and we paste D2 × S1 (here the choice of the framing is
irrelevant). We shall obtain a closed 3-manifold M . We shall, for a convenient choice of
the Ni’s, extend the foliation F1|(M1\

⋃
i Ni) to M , as a (regular) foliation, still admitting

∗×T as an exhaustive transversal, and whose holonomy pseudo-group on ∗×T will still
be G.

To this end, first notice that, by Definition 2.2, and since λi (resp. λ′i) is a simple
loop, there is some small open neighborhood Ui (resp. U ′

i) of λi (resp. λ′i) in M1, such
that the foliation F1 admits in Ui \ si (resp. U ′

i \ s′i) a first integral Fi (resp. F ′i ) whose
level sets are connected. Precisely, for every t < Fi(si) (resp. t > F ′i (s

′
i)), the level set

Fi
−1(t) (resp. F ′i

−1(t)) is an open disk. For every t > Fi(si) (resp. t < F ′i (s
′
i)), the level
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Figure 2.

set Fi
−1(t) (resp. F ′i

−1(t)) is the once punctured torus.
Choose a compact 3-ball Bi ⊂ Ui containing si and such that Fi|Bi is topologically

conjugate to a quadratic form Q of signature −+ +, with three different eigenvalues, on
the unit ball. Choose a compact 3-ball B′

i ⊂ U ′
i containing s′i and such that F ′i |B′

i is
topologically conjugate to a quadratic form Q′ of signature − − +, with three different
eigenvalues, on the unit ball. Choose some tubular neighborhood Si of the circle pi ∪ qi,
so thin that Si ∩ ∂Bi (resp. Si ∩ ∂B′

i) is contained in the cone Q < 0 (resp. Q′ > 0), and
such that F1|Si is a foliation by disks, except on the intersections of Si with Q ≥ 0 and
with Q′ ≤ 0. Define Ni := Bi ∪B′

i ∪Si. We can arrange that Ni is a smooth solid torus.
Then, after reparametrizing the values of Fi and of F ′i , they obviously extend to a

function F ′′i on Ni \ {si, s
′
i} as follows.

(1) F ′′i is a first integral for F1 on Ni \ {si, s
′
i};

(2) F ′′i coincides with Fi on Bi and with F ′i on B′
i;

(3) F ′′i |∂Ni has exactly eight Morse critical points: two minima and two critical points
of index 1 on ∂B′

i, two critical points of index 1 and two maxima on ∂Bi;
(4) The values of F ′′i at these critical points are respectively −2, −2, −1, −1, 1, 1, 2, 2;
(5) The sign of the tangency between F ′′i and ∂Ni at each critical point is as follows:

the descending gradient of F ′′i exits Ni at the four critical points on ∂B′
i, and enters

Ni at the four critical points on ∂Bi;
(6) One has F ′′i (pi(u)) = F ′′i (qi(u)) for every u ∈ [0, 1].

On the other hand, in the handle Hi := D2×S1, one has the function h := x2(1+y2
1),

where D2 ⊂ R2 (resp. S1 ⊂ R2) is defined by x2
1 +x2

2 ≤ 1 (resp. y2
1 +y2

2 = 1). In Hi, the
function h has no critical point. On ∂Hi, by (3), (4) and elementary Morse theory, h|∂Hi

is smoothly conjugate to F ′′i |∂Ni. We attach Hi to M \ Int(Ni) so that the functions F ′′i
and h coincide on ∂Ni

∼= ∂Hi. We extend F1 inside Hi as the foliation defined by h. By
(5), the sign of the tangency between h and ∂Hi at each singularity is the same as the
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sign of the tangency between F ′′i and ∂Ni. So, the resulting foliation is regular.
Having done this for every pair of singularity si, s′i, i = 1, . . . , p, we get a regular

foliation F on a closed 3-manifold M .
We claim that F admits ∗ × T as an exhaustive transversal, and has the same

holonomy pseudo-group G as F1 on ∗×T . Obviously, F has no leaf contained in any Hi.
So, the claim amounts to verify the following. Let γ : [0, 1] → M1 (resp. M) be a path
tangential to F1 (resp. F) and whose endpoints belong to M1 \

⋃
i Int(Ni). Then, there

is a path γ′ : [0, 1] → M (resp. M1) tangential to F (resp. F1) with the same endpoints,
and such that the holonomy of F1 (resp. F) along γ is the same as the holonomy of F
(resp. F1) along γ′.

We can assume that γ is contained in some Ni (resp. Hi), with endpoints on ∂Ni =
∂Hi. Let t := F ′′i (γ(0)) = h(γ(0)) = F ′′i (γ(1)) = h(γ(1)).

First, consider the case where γ is contained in Ni and tangential to F1. There are
three subcases, depending on t.

First subcase: F ′′i (s′i) < t < F ′′i (si). Then, the level set F ′′i
−1(t) is the disjoint union

of two disks, so γ has the same endpoints as some path γ′ contained in ∂F ′′i
−1(t), and

we are done.
Second subcase: F ′′i (si) ≤ t < 2. Then, consider the level set Fi

−1(t) ⊂ Ui. Obvi-
ously, the intersection of this level set with Ui\Int(Bi) is connected: a pair of pants when
t < 1, a thrice punctured torus when t > 1, and it is also connected when t = 1. So, γ

has the same endpoints as some path γ′ contained in this intersection, and we are done.
(If the endpoints of γ do not lie on the same connected component of the boundary of
the annulus Fi

−1(t) ∩Bi, then the path γ′ will be close to the Levitt loop λi).
The third and last subcase −2 < t ≤ F ′′i (s′i) is symmetric to the second.
Now, consider the second case, where γ is contained in Hi and tangential to F .
In the subcases −2 < t < −1 and 1 < t < 2, the level set h−1(t) is the disjoint

union of two disks. Thus, γ(0), γ(1) are also the endpoints of some path γ′ contained in
∂(h−1(t)), and we are done. The like holds for t = −2,−1, 1 or 2.

In the subcase −1 < t < 1, the level set h−1(t) is an annulus. If γ(0), γ(1) belong to
a same component of ∂(h−1(t)), we are done. In the remaining sub-subcase, γ(0), γ(1)
belong to the two different circle components of ∂(h−1(t)). By (6), these two circles are
also the boundaries of the two disk leaves of F1|Si through pi(u) and qi(u), for some
u ∈ (0, 1). Now, recall that the diffeomorphism pi(u) 7→ qi(u) between the transversals
pi and qi belongs to the holonomy pseudo-group of F1 on pi ∪ qi. In other words, there
is a path γ′ : [0, 1] → M1 tangential to F1 with the same endpoints as γ, and such that
the holonomy of F along γ is the same as the holonomy of F1 along γ′.

Theorem A is proved in the case of a pseudo-group (G,T ) without boundary.

Now, let us prove Theorem A for a taut, compactly generated pseudo-group (G,T )
such that T has a boundary. One can assume that (G,T ) is connected. Thus, one is
reduced to the case where T is a finite disjoint union of compact intervals (Proposition
1.10).

The construction is much the same as in the case without boundary. We stress the
few differences.

