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Abstract. The Green function of the Laplacian with the homogeneous
Dirichlet boundary condition on bounded domains is considered. The varia-
tion of the Green function with respect to domain perturbations is called the
Hadamard variation. In this paper, we present a unified approach to deriving
the Hadamard variation. In our approach, the classical first Hadamard varia-
tion is obtained in a natural way under a less restrictive regularity assumption
on the boundary smoothness. Furthermore, the second Hadamard variational
formula with respective to general domain perturbations is obtained, which is
an extension of the classical result of Garabedian–Schiffer in which only normal
perturbation is considered.

1. Introduction.

Let Ω ⊂ RN be a bounded domain with the boundary ∂Ω in N -dimensional Eu-
clidean space RN (N ≥ 2). Let us consider the Poisson problem with the homogeneous
Dirichlet boundary condition:

−∆u = f, in Ω, u = 0 on ∂Ω, (1)

where ∆ :=
∑N

i=1(∂
2/∂x2

i ) is the Laplacian and f ∈ L2(Ω) is a given function. The
standard theory on elliptic PDE tells us that if ∂Ω is sufficiently smooth, then the
equation (1) admits a unique solution u ∈ H1

0 (Ω) and u is written as

u(x) =
∫

Ω

G(x, y)f(y)dy.

The function G(x, y) is defined on Ω× Ω and is called the Green function.
Suppose that the domain Ω is perturbed to Ωt in a certain way, then the Green

function G(x, y) is also perturbed to Gt(x, y), where the parameter t, 0 < t ¿ 1 represents
the magnitude of the perturbation. The variation of the Green function G(x, y) defined
by
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δG(x, y) :=
∂

∂t
Gt(x, y)

∣∣∣∣
t=0

, (x, y) ∈ Ω× Ω

is called the first Hadamard variation with respect to the domain perturbation. Let the
perturbation be expressed by Ttx, x ∈ Ω with T0x = x. Define

Sx := lim
t→0

Ttx− x

t
, x ∈ Ω, δρ := S · n on ∂Ω,

where n is the unit outer normal vector on ∂Ω. The explicit form of δG(x, y) was obtained
by Hadamard as

δG(x, y) =
∫

∂Ω

δρ
∂

∂n
G(w, x)

∂

∂n
G(w, y) dsw (2)

under the assumption that ∂Ω is analytic. Later, it was shown that the formula holds if
∂Ω is of Ck class, where k is sufficiently large [8, Section 15.1]. The second Hadamard
variation δ2G(x, y) is defined by

δ2G(x, y) :=
∂2

∂t2
Gt(x, y)

∣∣∣∣
t=0

.

If the domain perturbation Ttx is defined by

Ttx := x + δρ n, ∀x ∈ ∂Ω,

Garabedian–Schiffer obtained an explicit form of δ2G(x, y) [9] (see Corollary 21).
The purpose of this paper is to present a unified approach to deriving the first and

second Hadamard variational formulae with respect to general domain perturbations.
The authors’ motivation of this paper is from designing iterative numerical schemes
for free boundary problems [22], [27], [28]. To prove the existence and uniqueness of
the solutions of free boundary problems, the level-set approaches are taken by many
authors. To approximate free boundaries in practical applications, however, engineers
usually prefer iterative schemes (it is sometimes called trial boundary methods) because
they are more intuitive and give sharper numerical solutions. To analyze iterative scheme
for free boundary problems, we need to deal with domain perturbations and variations of
quantities induced by the domain perturbations. Establishing a unified approach to the
Hadamard variational formulae is the first step toward developing a theory which would
provide a systematic way of analyzing a wide range of trial boundary methods for free
boundary problems.

One of the characteristic of our approach is that we assume that Ω is of Ck,1 class
(k = 0, 1, 2). In many applications, the boundary ∂Ω is not smooth and has corners.
Therefore, assuming ∂Ω to be a Lipschitz boundary (of C0,1 class) is required from the
practical point of view. However, as will be seen later, further regularities of ∂Ω are
needed to derive the Hadamard variational formulae with respect to general domain
perturbations.
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In our analysis, the main difficulty is arisen, of course, from the fact that the domain
Ω is perturbed. When a domain is perturbed, functions defined by the boundary value
problem are also perturbed. Although we are interested in deriving variational formulae
with respect to domain perturbations, it is not so clear how those variations are defined
and how their differentiabilities are proven. As long as the authors know, there are no
literature in which the differentiabilities of functions with respect to domain perturbations
are explained explicitly. The nontriviality of the differentiabilities is explained at the
beginning of Section 2.4.

We use the two ways of specifying the domain perturbations; the Lagrangian and the
Eulerian specifications. In the Lagrangian specification, the Lagrange coordinate system
moves with the domain perturbation Ttx. Hence, there is no loss of regularity in space
variables, and the differentiability of the functions is proven rather easily (Theorems 7,
15). Then, the first and second Hadamard variations are defined in the Euler coordinate
system and their existences are shown in Theorem 16 using Theorem 15. The combined
usage of the Lagrange and Euler coordinate systems is the other characteristic of this
paper.

The main results of the paper are Theorems 17 and 20. Theorem 17 gives the first
Hadamard variational formula, that is, (2), which is shown under the assumption that ∂Ω
is of C1,1 class. When ∂Ω is of C2,1-class, next, the second Hadamard variational formula
holds as in Theorem 20. This formula is represented by the volume integral of ∇δG and
the surface integral of ∂G/∂n with the coefficient associated with the mean curvature of
∂Ω. Thus, we obtain Theorem 20 as a generalization of the classical Garabedian–Schiffer
formula (Corollary 21).

Recently, H. Kozono and E. Ushikoshi [15], E. Ushikoshi [29] derived the first and
second Hadamard variational formulae for the Green function of the Stokes equation
with respect to general domain perturbations in the smooth category. Our methods of
calculation, however, are completely different from theirs. In this paper, the main tool is
Liouville’s Theorem (Theorems 12 and 13). Once the existences of the first and second
Hadamard variations are obtained, these formulae are derived rather easily by Liouville’s
Theorem.1

We summarize the notations used in this paper. For a domain Ω ⊂ RN and p,
1 ≤ p ≤ ∞, the usual Lebesgue and Sobolev spaces are denoted by Lp(Ω) and W k,p(Ω),
where k is a nonnegative integer. The inner product of L2(Ω) is denoted by (·, ·)Ω.
The trace operator is denoted by γ : W k,p(Ω) → W k−1/p,p(∂Ω). As usual, W k,2(Ω)
and W k−1/2,2(∂Ω) are denoted by Hk(Ω) and Hk−1/2(∂Ω), respectively. Let C∞0 (Ω) be
the set of functions of arbitrary times continuously differentiable functions with compact
supports. The space H1

0 (Ω) is the closure of C∞0 (Ω) in H1(Ω). The space of distributions
on Ω is denoted by D′(Ω).

We denote the dual spaces and the duality pairings of the above mentioned spaces
as follows:

1The second variational formula obtained by Ushikoshi [29] is expressed by a surface integral of
∂G/∂n, ∂2G/∂n2, and ∇xδG. There, the curvature of ∂Ω does not appear explicitly, differently from

Garabedian–Schiffer’s formula and our Theorem 20.
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H1(Ω)′ := the dual of H1(Ω) with the duality pairing 〈·, ·〉1,Ω,

H−1/2(∂Ω) := the dual of H1/2(∂Ω) with the duality pairing 〈·, ·〉1/2,∂Ω.

The dual of H1
0 (Ω) is denoted by H−1(Ω) as usual.

2. Preliminaries.

2.1. Elliptic regularity on Lipschitz domains.
In this section we summarize the definition of Lipschitz domain in RN and their

properties. See [6], [12], [16], [20] for further details. For an open set Ω ⊂ RN , we say
that its boundary ∂Ω is Lipschitz continuous if the following conditions are satisfied:

(1) Each x ∈ ∂Ω takes an open rectangle O with x ∈ O and new orthogonal coordinates
y = (y′, yN ), y′ = (y1, . . . , yN−1) such that

O = {y | |yj | < aj , 1 ≤ j ≤ N},

where aj > 0, 1 ≤ j ≤ N .
(2) Let O′ be the base of O defined by

O′ = {y′ = (y1, . . . , yN−1) | |yj | < aj , 1 ≤ j ≤ N − 1}.

