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Hydrodynamic limit for a certain class

of two-species zero-range processes
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Abstract. Großkinsky and Spohn [5] studied several-species zero-range
processes and gave a necessary and sufficient condition for translation invariant
measures to be invariant under such processes. Based on this result, they
investigated the hydrodynamic limit. In this paper, we consider a certain class
of two-species zero-range processes which are outside of the family treated by
Großkinsky and Spohn. We prove a homogenization property for a tagged
particle and apply it to derive the hydrodynamic limit under the diffusive
scaling.

1. Introduction.

The hydrodynamic limit is an important problem in studies of large scale interacting
particle systems and, in fact, well studied for several models. Our model is the multi-
species interacting particle system. We consider a particle system, in which interaction
occurs only among particles sitting at the same site. This kind of particle system is called
the zero-range process. For the case of the one-species zero-range process, Kipnis and
Landim [8] establish the hydrodynamic behavior by means of the entropy method intro-
duced by Guo, Papanicolaou and Varadhan [4]. However, for the multi-species zero-range
process which will discuss, the derivation of the hydrodynamic limit is difficult because
we don’t know the explicit forms of invariant measures for our process. Großkinsky and
Spohn study the invariant measures for their multi-species zero-range process in [5]. In
their paper, they give necessary and sufficient conditions, like a detailed balanced con-
dition, to exist translation invariant product invariant measures for the process. We
consider some jump rates of two-species zero-range processes which do not satisfy the
condition given in [5].

Now we informally explain our two-species zero-range processes. The two-species
zero-range process describes an evolution of a system of distinguishable two-species par-
ticles, say ξ-particles and ζ-particles. The system of ζ-particles follows a collection of
random walks and one of ζ-particles jumps from x to x+ z with rate (g(ζ(x))/ζ(x))p(z),
where ζ(x) stands for the number of ζ-particles sitting at site x. On the one hand, the
system of ξ-particles follows a collection of random walks and one of ξ-particles jumps
from x to x + z with rate h(ζ(x))q(z), provided that g and h are functions on the set
of non-negative integers and p and q are transition probabilities on the set of integers.
Notice that ξ-particles are independent with each other under situations that we know
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the motions of ζ-particles. This special feature enables us to derive the hydrodynamic
limit for ξ-particles.

The strategy to prove the hydrodynamic limit is as follows. Pick up one ξ-particle,
called the tagged particle, and we will show the fluctuation limit of this tagged particle
under the diffusive scaling. Because the system of the ξ-particles is a collection of random
walks, the hydrodynamic limit is derived by the homogenization property of the tagged
particle. The method to derive the hydrodynamic limit from a homogenization property
is introduced by Faggionato in [1], for instance. To determine the fluctuation limit of
the tagged particle, we use the techniques introduced by Jara et al. in the papers [6] and
[7]. The fluctuation limit of the tagged particle is determined through the analysis of
the system of ζ-particles seen from the tagged particle, which is called the environment
process. We establish the fluctuation limit of the tagged particle by proving tightness
and local ergodicity. However, to determine the fluctuation limit, we need rather strong
assumptions on g, h, p and q, to know the form of the invariant measures of the envi-
ronment process. In addition, we can show the local ergodicity only in one-dimensional
setting. The necessity that the dimension equals 1 is used only in establishing local re-
placements, so-called local 1-block estimate and local 2-block estimate. Other necessary
properties are shown in any dimensional settings.

Another motivation to treat our model is to derive the cross-diffusion system,

{
∂tu = ∆(H(v)u),

∂tv = ∆Φ(v),

from some microscopic model, where H and Φ are suitable functions. Although we don’t
consider creations and annihilations of particles, this system of equations is a general-
ization of the system of equations treated in Funaki et al. [3]. In view of derivations of
the system of partial differential equations, we interpret ξ-particles or ζ-particles as the
number of insects or the strength of pheromones respectively in our microscopic model.
In this paper, as a consequence of the hydrodynamic limit, we make a success of deriving
the above system for some functions H and Φ.