We start from the manifold M0 := S2 × T . For some of the generators gi, their
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domains and images meet the boundary, i.e. they are semi-open intervals. Consider
for example a gi whose domain meets the positive boundary ∂+T (the boundary points
where the tangent vectors which are positive with respect to the orientation of T , exit
from T ). That is, Dom(gi) = (ui, u

′
i] and Im(gi) = (vi, v

′
i] and Dom(gi) ∩ ∂T = u′i and

Im(gi) ∩ ∂T = v′i.
Such a generator will be introduced in the holonomy of the foliation by performing,

somewhat, a half elementary surgery of index 1 on the manifold M0. Put for every n:

2−1Dn := {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n ≤ 1, xn ≤ 0}.

Its boundary splits as the union of Dn−1 (the subset defined in 2−1Dn by xn = 0)
and 2−1Sn−1 (the subset defined in 2−1Dn by x2

1 + · · · + x2
n = 1). Fix some extension

ḡi ∈ G.
Choose two embeddings ei : 2−1D3 → M0 and fi : 2−1D3 → M0 such that

(1) ei
−1(∂M0) = fi

−1(∂M0) = D2;
(2) ei(2−1D3) and fi(2−1D3) are disjoint from each other and from T × ∗;
(3) pr2(ei(2−1D3)) = [ui, u

′
i] and pr2(fi(2−1D3)) = [vi, v

′
i];

(4) e∗iF0 = f∗i F0 is the trivial foliation dx3 on 2−1D3;
(5) pr2 ◦fi = ḡi ◦ pr2 ◦ei.

We perform on M0 a surgery by cutting ei(2−1D3 \ 2−1S2) and fi(2−1D3 \ 2−1S2)
and by pasting ei(2−1S2) with fi(2−1S2). The points ei(x) and fi(x) are pasted, for
every x ∈ 2−1S2.

This surgery produces a single singularity si := ei(0, 0,−1) = fi(0, 0,−1), of Morse
index 1.

The case of a generator gi whose domain meets ∂−T is of course symmetric.
After performing a surgery for every generator, we get a resulting compact manifold

M1, and a Morse foliation F1 induced on M1 by F0, with some singularities of indices 1
and 2. The boundary of M1 is the disjoint union of two closed connected surfaces ∂−M1,
∂+M1, both tangential to F1. At every point of ∂−M1 (resp. ∂+M1), the tangent vectors
positively transverse to F1 enter into (resp. exit from) M1. The holonomy pseudo-group
of F1 on ∗ × T coincides with G.

These singularities are eliminated one after the other (not by pairs). Let us eliminate
e.g. a singularity si of index 1.

On the one hand, by tautness, there is a path pi, positively transverse to F1 but at
si, from pi(0) ∈ ∂−M1 to pi(1) = si.

On the other hand, by compact generation, F1 admits a Levitt loop λi at si. We
can arrange that λi is a simple loop: if it has a transverse self-intersection x, then, by
tautness, through x there passes an arc A embedded in M1, positively transverse to
F1, and whose endpoints lie on ∂M1. We perform a surgery on M1 along A, cutting
a small tubular neighborhood ∼= D2 × [0, 1] and pasting Σ × [0, 1] (recall that Σ is the
disk endowed with a handle: see the paragraph below the proof of Lemma 2.3). The
holonomy pseudo-group of the foliation is not changed. After the surgery, si admits a
Levitt loop with one less self-intersection.

The composed path piλi is homotoped to a path qi positively transverse to F1,
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arriving at si through the component of the cone Q < 0 opposite to that of pi; and qi

is F1-equivalent to pi. During the homotopy, the extremity endpoint si is fixed, but the
origin endpoint moves in ∂−M1. One arranges that pi ∩ qi = si.

The singularity si is eliminated by, somewhat, a half elementary surgery of index 2
along the arc pi∪ qi: one cuts a small tubular neighborhood of this arc, Ni

∼= [0, 1]×D2,
such that Ni ∩ ∂M1

∼= {0, 1}×D2; and one pastes 2−1D2×S1 foliated by the restricted
function h|(2−1D2 × S1). Every arc (2−1S1) × θ ∈ ∂(2−1D2) × S1 is identified with
[0, 1]× θ ∈ [0, 1]× ∂D2. The details are just like in the case without boundary.

2.2. Proof of Proposition 0.1.
We are now given a compact manifold M of dimension n ≥ 4 endowed with a

codimension 1, taut foliation F ; and we have to find in M a proper hypersurface M ′

transverse to F , such that the inclusion induces a bijection between the spaces of leaves
M ′/(F|M ′) and M/F .

To fix ideas, we consider only the case where M is closed connected and where F is
smooth.

Endow M with an auxiliary Riemannian metric. Write ρ(F) the infimum of the
injectivity radii of the leaves.

Fix a positive length δ<ρ(F)/4 so small that the following tracking property holds
for every leaf L of F and for every locally finite, δ-dense subset A ⊂ L (in the sense that
every point of L is at distance less than δ from some point of A). For every shortest
geodesic segment [a, b] whose endpoints lie in A and whose length is less than ρ(F)/2,
there exists in A a finite sequence a0 = a, . . . , a` = b, such that d(ai−1, ai) < 2δ (1 ≤
i ≤ `), and that the shortest geodesic segments [a0, a1], . . . , [a`−1, a`], [b, a] form a simple
loop bounding a 2-disk embedded in L.

Choose a circle T embedded into M transversely to F , and such that T ∩L is δ-dense
in every leaf L.

Write G the holonomy pseudo-group of F on T . For any g ∈ G and r > 0, say
that g is r-short if for every t ∈ Dom(g), the distance from t to g(t) in the leaf of F
through t is less than r. At every point of T , one has only finitely many 2δ-short germs
of local transformations of T belonging to G. Thus, one has a finite family g1, . . . , gp ∈ G

such that every domain Dom(gi) is an interval (ti, t′i) ⊂ T ; and that every 2δ-short germ
in G is the germ of some gi at some point of its domain. Moreover, one can arrange
that g1, . . . , gp are (ρ(F)/2)-short and G-extendable; and that the leaves through the
endpoints ti, t′i are two by two distinct. One writes ĝi the extension of gi to the compact
interval [ti, t′i].

The family g1, . . . , gp generates G. Indeed, since δ < ρ(F)/2, for every leaf L, the
fundamental groupoid of the pair (L,L ∩ T ) is generated by the geodesic segments of
length less than 2δ whose enpoints lie in L ∩ T .

One can arrange moreover that to each ĝi is associated a fence (recall Definition 1.2)
fi, such that the image rectangles Im(f1) = f1([0, 1] × [t1, t′1]), . . . , Im(fp) = fp([0, 1] ×
[tp, t′p]) are two by two disjoint in M . Indeed, one first has the fences composed by
the tangential shortest geodesic segments [t, ĝi(t)] (t ∈ [ti, t′i]). Since the leaves are of
dimension n − 1 ≥ 3, after a fine enough subdivision of the domains of the gi’s into
smaller subintervals, and after a small generic perturbation of the arcs [t, gi(t)] relative
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to their endpoints, the image rectangles are two by two disjoint. Let si := fp(1/2, ti)
(resp. s′i := fp(1/2, t′i)) be the middle of the lower (resp. upper) edge of each fence.

The rest of the proof of Proposition 0.1 is alike the proof of Theorem A, except that
the construction is made inside (M,F). The dimension of the construction here is n− 1,
rather than 3 as it was in Theorem A, but this does not make any substantial difference.
Here is a sketch.

