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Abstract. In this paper, we provide a survey of recent distributional
results obtained for Brownian type processes observed up to some random
times. We focus on the case of hitting times and inverse local times and
consider the situation where the processes are randomly sampled through a
uniform random variable. We present various explicit formulas, some of them
being quite remarkable.

1. Introduction.

Let (Bt, t ≥ 0) denote a one-dimensional standard Brownian motion, starting from
0. The scaling property of B states that for all c > 0,

(
1√
c
Bct, t ≥ 0

)
=
L

(Bt, t ≥ 0),

where we write =
L

for equality in law. This result invites to consider more generally

transformations of B by random scaling, that is processes (B̃t, t ≤ 1) of the form

(B̃t, t ≤ 1) =
(

1√
T

BtT , t ≤ 1
)

,

for some random times T , and to compare the law of B̃ with that of (Bt, t ≤ 1), or some
related processes. In Section 2, we identify the law of B̃ when

T = Ta = inf{t : Bt = a}

and

T = τl = inf{t : Lt > l},

where (Lt) denotes the local time process at 0 of B.
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In general, it is not obvious to obtain such an identification result in a reasonable
form. Thus, as a first “estimation” or “approximation”, one may look for the law of

1√
T

BUT ,

for some random variable U , independent of B and uniform on [0, 1]. We present those
laws in Section 3 for T = Ta and T = τl. They are in fact rather remarkable.

In Section 4, we show that the results from Section 2 together with those from Section
3 enable to derive several unexpected and simple formulas for various quantities related to
some very classical Brownian type processes, namely the Brownian bridge, the Brownian
meander and the three-dimensional Bessel process. More precisely, we investigate the
laws of these processes when sampled with an independent uniform random variable. The
results of this section are somehow in the spirit of those given by Pitman in [8], where
some distributional properties of these processes sampled with (several) independent
uniform random variables are studied. Actually, some alternative proofs can be obtained
using the results in that reference.

In Section 5, we consider some natural random variables associated to B̃U =
(1/
√

T )BUT , namely

X =
1

T 3/2

∫ T

0

dsBs and Y =
1

T 3/2

∫ T

0

ds|Bs|.

Indeed, these two variables are the expectations of B̃U and of its absolute value condi-
tional on B. Of course the law of B̃U enables to compute the expectations of X and Y .
However, obtaining higher moments turns out to be quite intricate in general. We derive
the moments of order two of X and Y in the case T = τl in Section 5. To do so, we use
a bang-bang process version of the second Ray–Knight theorem.

Apart from the new computations in Section 5, the nature of this paper is essentially
that of a survey, mainly based on the papers [5], [10], [11], to which we refer for more
information.

2. On the law of (B̃t, t ≤ 1) in two cases.

We recall in Theorem 2.1 some absolute continuity results enabling to describe the
law of (B̃t, t ≤ 1) in the cases T = Ta and T = τl.

Theorem 2.1. Let F : C([0, 1],R) → R+ be a measurable functional. Then the
following identities hold :

E
[
F

(
BuTa√

Ta

, u ≤ 1
)]

= E
[
F (R1 −R1−u, u ≤ 1)

1
R2

1

]
, (1)

where R denotes a three-dimensional Bessel process starting from 0;
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E
[
F

(
Buτl√

τl
, u ≤ 1

)]
=

√
2
π
E

[
F

(
b(u), u ≤ 1

) 1
λ0

1

]
, (2)

where (λ0
u, u ≤ 1) denotes the local time at 0 of the standard Brownian bridge (b(u), u ≤

1).