This article is organized as follows. In Section 2, we introduce our model and state
our main results. In Section 3, we consider the tagged particle and the environment
process. We also treat invariant measures for the environment process. In Section 4, we
prove the hydrodynamic limit for the two-species zero-range processes from the homog-
enization result for tagged particles.

2. Main results.

In this section, we formulate our model more precisely and state our main results.
Throughout this paper, we will use the following notations: N = {1, 2, 3, . . . }, N0 =
{0} ∪ N, R+ = [0,∞). For a function f on some set X, denote supx∈X |f(x)| by ‖f‖∞.

2.1. Two-species zero-range processes.
Now we precisely describe our model which is called the two-species zero-range

process. To avoid some technicalities, we put a periodic boundary condition and all
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processes will be considered only in a finite time interval [0, T ], where T < ∞ is fixed.
For each N ∈ N, let TN be the discrete one-dimensional torus Z/NZ and T be the torus
R/Z. Elements of TN are regarded as microscopic points and denoted by symbols x or y.
In contrast, elements of T are regarded as macroscopic points and denoted by symbols
θ or θ̃. Let NTN

0 × NTN
0 be the state space of the two-species zero-range process. NTN

0 is
called a configuration space, and generic elements of NTN

0 are denoted by Greek letters
ξ, ζ, η. For each x ∈ TN , ξ(x) or ζ(x) expresses the number of ξ-particles or ζ-particles
at site x respectively.

Let (ξt, ζt) be the two-species zero-range process, that is, (ξt, ζt) is a Markov process
on NTN

0 × NTN
0 whose generator is given by

LN = L1
N + L2

N (2.1)

where L1
N and L2

N are given by

(L1
Nf)(ξ, ζ) =

∑

x∈TN

∑

z∈Z
q(z)h(ζ(x))ξ(x){f(ξx,x+z, ζ)− f(ξ, ζ)},

(L2
Nf)(ξ, ζ) =

∑

x∈TN

∑

z∈Z
p(z)g(ζ(x)){f(ξ, ζx,x+z)− f(ξ, ζ)},

respectively. In the above formula, ηx,y is defined by

ηx,y(z) =





η(x)− 1 if z = x,

η(y) + 1 if z = y,

η(z) if z 6= x, y.

for each configuration η ∈ NTN
0 .

Now we introduce basic assumptions on g, h, p and q to construct the process,
although we will require further stronger assumptions later. Let g and h be non-negative
functions on N0. We assume that g(0) = 0, g(k) > 0, for any k ∈ N and Lipschitz growth
condition, that is, g∗ = supk |g(k + 1)− g(k)| is finite. We assume that h is bounded on
N0. Notice that g(ζ(x))/ζ(x) and h(ζ(x)) represent the jump rates of ξ- and ζ- particles,
respectively. Let p and q be finite-range, irreducible transition probabilities of random
walks on Z and p(0) = q(0) = 0: Finite-rangeness means that there exists R > 0 such
that p(z) = 0 for all |z| > R and irreducibility means that for any x ∈ Z, there exists
a path {0 = x0, . . . , xn = x} such that p(xi − xi−1) > 0 for any i = 1, . . . , n. p or q

determines jump size of ζ-particles or ξ-particles respectively.
This particle system has two special features. One is that the particle system {ζt}

is a Markov process itself, called the zero-range process, whose generator is given by

(LNf)(ξ) =
∑

x∈TN

∑

z∈Z
p(x)g(ζ(x)){f(ζx,x+z)− f(ζ)}.

The other is that the interacting particle system {ξt} can be thought as a collection of
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time-inhomogeneous random walks {Xi
t}∞i=1 which jumps from site x to site x + z with

rate q(z)h(ζt(x)). The following proposition shows this second feature specifically.

Proposition 2.1. Let (X1
t , . . . , XK

t , ζt) be a Markov process on TK
N ×NTN

0 gener-
ated by the generator

(LF )(x, ζ) =
K∑

i=1

∑

z∈Z
q(z)h(ζ(xi)){F (x + zei, ζ)− F (x, ζ)}

+
∑

x∈TN

∑

z∈Z
p(z)g(ζ(x)){F (x, ζx,x+z)− F (x, ζ)},

where x = (x1, . . . , xK) ∈ TK
N and ei = (δij)K

j=1 ∈ RK is an i-directed unit vector in
RK for each 1 ≤ i ≤ K. Define the process ξt on NTN

0 by ξt(x) =
∑

i 1{Xi
t=x} for each

x ∈ TN . Then, the joint process (ξt, ζt) on the state space NTN
0 ×NTN

0 is a Markov process
whose generator is given by LN defined in (2.1).