Let K := T ∪ Im(f1) ∪ · · · ∪ Im(fp), a 2-complex embedded into M . One has in M

a small compact neighborhood Ω of K \ {s1, . . . , sp, s
′
1, . . . , s

′
p} whose smooth boundary

M1 := ∂Ω is much like in the proof of Theorem A. Precisely, s1, . . . , sp, s
′
1, . . . , s

′
p ∈ M1;

and M1 is transverse to F but at each si (resp. s′i), where F1 := F|M1 has a Morse
singularity of index 1 (resp. n − 2). One has in M1 a circle ∗ × T close and parallel
to T , transverse to F1, and meeting every leaf of F1, such that the holonomy of F1 on
∗ × T ∼= T is generated by g1, . . . , gp. That is, it coincides with G.

Now, we use the tracking property to find some convenient Levitt loops. Consider
any si. In the leaf Li of F through si, the shortest geodesic segment [ti, ĝi(ti)] has length
less than ρ(F)/2, thus it is tracked by a piecewise geodesic path a0 = ti, . . . , a` = ĝi(ti),
such that d(ai−1, ai) < 2δ (1 ≤ i ≤ `); and [a0, a1], . . . , [a`−1, a`], [ĝi(ti), ti] form a simple
loop λgeod bounding a 2-disk embedded in Li. Close to λgeod, one has a loop λK in
Li ∩K. Close to λK , one has a loop λi in Li ∩M1, passing through si. Obviously, λi is
a Levitt loop for F1 at si. If the fences f1, . . . , fn have been taken close enough to the
geodesic ones, and if the neighborhood Ω of K has been taken thin enough, then λi is
also simple, and bounds also a disk ∆i embedded in Li.

The like holds at every s′i, and yields a simple Levitt loop λ′i bounding a disk ∆′
i

embedded in the leaf of F through s′i. The leaves of F through the singularities of F1

being two by two distinct, the disks are two by two disjoint.
Like in the proof of Theorem A, we have in M1 a simple path pi from s′i to si,

positively transverse to F1 but at its endpoints. The composed path λ′ipiλi is perturbated
in M1, relative to his endpoints, into some simple path qi transverse to F1 and disjoint
from pi, but at its endpoints. The union of the disks ∆i and ∆′

i with a thin strip is
perturbated into a 2-disk ∆′′

i (rather obvious on Figure 1) such that

• ∆′′
i is embedded into M ;

• ∂∆′′
i = ∆′′

i ∩M1 = pi ∪ qi;
• ∆′′

i is transverse to F and F|∆′′
i is the foliation of the 2-disk by parallel straight

segments.

The hypersurface M ′ ⊂ M is built from M1 by cutting, for every 1 ≤ i ≤ p, a small
tubular neighborhood of pi ∪ qi in M1, diffeomorphic with S1 ×Dn−2, and pasting the
boundary of the sphere bundle normal to ∆′′

i in M , diffeomorphic to D2 × Sn−3.

3. Proof of Theorems B and C.

3.1. Examples: realizing the homothety pseudo-groups.
First, we discuss the realization of some elementary but fundamental examples:

the homothety pseudo-groups. They constitute the most simple nontaut, compactly
generated pseudo-groups.
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Given some positive real numbers λ1, . . . , λr, let G(λ1, . . . , λr) be the pseudo-group
of local transformations of the real line generated by the homotheties t 7→ λ1t, . . . , t 7→
λrt. We assume that the family log λ1, . . . , log λr is of linear rank r over Q.

For r = 1, the pseudo-group G(λ1) has two obvious realizations of interest. The
first is on the annulus A := S1 × [0, 1]. The compact leaf is S1 × (1/2); the other
leaves are transverse to ∂A and spiral towards S1 × (1/2). The second realization is on
∂(A×D2) ∼= S2 × S1. The compact leaf is a 2-torus, and splits S2 × S1 into two Reeb
components.

On the contrary, G(λ1) is not realizable on T 2. Indeed, the foliation would be
transversely oriented and have a single compact leaf, whose linear holonomy would be
nontrivial, a contradiction.

The case r = 2 is analogous. The torus T 2 is endowed with the angle coordinates
x, y. One realizes G(λ1, λ2) on V := T 2×[0, 1] by a foliation F(λ1, λ2) transverse to both
boundary tori, where its trace is the linear irrational foliation dx log λ1 + dy log λ2 = 0.
The torus T 2 × (1/2) is a compact leaf; the other leaves spiral towards it.

Notice that G(λ1, λ2) is not realizable by any foliation F on any closed, orientable 3-
manifold M . For, by contradiction, F would have a unique compact leaf L diffeomorphic
to T 2, along which M would split into two compact 3-manifolds M ′, M ′′. On R \ 0, the
differential 1-form dt/t is invariant by G(λ1, λ2). There would correspond on M \ L a
nonsingular closed 1-form ω of rank r = 2, such that F|(M \ L) = kerω. In H1(M ′;R),
the de Rham cohomology class [ω] decomposes as (log λ1)e1 + (log λ2)e2, with e1, e2 ∈
H1(M ′;Z). The restriction [ω]|L ∈ H1(L;R) is of rank 2, being the class of the linear
holonomy of F along L. Thus, e1|L and e2|L are not Q-colinear in H1(L;Q). Since L

is a 2-torus, (e1|L) ∧ (e2|L) 6= 0 in H2(L;Z). In other words, e1 ∧ e2 ∈ H2(M ′;Z) is
nonnull on the fundamental class of ∂M ′. This contradicts Stokes theorem, M ′ being an
orientable compact 3-manifold.

One can ask if things would turn better if one dropped the condition that the
realization be a tangentially orientable foliation. It is not difficult to see that the answer
is negative: G(λ1, λ2) is also not realizable by any foliation F , even not orientable, on
any closed 3-manifold M . This is left as an exercise. I thank the referee for pointing out
a mistake at this point in the first version of this paper.

For every r ≥ 2, the pseudo-group G(λ1, . . . , λr) is realizable on a closed orientable
4-manifold. Indeed, in a first place, for each 2 ≤ i ≤ r, just as above, realize G(λ1, λi)
by a foliation F(λ1, λi) on V := T 2× [0, 1]. So, G(λ1, λi) is also realized by the pullback
Fi of F(λ1, λi) in the 4-manifold

Mi := ∂(V ×D2) ∼= T 2 × S2.

The compact leaf Li of Fi is the 3-torus T 2 ×S1. For each i = 3, . . . , r, in L2 and in Li,
we pick some embedded circle Ci ⊂ L2 (resp. C ′i ⊂ Li) parallel to the first circle factor:
the holonomy of F2 (resp. Fi) along Ci (resp. C ′i) is the germ of t 7→ λ1t at 0. We arrange
that C3, . . . , Cr are two by two disjoint. The loop Ci (resp. C ′i) has in M2 (resp. Mi)
a small tubular neighborhood Ni (resp. N ′

i) ∼= D3 × S1, on the boundary of which F2

(resp. Fi) traces a foliation composed of two Reeb components, realizing G(λ1). We cut
from M2, . . . , Mr the interiors of N3, . . . , Nr, N ′

3, . . . , N
′
r. We paste every ∂Ni with ∂N ′

i ,
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such that F2|∂Ni matches Fi|∂N ′
i . We get a closed 4-manifold with a foliation realizing

G(λ1, . . . , λr).
The realization of pseudo-groups of homotheties with boundary is much alike: let

2−1G(λ1, . . . , λr) be the pseudo-group of local transformations of the half -line R≥0 gen-
erated by some family of homotheties t 7→ λ1t, . . . , t 7→ λrt, of rank r. Each of the above
realizations of G(λ1, . . . , λr) splits along its unique compact leaf into two realizations of
2−1G(λ1, . . . , λr).