We note that (in fact simply by Brownian scaling), the quantities on the left hand side
of (1), resp. (2), do not depend on a, resp. l. Therefore, to make the discussion simpler,
we shall take a = 1 and l = 1 from now on. Both results (1) and (2) are presented,
somewhat independently from each other, in Biane, Le Gall and Yor, see [3], where the
emphasis is rather put on (2), and the process

(
Buτ1√

τ1
, u ≤ 1

)

is called pseudo-Brownian bridge.
Here we intend to connect (1) and (2), or more precisely to show how (1) may be

obtained from (2). Thanks to Lévy’s construction of reflected Brownian motion from
Brownian motion, there is the identity:

E
[
F

(
Luτ1 − |Buτ1 |√

τ1
, u ≤ 1

)]
= E

[
F

(
BuT1√

T1

, u ≤ 1
)]

. (3)

From (2), the left hand side of (3) is equal to

√
2
π
E

[
F

(
λ0

u − |b(u)|, u ≤ 1
) 1
λ0

1

]
.

Since the law of the standard Brownian bridge is invariant by time reversal, this can be
written

√
2
π
E

[
F

(
λ0

1 − (λ0
1−u − |b(1− u)|), u ≤ 1

) 1
λ0

1

]
.

Now, Biane and Yor have shown in [4] that

(λ0
v + |b(v)|, v ≤ 1)

is distributed as a standard Brownian meander (m(v), v ≤ 1). Thus, the left hand side
of (3) is equal to

√
2
π
E

[
F

(
m(1)−m(1− u), u ≤ 1

) 1
m(1)

]
.

We also recall Imhof’s relation, see [3], [7]:
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E
[
F

(
m(u), u ≤ 1

)]
=

√
2
π
E

[
F

(
Ru, u ≤ 1

) 1
R1

]
. (4)

Therefore, the left hand side of (3) is also equal to

E
[
F (R1 −R1−u, u ≤ 1)

1
R2

1

]
,

thus obtaining (1).
Note that, in the above discussion, we have shown the deep links which exist between

(1), (2), (3) and (4). We will furthermore explore these connections in Section 4, in the
random sampling context.

3. On the law of B̃U = BUT /
√

T for T = T1 and T = τ1.

We now give some results related to a uniform and independent sampling of the
randomly scaled Brownian motion.

3.1. A result on the pseudo-Brownian bridge.
Our main result in [11] is the following identity in law for the pseudo-Brownian

bridge.

Theorem 3.1. We have
(

BUτ1√
τ1

,
1√
τ1

, LUτ1

)
=
L

(
1
2
B1, L1,Λ

)
,

with Λ a uniform random variable on [0, 1], independent of (B1, L1).

It is well-known that the law of (B1, L1) admits a density on R×R+ with value at point
(x, l) given by

1√
2π

(|x|+ l) exp
(
− (l + |x|)2

2

)
.

From this expression, we deduce for fixed time s ≥ 0 the useful factorization:

(|Bs|, Ls) =
L

Rs(1− U,U).

Using elementary computations, this last expression enables to derive from Theorem 3.1
some interesting and simple formulas related to the joint law of (BUτ1 , τ1). For example,
we have the following corollary.

Corollary 3.1. The triplet

(
|BUτ1 |, LUτ1 ,

1 + 2|BUτ1 |√
τ1

)
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has the law of the triplet of independent variables

(
1
2

(
1
U
− 1

)
,Λ, R1

)
.

Note that some further interesting variables can be added in the joint law presented in
Theorem 3.1 using results in [9], see also [2].

3.2. The case T = T1.
Again with the help of Lévy’s equivalence theorem, we may obtain a version of

Theorem 3.1 in which we replace τ1 by T1. Let

Mu = sup
s≤u

Bs.

There is the following identity in law.

Theorem 3.2. We have
(

BUT1√
T1

,
1√
T1

,MUT1

)
=
L

(
ΛL1 − 1

2
|B1|, L1,Λ

)
,

with Λ a uniform random variable on [0, 1], independent of (B1, L1).

We note in particular that the random variable α defined by

α =
BUT1√

T1

satisfies

E[α] = 0.

Indeed,

E
[
ΛL1 − 1

2
|B1|

]
=

(
1
2
− 1

2

)
E[|B1|] = 0.