Proof. By a characterization due to a martingale problem, it is enough to show
that

f(ξt, ζt)− f(ξ0, ζ0)−
∫ t

0

(LNf)(ξs, ζs)ds (2.2)

is a martingale for any function f on NTN
0 × NTN

0 . Denote (X1
t , . . . , XK

t ) by Xt. For
x = (x1, . . . , xK) ∈ TK

N , define the configuration ξx by

(ξx)(x) =
∑

i

1{xi=x},

for each x ∈ TN . Then, we have that ξt = ξXt
. Let f be a function on NTN

0 × NTN
0 .

Consider the function F on TK
N × NTN

0 defined by F (x, ζ) = f(ξx, ζ) and use the Itô’s
formula for F (x, ζ), to see that

F (Xt, ζt)− F (X0, ζ0)−
∫ t

0

(LF )(Xs, ζs)ds (2.3)

is a martingale. Notice that F (Xt, ζt) = f(ξXt , ζt) = f(ξt, ζt). The integrand of the
third term in (2.3) is equal to

(LF )(Xs, ζs) =
K∑

i=1

∑

z∈Z
q(z)h(ζs(Xi

s)){f(ξXs+zei , ζs)− f(ξXs , ζs)}

+
∑

x∈TN

∑

z∈Z
p(z)g(ζs(x)){f(ξXs , ζ

x,x+z
s )− f(ξXs , ζs)}.
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Notice that ξXs+zei
= ξ

Xi
s,Xi

s+z
s , the first sum of the right hand side can be expressed as

∑

x∈TN

K∑

i=1

∑

z∈Z
q(z)h(ζs(x)){f(ξx,x+z

s , ζs)− f(ξs, ζs)}1{Xi
s=x}

=
∑

x∈TN

∑

z∈Z
q(z)h(ζs(x))ξs(x){f(ξx,x+z

s , ζs)− f(ξs, ζs)}.

Therefore the process in (2.2) is a martingale, which concludes the proof of the proposi-
tion. ¤

2.2. Invariant measures for zero-range processes.
The zero-range process ζt is one of the well-studied interacting particle systems. In

this subsection, we briefly review known results on the invariant measures of the zero-
range process.

Define the partition function by

Z(ϕ) :=
∞∑

k=0

ϕk

g(k)!

where g(k)! = 1 if k = 0 and g(1) . . . g(k) if k ≥ 1. Denote the radius of convergence of
Z by ϕ∗ and assume that

lim
ϕ↑ϕ∗

Z(ϕ) = ∞. (2.4)

For each 0 ≤ ϕ < ϕ∗, define µ̄ϕ as the product measure on NTN
0 with marginals given by

µ̄ϕ(ζ : ζ(x) = k) =
1

Z(ϕ)
ϕk

g(k)!
,

for k ∈ N0 and x ∈ TN . The next proposition is well known [8].

Proposition 2.2. For each 0 ≤ ϕ < ϕ∗, µ̄ϕ is invariant under the zero-range
process ζt. In addition, if p is symmetric in the sense that p(z) = p(−z) for any z ∈ Z,
µ̄ϕ is a reversible measure of this process.

For each 0 ≤ ϕ < ϕ∗, set D(ϕ) :=
∫

ζ(0)dµ̄ϕ. Under the assumption (2.4) for the
partition function Z, D(ϕ) diverges to ∞ as ϕ increases to ϕ∗. Therefore D : [0, ϕ∗) →
[0,∞) is diffeomorphic. Denote by Φ the inverse function of D. We re-parametrize
invariant measures by the density of particles, that is, for any ρ ≥ 0, we define the
measure µρ by µρ := µ̄Φ(ρ). Notice that we have

∫
ζ(0)dµρ = ρ and

∫
g(ζ(0))dµρ = Φ(ρ).