3.2. Novikov decomposition for pseudo-groups, and hinges.
Let (G,T ) be a compactly generated pseudo-group of dimension 1.
We consider the closed orbits (the orbits topologically closed in T ).

Lemma 3.1. The union of the closed orbits is topologically closed in T .

Proof. We know no proof for this fact in the pseudo-group frame. To prove it, we
realize the pseudo-group, as in Section 2, by a Morse foliation F on a compact manifold
M . Since the homology of M \ Sing(F) is of finite rank, Haefliger’s argument [3] applies
and shows that the union of the closed leaves is closed. ¤

We call a closed orbit isolated (resp. left isolated) (resp. right isolated) if it admits
some neighborhood (resp. left neighborhood) (resp. right neighborhood) in T which meets
no other closed orbit.

By a component of (G,T ), one means a submanifold T ′ ⊂ T of dimension 1, topo-
logically closed in T , and saturated for G.

By an I-bundle (resp. an S1-bundle) we mean the pseudo-group generated by a
finite number r of global diffeomorphisms on the compact interval (resp. the circle).
It is of course realized on some compact 3-manifold fibred over some closed surface
(“suspension”). Every pseudo-group Haefliger-equivalent to an I-bundle (resp. an S1-
bundle) is also called an I-bundle (resp. an S1-bundle). The smallest possible r is the
rank of the I-bundle (resp. the S1-bundle).

Any closed orbit whose isotropy group has infinitely many fix points bounds an
I-bundle. Precisely,

Lemma 3.2. Let G(t) ⊂ T be a closed orbit, and let h1, . . . , hr be elements of
G whose germs at t generate the isotropy group Gt. Assume that h1, . . . , hr admit a
sequence (tn) of common fix points other than t, decreasing (resp. increasing) to t. Put
In := [t, tn] (resp. [tn, t]).

Then, for every n large enough,

• The restricted pseudo-group (G|In, In) is generated by h1|In, . . . , hr|In;
• The G-saturation of In is an I-bundle component of (G,T ), Haefliger-equivalent

to (G|In, In).

Proof. One first reduces oneself to the case where G(t) = {t}, as follows. Let
U := (T \G(t))∪ t. By Baire’s theorem, every closed orbit is discrete. So, U is open in T

and meets every orbit. We change (G,T ) for (G|U,U), which is also compactly generated
by Proposition 1.5.
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So, we assume that G(t) = {t}.
Since G is compactly generated, one has a topologically open, relatively compact

T ′ ⊂ T meeting every G-orbit (in particular t ∈ T ′) such that G|T ′ admits a system of
generators g1, . . . , gp which are G-extendable. Let ḡ1, . . . , ḡp ∈ G be some extensions.

If t lies in the topological boundary of Dom(gi) with respect to T , then we can avoid
this by changing gi for ḡi|(Dom(gi)∪(t−ε, t+ε′)), where (t−ε, t+ε′) is relatively compact
in Dom(ḡi) ∩ T ′. The like holds for Im(gi). Thus, after permuting the generators, for
some 0 ≤ q ≤ p, the point t belongs to the domains and to the images of g1, . . . , gq; but
t does not belong, nor is adherent, to the domains nor to the images of gq+1, . . . , gp.

Also, restricting the domain of each hi, we arrange that hi ∈ G|T ′ and that hi is
G-extendable. Then, we can add the family (hi) to the family of generators (gi). So, we
can assume that r ≤ q and that g1 = h1, . . . , gr = hr.

Then, for every r + 1 ≤ i ≤ q, the generator gi coincides with some compos-
ite of g1, . . . , gr on some small compact neighborhood Ni of t. We can change gi for
gi|(Dom(gi) \Ni). Finally, we have obtained a family of generators g1, . . . , gp for G|T ′,
such that t belongs to the domains and to the images of g1 = h1, . . . , gr = hr; but that t

does not belong, nor is adherent, to the domains nor to the images of gr+1, . . . , gp.
For every n large enough, In is contained in T ′ and in the domains of g1, . . . , gr;

and In is invariant by g1 = h1, . . . , gr = hr; and In is disjoint from the supports of
gr+1, . . . , gp. Thus, In is saturated for G, and G|In is generated by g1|In, . . . , gr|In. The
interval In is an I-bundle component of G. ¤

We call an orbit essential (with respect to (G,T )) if it meets no transverse positive
loop and no transverse positive chain whose both endpoints lie on ∂T . Every essential
orbit is closed (obviously). In the union of the closed orbits, the union of the essential
orbits is topologically closed (obviously) and open (by Lemma 3.2).

We call an I-bundle component of G essential (with respect to (G,T )) if its boundary
orbits are essential with respect to (G,T ). Then, every closed orbit interior to this I-
bundle is also essential with respect to (G,T ).

The “Novikov decomposition” is well-known for foliations on compact manifolds.
Every compact connected manifold endowed with a foliation of codimension one, either
is an S1-bundle, or splits along finitely many compact leaves bounding some dead end
components, into compact components, such that each component is an I-bundle, or
its interior is topologically taut. For compactly generated pseudo-groups, one has an
analogous decomposition (exercise):

Proposition 3.3 (Novikov decomposition). Let (G,T ) be a connected, compactly
generated pseudo-group of dimension 1. Assume that (G,T ) is not an S1-bundle.

Then, T splits, along finitely many essential orbits, into finitely many components
Ti, such that for each i:

(a) the component (G|Ti, Ti) is an essential I-bundle,

or

(b) the interior of the component, (G| Int(Ti), Int(Ti)), is taut.
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Novikov decompositions are functorial with respect to Haefliger equivalences: given
a Haefliger equivalence between two pseudo-groups, to every Novikov decomposition of
the one corresponds naturally a Novikov decomposition of the other.

We shall not use this decomposition under this form, nor prove it in general. We
need, under the hypotheses of Theorems B and C, the more precise form Proposition 3.8
below.

From now on, we assume moreover that in the compactly generated, 1-dimensional
pseudo-group (G,T ), every essential orbit is commutative, that is, its isotropy group is
commutative. By the essential rank of (G,T ), we mean the supremum of the ranks of
the isotropy groups of the essential orbits.

The proof of Theorems B and C somewhat consists in realizing independently every
component of some Novikov decomposition, and pasting these realizations together. The
interior of every component falling to (b) in Proposition 3.3, is realized on a closed
3-manifold, thanks to Theorem A and to the following

Lemma 3.4. Let (G,T ) be a compactly generated pseudo-group of dimension 1. Let
G(t0) ⊂ T be an isolated closed orbit, whose isotropy group is commutative.

Then, the subpseudo-group G|(T \G(t0)) is also compactly generated.