This centering property of α intrigued us and led us to look for the law itself of α. This
law, established in [5], is quite remarkable, as the following statement shows.

Theorem 3.3. The law of α admits a density h which satisfies for y ≥ 0

h(y) =

√
2
π

∫ 2

0

dw

1 + w
exp

(
− 2y2

w2

)

and for y ≤ 0
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h(y) =

√
2
π

log(3)exp(−2y2).

Hence, conditional on (α > 0), the law of α+ is a mixture of absolute Gaussian laws,
whereas conditional on (α < 0), α− is distributed as the absolute value of a Gaussian
random variable. Note in particular the continuity of h.

3.3. Some elements of proof.
The proof of Theorem 3.1 was obtained in [11] by computing for every a > 0, c > 0

and l ≤ 1

E
[∣∣∣∣

BUτ1√
τ1

∣∣∣∣
a∣∣∣∣

1√
τ1

∣∣∣∣
c

1{LUτ1≤l}

]
,

and showing that it is equal to the desired quantity obtained from the right hand side
of the expression in Theorem 3.1. Rather than reproducing precisely this proof, let us
simply present the kind of computations which is needed to complete such proof. Let
φ be a bounded measurable function and λ > 0. One of the key points in the proof of
Theorem 3.1 in [11] is to be able to obtain semi-explicit expressions for quantities such
as

I = E
[ ∫ τ1

0

dsφ(|Bs|) exp
(
− λ2

2
τ1

)]
.

This can be done as follows. The process

exp
(

λ(Ls − |Bs|)− λ2

2
s

)

is a martingale. Thus, we get

I = exp(−λ)E
[ ∫ ∞

0

dsφ(|Bs|)1{Ls<1} exp
(

λ(Ls − |Bs|)− λ2s

2

)]

= exp(−λ)
∫ ∞

0

ds

√
2

πs3

∫ ∞

0

dxφ(x)
∫ 1

0

dl(x + l)e−(x+l)2/2seλ(l−x)e−λ2s/2

= 2 exp(−λ)
∫ ∞

0

dxφ(x)
∫ 1

0

dleλ(l−x)e−λ(x+l)

= 2
∫ ∞

0

dxφ(x) exp
(− λ(2x + 1)

)
.

Going back to the definition of I, and considering the symmetry of the Brownian distri-
bution, we derive in particular from the previous computations that for λ ≥ 0 and x ∈ R,
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E
[
Lx

τ1
exp

(
− λ2

2
τ1

)]
= exp

(− λ(2|x|+ 1)
)
,

with Lx
τ1

the local time at point x at time τ1. This might also be obtained from the
Ray–Knight theorem stating that (Lx

τ1
, x ≥ 0) and (L−x

τ1
, x ≥ 0) are two independent

BESQ(0) processes starting from 1.

4. The Brownian bridge, Brownian meander and Bessel process under
uniform sampling.

Theorem 3.1 and its corollaries can be used together with the absolute continuity
relations mentioned in Section 2 in order to obtain some quite explicit formulas for
the distributions of the Brownian bridge, Brownian meander and Bessel process under
uniform sampling. We give some examples below, see [10] for more details. The following
result holds for the Brownian bridge.

Theorem 4.1. For any non negative measurable functions f and g, we have

E
[
f
(
b(U), λ0

1

)
g

(
λ0

U

λ0
1

)]
=

√
π

2
E

[
f

(
1
2
B1, L1

)
L1

]
E[g(Λ)], (5)

with Λ a uniform random variable on [0, 1], independent of (B1, L1).

Thus, λ0
U/λ0

1 is a uniform random variable on [0, 1], independent of the pair
(
b(U), λ0

1

)
which is distributed according to (5) with g = 1, see also [1].

Surprisingly simple expressions for some densities and (conditional) expectations
of quantities related to the Brownian bridge can be obtained from Theorem 4.1. For
example, we easily retrieve that λ0

1 has the same law as
√

2E , with E an exponential
random variable, that is λ0

1 is Rayleigh distributed (which is in fact a classical result, see
[3], [4], [7]). Further results can be found in [10].