2.3. Hydrodynamic limit for two-species zero-range processes.
We now assume on the initial distributions to introduce our results. Let initial

distributions µ1
N and µ2

N of ξt and ζt, respectively. These are probability measures on
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NTN
0 . Let u0 and v0 be functions in C(T), where C(T) stands for the family of continuous

functions on T. Assume that µ1
N is a product measure on NTN

0 so that random variables
{ξ(x)}x∈TN

are independent under µ1
N , the expectation of ξ(x) with respect to µ1

N is
equal to u0(x/N) and (1/N)Eµ1

N
[
∑

x∈TN
ξ2(x)] = o(N). Let µ2

N be the local equilibrium
measure µN

v0(·), that is, µN
v0(·) is the product measure on NTN

0 whose marginals are given
by µN

v0(·)(ζ(x) = k) = µv0(x/N)(ζ(x) = k).
Now we consider the Markov process {(ξN

t , ζN
t ); t ∈ [0, T ]} with the generator N2LN

and the initial distribution µ1
N × µ2

N . For each t ∈ [0, T ], define the empirical measures
πN,1

t and πN,2
t by

πN,1
t (dθ) =

∑

x∈TN

ξN
t (x)δx/N (dθ),

πN,2
t (dθ) =

∑

x∈TN

ζN
t (x)δx/N (dθ),

respectively, where δθ stands for the Dirac measure which has a unit mass at θ ∈ T. Let
M+(T) be the set of all finite non-negative measures on T.

To prove the hydrodynamic limit, we need some additional technical assumptions
on g, h, p and q. The necessity of the conditions stated below will be explained in
Proposition 3.1. Assume that g is nondecreasing and there exists a positive number
c > 0 such that (k + c)h(k) + g(k) = ch(0) for any k ∈ N and assume that p has
mean-zero and p(z) = q(−z) for any z ∈ Z. Define the function on R+ by H(ρ) =∫

((ζ(0) + c)/(ρ + c))h(ζ(0))dµρ.
The next result is well known ([8, Chapter 5]).

Theorem 2.3. For any t ∈ [0, T ], {πN,2
t ;N ≥ 1} converges to a deterministic

measure v(t, θ)dθ in probability as N →∞ where v(t, θ) is a unique weak solution of the
Cauchy problem





∂tv =
σ2

2
∆Φ(v),

v(0, θ) = v0(θ).
(2.5)

Now we describe our main results.

Theorem 2.4 (Hydrodynamic limit). For any t ∈ [0, T ], {πN,1
t ;N ≥ 1} converges

to u(t, θ)dθ as N →∞ in probability where u(t, θ) is a unique weak solution of the Cauchy
problem





∂tu =
σ2

2
∆(H(v)u),

u(0, θ) = u0(θ),
(2.6)

where v(t, θ) is the unique solution of (2.5).
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Theorem 2.4 can be derived from a homogenization result for each ξ-particle. We call
each ξ-particle a “tagged particle”. Before giving a proof of Theorem 2.4, we shall formu-
late the homogenization result for tagged particles. Theorem 2.4 will be proved in Subsec-
tion 2.4. Let κN be the probability on TN given by κN (x) = u0(x/N)/

∑
y∈TN

u0(y/N).
If u0 is identically equal to 0, Theorem 2.4 holds trivially, so we exclude this case. We
may assume that N is large enough so that the following definitions are meaningful.
Notice that the sequence {κN ;N ≥ 1} converges weakly to κ, where κ is the probability
measure on T defined by κ(dθ) = (u0(θ)/

∫
T u0(θ̃)dθ̃)dθ.

Consider the Markov process {(XN,1
t , XN,2

t , ζN
t ); t ∈ [0, T ]} with the generator

N2(LF )(x1, x2, ζ) = N2
∑

z∈Z
q(z)h(ζ(x1)){F (x1 + z, x2, ζ)− F (x1, x2, ζ)}

+ N2
∑

z∈Z
q(z)h(ζ(x2)){F (x1, x2 + z, ζ)− F (x1, x2, ζ)}

+ N2
∑

x∈TN

∑

z∈Z
p(z)g(ζ(x)){F (x1, x2, ζ

x,x+z)− F (x1, x2, ζ)}

and the initial distribution κN × κN × µ2
N .