Proof. We treat the case where the orbit G(t0) is contained in ∂−T . Of course,
the case where it is contained in ∂+T is symmetric; and the case where it is contained in
Int(T ) is much alike.

Since G is compactly generated, one has a topologically open, relatively compact
T ′ ⊂ T meeting every G-orbit such that G|T ′ admits a system of generators g1, . . . , gp

which are G-extendable.
Just as in the proof of Lemma 3.2, one can arrange that G(t0) = {t0} (in particular,

t0 ∈ T ′); and that, for some 0 ≤ r ≤ p, the point t0 belongs to the domains and to the
images of g1, . . . , gr; and that t0 does not belong, nor is adherent, to the domains nor to
the images of gr+1, . . . , gp.

Since t0 is isolated as a closed orbit of G, one has r ≥ 1. We can arrange moreover,
to simplify notations, that the family (gi) is symmetric: the inverse of every gi is some
gj .

The isotropy group of t0 being commutative, there is a u0 > t0 so close to t0 that

(1) For every r + 1 ≤ i ≤ p, the interval [t0, u0] does not meet Dom(gi);
(2) For every 1 ≤ i, j ≤ r and every t ∈ [t0, u0], one has t ∈ Dom(gi) and gi(t) ∈ Dom(gj)

and gigj(t) = gjgi(t).

Put T ′′ := T ′ \ [t0, u0] and G0 := G|(T \ t0). We shall show that every orbit of
G0 meets T ′′, and that the pseudo-group G0|T ′′ is generated by g1|T ′′, . . . , gp|T ′′. Every
gi|T ′′ being G0-extendable, it will follow that G0 is compactly generated.

To this end, define by induction two sequences un∈ [t0, u0] and 1 ≤ i(n) ≤ r, such
that un+1 := gi(n)(un) is the minimum of g1(un), . . . , gr(un). Because t0 is isolated as
a closed orbit of G, there is no common fixed point for g1, . . . , gr in the interval (t0, u0].
Thus, (un) decreases to t0. Also, for every n ≥ 0:
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gi(n)
−1((un+1, u0]) ⊂ (un, u0] ∪ T ′′. (∗)

In particular, every orbit of G0 meets T ′′.
Consider the germ [g]t of some g ∈ G0 at some point t ∈ Dom(g) such that t ∈ T ′′

and g(t) ∈ T ′′. Since the gi’s generate G|T ′, this germ can be decomposed as a word w

in the germs of the generators:

[g]t = [gj(`)]t(`−1) · · · [gj(1)]t(0)

where 1 ≤ j(1), . . . , j(`) ≤ p, where t(0) = t, and where for every 0 ≤ k ≤ ` one has
t(k) := gj(k) ◦ · · · ◦ gj(1)(t) ∈ T ′.

We call the finite sequence t(0), . . . , t(`) the trace of w. We have to prove that [g]t
admits also a second such decomposition, whose trace is moreover contained in T ′′.

We make a double induction: on the smallest integer n ≥ 0 such that the trace of w

is disjoint from [t0, un], and, if n ≥ 1, on the number of k’s for which tk ∈ (un, un−1].
Assume that n ≥ 1. Let 1 ≤ k ≤ ` − 1 be an index for which tk ∈ (un, un−1].

Consider the word

w′ := gj(`) · · · gj(k+2)gi(n−1)gj(k+1)gj(k)gi(n−1)
−1gj(k−1) · · · gj(1).

By the property (2) above applied at the point tk to the pair gi(n−1)
−1, gj(k+1) and to

the pair gi(n−1)
−1, gj(k)

−1, the composite w′ is defined at t, and w′ has the same germ
at t as w.

The trace of w′ at t is the same as the trace of w, except that t(k) has been changed
for the three points gi(n−1)

−1(t(k − 1)), gi(n−1)
−1(t(k)) and gi(n−1)

−1(t(k + 1)). By (∗),
none of the three lies in [t0, un−1]. The induction is complete. ¤

The pasting of the realizations of the Novikov components will be a little delicate.
The following notion allows us to take in account, with every commutative closed orbit,
its isotropy group; and with every commutative I-bundle, the holonomy of its boundary
orbits on the exterior side.

Definition 3.5. We call a pseudo-group (Γ,Ω) of dimension 1 a hinge if Ω is an
interval, either open, or compact, or semi-open; and if there exist a Γ-invariant compact
interval [a, b] ⊂ Ω, with a ≤ b, and a system of generators γ1, . . . , γr for Γ, such that

(1) The domains and the images of γ1, . . . , γr are intervals containing [a, b];
(2) For every γ, η ∈ Γ, one has γη = ηγ and γ−1η = ηγ−1 and γ−1η−1 = η−1γ−1

wherever both composites are defined;
(3) Every neighborhood of [a, b] in Ω meets every orbit of Γ.

We call [a, b] the core. Write ∂Ω the boundary of Ω as a manifold, that is, the
boundary points of Ω belonging to Ω, if any. By (3), every such boundary point coincides
with a or b. The hinge is degenerate if a = b, in which case a = b is the (unique) closed
orbit of (Γ,Ω). The hinge is nondegenerate if a < b, in which case [a, b] is the (maximal)
I-bundle component of (Γ,Ω). The smallest possible r is the rank of (Γ,Ω).
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Lemma 3.6. Let (Γ,Ω) be a hinge. Then, there exists a local transformation in Γ
whose domain contains the core, and which is fixed-point free outside the core.

Proof. i) In case Ω coincides with the core [a, b], there is nothing to prove.
ii) Consider the case ∂Ω = a.
Let γ1, . . . , γr be as in Definition 3.5. Write γr+i = γi

−1 (1 ≤ i ≤ r). Fix u0 > b

so close to b, that u0 belongs to the domains of γ1, . . . , γ2r. Define by induction two
sequences un ∈ (b, u0] and 1 ≤ i(n) ≤ 2r, such that un+1 := γi(n)(un) is the minimum of
γ1(un), . . . , γ2r(un).

Claim. γ := γi(0) is fixed-point free in (b, u0].

Indeed, consider any t ∈ (b, u0]. By property (3) of Definition 3.5, there is no
common fixed point for γ1, . . . , γr in the interval (b, u0]. Thus, (un) decreases to b.
By construction, the following two properties are obvious, for every n ≥ 1 and every
1 ≤ i ≤ 2r:

γi(n)
−1((un+1, un]) ⊂ (un, un−1], (A)

γi(b, un] ⊂ (b, un−1]. (B)

Let N be the integer such that t ∈ (uN+1, uN ]. By (A), the composite α :=
γi(1)

−1 · · · γi(N)
−1 is defined at t, and α(t) ∈ (u1, u0]. Consequently, γ(α(t)) < α(t).

If N = 0, this means that γ(t) < t, and we are done. So, assume N ≥ 1. Then, α is
defined on the whole interval (b, uN−1), which contains t and γ(t) (by B). On the other
hand, by (B), for every k = 0, . . . , N , the composite

wk := γi(1)
−1 · · · γi(k)

−1γγi(k+1)
−1 · · · γi(N)

−1

is defined at t. By property (2) of Definition 3.5, one has w0(t) = w1(t), . . . , wN−1(t) =
wN (t). So, α(γ(t)) = γ(α(t)) < α(t). Applying α−1, we get γ(t) < t. The claim is
proved.

iii) The case ∂Ω = b is of course symmetric to ii).
iv) In the remaining case ∂Ω = ∅, we need a little more argument to get a local

transformation which is fixed-point free in the same time on the left of a, and on the
right of b.