Then, there is a Lipschitz continuous function ϕ : O′ → R, such that |ϕ(y′)| ≤ aN/2
for y′ ∈ O′ and

Ω ∩O = {y | yN > ϕ(y′), y ∈ O},
∂Ω ∩O = {y | yN = ϕ(y′), y′ ∈ O}.

A bounded domain Ω ⊂ RN is called a Lipschitz domain if its boundary is Lipschitz
continuous. In the case of N = 2, for example, such a domain admits corners except for
cusps on the boundary.

If Ω ⊂ RN is a Lipschitz domain, the boundary ∂Ω has tangent spaces Tx(∂Ω) at
almost all points x ∈ ∂Ω by Rademacher’s theorem [6, Theorem 3, p. 81]. Hence, the
unit outer normal vector n = (n1, . . . , nN )T ∈ L∞(∂Ω;RN ) exists at almost all points
on ∂Ω.

Theorem 1 ([16, Theorem 6.9.2, p. 341], [6, Theorem 1, p. 133]). If Ω ⊂ RN is a
Lipschitz domain, the trace operator

H1(Ω)/H1
0 (Ω) 3 v 7→ v|∂Ω ∈ H1/2(∂Ω)

is well-defined and an isomorphism. The integration by parts

(
v,

∂w

∂xi

)

Ω

= −
(

∂v

∂xi
, w

)

Ω

+
∫

∂Ω

wniv, 1 ≤ i ≤ N (3)
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is valid for v, w ∈ H1(Ω).

The following property also assures several fundamental properties of H1(Ω) for the
Lipschitz domain Ω such as the Sobolev imbeddings

H1(Ω) ↪→ L2N/(N−2)(Ω), N > 2, H1(Ω) ↪→ Lq(Ω), N = 2, 1 ≤ ∀q < ∞.

Theorem 2 ([6, Theorem 3, p. 127]). If Ω ⊂ RN is a Lipschitz domain then
C∞(Ω) is dense in H1(Ω) where

C∞(Ω) := {v : Ω → R | ∃ṽ ∈ C∞0 (RN ), ṽ|Ω = v}.

In the following theorems the trace ϕ |∂Ω ∈ H1/2(∂Ω) is taken for ϕ ∈ H1(Ω). Also
∆v of v ∈ H1(Ω) is taken in the sense of distributions. We recall that H1

0 (Ω) ⊂ H1(Ω)
implies H1(Ω)′ ⊂ H−1(Ω). Finally we note that the inclusion H1/2(∂Ω) ↪→ L2(∂Ω) is
dense, which induces the other inclusion H1/2(∂Ω) ↪→ H−1/2(∂Ω).

Theorem 3. Let Ω ⊂ RN be a Lipschitz domain. If v ∈ H1(Ω) admits ∆v ∈
H1(Ω)′, then there exists ∂v/∂n ∈ H−1/2(∂Ω) which is defined by

〈
ϕ,

∂v

∂n

〉

1/2,∂Ω

:= (∇v,∇ϕ)Ω + 〈ϕ, ∆v〉1,Ω, ∀ϕ ∈ H1(Ω). (4)

Proof. We only have to show that the right-hand side of (4) is independent of
the choice of the extension of ϕ ∈ H1/2(∂Ω) to H1(Ω). We thus need to show that, for
any ϕ ∈ H1(Ω) and ψ ∈ H1

0 (Ω),

(∇v,∇ϕ)Ω + 〈ϕ, ∆v〉1,Ω = (∇v,∇(ϕ + ψ))Ω + 〈ϕ + ψ, ∆v〉1,Ω,

or equivalently

(∇v,∇ψ)Ω + 〈ψ, ∆v〉1,Ω = 0, ∀ψ ∈ H1
0 (Ω). (5)

Recall that the distribution ∆v is defined by

〈ψ, ∆v〉1,Ω := −(∇v,∇ψ)Ω, ∀ψ ∈ C∞0 (Ω). (6)

Therefore, (5) follows from (6) because H1
0 (Ω) is the closure of C∞0 (Ω) in H1(Ω). ¤

We have confirmed that if Ω is a Lipschitz domain and v ∈ H1(Ω), then v ∈
H1/2(∂Ω) holds in the sense of trace. If ∆v ∈ H1(Ω)′ furthermore, then ∂v/∂n ∈
H−1/2(∂Ω) is defined by (4). In this case, it is easy to see that this mapping is continu-
ous;

∥∥∥∥
∂v

∂n

∥∥∥∥
H−1/2(∂Ω)

≤ C3(‖∇v‖L2(Ω) + ‖∆v‖H1(Ω)′).
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However, we cannot define v ∈ H−1/2(∂Ω) for general v ∈ L2(Ω) nor ∂v/∂n ∈ H−1/2(∂Ω)
for general v ∈ H1(Ω).

If v ∈ H2(Ω), on the contrary, we have ∇v ∈ H1(Ω;RN ). With the unit outer
normal vector field n ∈ L∞(∂Ω;RN ), we can define n · ∇v ∈ L2(∂Ω). We have also
∆v ∈ L2(Ω) ↪→ H1(Ω)′ and hence ∂v/∂n ∈ H−1/2(∂Ω) by Theorem 3.

Theorem 4. Let Ω ⊂ RN be a Lipschitz domain and v ∈ H2(Ω). Then the above
n · ∇v ∈ L2(∂Ω) is identified with ∂v/∂n ∈ H−1/2(∂Ω) as a distribution on ∂Ω.

Proof. Let ω be an open set which contains ∂Ω. For ϕ ∈ C∞0 (ω), we consider its
zero-extension and regard it as an element in C∞0 (RN ). It follows from (4), (3) and the
continuous inclusion L2(Ω) ↪→ H1(Ω)′ that

〈
ϕ,

∂v

∂n

〉

1/2,∂Ω

= (∇v,∇ϕ)Ω + 〈ϕ, ∆v〉1,Ω

= (∇v,∇ϕ)Ω + (ϕ, ∆v)Ω = 〈ϕ, n · ∇v〉1/2,∂Ω

for v ∈ H2(Ω). This equality proves the identity. ¤

2.2. Domain perturbations.
We continue to assume that Ω ⊂ RN is a Lipschitz domain. Let Tt : Ω → Ωt,

Ωt := TtΩ, |t| < ε, 0 < ε ¿ 1, be a family of bi-Lipschitz homeomorphisms. We assume
that the mapping Ω 3 x 7→ Ttx is once or twice differentiable with respect to t for each
x ∈ Ω. Henceforth, we say that {Tt} is once or twice differentiable in t in short for the
latter properties.

Definition 5. The above {Tt} is a differentiable deformation if it is differentiable
in t and the mappings

∂

∂t
Ttx,

∂

∂t
∇(Ttx), x ∈ Ω,

∂

∂t
T−1

t x,
∂

∂t
∇(T−1

t x), x ∈ Ω ∩ Ωt (7)

are locally uniformly bounded on Ω × I, I := (−ε, ε). It is a twice differentiable defor-
mation if it is twice differentiable in t and the mappings, besides (7),

∂2

∂t2
Ttx,

∂2

∂t2
∇(Ttx), x ∈ Ω,

∂2

∂t2
T−1

t x,
∂2

∂t2
∇(T−1

t x), x ∈ Ω ∩ Ωt

are locally uniformly bounded on Ω× I.

If {Tt} is a differentiable deformation the vector field

S :=
∂Tt

∂t

∣∣∣∣
t=0

is Lipschitz continuous on Ω. If {Tt} is a twice-differentiable deformation the vector field
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R :=
∂2Tt

∂t2

∣∣∣∣
t=0

is also a Lipschitz continuous on Ω. Then we put

δρ :=
∂Tt

∂t

∣∣∣∣
t=0

· n = S · n, δ2ρ :=
∂2Tt

∂t2

∣∣∣∣
t=0

· n = R · n.

Example 6 (Dynamical Perturbations). Let v = v(x) be a Lipschitz vector field
defined in a domain Ω̃ containing Ω. Given x ∈ Ω̃, we consider the ordinary differential
equation

dc(t)
dt

= v(c(t)), c(0) = x

which defines the integral curve c : (−ε, ε) → Ω̃, |t| < ε. Writing

Ttx := c(t),

we obtain a family of bi-Lipschitz homeomorphisms Tt : Ω → Ωt, |t| ¿ 1. Then it holds
that

S(x) =
∂

∂t
Ttx

∣∣∣∣
t=0

= v(Ttx)|t=0 = v(x),

R(x) =
∂2

∂t2
Ttx

∣∣∣∣
t=0

=
∂

∂t
v(Ttx)

∣∣∣∣
t=0

= [(v · ∇)v](x).