Let

iu = inf
u≤t≤1

m(t).

Theorem 4.1 can be reinterpreted as follows for the Brownian meander.

Theorem 4.2. For any non negative measurable functions f and g, we have

E
[
f
(
m(U),m(1)

)
g

(
iU

m(1)

)]
=

√
π

2
E

[
f

(
1
2
|B1|+ ΛL1, L1

)
L1g(Λ)

]
,

with Λ a uniform random variable on [0, 1], independent of (B1, L1).

Finally, we have the following result for the three-dimensional Bessel process, where

Ju = inf
u≤t≤1

Rt.
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Theorem 4.3. For any non negative measurable functions f and g, we have

E
[
f
(
RU , R1

)
g

(
JU

R1

)]
= E

[
f

(
1
2
|B1|+ ΛL1, L1

)
L2

1g(Λ)
]
,

with Λ a uniform random variable on [0, 1], independent of (B1, L1).

5. Computation of two second moments.

We now turn to some random variables closely related to BUτ1/
√

τ1. Let

X =
1

τ
3/2
1

∫ τ1

0

dsBs = E
[
BUτ1√

τ1

∣∣∣∣B
]

and

Y =
1

τ
3/2
1

∫ τ1

0

ds|Bs| = E
[ |BUτ1 |√

τ1

∣∣∣∣B
]
.

Although we are able to compute the law of BUτ1/
√

τ1, namely

BUτ1√
τ1

=
L

1
2
B1,

we do not know the laws of X and Y . There are the immediate inequalities:

E[X2] ≤ E[Y 2] ≤ E
[(

BUτ1√
τ1

)2]
=

1
4

and

(E[|X|])2 ≤ (E[|Y |])2 =
1
4

(
2
π

)
≤ E[Y 2].

The exact values of E[X2] and E[Y 2] are given in the following theorem.

Theorem 5.1. There are the formulas:

E[X2] = 2(a− b), E[Y 2] = 2(a + b),

with 2a = (1/4)(11/16) and 2b = (1/4)(1/16). Hence

E[X2] =
1
4

(
5
8

)
, E[Y 2] =

1
4

(
3
4

)
.

Before giving the proof of Theorem 5.1, we provide a Ray–Knight type theorem for the
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bang-bang process. This result will be the key point of the proof of Theorem 5.1. The
bang-bang process with parameter λ ∈ R+ is defined as the solution of the equation:

Xt = βt − λ

∫ t

0

sign(Xs)ds, (6)

where (βt) is a Brownian motion, see for example [6] for details. We write L̃a
t the local

time at point a at time t of the bang-bang process and set

τ̃l = inf
{
t : L̃0

t > l
}
.

The bang-bang process version of the second Ray–Knight theorem goes as follow.

Theorem 5.2. The process (L̃a
τ̃l

, a ≥ 0) is distributed as Za which satisfies

Za = l + 2
∫ a

0

√
Zxdγx − 2λ

∫ a

0

dxZx,

with γ a Brownian motion.

Proof. To fix ideas, we take (Xt) as the coordinate process on the canonical path
space. Furthermore, we denote by P the Wiener measure and Pλ the law of the bang-bang
process. Under Pλ,

Xt + λ

∫ t

0

sign(Xs)ds

is a Brownian motion. Moreover, by Girsanov’s theorem, we get

Pλ
Ft

= exp
(
− λ

∫ t

0

sign(Xs)dXs − λ2

2
t

)
PFt

.