Theorem 2.5 (Homogenization properties). The rescaled process
{(1/N)(XN,1

t , XN,2
t ); t ∈ [0, T ]} converges in distribution under the uniform topol-

ogy to a diffusion {(θ1
t , θ2

t ); t ∈ [0, T ]} as N →∞, where {(θ1
t , θ2

t ); t ∈ [0, T ]} is a unique
weak solution of the stochastic differential equation





dθ1
t = σ

√
H(v(t, θ1

t ))dB1
t ,

dθ2
t = σ

√
H(v(t, θ2

t ))dB2
t ,

(θ1
0, θ

2
0)

(d)
= κ× κ,

where v(t, θ) is the unique solution of (2.5) and (B1
t , B2

t ) is a two-dimensional standard
Brownian motion.

Proof. We use characterization by martingales. Notice that tagged particles
XN,1

t and XN,2
t are orthogonal martingales for each N ≥ 1 and the convergence to a

diffusion for each tagged particle will be proved in Theorem 3.2. Therefore, two processes
are independent in the limit and the diffusion is given by the above stochastic differential
equation. ¤

Remark 2.1. In Theorem 2.5 and Theorem 3.2, we consider diffusions on R,
however, all diffusions on R appeared in this paper are identified with diffusions on T in
the following sense. Let θt be the solution of the stochastic differential equation

{
dθt = σ

√
H(v(t, θt))dBt,

θ0 = 0,
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where Bt is a one-dimensional standard Brownian motion. Define the equivalent relation
x ∼ y in R by x− y ∈ Z. For each x ∈ R, denote the equivalence class of x by [x]. The
diffusion θt on R is identified with the diffusion [θt] on T. For simplicity, we denote these
diffusions by same symbol θt.

3. Homogenization for the tagged particle process.

In this section, we prove an invariance principle for a tagged particle Xt starting at
the origin under the diffusive scaling.

3.1. Invariant measures for environment processes.
Let Xt be the position of the tagged particle at time t. The zero-range process seen

from the position of the tagged particle, called the environment process, will play an
important role to analyze the motion of the tagged particle. Denote the environment
process ηt by ηt = τXt

ζt where {τx}x∈TN
is a translation group acting on NTN

0 . The
environment process {ηt : t ∈ [0, T ]} is again a Markov process. The generator of the
environment process is easily computed as LN = Lenv

N + Ltp
N , where

(Lenv
N f)(η) =

∑

x∈TN

∑

z∈Z
p(x)g(η(x)){f(ηx,x+z)− f(η)},

(Ltp
Nf)(η) =

∑

x∈Z
q(z)h(η(0)){f(τzη)− f(η)}.

We now consider invariant measures for the environment process ηt but generally
we don’t know the structure of the 1-parameter family of invariant measures for the
environment process ηt. Of course, µρ is not invariant under the environment process ηt

by the effects of translations. So we shall start from identifying some class of invariant
measures. The next result gives the invariant measures of the environment process.

Proposition 3.1. If the measure νρ defined by dνρ = (G(η(0))/Ḡ(ρ))dµρ with a
function G : N0 → R+ satisfying Ḡ(ρ) =

∫
G(η(0))dµρ < ∞ for any ρ ≥ 0 is invariant

under the environment process, then we have that p(z) = q(−z) for any z ∈ Z and there
exist a ≥ 0 and b > 0 s.t. G(k) = ak + b and (ak + b)h(k)+ag(k) = bh(0) for any k ≥ 0.

Conversely, if g, h, p and q satisfy that p(z) = q(−z) for any z ∈ Z and (ak+b)h(k)+
ag(k) = bh(0), for any k ≥ 0 for some a ≥ 0 and b > 0, then the measure νρ defined
by dνρ := (G(η(0))/Ḡ(ρ))dµρ with G(k) = ak + b is invariant under the environment
process.