This {Tt} is a differentiable deformation and is twice-differentiable if ∇v is furthermore
Lipschitz continuous in Ω̃. Then it holds that

Tt(x) = x + tv(x) +
t2

2
[(v · ∇)v](x) + o(t2)

uniformly in x ∈ Ω.

Example 7 (Normal Perturbations). If ∂Ω is C1,1, the unit normal vector n = nx

is Lipschitz continuous on ∂Ω. Then we can take a bi-Lipschitz deformation of ∂Ω by

Γt : x + t · δρ(x)nx, x ∈ ∂Ω

for |t| ¿ 1, where δρ = δρ(x), x ∈ ∂Ω, is a Lipschitz continuous function. Then there is a
domain Ωt ⊂ RN such that Γt = ∂Ωt. There is, also, a bi-Lipschitz mapping Tt : Ω → Ωt,
|t| ¿ 1, which satisfies

δρ =
∂Tt

∂t

∣∣∣∣
t=0

· n, δ2ρ =
∂2Tt

∂t2

∣∣∣∣
t=0

· n = 0 on ∂Ω.
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Although this deformation has been used in the classical theory [9], it does not work for
the general Lipschitz domain, for example, if ∂Ω has a corner.

2.3. Variational formulae of Jacobian.
We follow the standard notation of matrices A = (aij)i:1↓N,j:1→N . Thus all vectors

are regarded as column vectors unless otherwise stated. The transposition of a matrix A

is denoted by AT . For a given N ×N matrices A = (aij) and B = (bij), we put

A : B :=
N∑

i,j=1

aijbij .

For the Lipschitz continuous vector field T on Ω, let

J(T ) =
(

∂y`

∂xk

)T

k,`

be its Jacobi matrix where y = T (x).

Theorem 6. Let Ω ⊂ RN be a Lipschitz domain and {Tt} be a differentiable
deformation. Then it holds that

∂

∂t
detJ(Tt)

∣∣∣∣
t=0

= ∇ · S, S :=
∂Tt

∂t

∣∣∣∣
t=0

. (8)

If {Tt} is twice differentiable, furthermore, we have

∂2

∂t2
detJ(Tt)

∣∣∣∣
t=0

= ∇ ·R + (∇ · S)2 − J(S)T : J(S). (9)

Proof. For simplicity we consider the case that {Tt} is twice differentiable. Then
both

S = (S1, . . . , SN )T and R = (R1, . . . , RN )T

are Lipschitz continuous. It holds that

J(Tt) =




1 + tS1
x1

+
1
2
t2R1

x1
· · · tS1

xN
+

1
2
t2R1

xN

... · · · ...

tSN
x1

+
1
2
t2RN

x1
· · · 1 + tSN

xN
+

1
2
t2RN

xN




+ o(t2)

and hence

detJ(Tt) = 1 + t∇ · S + t2
∑

i<j

(Si
xi

Sj
xj
− Si

xj
Sj

xi
) +

t2

2

∑

i

Ri
xi

+ o(t2).
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Then we obtain (8) and (9) by

∂2

∂t2
detJ(Tt)

∣∣∣∣
t=0

= 2
∑

i<j

(Si
xi

Sj
xj
− Si

xj
Sj

xi
) +∇ ·R

=
∑

i 6=j

(Si
xi

Sj
xj
− Si

xj
Sj

xi
) +∇ ·R

=
∑

i,j

(Si
xi

Sj
xj
− Si

xj
Sj

xi
) +∇ ·R

= ∇ ·R + (∇ · S)2 − J(S)T : J(S). ¤

2.4. An abstract theorem.
The derivation of variational formulae is hard even if we try to do it formally. Of

course a mathematical justification of formal derivation is inevitable. The origin of
the difficulty is that domains themselves are perturbed and it is difficult to prove the
differentiability of, for example, Gt(·, t) on the original domain Ω. Hence we introduce
the Lagrange coordinate system on which an abstract theorem is applicable.

Let V be a Hilbert space over R with its dual space V ′. We denote their duality
pairing 〈·, ·〉V . Let at : V × V → R, t ∈ (−ε, ε) =: I, be a family of symmetric bilinear
forms. We assume their uniform boundedness and coercivity. That is, there are δ > 0
and M > 0 such that

at(u, u) ≥ δ‖u‖2V , |at(u, v)| ≤ M‖u‖V ‖v‖V (10)

for any u, v ∈ V and t ∈ I. For a map f : I → V ′, we have a unique u = u(t) ∈ V , t ∈ I,
such that

at(u(t), v) = 〈v, f(t)〉V , ∀v ∈ V (11)

by the representation theorem of Riesz.

Theorem 7. Let the above at(·, ·) and f(t) be strongly differentiable in t. Namely,
first, there is a symmetric bilinear form denoted by ȧt : V × V → R such that

lim
h→0

sup
‖u‖≤1, ‖v‖≤1

∣∣∣∣
at+h(u, v)− at(u, v)

h
− ȧt(u, v)

∣∣∣∣ = 0, ∀t ∈ I.

Next, there is ḟ = ḟ(t) ∈ V ′ such that

lim
h→0

sup
‖v‖≤1

∣∣∣∣
〈v, f(t + h)〉V − 〈v, f(t)〉V

h
− 〈v, ḟ(t)〉V

∣∣∣∣ = 0, ∀t ∈ I.

Then u = u(t) ∈ V defined by (11) is strongly differentiable in t, that is,



1398 T. Suzuki and T. Tsuchiya

∃u̇(t) ∈ V, lim
h→0

∥∥∥∥
u(t + h)− u(t)

h
− u̇(t)

∥∥∥∥
V

= 0, ∀t ∈ I (12)

and it holds that

at(u̇(t), v) + ȧt(u(t), v) = 〈v, ḟ(t)〉V , ∀v ∈ V, t ∈ I. (13)

The second strong differentiability of u = u(t) arises similarly if at : V × V → R and
f = f(t) : I → V ′ are twice differentiable. Then it holds that

at(ü(t), v) + 2ȧt(u̇(t), v) + ät(u(t), v) = 〈v, f̈(t)〉V , ∀v ∈ V, t ∈ I, (14)

where

lim
h→0

sup
‖u‖≤1, ‖v‖≤1

∣∣∣∣
ȧt+h(u, v)− ȧt(u, v)

h
− ät(u, v)

∣∣∣∣ = 0,

lim
h→0

sup
‖v‖≤1

∣∣∣∣
〈v, ḟ(t + h)〉V − 〈v, ḟ(t)〉V

h
− 〈v, f̈(t)〉V

∣∣∣∣ = 0

and

lim
h→0

∥∥∥∥
u̇(t + h)− u̇(t)

h
− ü(t)

∥∥∥∥
V

= 0.

To prove the strong differentiability, for example, first, we define u̇ by (13) and then
derive (12) using (10). See, for example, [25] for the proof.

2.5. Normal curvatures.
If Ω ⊂ RN is a Lipschitz domain, we can define the standard measure on ∂Ω using the

local chart. Also any Lipschitz continuous function on ∂Ω takes a Lipschitz continuous
extension to its neighborhood through the flow used in Section 2.2. The tangential space
Tξ(∂Ω), furthermore, is defined for almost every ξ ∈ ∂Ω with the outer unit normal
vector denoted by n. Using an orthonormal basis {si | i = 1, . . . , N − 1} of Tξ(∂Ω), we
thus obtain the frame

{s1, . . . , sN−1, n} (15)

almost everywhere on ∂Ω.
If Ω ⊂ RN is a C1,1 domain, the frame (15) on ∂Ω is Lipschitz continuous. Let Πi,

1 ≤ i ≤ N − 1 be the plane spanned by {si, n}. Then we cut ∂Ω by Πi and obtain a
curve γi = Πi ∩ ∂Ω. Taking the parametrization x = x(s) ∈ γi with the arc-length s, we
have

si = ẋ :=
∂x

∂s
, |si| = 1,
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which implies ṡi · si = 0, where ṡi := ∂si/∂si. Since ṡi ∈ Πi, we define the normal
curvature κi by

ṡi = −κin, (16)

recalling n is outer with respect to Ω. On the other hand we have n · si = 0 and |n| = 1,
which result in

ṅ · si = κi, ṅ · n = 0, ṅ :=
∂n

∂si
.

Therefore, we have

ṅ = κisi +
∑

j 6=i

(ṅ · sj)sj . (17)

Note that if si is the principal direction, we have ṅ ·sj = 0, j 6= i and ṅ ∈ Πi. Concerning
sj for j 6= i, we use

si · sj = sj · n = 0, |sj | = 1.