Then, applying Tanaka’s formula, we deduce

Pλ
Ft

= exp
(
− λ(|Xt| − Lt)− λ2

2
t

)
PFt

,

and therefore

Pλ
Fτl

= exp
(

λl − λ2

2
τl

)
PFτl

. (7)

Also, from Ito’s excursions theory, we get the independence of the positive and negative
parts of the local times up to τl. This, together with a symmetry argument and the
occupation formula give
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E
[

exp
(
− λ2

2

∫ +∞

0

daL−a
τl

)]
=

(
E

[
exp

(
− λ2

2
τl

)])1/2

= exp
(
− λl

2

)
.

Thus, using again the independence property of the local times together with (7), we get

E
[
F

(
L̃a

τ̃l
, 0 ≤ a ≤ b

)]

= EPλ

[
F

(
La

τl
, 0 ≤ a ≤ b

)]

= E
[
F

(
La

τl
, 0 ≤ a ≤ b

)
exp

(
λl − λ2

2

∫ +∞

0

daLa
τl
− λl

2

)]

= E
[
F

(
La

τl
, 0 ≤ a ≤ b

)
exp

(
λl

2
− λ2

2

( ∫ b

0

daLa
τl

+
∫ +∞

b

daLa
τl

))]
.

From the usual Ray–Knight theorem, we obtain that this last quantity is equal to

E
[
F

(
Zl

a, 0 ≤ a ≤ b
)
exp

(
λl

2
− λ2

2

( ∫ b

0

daZl
a +

∫ +∞

b

daZl
a

))]
, (8)

where (Zz
a) is a 0-dimensional squared Bessel process, that is the unique strong solution

of

Zz
a = z + 2

∫ a

0

√
Zz

xdXx.

To compute (8), we need to consider

E
[

exp
(
− λ2

2

∫ +∞

b

daZl
a

)∣∣∣∣Zl
a, 0 ≤ a ≤ b

]
,

which is equal to

E
[

exp
(
− λ2

2

∫ +∞

0

dxZz
x

)]∣∣∣∣
z=Zl

b

,

by the Markov property of (Zz
a). Since

Zz
a = βz

(4
R a
0 dxZz

x),

with (βz) a Brownian motion starting from z, using that 0 is a trap for (Zz
a), we have

that 4
∫ +∞
0

dxZz
x is equal to the first hitting time of 0 by βz. Therefore we deduce

E
[

exp
(
− λ2

2

∫ +∞

0

dxZz
x

)]
= exp

(
− λz

2

)
.
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Consequently,

E
[
F

(
L̃a

τ̃l
, 0 ≤ a ≤ b

)]
= E

[
F

(
Zl

a, 0 ≤ a ≤ b
)
exp

(
− λ

∫ b

0

√
Zl

adXa − λ2

2

∫ b

0

daZl
a

)]
.

Now set Q the probability with density

exp
(
− λ

∫ b

0

√
Zl

adXa − λ2

2

∫ b

0

daZl
a

)

with respect to P. Applying again Girsanov’s theorem, we have that under Q, the process

Xa + λ

∫ a

0

√
Zl

xdx

is a Brownian motion. Thus, we finally obtain

E
[
F

(
L̃a

τ̃l
, 0 ≤ a ≤ b

)]
= EQ

[
F

(
Zl

a, 0 ≤ a ≤ b
)]

= E
[
F

(
Za, 0 ≤ a ≤ b

)]
,

where

Za = l + 2
∫ a

0

√
Zxdγx − 2λ

∫ a

0

dxZx,

with γ a Brownian motion. ¤

We now give the proof of Theorem 5.1.

Proof. We write

X =
1

τ
3/2
1

( ∫ τ1

0

dsB+
s −

∫ τ1

0

dsB−
s

)
,

and

Y =
1

τ
3/2
1

( ∫ τ1

0

dsB+
s +

∫ τ1

0

dsB−
s

)
.