Proof. We first assume that there exists a function G on N0 such that the measure
νρ defined above is invariant under the process. Fix ρ ≥ 0. Denote the generator Lenv

N

replaced p by p∗(z) = p(−z) by Lenv
N

∗. For a measure m on NTN
0 , denote by 〈·〉m the

expectation with respect to m.
We claim that
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∑

x∈TN

p(x)[g(η(x)){G(η(0) + 1)−G(η(0))}+ g(η(0)){G(η(0)− 1)−G(η(0))}]

+ q(−x){h(η(x))G(η(x))− h(η(0))G(η(0))} = 0, (3.1)

for any configuration η ∈ NTN
0 . Indeed, from the definition of the generator LN , we have

〈LNf〉νρ
= 〈Lenv

N f〉νρ
+ 〈Ltp

Nf〉νρ
(3.2)

for any function f : NTN
0 → R. The first term of the right hand side appeared in (3.2)

multiplied Ḡ(ρ) is equal to

〈(Lenv
N f)(η)G(η(0))〉µρ

= 〈f(η)Lenv
N

∗G(η(0))〉µρ
.

Note that for each x ∈ TN and z ∈ Z, if 0 /∈ {x, x+ z}, then G(ηx,x+z(0))−G(η(0)) = 0.
Therefore Lenv

N
∗G(η(0)) is computed as

Lenv
N

∗G(η(0)) =
∑

x∈TN

∑

z∈Z
p∗(z)g(η(x)){G(ηx,x+z(0))−G(η(0))}

=
∑

z∈Z
p∗(z)g(η(0)){G(η(0)− 1)−G(η(0)}

+
∑

x∈TN

p∗(−x)g(η(x)){G(η(0) + 1)−G(η(0))}

=
∑

x∈TN

p(x)[g(η(x)){G(η(0) + 1)−G(η(0))}

+ g(η(0)){G(η(0)− 1)−G(η(0))}].

In the third equality we used the fact
∑

z∈Z p∗(z) = 1. On the other hand, from the
definition of the generator Ltp

N , the second term of the right hand side appeared in (3.2)
multiplied Ḡ(ρ) is equal to

〈Ltp
Nf〉νρ

Ḡ(ρ) =
∑

z∈Z
q(z)

∫
h(η(0)){f(τzη)− f(η)}G(η(0))dµρ

=
∑

z∈Z
q(z)

∫
h(η(−z))f(η)G(η(−z))dµρ

−
∑

z∈Z
q(z)

∫
h(η(0))f(η)G(η(0))dµρ.

In the second equality we used the fact that the measure µρ is translation invariant.
Hence, for N large enough, the change of variable z′ = −x gives that

〈Ltp
Nf〉νρ

Ḡ(ρ) =
∫

f(η)
[ ∑

x∈TN

q(−x){h(η(x))G(η(x))− h(η(0))G(η(0))}
]
dµρ.



894 K. Tsunoda

Since 〈LNf〉νρ
= 0 for any function f : NTN

0 → R, (3.1) holds for any configuration

η ∈ NTN
0 .

For fixed k, l ∈ N0, consider the configuration ηk,l such that ηk,l(x) = k, for x 6= 0
and ηk,l(x) = l, for any x = 0. Substituting to (3.1) the configuration ηk,k, we obtain
that

g(k){G(k + 1)−G(k)} = g(k){G(k)−G(k − 1)},

for any k ∈ N0. Since we assume that g(k) is strictly positive for any k ∈ N, the function
G(k)−G(k−1) is a constant function in k. Therefore there exist a non-negative number
a and a positive number b such that G(k) = ak + b for any k ∈ N0.

Similarly, substituting to (3.1) the configuration ηk,l, we obtain that

h(k)G(k) + ag(k) = h(l)G(l) + ag(l),

for any k, l ∈ N0. This implies that h(k)G(k)+ag(k) is identically equal to bh(0). Under
this relation between g and h, the equation (3.1) is equivalent to the following equation.

∑

x∈TN

{p(x)− q(−x)}{h(η(x))G(η(x))− h(η(0))G(η(0))} = 0.