Since ṡj lies on the space generated by si, sj , n, it follows that

ṡj = −(sj · ṅ)n, ṡj :=
∂sj

∂si
(18)

similarly. We write the relations (16), (17), and (18) as

∂si

∂si
= −κin,

∂n

∂si
= κisi +

∑

j 6=i

(
∂n

∂si
· sj

)
sj ,

∂sj

∂si
= −

(
sj · ∂n

∂si

)
n, j 6= i. (19)

Next, we use a tubular neighbourhood to extend the above frame (15) to a neigh-
bourhood of ∂Ω. We have a fiber of γ on Πi with the length parameter t, which results
in the parametrization n = n(t, s) and si = si(t, s) satisfying

n′ :=
∂n

∂t
= 0.

Then we obtain

s′i = 0

by n · si = 0 and si · si = 1. Using similar notations as in (19), we end up with the
formula of Frenet–Serret

∂n

∂n
= 0,

∂si

∂n
= 0, 1 ≤ i ≤ N − 1. (20)
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Definition 8. We put

a⊗ b := (aibj)ij = a bT

for the vectors a = (ai)i and b = (bj)j , and also

∇n := (∇⊗ n)T :=
(

∂nj

∂sk

)

jk

(21)

for n = (nj)j .

Using the frame (15) as an orthonormal system in RN , we have

(∇n)T =
N−1∑

i=1

∂n

∂si
⊗ si +

∂n

∂n
⊗ n =

N−1∑

i=1

κisi ⊗ si +
N−1∑

i=1

∑

j 6=i

(
∂n

∂si
· sj

)
sj ⊗ si (22)

(∇sj)T =
N−1∑

i=1

∂sj

∂si
⊗ si +

∂sj

∂n
⊗ n = −κjn⊗ sj −

∑

i 6=j

(
∂n

∂si
· sj

)
n⊗ si (23)

by (19) and (20). Then it holds that

∇ · n = tr(∇n) =
N−1∑

i=1

κi. (24)

This value is called the mean curvature and is independent of choice of the frame. Note
that if {s1, . . . , sN−1, n} is a coordinate system such that si, i = 1, . . . , N − 1 is the
principal direction, we have

(∇n)T =
N−1∑

i=1

κisi ⊗ si, (∇sj)T = −κjn⊗ sj . (25)

Definition 9. Let {s1, . . . , sN−1, n} is an orthonormal frame on ∂Ω. If each si,
i = 1, . . . , N − 1 is the principal direction, then the frame {s1, . . . , sN−1, n} is called the
Morse frame.

The existence of the Morse frame is guaranteed by Morse’s Lemma [18].

Remark. By the above notation of (21) it holds that

∇⊗ (fa) = (∇f)⊗ a + f(∇⊗ a) = (∇f)⊗ a + f (∇a)T ,

where f and a are scalar and vector fields.

Now we show the following lemma.
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Lemma 10. If Ω ⊂ RN is a C1,1-domain and f ∈ C1,1(Ω) then it holds that

∇2f =
N−1∑

i=1

(∇si)T ∂f

∂si
+ (∇n)T ∂f

∂n
+

N−1∑

i,j=1

si ⊗ sj
∂2f

∂si∂sj

+
N−1∑

i=1

(si ⊗ n + n⊗ si)
∂2f

∂si∂n
+ n⊗ n

∂2f

∂n2
(26)

a.e. on ∂Ω, where ∇2f := (∂2f/∂xi∂xj)ij denotes the Hesse matrix of f .

Proof. Using the orthonormal basis (15), we have

∇2f = ∇⊗∇f = ∇⊗
( N−1∑

i=1

si
∂f

∂si
+ n

∂f

∂n

)

=
N−1∑

i=1

(∇si)T ∂f

∂si
+ (∇n)T ∂f

∂n
+

N−1∑

i=1

∇ ∂f

∂si
⊗ si +∇∂f

∂n
⊗ n.

Here, the third and the fourth terms on the right-hand side are equal to

N−1∑

i=1

∇
(

∂f

∂si

)
⊗ si =

N−1∑

i=1

( N−1∑

j=1

sj
∂2f

∂sj∂si
+ n

∂2f

∂n∂si

)
⊗ si

=
N−1∑

i,j=1

[sj ⊗ si]
∂2f

∂si∂sj
+

N∑

i=1

[n⊗ si]
∂2f

∂si∂n

and

∇
(

∂f

∂n

)
⊗ n =

( N−1∑

i=1

si
∂2f

∂si∂n
+ n

∂2f

∂n2

)
⊗ n

=
N−1∑

i=1

(si ⊗ sj)
∂2f

∂si∂n
+ (n⊗ n)

∂2f

∂n2
,

respectively. Hence it follows that

∇2f =
N−1∑

i=1

(∇si)T ∂f

∂si
+ (∇n)T ∂f

∂n
+

N−1∑

i,j=1

si ⊗ sj
∂2f

∂si∂sj

+
N−1∑

i=1

(si ⊗ n + n⊗ si)
∂2f

∂si∂n
+ n⊗ n

∂2f

∂n2
. ¤
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The above lemma implies the following result.

Corollary 11. If Ω ⊂ RN is a C1,1-domain and f ∈ C1,1(Ω) then it holds that

∆f = (∇ · n)
∂f

∂n
+

∂2f

∂n2
+

N−1∑

i=1

∂2f

∂s2
i

(27)

a.e. on ∂Ω.

Proof. Note that tr(a⊗ b) = a · b for a, b ∈ RN . Hence,

tr(sk ⊗ n + n⊗ sk) = 0.

We have also

tr[(∇n)T ] = ∇ · n, tr(n⊗ n) = |n|2 = 1

and

tr[(∇si)T ] = −κitr[n⊗ si]−
∑

i 6=j

(
∂n

∂si
· sj

)
tr[n⊗ si] = 0

by (23). Then (27) follows. ¤

2.6. Liouville’s theorem.
Liouville’s theorem is a set of variational formulae concerning volume and surface

integrals described in the Lagrange coordinate system. These formulae may be used to
derive a representation of boundary integrals of the first variation of the Green function.
We continue to use the notations in Section 2.2. We also put ċ = ct, c̈ = ctt, and so forth.

Theorem 12 (First Volume Derivative). Let Ω ⊂ RN be a Lipschitz domain and
{Tt} be a differentiable deformation. Let, furthermore, c = c(x, t) be a Lipschitz contin-
uous function in Ω̃× (−ε, ε), where Ω̃ is a domain containing Ω. Then it holds that

d

dt

( ∫

Ωt

c(·, t)
)∣∣∣∣

t=0

=
∫

Ω

ċ(·, 0) +
∫

∂Ω

c(·, 0)δρ. (28)

Proof. Letting Jt(x) = J(Ttx), we have

∫

Ωt

c(y, t) dy =
∫

Ω

c(Ttx, t) det Jt(x) dx



First and second Hadamard variational formulae 1403

and hence

d

dt

( ∫

Ωt

c(x, t) dx

)∣∣∣∣
t=0

=
∫

Ω

((
ċ(Ttx, t) +∇c(Ttx, t) · ∂Ttx

∂t

)
detJt(x)

+ c(Ttx, t)
∂

∂t
detJt(x)

∣∣∣∣
t=0

)
dx

=
∫

Ω

(ċ(·, 0) +∇c(·, 0) · S + c(·, 0)∇ · S) dx

by (8). Then (28) follows from the divergence formula. ¤

Theorem 13 (First Area Derivative). Assume that the assumptions in the previous
theorem hold. If, further, Ω ⊂ RN is C1,1, then we have

d

dt

( ∫

∂Ωt

c(·, t)
)∣∣∣∣

t=0

=
∫

∂Ω

ċ(·, 0) +
[
(∇ · n)c(·, 0) +

∂c(·, 0)
∂n

]
δρ ds. (29)

Proof. Given a Lipschitz continuous vector field a = a(·, t) in Ω̃ × (−ε, ε), we
apply Theorem 12 to c = ∇ · a. It follows that

d

dt

∫

Ωt

∇ · a =
∫

Ωt

∇ · ȧ +
∫

∂Ωt

(∇ · a)
[
n · ∂Tt

∂t

]
,

which means

d

dt

∫

∂Ωt

n · a =
∫

∂Ωt

n · ȧ + (∇ · a)
[
n · ∂Tt

∂t

]
ds.