Like in case iii), one makes a composite γ of the generators γi’s, defined on some
neighborhood of [a, b], and such that γ(t) < t for every t > b in the domain of γ. Sym-
metrically, one makes a composite δ of the generators γi’s, defined on some neighborhood
of [a, b], and such that δ(t) > t for every t < a in the domain of δ. Clearly, by property
(2), γδ = δγ on some small neighborhood [s0, t0] of [a, b]. If γ (resp. δ) is fixed-point free
on [s0, a) (resp. on (b, t0]), then γ (resp. δ) restricted to (s0, t0) works. So, diminishing
the interval [s0, t0] if necessary, we can assume that γ(s0) = s0 and δ(t0) = t0. Then, γδ

restricted to (s0, t0) works. Indeed, let tn := γn(t0) and sn := δn(s0). Then, the sequence
tn decreases to b, the sequence sn increases to a, and γ(sn) = sn, and δ(tn) = tn, and
γδ(tn) = tn+1, and γδ(sn) = sn+1. So, γδ is fixed-point free in [s0, a) and in (b, t0]. ¤
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Every hinge is easily realized:

Lemma 3.7. Let (Γ,Ω) be a hinge of rank r ≥ 1.

(1) If r ≤ 2, the hinge (Γ,Ω) is realized on T 2× [0, 1], with 2−](∂Ω) transverse boundary
components.

(2) For every r, the hinge (Γ,Ω) is realized on some compact 4-manifold, without trans-
verse boundary component.

Proof. The realization is much like in the particular case of the homothety
pseudo-groups, seen above at Paragraph 3.1. Consider, to fix ideas, the case where
∂Ω = ∅.

(1) Let us assume that r = 2, and let us realize (Γ,Ω) on T 2 × [0, 1]. Recall that
[a, b] ⊂ Ω is the core (Definition 3.5).

The suspension of γ1 and γ2 over T 2 provides, in T 2×Ω, a foliation F on some open
neighborhood U of T 2×[a, b]. By property (3) of Definition 3.5, the local transformations
γ1 and γ2 have no common fix point outside [a, b]. Consequently, one has an embedding
of T 2× [0, 1] into U containing T 2× [a, b] in its interior, and meeting every leaf of F , and
such that T 2 × 0 and T 2 × 1 are embedded transversely to F . It is easily verified that
F|(T 2 × [0, 1]) realizes (Γ,Ω).

(2) Now, let r be any integer ≥ 2. After Lemma 3.6, we can assume that γ1 is
fixed-point free outside [a, b]. Also, by a restriction of Ω which amounts to a Haefliger
equivalence of the hinge pseudo-group, one arranges that Ω = Dom(γ1) ∪ Im(γ1). Then,
for each 2 ≤ i ≤ r, just as in case (1), one realizes the pseudo-group Γi := 〈γ1, γi〉 on
Ω by a foliation F3

i on V := T 2 × [0, 1]. So, Γi is also realized by the pullback F4
i

of F3
i in Mi := ∂(V × D2) ∼= T 2 × S2. The foliation F4

i contains a “core” I-bundle
Bi
∼= T 3× [a, b]. For each i = 3, . . . , r, in B2 (resp. Bi), we pick some embedded annulus

Ai := Ci × [a, b] ⊂ B2 (resp. A′i := C ′i × [a, b] ⊂ Bi), where Ci (resp. C ′i) is a circle
embedded in T 3 and parallel to the first circle factor. The foliation F4

2 |Ai (resp. F4
i |A′i)

is the suspension of γ1|[a, b]; the holonomy of F4
2 (resp. F4

i ) along Ci×a (resp. C ′i×a) is
the germ of γ1 at a; the holonomy of F4

2 (resp. F4
i ) along Ci×b (resp. C ′i×b) is the germ

of γ1 at b. We arrange that C3, . . . , Cr are two by two disjoint in T 3. The annulus Ai

(resp. A′i) has in M2 (resp. Mi) a small tubular neighborhood Ni (resp. N ′
i) ∼= D3 ×S1,

on the boundary of which F4
2 (resp. F4

i ) traces a foliation composed of an I-bundle
and two Reeb components, realizing (〈γ1〉,Ω). We cut from M2, . . . , Mr the interiors
of N3, . . . , Nr, N ′

3, . . . , N
′
r. We paste every ∂Ni with ∂N ′

i , such that F4
2 |∂Ni matches

F4
i |∂N ′

i . We get a closed 4-manifold with a foliation realizing (Γ,Ω). ¤

Proposition 3.8. Let (G,T ) be a compactly generated pseudo-group of dimension
1, in which every essential orbit is commutative.

Then, after a Haefliger equivalence, T splits as a disjoint union

T = T0 t Ω1 t · · · t Ω`

such that

(1) T0 is a finite disjoint union of circles and compact intervals;
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(2) Each Ωk (1 ≤ k ≤ `) is the domain of a hinge Γk ⊂ G whose rank is at most the
essential rank of (G,T );

(3) Each core [ak, bk] ⊂ Ωk is G-saturated ;
(4) For every t ∈ Ωk \ [ak, bk] (1 ≤ k ≤ `), the orbit G(t) meets T0.

We begin to prove Proposition 3.8.
By a subpseudo-group in (G,T ), we mean a pseudo-group (Γ,Ω) such that Ω ⊂ T is

topologically open, and that Γ ⊂ G|Ω.

Definition 3.9. Let (Γ,Ω) ⊂ (G,T ) be a hinge subpseudo-group. Let [a, b] ⊂ Ω
be its core.

(a) Assume that (Γ,Ω) is degenerate (a = b). We call the hinge subpseudo-group
faithful if G(a) is closed in T and if Γa = Ga (isotropy groups).

(b) Assume that (Γ,Ω) is nondegenerate (a 6= b). We call the hinge subpseudo-
group faithful if the G-saturation of [a, b] is a component of (G,T ), if Γ|[a, b] = G|[a, b],
if Γa = Ga, and if Γb = Gb.

In case (b), the G-saturation of [a, b] is necessarily an I-bundle component of G.
The notion of subpseudo-group is not functorial with respect to the Haefliger equiv-

alences. The following notion solves this difficulty.

Definition 3.10. Given two pseudo-groups (G,T ) and (Γ,Ω), an extension of
(G,T ) by (Γ,Ω) is a pseudo-group Ḡ on the disjoint union T̄ := T t Ω such that

• T is exhaustive for Ḡ;
• G = Ḡ|T ;
• Γ ⊂ Ḡ.

In particular, (Ḡ, T̄ ) is Haefliger-equivalent to (G,T ), and (Γ,Ω) is a subpseudo-
group of (Ḡ, T̄ ).

For example, given two pseudo-groups (G,T ), (Γ,Ω) and given a Haefliger equiva-
lence (Γ̄,ΩtΩ0) between (Γ,Ω) and some subpseudo-group (Γ0,Ω0) ⊂ (G,T ), one has a
natural extension of (G,T ) by (Γ,Ω): namely, Ḡ is the pseudo-group on T tΩ generated
by G ∪ Γ̄.