It is easy to see that the above equation does not hold unless p(z) = q(−z) for any z ∈ Z.
The converse direction follows from the first half of computations. ¤

Remark 3.1. Notice that the condition of the previous proposition holds for a = 0
if and only if h is a constant jump rate. In this case, νρ is equal to µρ and the motion of
the tagged particle is not affected by the zero-range process, therefore invariance principle
for the tagged particle follows from invariance principle for martingales.

Throughout this paper, we assume the conditions of Proposition 3.1 and to avoid
a trivial case we assume that a > 0. Setting c := a/b, our conditions can be written
as (k + c)h(k) + g(k) = h(0) for any k ∈ N0. In this case, the invariant measure for
the environment process may be defined as dνρ = ((η(0) + c)/(ρ + c))dµρ. Moreover, in
terms of νρ, the function H can be written as H(ρ) =

∫
h(η(0))dνρ.

3.2. Invariance principle for the tagged particle.
Counting the total number of translations ηt, we can recover the position of the

tagged particle. More specifically, for each z ∈ Z, denote by Nz
t the total number of

translations in ηt of size z up to time t. Then the position of the tagged particle Xt can
be expressed as

Xt =
∑

z∈Z
zNz

t .

Notice that Mz
t := Nz

t −
∫ t

0
q(z)h(ηs(0))ds is a martingale for each z ∈ Z, and its quadratic

variation 〈Mz〉t is equal to
∫ t

0
q(z)h(ηs(0))ds. Since jumps are not simultaneous, these
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martingales are orthogonal. As we assumed that p = q∗ and p has mean-zero,

Xt =
∑

z∈Z
zMz

t +
∑

z∈Z
zq(z)

∫ t

0

h(ηs(0))ds =
∑

z∈Z
zMz

t

is a martingale and its quadratic variation 〈X〉t is computed as

〈X〉t = σ2

∫ t

0

h(ηs(0))ds,

where σ2 is defined by
∑

z∈Z z2p(z).
As in Subsection 2.3, we shall define empirical measures for the environment process.

Consider the Markov process ηN
t := ηtN2 with the initial distribution νN = µ2

N . For the
rescaled environment process, define the empirical measure {πN

t ; t ∈ [0, T ]} by

πN
t (dθ) =

1
N

∑

x∈TN

ηN
t (x)δx/N (dθ).

Let us state the scaling limit for the position of the tagged particle and the conver-
gence of empirical measures seen from the position of the tagged particle. Recall that the
definitions of functions H and v: H(ρ) =

∫
h(η(0))dνρ and v is a unique weak solution

of the Cauchy problem (2.5).

Theorem 3.2. Let xN
t be the rescaled position of the tagged particle (1/N)XtN2 .

Then, the {xN
t ; t ∈ [0, T ]} converges in distribution to a diffusion {θt; t ∈ [0, T ]} in the

Skorokhod space D([0, T ],R) as N → ∞ where {θt; t ∈ [0, T ]} is a unique weak solution
of the stochastic differential equation

{
dθt = σ

√
H(v(t, θt))dBt,

θ0 = 0,
(3.3)

where Bt is a one-dimensional standard Brownian motion.

Proof. We follow the proof of Theorem 2.2 in Jara et al. [6] and Theorem 1.4 in
Jara et al. [7]. We briefly describe the sketch of its proof.

We first prove tightness of the extended distribution QN defined by the law of the
process {(πN,2

t , πN
t , xN

t , 〈xN 〉t); t ∈ [0, T ]} on the Skorokhod space D([0, T ],M+(T) ×
M+(T)×R×R). Tightness of the sequence {QN} enables us to capture a sub-sequential
limit. See Section 3 in Jara et al. [6] for more details.

The remaining thing to complete the proof of Theorem 3.2 is characterizing the limit
of the sequence {QN}. Because πN

t is uniquely determined by the empirical measure πN,2
t

and the tagged particle xN
t and we know the convergence of the sequence πN,2

t by Theorem
2.3, we only consider the tagged particle xN

t . Moreover, since the rescaled position of the
tagged particle xN

t is also a martingale, we have to characterize the limit of the sequence
of the quadratic variation process 〈xN 〉t.
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We now have to do is to prove the following replacement estimate, so-called the local
ergodicity, which enables us to determine the limit behavior of the sequence:

lim sup
l→∞

lim sup
ε2→0

lim sup
ε1→0

lim sup
N→∞

EN

[∣∣∣∣
∫ t

0

{h(ηs(0))− 1
ε2N

ε2N∑
x=1

H̄l(ηε1N
s (x))}ds

∣∣∣∣
]

= 0.