Putting a = nc and t = 0, we obtain (29) by n · ṅ = 0. ¤

3. The Dirichlet problem.

3.1. The Green function.
Let Ω ⊂ RN be a Lipschitz domain. The Green function for −∆ with the homo-

geneous Dirichlet condition is denoted by G = G(x, y), (x, y) ∈ Ω × Ω, and is defined
by

−∆G(·, y) = δ(· − y) in Ω, G(·, y)|∂Ω = 0,

where δ = δ(x) is the delta function. The fundamental solution Γ(x) = γ(|x|) of −∆,

γ(r) =





1
2π

log
1
r
, N = 2

1
(N − 2)ωN

r2−N , N ≥ 3,
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takes the property

−∆Γ(· − y) = δ(· − y),

where ωN denotes the (N − 1)-dimensional surface area of the N -dimensional unit ball.
Hence, the function u = u(x) defined by

G(·, y) = Γ(· − y) + u (30)

satisfies

∆u = 0 in Ω, u = −Γ(· − y) on ∂Ω. (31)

We reduce this boundary value problem of the Laplace equation to that of the
Poisson equation. To this end, take open sets ω ⊂⊂ ω̂ satisfying ∂Ω ⊂ ω and y 6∈ ω̂ and
ϕ = ϕ(x) ∈ C∞0 (RN ) such that 0 ≤ ϕ ≤ 1 and

ϕ(x) =

{
1, x ∈ ω

0, x 6∈ ω̂.

Then, (31) is reduced to

−∆w = g in Ω, w = 0 on ∂Ω (32)

concerning w = u−ϕΓ(·−y) for g := ∆(ϕΓ(·−y)). This g = g(x) ∈ C∞0 (RN ) is regarded
as an element of H−1(Ω) by

〈v, g〉1,Ω = −(∇v,∇(ϕΓ(· − y)))Ω, v ∈ H1
0 (Ω).

Hence, the boundary value problem (32) admits a unique solution w ∈ H1
0 (Ω). Thus, the

solution to (31) is obtained by u = w + ϕΓ(· − y) ∈ H1(Ω) because Γ(· − y) is smooth in
ω̂, which implies the well-definedness of

0 = G(·, y) ∈ H1/2(∂Ω),
∂G(·, y)

∂n
∈ H−1/2(∂Ω) (33)

by (30).

Theorem 14. If Ω ⊂ RN is a Lipschitz domain and f ∈ H1(Ω) is harmonic in
Ω, then it holds that

f(y) = −
〈

f,
∂G(·, y)

∂n

〉

1/2,∂Ω

, y ∈ Ω. (34)

Proof. Since ∆f = 0 ∈ H1(Ω)′, we have



First and second Hadamard variational formulae 1405

(∇f,∇ϕ)Ω =
〈

ϕ,
∂f

∂n

〉

1/2,∂Ω

, ϕ ∈ H1(Ω) (35)

by Theorem 3. Given y ∈ Ω, we take

ϕε(x) =

{
γ(|x− y|), |x− y| ≥ ε

γ(ε), |x− y| < ε

for 0 < ε ¿ 1, which belongs to H1(Ω). Then we obtain

(∇f,∇ϕε)Ω =
∫

Ω\B(y,ε)

∇f(x) · ∇Γ(x− y) dx

=
∫

∂Ω

f(x)
∂Γ(x− y)

∂nx
dsx −

∫

∂B(y,ε)

f(x)
∂Γ(x− y)

∂nx
dsx

using the traces f ∈ H1/2(∂Ω) and f ∈ H1/2(∂B(y, ε)). By Weyl’s lemma, f(x) is
smooth in Ω. By the classical argument, hence, the left-hand side of (35) for ϕ = ϕε,
that is, (∇f,∇ϕε)Ω, converges to

∫

∂Ω

f(x)
∂Γ(x− y)

∂nx
dsx + f(y)

as ε ↓ 0. Since its right-hand side, 〈ϕε, ∂f/∂n〉1/2,∂Ω, is independent of 0 < ε ¿ 1, we
end up with

〈
Γ(· − y),

∂f

∂n

〉

1/2,∂Ω

=
〈

f,
∂Γ(· − y)

∂n

〉

1/2,∂Ω

+ f(y). (36)

We define u = u(x) by (30), and note ∆f = ∆u = 0 ∈ H1(Ω)′. Thus, it follows that

(∇u,∇f)Ω =
〈

u,
∂f

∂n

〉

1/2,∂Ω

=
〈

f,
∂u

∂n

〉

1/2,∂Ω

(37)

by Theorem 3. Since (33) implies

〈
u + Γ(· − y),

∂f

∂n

〉

1/2,∂Ω

=
〈

G(·, y),
∂f

∂n

〉

1/2,∂Ω

= 0,

it follows that
〈

Γ(· − y),
∂f

∂n

〉

1/2,∂Ω

= −
〈

u,
∂f

∂n

〉

1/2,∂Ω

= −
〈

f,
∂u

∂n

〉

1/2,∂Ω

from (37). Hence we obtain
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f(y) = −
〈

f,
∂Γ(· − y)

∂n
+

∂u

∂n

〉

1/2,∂Ω

= −
〈

f,
∂G(·, y)

∂n

〉

1/2,∂Ω

by (36). ¤

3.2. Lagrange derivative.
We have two formulations of variational formulae, using Euler and Lagrange coor-

dinate systems. In the Lagrange coordinate system, we do not have any regularity losses
in space variables. The variational formulae, however, is not so clear compared with the
ones in Euler coordinate system.

We recall that Ω ⊂ RN is a Lipschitz domain and {Tt} is either once or twice
differentiable deformation. The Green function for −∆ in Ωt with ·|∂Ω = 0 is denoted
by Gt = Gt(x, y). We fix y ∈ Ω to define u = u(·, t) by (30):

Gt(x, y) = Γ(x− y) + u(x, t), (38)

which satisfies

∆u(·, t) = 0 in Ωt, u(·, t) = −Γ(· − y) on ∂Ωt. (39)

As in Section 3.1 this problem is reduced to the boundary value problem of the Poisson
equation

−∆w(·, t) = g in Ωt, w(·, t) = 0 on ∂Ωt (40)

where g = ∆(ϕΓ(·−y)) for ϕ ∈ C∞0 (RN ). Given y ∈ Ω, this ϕ = ϕ(x) is taken uniformly
in |t| ¿ 1.

Theorem 15. Let Ω ⊂ RN be a Lipschitz domain and {Tt}, t ∈ I = (−ε, ε), be
a once or twice differentiable deformation. Then, according to its differentiabilities we
have the existence of (∂u/∂t)(Ttx, t) and (∂2u/∂t2)(Ttx, t) strongly in H1(Ω).

Proof. The weak form of (40) is

∫

Ωt

∇w(·, t) · ∇ϕdy =
∫

Ωt

ϕg dy, ∀ϕ ∈ H1
0 (Ωt). (41)

Given ψ ∈ H1
0 (Ω), we define ϕ = ϕ(·, t) by ϕ(y, t) := ψ(T−1

t y), y ∈ Ωt, |t| ¿ 1. It holds
that ϕ(·, t) ∈ H1

0 (Ωt) because Tt : Ω → Ωt is bi-Lipschitz. Then (41) implies

∫

Ω

[Jt(x)−1∇v(x, t) · Jt(x)−1∇ψ(x)] detJt(x) dx

=
∫

Ω

ψ(x)g(Ttx) det Jt(x) dx

for Jt = J(Tt) and v(x, t) = w(Ttx, t). Now we apply Theorem 7 to the case with
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V = H1
0 (Ω), f(t) = g(Ttx) det Jt(·), and

at(v, ψ) =
∫

Ω

[J−1
t ∇v · J−1

t ∇ψ] det Jt dx.

From the dominated convergence theorem, the strong differentiability of v(·, t) ∈ H1
0 (Ω)

once or twice in t follows, which implies those of u(Ttx, t) and Gt(Ttx, y). ¤

3.3. Euler derivative.
Theorem 15 guarantees the differentiability of u = u(·, t) in D′(Ω) for any Lipschitz

domain Ω. To prescribe the boundary value of u̇, however, we require an additional
regularity to u = u(x).