An extension (Ḡ, T̄ ) of a pseudo-group (G,T ) by a hinge (Γ,Ω) is called faithful if
(Γ,Ω) ⊂ (Ḡ, T̄ ) is faithful; essential if its core is an essential orbit or an essential I-bundle
in (Ḡ, T̄ ).

Lemma 3.11. For every t ∈ T such that G(t) is essential, there is an essential
faithful extension (Ḡ, T̄ ) of (G,T ) by a hinge (Γ,Ω) such that :

• The rank of the hinge (Γ,Ω) is at most the essential rank of (G,T );
• The core of (Γ,Ω) meets Ḡ(t);
• The core of (Γ,Ω) meets also every essential orbit of Ḡ close enough to Ḡ(t).

Proof. First case: G(t) is not contained in any I-bundle component of (G,T ) of
rank 0.

In this case, we shall actually find a faithful hinge subpseudo-group in (G,T ) whose
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core meets G(t) and every neighboring essential orbit.
Let r := rank(Gt) and choose h1, . . . , hr ∈ G such that their germs at t are a basis of

Gt. Let Ω be a small interval containing t, topologically open in T , and contained in the
intersection of the domains and of the images of h1, . . . , hr. Put γi := hi|(Ω ∩ hi

−1(Ω))
(i = 1, . . . , r) and Γ := 〈γ1, . . . , γr〉. For Ω small enough, the properties (1) and (2) of
Definition 3.5 are fulfilled for every small enough, Γ-invariant interval [a, b].

First subcase: G(t) is isolated (recall the vocabulary that follows Lemma 3.1 above).
Put a = b := t. For Ω small enough, by Lemma 3.2, h1, . . . , hr have no common fix point
in Ω. In consequence, for every t′∈Ω\{t}, there is an i for which one of the four following
properties holds: t′ ∈Dom(γi) and t<γi(t′)<t′, or t′ ∈Dom(γi

−1) and t<γi
−1(t′)<t′,

or t′ ∈Dom(γi) and t′< γi(t′) < t, or t′ ∈Dom(γi
−1) and t′< γi

−1(t′) < t. The property
(3) of Definition 3.5 follows.

Second subcase: G(t) is not isolated from either side. In that subcase, by Lemma
3.2, we can shorten Ω to arrange that moreover none of the endpoints of Ω is a fix point
common to h1, . . . , hr. Let a and b be the smallest and the largest fix points common to
h1, . . . , hr in Ω. Then, a < t < b. For every t′ ∈ Ω \ [a, b], there is an i for which one of
the four following properties holds: t′ ∈ Dom(γi) and b < γi(t′) < t′, or t′ ∈ Dom(γi

−1)
and b < γi

−1(t′) < t′, or t′ ∈ Dom(γi) and t′ < γi(t′) < a, or t′ ∈ Dom(γi
−1) and

t′ < γi
−1(t′) < a. The property (3) of Definition 3.5 follows.

Third subcase: G(t) is isolated from exactly one side. The argument is similar to
the first two subcases.

Second case: G(t) is contained in an I-bundle component C ⊂ T of rank 0. That
is, C is a 1-manifold, topologically closed in T , and G|C is Haefliger-equivalent to the
trivial pseudo-group on the interval [0, 1] ⊂ R. In other words, one has an orientation-
preserving map f : C → [0, 1] which is etale (that is, a local diffeomorphism); and the
Haefliger equivalence is nothing but the pseudo-group on the disjoint union C t [0, 1]
generated by the set of the local sections of f . The boundary ∂C is made of of two orbits
∂−C = G(t0) and ∂+C = G(t1). We can assume that C is maximal among the I-bundle
components of rank 0. Assume also, to fix ideas, that C is interior to T (the other cases
being alike and simpler). Thus, the isotropy group of G at t0 (resp. t1) is nontrivial on
the left (resp. right).

Pick some small open interval (u0, v0) ⊂ T containing t0 and whose intersection with
C is [t0, v0); and pick some small open interval (u1, v1) ⊂ T containing t1 and whose in-
tersection with C is (u1, t1]. Take the intervals so small that f(v0) < f(u1). One extends
f |[t0, v0) into a diffeomorphism f0 from the interval (u0, v0) onto the interval (−∞, f(v0)).
The choice among the extensions is arbitrary. Similarly, one extends f |(u1, t1] into a dif-
feomorphism f1 from the interval (u1, v1) onto the interval (f(u1),+∞). Let T ′ be the
disjoint union TtR. Let G′ be the pseudo-group on T ′ generated by G, f , f0, and f1. Ob-
viously, T is exhaustive in (G′, T ′), and G = G′|T , and G′|[0, 1] is the trivial pseudo-group
on [0, 1], and the orbit G′(t) meets [0, 1] at f(t). Let r := max(rank(G′0), rank(G′1)). One
immediately makes h1, . . . , hr ∈ G′|R whose domains and images contain [0, 1], which
are the identity on (0, 1), whose germs at 0 generate G′0, and whose germs at 1 generate
G′1. Let Ω ⊂ R be an open interval containing [0, 1], and contained in the intersection
of the domains and of the images of h1, . . . , hr. For Ω small enough, the property (2)
of Definition 3.5 is fulfilled. By Lemma 3.2, we can moreover shorten Ω to arrange that
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none of its endpoints is a fix point common to h1, . . . , hr. Put γi := hi|(Ω ∩ hi
−1(Ω))

(i = 1, . . . , r) and Γ := 〈γ1, . . . , γr〉. Let a and b be the smallest and the largest fix
points common to h1, . . . , hr in Ω. The property (3) of Definition 3.5 is fulfilled. The
pseudo-group (G′|(T tΩ), T tΩ) is a faithful extension of (G,T ) by the hinge (Γ,Ω). ¤

Proof of Proposition 3.8. The pseudo-group (G,T ) being cocompact, and the
union of the essential leaves being topologically closed in T , one has a compact K ⊂ T

whose G-saturation coincides with this union. By Lemma 3.11, every point of K has a
neighborhood in K whose orbits meet the core of the hinge after one essential, faithful
hinge extension, whose rank is at most the essential rank of (G,T ). One extracts a
finite subcover. There corresponds a finite sequence of essential faithful extensions by
hinges (Γk,Ωk) (1 ≤ k ≤ `), whose ranks are at most the essential rank of (G,T ). Let
(Ḡ, T̄ ) be the resulting global extension of (G,T ); let [ak, bk] be the core of (Γk,Ωk);
and let Ck ⊂ T̄ be the Ḡ-saturation of [ak, bk]. It is easy to arrange that C1, . . . , C` are
two by two disjoint. A closed orbit of Ḡ is contained in C1 ∪ · · · ∪ C` iff it is essential.
Consequently, the pseudo-group (Ḡ|U = G|U,U) is taut, where

U := T \ ((C1 ∪ · · · ∪ C`) ∩ T ).