Here ηl(x) =
∑
|y−x|≤l η(y)/(2l + 1), Hl(η) = H(ηl(0)), H̄l(ρ) = 〈Hl〉µρ and EN stands

the expectation with respect to the law of the process ηN . In Theorem 1.4 in the paper
[7], they only treat the case when p = q are symmetric, h(k) = 1{k=0} and g(k) = 1{k≥0}.
However, we can show the local ergodicity under our assumptions on p, q, g and h by
straightforward modifications. For more details, see Jara et al. [7]. Establishing the
local ergodicity finishes the proof of Theorem 3.2. ¤

4. Proof of Theorem 2.4.

In this section, we prove Theorem 2.4.
Let PN be the distribution of the process {(ξN

t , ζN
t ) : t ∈ [0, T ]}. The expectation

with respect to the measure PN will be denoted by EN . For each x, y ∈ TN , denote
by P x,y the distribution of the process {(XN,1

t , XN,2
t , ζN

t ); t ∈ [0, T ]} with the initial
measure δx × δy × µ2

N and the expectation with respect to the distribution P x,y will be
denoted by Ex,y. For each x, y ∈ TN and t ∈ [0, T ], define the transition probability by
pN

t (x, y) = P (XN
t = y|XN

0 = x). For each θ ∈ T and t ∈ [0, T ], denote by pt(θ, ·) the
density of the process θt determined by the stochastic differential equation

{
dθt = σ

√
H(v(t, θt))dBt,

θ0 = θ,

where Bt is a one-dimensional standard Brownian motion. The fundamental properties
of the density pt(θ, ·) can be found in Friedman [2]. Define the operators PN

t and Pt by

(PN
t G)

(
x

N

)
=

∑

y∈TN

pN
t (x, y)G

(
y

N

)
, (PtG)(θ) =

∫

T
pt(θ, θ̃)G(θ̃)dθ̃,

for each continuous functions G on T.
Let G be a continuous function on T. We show that

PN

(∣∣∣∣
∑

x∈TN

ξt(x)G
(

x

N

)
−

∫

T
(PtG)(θ̃)u0(θ̃)dθ̃

∣∣∣∣ > δ

)
→ 0, (4.1)

as N → ∞ for each positive number δ > 0. Indeed, from Proposition 2.1, the process
ξN
t can be realized as a sum of properly scaled random walks {XN,i

t }i driven by ζN
t .

Therefore, the above probability is equal to
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PN

(∣∣∣∣
∑

i

G

(
XN,i

t

N

)
−

∫

T
(PtG)(θ̃)u0(θ̃)dθ̃

∣∣∣∣ > δ

)
.

By the Chebyshev’s inequality and the assumptions on the initial measure µ1
N , the above

probability multiplied δ2 is bounded above by

∑

x,y∈TN

Ex,y

[
G

(
XN,1

t

N

)
G

(
XN,2

t

N

)]
u0

(
x

N

)
u0

(
y

N

)

− 2
( ∑

x∈TN

(PN
t G)

(
x

N

)
u0

(
x

N

))( ∫

T
(PtG)(θ̃)u0(θ̃)dθ̃

)

+
( ∫

T
(PtG)(θ̃)u0(θ̃)dθ̃

)2

.

By Theorem 2.5, this converges to 0 as N →∞, which concludes the proof of (4.1).
Define u(t, θ) by

∫
T pt(θ̃, θ)u0(θ̃)dθ̃. Notice that from Fubini’s theorem, we have

∫

T
(PtG)(θ̃)u0(θ̃)dθ̃ =

∫

T

∫

T
pt(θ̃, θ)G(θ)u0(θ̃)dθdθ̃ =

∫

T
G(θ)u(t, θ)dθ.

An elementary application of Itô’s formula shows that u is a solution of the Cauchy
problem (2.5), which finishes the proof of Theorem 2.4.
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