Theorem 16. Let Ω ⊂ RN be a Lipschitz domain and G = G(·, y), y ∈ Ω, be
the Green function for −∆ with the homogeneous Dirichlet boundary condition. Define
u = u(·, t) by (38). Then, if {Tt} is a differentiable deformation, the first variation

u̇ = δG(·, y) =
∂Gt

∂t
(·, y)

∣∣∣∣
t=0

of Gt = Gt(x, y) exists in the sense of distributions in Ω. It belongs to H1(Ω) if and only
if S ·∇u ∈ H1(Ω). If this condition is satisfied then it holds that S ·∇G(·, y) ∈ H1/2(∂Ω)
and

∆u̇ = 0 in Ω, u̇ = −S · ∇G(·, y) on ∂Ω. (42)

If {Tt} is twice differentiable deformation then the second variation

ü = δ2G(·, y) =
∂2

∂t2
Gt(·, y)

∣∣∣∣
t=0

of Gt = Gt(x, y) exists in the sense of distributions in Ω. It belongs to H1(Ω) if and only
if

2S · ∇u̇ + R · ∇u + [∇2u]S · S ∈ H1(Ω).

If this condition is satisfied then it holds that H ∈ H1/2(∂Ω) for

H = 2S · ∇u̇ + R · ∇G(·, y) + [∇2G(·, y)]S · S, (43)

and furthermore,

∆ü = 0 in Ω, ü = −H on ∂Ω.

Proof. Let Jt(x) = J(Ttx). Given ϕ ∈ C∞0 (Ω), we have
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∫

Ω

u(z, t)ϕ(z) dz =
∫

Ωt

u(z, t)ϕ(z) dz =
∫

Ω

u(Ttx, t)ϕ(Ttx) det Jt(x) dx

for |t| ¿ 1. Here, Theorem 15 guarantees the existence of, in particular, (∂u/∂t)(Ttx, t)
strongly in L2(Ω). Since the existence of

∂

∂t
[ϕ(Ttx) det Jt(x)]

is immediate, we obtain the existence of

d

dt

∫

Ω

u(z, t)ϕ(z) dz

∣∣∣∣
t=0

=
∫

Ω

[(
∂u

∂t
(Ttx, t) · ϕ(Ttx) + u(Ttx, t)

∂Ttx

∂t
· ∇ϕ(Ttx)

)
detJt(x)

+ u(Ttx, t)ϕ(Ttx)
∂

∂t
det Jt(x)

]∣∣∣∣
t=0

dx

=
∫

Ω

∂u

∂t
(Ttx, t)

∣∣∣∣
t=0

ϕ + u(S · ∇ϕ + ϕ∇ · S) dx

=
∫

Ω

∂u

∂t
(Ttx, t)

∣∣∣∣
t=0

ϕ + u∇ · (Sϕ) dx

by Theorem 6, recalling that S is a Lipschitz continuous vector field on Ω. Then it holds
that

d

dt

∫

Ω

u(z, t)ϕ(z) dz

∣∣∣∣
t=0

=
∫

Ω

[
∂u

∂t
(Ttx, t)

∣∣∣∣
t=0

− S∇ · u
]
ϕdx

by u ∈ H1(Ω), which means the existence of u̇ = ∂u/∂t|t=0 in D′(Ω) with

u̇ =
∂u

∂t
(Tt·, t)

∣∣∣∣
t=0

− S · ∇u.

The formal calculation

∂u

∂t
(Ttx, t)

∣∣∣∣
t=0

= u̇(x) + S · ∇u (44)

is thus justified in the context of distributions provided that the right-hand side belongs
to L2(Ω).

The strong differentiability of u(Tt·, t) in H1(Ω), t ∈ I, implies that the trace of the
left-hand side of (44) belongs to H1/2(∂Ω). Since 0 = Gt(Tt·, y) ∈ H1/2(∂Ω) it holds
that
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∂u

∂t
(Tt·, t)

∣∣∣∣
t=0

= −∂Γ
∂t

(Tt · −y)
∣∣∣∣
t=0

= −S · ∇Γ(· − y) in H1/2(∂Ω).

Therefore, the above u̇ is in H1(Ω) if and only if S · ∇u ∈ H1(Ω), and if this is the case
it takes the boundary value

u̇ = S · ∇(Γ(· − y) + u) = −S · ∇G(·, y) ∈ H1/2(∂Ω).

We thus obtain the first part of the theorem because ∆u̇ = 0 in D′(Ω) is obvious.
The existence of ü = ∂2u/∂t2|t=0 in D′(Ω) is similarly proven if {Tt} is twice differ-

entiable. Let the symmetric tensor

∇2u =
(

∂2u

∂xi∂xj

)

ij

be the Hesse matrix of u. Then, we formally obtain the equality

∂2u

∂t2
(Tt·, t)

∣∣∣∣
t=0

= ü + 2S · ∇u̇ + R · ∇u + [∇2u]S · S. (45)

In fact, we have, formally,

∂2u

∂t2
(Ttx, t) =

∂

∂t

{
u̇(Ttx, t) +

∂Ttx

∂t
· ∇u(Ttx, t)

}

with

∂u̇

∂t
(Ttx, t) = ü(Ttx, t) +

∂Ttx

∂t
· ∇u̇(Ttx, t)

and

∂

∂t

[
∂Ttx

∂t
· ∇u(Ttx, t)

]

=
∂2Ttx

∂t2
· ∇u(Ttx, t) +

∂Ttx

∂t
· ∂

∂t
∇u(Ttx, t)

=
∂2Ttx

∂t2
· ∇u(Ttx, t) +

∂Ttx

∂t
·
{
∇u̇(Ttx, t) +

∂Ttx

∂t
∇2u(Ttx, t)

}

=
∂2Ttx

∂t2
· ∇u(Ttx, t) +

∂Tt

∂t
· ∇u̇(Ttx, t) + [∇2u(Ttx, t)]

∂Ttx

∂t
· ∂Ttx

∂t
.

Putting t = 0, we thus obtain (45). Next, we confirm that the last three terms on the
right-hand side of (45) are regarded as distributions in Ω. In fact, first, S and R are
Lipschitz continuous. Then u ∈ H1(Ω) implies R ·∇u ∈ L2(Ω). Second, the distributions
S · ∇u̇ and [∇2u]S · S are defined by
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〈ϕ, S · ∇u̇〉1,Ω := − (u̇,∇ · (Sϕ))Ω
〈

ϕ,
∂2u

∂xi∂xj
SiSj

〉

1,Ω

= −
(

∂u

∂xi
,

∂

∂xj
(SiSjϕ)

)

Ω

, ϕ ∈ C∞0 (Ω)

using u̇ ∈ L2(Ω) and u ∈ H1(Ω). Hence the last three terms on the right-hand side of
(45) are actually distributions. The final part is the justification of the derivation of (45)
in the sense of distributions. This process is the same as in the case of the first variation.
That is, taking ϕ ∈ C∞0 (Ω), we can show the existence of (d2/dt2)〈ϕ, u(·, t)〉|t=0 with the
equality

d2u

dt2

∫

Ω

(z, t)ϕ(z) dz

∣∣∣∣
t=0

=
∫

Ω

∂2u

∂t2
(Ttx, t)

∣∣∣∣
t=0

ϕ + 2u̇∇ · (Sϕ) +
∑

i,j

∂u

∂xi

∂

∂xj
(SiSjϕ) dx

where z = Ttx.
To complete the proof, we regard u(Ttx, t) = −Γ(Ttx− y) as a function of x ∈ ∂Ω.

Obviously, this function is twice differentiable in t strongly in H1/2(∂Ω), and it holds
that

∂Γ
∂t

(Tt · −y)
∣∣∣∣
t=0

= S · ∇Γ(· − y)

∂2Γ
∂t2

(Tt · −y)
∣∣∣∣
t=0

= R · ∇Γ(· − y) + [∇2Γ(· − y)]S · S.

Since it is obvious that ü is harmonic in Ω we obtain the second part of the theorem
similarly. ¤

Remark. The differentiability of Gt(·, y), y ∈ Ω is valid in the weak topology of
L2(Ω), taking the 0-extension outside Ωt. For this purpose we take the 0-extension of
the test function ϕ ∈ L2(Ω) outside Ω in the above proof. Natural boundary condition,
however, will be difficult to be treated by extensions.

3.4. C1,1-domain.
If Ω ⊂ RN is a C1,1-domain there is a Lipschitz continuous frame (15) on ∂Ω. In this

case, the vector field n on ∂Ω has a Lipschitz extension on Ω. In fact, first, we extend
it near ∂Ω using the flow described in Section 2.2 and then take a cut-off function to
extend it on Ω.