Also, the topological closure Ū of U in T being a component of (G,T ), the restricted
pseudo-group (G|Ū , Ū) is compactly generated. By Lemma 3.4, (G|U,U) is also com-
pactly generated. By Proposition 1.9, (G|U,U) is Haefliger-equivalent to some pseudo-
group (G0, T0) on a finite disjoint union T0 of compact intervals and circles. By the
example that follows the Definition 3.10 above, we get an extension (G̃, T̃ ) of (Ḡ, T̄ ) by
(G0, T0). One has T̃ = T̄ t T0. Let

T̃ ′ := T0 t Ω1 · · · t Ω` ⊂ T̃ .

By construction, T̃ ′ is exhaustive in (G̃, T̃ ). We change (G,T ) for (G̃|T̃ ′, T̃ ′). The
properties of Proposition 3.8 are fulfilled. ¤

3.3. End of the proofs of Theorems B and C.
Let, as before, (G,T ) be a compactly generated pseudo-group of dimension 1, in

which every essential orbit is commutative. Our task is to realize (G,T ), in dimension 3
if possible, and 4 if not.

Without loss of generality, (G,T ) is under the form described by Proposition 3.8.
We shall first realize separately (G|T0, T0), (Γ1,Ω1), . . . , (Γ`,Ω`); and then perform some
surgeries along some loops in the realizations, transverse to the foliations. It is convenient
to begin with somewhat introducing these loops into the pseudo-group.

For each k, if ak /∈ ∂−Ωk (resp. bk /∈ ∂+Ωk), write Ω−k (resp. Ω+
k ) the connected

component of Ωk \ [ak, bk] on the left of ak (resp. on the right of bk).

Lemma 3.12. a) In case ak /∈ ∂−Ωk, there exist in Ω−k two points a′k < a′′k < ak,
and φk ∈ Γk, such that
i) The interval (a′k, a′′k) is exhaustive for Γk|Ω−k ;
ii) [a′k, a′′k ] ⊂ Dom(φk) ∩ Im(φk);
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iii) φk(t) > t for every t ∈ [a′k, a′′k ];
iv) φk(a′k) < a′′k.

b) Symmetrically, in case bk /∈ ∂+Ωk, there exist in Ω+
k two points bk < b′k < b′′k, and

ψk ∈ Γk, such that
i) The interval (b′k, b′′k) is exhaustive for Γk|Ω+

k ;
ii) [b′k, b′′k ] ⊂ Dom(ψk) ∩ Im(ψk);
iii) ψk(t) > t for every t ∈ [b′k, b′′k ];
iv) ψk(b′k) < b′′k.

Proof of a). Recall γ1, . . . , γr of Definition 3.5. Choose a′k < ak, so close to ak

that it belongs to the domain and to the image of γi, for every 1 ≤ i ≤ r. Let γ
εj

j (a′k)
be the maximum of the values γi(a′k), γi

−1(a′k) (1 ≤ i ≤ r). Put φk := γ
εj

j . Choose a′′k
in the interval (γεj

j (a′k), ak), so close to γ
εj

j (a′k) that iii) holds. The properties i), ii) and
iv) are obvious. ¤

For each k = 1, . . . , `, it follows from ii), iii) and iv) that, in case ak /∈ ∂−Ωk (resp.
bk /∈ ∂+Ωk), the subpseudo-group of (Γk,Ωk) generated by φk|(a′k, a′′k) (resp. ψk|(b′k, b′′k))
is Haefliger-equivalent to the trivial pseudo-group on the circle. In case ∂Ωk = ∅ (resp.
{ak}) (resp. {bk}) (resp. {ak, bk}), by the example following the Definition 3.10, we get
an extension (Γ̂k, Ω̂k) of the hinge (Γk,Ωk) by the trivial pseudo-group on the disjoint
union of two circles S−k t S+

k (resp. one circle S+
k ) (resp. one circle S−k ) (resp. ∅).

In other words, we have an extension (Ĝ, T̂ ) of (G,T ) by the trivial pseudo-group
on the disjoint union S of all the S±k ’s (1 ≤ k ≤ `). In particular, T̂ = T t S. Write
T̂0 := T0 t S ⊂ T̂ and Ĝ0 := Ĝ|T̂0. Also write

A := [a1, b1] ∪ · · · ∪ [a`, b`].

Lemma 3.13. The pseudo-group Ĝ on T̂ is generated by Ĝ0, Γ̂1, . . . , and Γ̂`.

Proof. We have to verify that the germ [g]t of every g ∈ Ĝ at every t ∈ Dom(g),
is generated by Ĝ0 and the Γ̂k’s.

If t ∈ Ωk \ [ak, bk], then (Lemma 3.12, i)) there is some γ ∈ Γk such that γ(t) ∈
(a′k, a′′k) or γ(t) ∈ (b′k, b′′k), and thus some γ̂ ∈ Γ̂k such that γ̂(t) ∈ S±k . We are thus
reduced to the case t ∈ T̂0 ∪A. Symmetrically, one can assume also that g(t) ∈ T̂0 ∪A.

By Proposition 3.8, (3), either t, g(t) ∈ T̂0 (and thus [g]t ∈ Ĝ0) or t, g(t) ∈ [ak, bk] for
some 1 ≤ k ≤ `. In that second case, the extension of (G,T ) by (Γk,Ωk) being faithful,
g ∈ Γk. ¤

Proof of Theorem B. We have to prove that (2) implies (1). Start from a
pseudo-group (Ĝ, T̂ ) as in Lemma 3.13, Haefliger-equivalent to (G,T ).

On the one hand, the restriction of Ĝ to T̂ \ Int(A), being a component of (Ĝ, T̂ ),
is compactly generated by Lemma 3.4. Since T̂0 ⊂ T̂ \ Int(A) is exhaustive, (Ĝ0, T̂0)
is compactly generated. This pseudo-group is also taut, T̂0 being a disjoint union of
circles and compact intervals. By Theorem A, (Ĝ0, T̂0) is realized by a foliated compact
3-manifold (M0,F0), without transverse boundary. More precisely, from the proof of
Theorem A, T̂0 is embedded into M0 as an exhaustive transversal to F0, and Ĝ0 is
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the holonomy pseudo-group of F0 on T̂0. One takes off from M0 a small open tubular
neighborhood N0 of S, such that F0|∂N0 is the trivial foliation by 2-spheres.

On the other hand, for each k = 1, . . . , `, one realizes (Γk,Ωk) by a foliation Fk on
Mk := T 2 × [0, 1] (Lemma 3.7). Obviously, Fk admits transverse loops corresponding to
S±k , in the sense that Ω̂k embeds into Mk as an exhaustive transversal to Fk, and Γ̂k is
the holonomy pseudo-group of Fk on Ω̂k. One takes off from Mk a small open tubular
neighborhood Nk of S±k , such that Fk|∂Nk is the trivial foliation by 2-spheres.

One pastes
⊔

1≤k≤` ∂Nk
∼= S2 × S with ∂N0

∼= S2 × S, with respect to the identity
of S. One gets a foliation F on

M0

⋃

S2×S

(M1 t · · · tM`)

whose holonomy on the exhaustive transversal T coincides with G, by Lemma 3.13. ¤

Proof of Theorem C. The same as for (2) implies (1) in Theorem B, but in-
stead of the foliated 3-manifold (M0,F0), we use the foliated 4-manifold (M0 × S1,

pr∗1(F0)); and instead of T 2×[0, 1], we use a 4-dimensional realization of (Γk,Ωk) (Lemma
3.7). ¤
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