Thanks to the symmetry properties of the Brownian motion, we obtain

E[X2] = 2(a− b), E[Y 2] = 2(a + b),

with

a = E
[

1
τ3
1

( ∫ τ1

0

dsB+
s

)2]
, b = E

[
1
τ3
1

( ∫ τ1

0

dsB+
s

)( ∫ τ1

0

dsB−
s

)]
.
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We have
∫ τ1

0

dsB+
s =

∫ ∞

0

dxxLx
τ1

,

∫ τ1

0

dsB−
s =

∫ ∞

0

dyyL−y
τ1

and

1
τ3
1

=
1

Γ(3)

∫ ∞

0

dtt2e−tτ1 =
1
2

∫ ∞

0

dλ
λ5

4
e−(λ2/2)τ1 .

Consequently, with the same notation as in Theorem 5.2, using (7), we get

a =
1
4

∫ ∞

0

dλλ5

∫ ∞

0

dyy

∫ ∞

y

dxxE
[
Ly

τ1
Lx

τ1
e−(λ2/2)τ1

]

=
1
4

∫ ∞

0

dλλ5e−λ

∫ ∞

0

dyy

∫ ∞

y

dxxE[L̃y
τ̃1

L̃x
τ̃1

], (9)

and by independence and equidistribution,

b =
1
8

∫ ∞

0

dλλ5E
[(∫ ∞

0

dyyLy
τ1

)( ∫ ∞

0

dxxL−x
τ1

)
e−(λ2/2)τ1

]

=
1
8

∫ ∞

0

dλλ5e−λE
[(∫ ∞

0

dyyL̃y
τ̃1

)( ∫ ∞

0

dxxL̃−x
τ̃1

)]

=
1
8

∫ ∞

0

dλλ5e−λ

(
E

[ ∫ ∞

0

dyyL̃y
τ̃1

])2

.

Solving the differential equation deduced from Theorem 5.2, we get

E
[
L̃y

τ̃1

]
= exp(−2λy),

which yields

b =
1
8

∫ ∞

0

dλ
λ5e−λ

(2λ)4
=

1
8× 16

.

It remains to compute a. Let Zx = L̃x
τ̃1

. Using again Theorem 5.2, we have for 0 ≤ y ≤ x:

E[Zx|Zy] = Zy − 2λ

∫ x

y

dzE[Zz|Zy].

Hence

E[Zx|Zy] = exp
(− 2λ(x− y)

)
Zy
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and

E[ZyZx] = E[Z2
y ] exp

(− 2λ(x− y)
)
.

We now compute E[Z2
y ]. From Theorem 5.2, we get

Z2
y = 1 + 2

∫ y

0

ZxdZx + 4
∫ y

0

dxZx.

Thus,

E[Z2
y ] = 1− 4λ

∫ y

0

dxE[Z2
x] + 4

∫ y

0

dxE[Zx].

Now, the method of the variation of constants yields

E[Z2
y ] = exp(−4λy)

(
1 + 4

∫ y

0

dx exp(2λx)
)

=
(

1− 2
λ

)
exp(−4λy) +

2
λ

exp(−2λy).

The (dydx) integral in (9) is equal to

∫ ∞

0

dyyE[Z2
y ]

∫ ∞

y

dxx exp
(− 2λ(x− y)

)

=
∫ ∞

0

dyyE[Z2
y ]

(
1

4λ2
+

y

2λ

)
.

Thus, it is also equal to

∫ ∞

0

dyy

(
1

4λ2
+

y

2λ

)[(
1− 2

λ

)
e−4λy +

2
λ

e−2λy

]

=
1

4λ2

[(
1− 2

λ

)
1

(4λ)2
+

2
λ

1
(2λ)2

]
+

1
2λ

∫ ∞

0

dyy2

[(
1− 2

λ

)
e−4λy +

2
λ

e−2λy

]

=
(

1− 2
λ

)
1
λ4

1
32

+
3

8λ5

=
1

32λ4
+

5
16

1
λ5

.

Finally, going back to (9), we have obtained
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a =
1
4

∫ ∞

0

dλλ5e−λ

(
1

32λ4
+

5
16

1
λ5

)

=
1
4

(
1
32

+
5
16

)

=
11

8× 16
. ¤
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