For v ∈ H2(Ω), the trace of the function n · ∇v belongs to H1/2(∂Ω). By the
identification given in Theorem 4 it thus holds that ∂v/∂n ∈ H1/2(∂Ω). We have also

∂v

∂si
= si · ∇v ∈ H1/2(∂Ω)
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because si, 1 ≤ i ≤ N − 1, are Lipschitz continuous. If v ∈ H1
0 (Ω), furthermore, we

obtain

0 =
∫

∂Ω

(si · ∇)(vϕ) ds =
∫

∂Ω

[(si · ∇)v]ϕds

for any ϕ ∈ C∞0 (ω) by v|∂Ω = 0.2 Hence it follows that ∂v/∂si = 0, i = 1, . . . , N − 1,
which implies

S · ∇v =
[
(S · n)n +

N−1∑

i=1

(S · si)si

]
· ∇v

= (S · n)(n · ∇v) = δρ
∂v

∂n
∈ H1/2(∂Ω), ∀v ∈ H2(Ω) ∩H1

0 (Ω),

because S · ∇v ∈ H1(Ω) by the Lipschitz continuity of S. This category of Ω is thus ap-
propriate to represent the first variational formula in Euler coordinate system in H1(Ω).
In the following theorem, the paring 〈 · , · 〉1/2,∂Ω is identified with the L2 inner product
on ∂Ω.

Theorem 17 (Hadamard). If Ω ⊂ RN is a C1,1-domain then it holds that

u̇ = δG(·, y) ∈ H1(Ω).

This function is harmonic in Ω and we have

δG(x, y) =
〈

δρ
∂G(·, y)

∂n
,
∂G(·, x)

∂n

〉

1/2,∂Ω

, x, y ∈ Ω. (46)

Proof. By the L2 elliptic regularity on C1,1-domain Ω, we have, for y ∈ Ω,

u = G(·, y)− Γ(· − y) ∈ H2(Ω).

Then it follows that

n · ∇G(·, y) =
∂G(·, y)

∂n
∈ H1/2(∂Ω) (47)

and hence

S · ∇G(·, y) = δρ
∂G(·, y)

∂n
∈ H1/2(∂Ω). (48)

Then we obtain (46) by Theorems 14 and 16. ¤

2Recall that ω is an open set which contains ∂Ω. For ϕ ∈ C∞0 (ω), we consider its zero-extension and

regard it as an element in C∞0 (RN ).
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Remark. The notations of the above theorem are the same as those of [8], except
for the direction of n.

The second variational formula in Theorem 16 contains u̇ in the first term of H

defined by (43). The following lemma is used to reduce this term to an integration on Ω.

Lemma 18. If Ω ⊂ RN is a C1,1-domain, then it holds that

(∇δG(·, x),∇δG(·, y))Ω = −
〈

δρ
∂G(·, x)

∂n
,
∂δG(·, y)

∂n

〉

1/2,∂Ω

, x, y ∈ Ω. (49)

Proof. For C1,1-domain Ω, we have u ∈ H2(Ω), (47), (48), and

u̇ = δG(·, y) ∈ H1(Ω).

Therefore, we have, for ϕ ∈ H1(Ω) with ∆ϕ = 0,

(∇δG(·, y),∇ϕ)Ω = (∇u̇,∇ϕ)Ω =
〈

u̇,
∂ϕ

∂n

〉

1/2,∂Ω

= −
〈

δρ
∂G(·, y)

∂n
,
∂ϕ

∂n

〉

1/2,∂Ω

.

Putting ϕ := δG(·, x) ∈ H1(Ω), x ∈ Ω, we obtain (49) with x and y exchanged. ¤

Lemma 18 may be proven by Theorems 12 and 13. For the formal proof, we assume
that g = g(x) is a smooth harmonic function in a domain Ω̃ which contains Ω. Then, we
have

∫

Ωt

∇Gt(·, y) · ∇g = 0.

Theorem 12 implies

∫

Ω

∇δG(·, y) · ∇g +
∫

∂Ω

[∇G(·, y) · ∇g]δρ = 0

and then (49) follows with g = δG(·, x) for x ∈ Ω. This proof is formal because of the
singularity of Gt(·, y) = Gt(x, y) at x = y, but we can justify it as follows.

The Second Proof of Lemma 18. First, we take a smooth function g = g(x)
in Ω̃ to derive

∫

Ωt

∇u(·, t) · ∇g +
∫

∂Ωt

n · [Γ(· − y)∇g] = −
∫

Ωt

u(·, t)∆g

by Gt(·, y) = u + Γ(· − y) and Gt(·, y)|∂Ω = 0. Here u(·, t) is Lagrange differentiable in
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H1(Ω) and also u̇ = δG(·, y) ∈ H1(Ω) because Ω is of C1,1. Then the proof of Theorems
12 and 13 are valid, and it holds that

∫

Ω

∇u̇ · ∇g +
∫

∂Ω

[∇u · ∇g]δρ +
∫

∂Ω

[∇Γ(· − y) · ∇g]δρ = −
∫

Ω

u̇∆g

or
∫

Ω

∇δG(·, y) · ∇g +
∫

∂Ω

∂G(·, y)
∂n

∂g

∂n
δρ = −

∫

Ω

δG(·, y)∆g. (50)

Equality (50) is now extended to g ∈ H1(Ω) with ∆g ∈ H1(Ω)′. Here the right-hand
side is replaced by 〈δG(·, y),∆g〉1,Ω, that is,

(∇δG(·, y),∇g)Ω +
〈

δρ
∂g

∂n
,
∂G(·, y)

∂n

〉

1/2,∂Ω

= −〈δG(·, y),∆g〉1,Ω.

Putting g = δG(·, x), x ∈ Ω, we obtain (46) by ∆δG(·, x) = 0 in Ω. ¤

3.5. C2,θ-domain.
Suppose now that the domain Ω is of C2,θ, 0 < θ < 1. Since Γ(· − y) is C∞ in ω if

y 6∈ ω, we have u ∈ C2,θ(Ω) and G(·, y) ∈ C2,θ(Ω). In particular we obtain

∂2G(·, y)
∂n2

= −(∇ · n)
∂G(·, y)

∂n
on ∂Ω (51)

by Corollary 11 and ∆u = 0 in Ω. To simplify the notation, we introduce the gradient
∇∂Ω on ∂Ω which is defined by

∇∂Ω :=
N−1∑

i=1

si
∂

∂si
= ∇− n

∂

∂n
.

We also decompose S as

S = S∂Ω + (δρ)n, S∂Ω :=
N−1∑

i=1

µisi, µi := S · si, δρ := S · n.

Lemma 19. If Ω ⊂ RN be a C2,θ-domain and {Tt} be a twice differentiable defor-
mation, then it holds that

S · [∇2G(·, y)]S

= 2δρ(S∂Ω · ∇∂Ω)
∂G(·, y)

∂n
+

(
((S · ∇)n) · S − (δρ)2∇ · n)∂G(·, y)

∂n
(52)

= 2δρ(S · ∇)
∂G(·, y)

∂n
+

(
((S · ∇)n) · S + (δρ)2∇ · n)∂G(·, y)

∂n
(53)
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on ∂Ω, where µi = S · si. If {s1, . . . , sN−1, n} is the Morse frame, then we have

S · [∇2G(·, y)]S = 2δρ

N−1∑

i=1

µi
∂2G(·, y)
∂si∂n

+
N−1∑

i=1

κi(µ2
i − (δρ)2)

∂G(·, y)
∂n

. (54)

Proof. We have (51) and

G(·, y) =
∂G(·, y)

∂si
=

∂2G(·, y)
∂si∂sj

= 0 on ∂Ω, i, j = 1, 2, . . . , N − 1.

Hence, it follows from Lemma 10 that

∇2G(·, y) =
∂G(·, y)

∂n
(∇n)T +

N−1∑

i=1

(si ⊗ n + n⊗ si)
∂2G(·, y)
∂si∂n

+ n⊗ n
∂2G(·, y)

∂n2

=
∂G(·, y)

∂n
((∇n)T − (∇ · n)n⊗ n) +

N−1∑

i=1

∂2G(·, y)
∂si∂n

(si ⊗ n + n⊗ si). (55)

Note that [a⊗ b]c · d = (a · d)(b · c) for a, b, c, d ∈ RN . Then, the relations

[n⊗ n]n · n = 1, [n⊗ n]sk · n = 0, [n⊗ n]sk · s` = 0

imply

(∇ · n)S · [n⊗ n]S = (δρ)2
N−1∑

i=1

κi = (δρ)2(∇ · n)

with (24). Note that, from (22), we can rewrite S · (∇n)T S as

S · (∇n)T S = S ·
( N−1∑

i=1

κiµisi +
N−1∑

i=1

µi

∑

j 6=i

(
∂n

∂si
· sj

)
sj

)

=
N−1∑

i=1

κiµ
2
i +

N−1∑

i=1

µi

∑

j 6=i

(
∂n

∂si
· sj

)
µj

=
N−1∑

i=1

µi

N−1∑

j=1

(
∂n

∂si
· sj

)
µj =

( N−1∑

i=1

(S · si)
∂n

∂si

)
·

N−1∑

j=1

(S · sj)sj

= ((S · ∇)n) · S.

Here, we used (∂n/∂si) · n = 0 and (∂n/∂si) · si = κi.
Next, we consider the case of {s1, . . . , sN−1, n} being the Morse frame. In this case,

we have (∂n/∂si) · sj = 0, i 6= j, and
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[(∇n)T ]n · n =
N−1∑

i=1

κi[si ⊗ si]n · n =
N−1∑

i=1

κi(si · n)2 = 0,

[(∇n)T ]sk · n =
N−1∑

i=1

κi[si ⊗ si]sk · n =
N−1∑

i=1

κi(si · sk)(si · n) = 0

by (22). Also, since

[si ⊗ si]sk · s` = (si · sk)(si · s`) = δikδi`

we have

[(∇n)T ]sk · s` =
N−1∑

i=1

κi[si ⊗ si]sk · s` =
N−1∑

i=1

κiδikδi` = κkδk`,

and

S · [(∇n)T ]S =
N−1∑

k,`=1

µkµ`[(∇n)T ]sk · s` =
N−1∑

k,`=1

µkµ`κkδk` =
N−1∑

`=1

µ2
`κ`.

For the second term of the right-hand side of (55), we use

[sk ⊗ n]n · n = (sk · n)|n|2 = 0, [sk ⊗ n]s` · n = (n · s`)(sk · n) = 0

[sk ⊗ n]s` · sm = (n · s`)(sk · sm) = 0, [sk ⊗ n]n · s` = (sk · s`)|n|2 = δk`

and

[n⊗ sk]n · n = [n⊗ sk]s` · sm = [n⊗ sk]n · s` = 0, [n⊗ sk]s` · n = δk`.

Then it follows that S · [si ⊗ n + n⊗ si]S = 2(δρ)µi and

N−1∑

i=1

∂2G(·, y)
∂si∂n

S · [si ⊗ n + n⊗ si]S = 2δρ
N−1∑

i=1

(S · si)
∂2G(·, y)
∂si∂n

= 2δρ(S∂Ω · ∇∂Ω)
∂G(·, y)

∂n
.

Gathering all the equations, we have shown that (52) and (54) hold.
To obtain (53), we only need to see that

2δρ(S∂Ω · ∇∂Ω)
∂G(·, y)

∂n
= 2δρ

(
S · ∇ − δρ

∂

∂n

)
∂G(·, y)

∂n
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= 2δρ(S · ∇)
∂G(·, y)

∂n
− 2(δρ)2

∂2G(·, y)
∂n2

= 2δρ(S · ∇)
∂G(·, y)

∂n
+ 2(δρ)2(∇ · n)

∂G(·, y)
∂n

,

because of (51). ¤

3.6. C2,1-domain.
Henceforth, we assume that Ω ⊂ RN is a C2,1-domain and

S =
∂Tt

∂t

∣∣∣∣
t=0

∈ C2,1(Ω,RN ). (56)

In this case it holds that u ∈ W 3,p(Ω), 1 < p < ∞, and hence u ∈ C2(Ω). Thus Lemma
10 is applicable to f = u.

Theorem 20. Let Ω ⊂ RN be a C2,1 domain and {Tt} be a twice differentiable
deformation satisfying (56). Then we have ü = δ2G(·, y) ∈ H1(Ω). This function is
harmonic in Ω and it holds that

δ2G(x, y) = −2(∇δG(·, x),∇δG(·, y))Ω +
〈

χ
∂G(·, x)

∂n
,
∂G(·, y)

∂n

〉

1/2,∂Ω

(57)

for x, y ∈ Ω with the Lipschitz continuous function χ defined by

χ := δ2ρ− ((S · ∇)S) · n− (δρ)2∇ · n− (S · ∇)δρ +
∂(δρ)2

∂n
. (58)

If {s1, . . . , sN−1, n} is the Morse frame then χ becomes, recalling µi := S · si,

χ := δ2ρ +
N−1∑

i=1

{
κi(µ2

i − (δρ)2)− 2µi
∂δρ

∂si

}
. (59)

Proof. From the assumption we have u ∈ H3(Ω) and also S · ∇u ∈ H2(Ω) by
(56). Hence it holds that

S · ∇G(·, y) = δρ
∂G(·, y)

∂n
∈ H3/2(∂Ω)

which means the existence of g ∈ H2(Ω) such that g = S · ∇G(·, y) on ∂Ω. Then the
elliptic regularity applied to (42) implies

u̇ = δG(·, y) ∈ H2(Ω).

Thus we obtain S · ∇u̇ ∈ H1(Ω), and therefore, we have
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S · ∇δG(·, y) = (S∂Ω · ∇∂Ω)δG(·, y) + δρ
∂δG(·, y)

∂n
on ∂Ω,

and is in H1/2(∂Ω).
We have also R · ∇u ∈ H2(Ω) and hence,

R · ∇G(·, y) = δ2ρ
∂G(·, y)

∂n
on ∂Ω,

and is in H3/2(∂Ω). It thus follows from Theorem 16 that

ü = −H = −2
(

(S∂Ω · ∇∂Ω)δG(·, y) + δρ(S∂Ω · ∇∂Ω)
∂G(·, y)

∂n

)
− 2δρ

∂δG(·, y)
∂n

− [
δ2ρ + ((S · ∇)n) · S − (δρ)2∇ · n]∂G(·, y)

∂n
on ∂Ω.

Since

δG(·, y) = u̇ = −δρ
∂G(·, y)

∂n
on ∂Ω,

we have

(S∂Ω · ∇∂Ω)δG(·, y) + δρ(S∂Ω · ∇∂Ω)
∂G(·, y)

∂n
= −[

(S∂Ω · ∇∂Ω)δρ
]∂G(·, y)

∂n

on ∂Ω. Note that we see

(S∂Ω · ∇∂Ω)δρ = (S − (δρ)n) · ∇δρ = (S · ∇)δρ− 1
2

∂(δρ)2

∂n

and

(S · ∇)δρ = (S · ∇)(S · n) = ((S · ∇)S) · n + ((S · ∇)n) · S.

Thus, we end up with

ü = −2δρ
∂u̇

∂n
− χ

∂G(·, y)
∂n

on ∂Ω

with (58). The proof is, therefore, completed by Theorem 14 and Lemma 18. For the
case of {s1, . . . , sN−1, n} being the Morse frame, the proof is done quite similarly from
(54). ¤

An immediate consequence is the following.

Corollary 21 (Garabedian–Schiffer [9]). Let {Tt} be a family of normal pertur-
bations associated with δρ = S · n. Then it holds that
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δ2G(x, y) = −2(∇δG(·, x),∇δG(·, y))Ω

−
〈

(∇ · n)(δρ)2
∂G(·, x)

∂n
,
∂G(·, y)

∂n

〉

1/2,∂Ω

, x, y ∈ Ω (60)

under the assumption of Theorem 20.

Proof. The formula follows from the previous theorem because it holds that
δ2ρ = 0 and µi = S · si = 0, i = 1, 2, . . . , N − 1 in this case. ¤

For the case the dynamical perturbation, we have the following corollary.

Corollary 22. Let {Tt} be a family of dynamical perturbations associated with
the vector field v. Then it holds that

δ2G(x, y) = −2(∇δG(·, x),∇δG(·, y))Ω −
〈

σ
∂G(·, x)

∂n
,
∂G(·, y)

∂n

〉

1/2,∂Ω

,

σ := (v · n)2∇ · n− ∂(v · n)2

∂n
+ (v · ∇)(v · n), x, y ∈ Ω (61)

under the assumption of Theorem 20.

Proof. In this case we have (S · ∇)S = R so that

χ = −(δρ)2∇ · n +
∂(δρ)2

∂n
− (S · ∇)δρ.

Then (61) follows from (58) with S = v and δρ = v · n. ¤
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