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Abstract. Beginning from a space of smooth, cylindrical and non-
anticipative processes defined on a Wiener probability space (Ω,F , P ), we in-
troduce a P -weighted Sobolev space, or “P -Sobolev space”, of non-anticipative
path-dependent processes u = u(t, ω) such that the corresponding Sobolev
derivatives Dt + (1/2)∆x and Dxu of Dupire’s type are well defined on this
space. We identify each element of this Sobolev space with the one in the space
of classical Lp

P integrable Itô’s process. Consequently, a new path-dependent
Itô’s formula is applied to all such Itô processes.

It follows that the path-dependent nonlinear Feynman–Kac formula is sat-
isfied for most Lp

P -solutions of backward SDEs: each solution of such BSDE is
identified with the solution of the corresponding quasi-linear path-dependent
PDE (PPDE). Rich and important results of existence, uniqueness, mono-
tonicity and regularity of BSDEs, obtained in the past decades can be directly
applied to obtain their corresponding properties in the new fields of PPDEs.

In the above framework of P -Sobolev space based on the Wiener proba-
bility measure P , only the derivatives Dt + (1/2)∆x and Dxu are well-defined
and well-integrated. This prevents us from formulating and solving a fully
nonlinear PPDE. We then replace the linear Wiener expectation EP by a sub-
linear G-expectation EG and thus introduce the corresponding G-expectation
weighted Sobolev space, or “G-Sobolev space”, in which the derivatives Dtu,
Dxu and D2

xu are all well defined separately. We then formulate a type of fully
nonlinear PPDEs in the G-Sobolev space and then identify them to a type of
backward SDEs driven by G-Brownian motion.

1. Introduction.

Recently Dupire [7] introduced the notion of horizontal derivative (time-derivative)
and vertical derivative (space derivative) for smooth and non-anticipative process of paths
which was further extended by Cont and Fournie [2]. He then derived his functional Itô’s
formula and hence formulated the corresponding functional Feynman–Kac formula.

On the other hand, in the theory of nonlinear expectation introduced in [20], [21],
the conditional expectation EG

t [ξ](ω) is a cylindrical solution u(t, ω) of a path-dependent
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fully nonlinear path-dependent PDE (called G-heat equation, see Remark 3.5 for more
details). A general G-martingale is in fact the limit of such solutions. This idea can
be also applied to solve a backward stochastic differential equation (BSDE) as a limit of
cylindrical PPDEs derived from the nonlinear Feynman–Kac formula of [16], [17]. Peng
[25] then proposed to define a general solutions of BSDEs (resp. G-martingales) as the
solutions to the corresponding nonlinear path-dependent PDEs.

Since rich and important results in the fields of BSDE and nonlinear martingales
have been obtained in the past decades, how to combine Peng’s cylindrical construction
and the idea of Dupire’s derivatives to rigorously interpret a general BSDE as a well-posed
path-dependent PDE becomes a very interesting problem.

Directly using Dupire’s derivative and combing with techniques based on the classical
nonlinear Feynman–Kac formula, Peng and Wang [27] has proved the existence and
uniqueness for systems of quasi-linear PDE. But inherent from a drawback of Dupire’s
definition, a solution of the PPDE is still defined on the cadlag paths thus we still cannot
directly interpret its solution as that of the corresponding BSDE.

Introducing a new notion of viscosity solution via a dynamical nonlinear expectation,
Ekren et al. [8], [10] has proved the comparison stability and existence theorem for a
type of quasi-linear (and fully nonlinear) path-dependent PDE. But the results are based
on the assumption of continuity of u(t, ω) with respect to ω, which is not the case for
many well-posed BSDEs and nonlinear martingales.

In this paper we will introduce a quite simple and very fundamental framework of
Sobolev space based on probability measures (resp. nonlinear expectations) define on
the space of functions of continuous paths. Many important solutions in BSDEs can be
interpreted as the unique solution of the corresponding PPDEs.

A classical Sobolev space, say W 1,p(Rd) for a given p ≥ 1, is a completion of C∞0 (Rd),
the space of all infinitely differentiable real functions u = u(x) with compact supports,
under the norm ‖u‖Lp(Rd) + ‖∇u‖Lp(Rd). The gradient operator ∇ is extended as a
continuous mapping: W 1,p(Rd) 7→ (Lp(Rd))d. This framework plays an important role
in the study of various types of PDEs.

In this paper, inspired by Malliavin’s derivative and Dupire’s derivative, we in-
troduce some of Sobolev spaces weighted by the Wiener probability measure P , called
P -Sobolev space, or by G-expectation, called G-Sobolev space. An element of the first
one corresponds exactly to an Lp

P -integrable Itô process and, similarly the second one
corresponds to an Lp

G-integrable G-Itô process. We define the solutions to a type of
quasi-linear (resp. fully nonlinear) path dependent PDEs (Abbreviated by PPDE) in the
P -Sobolev space (resp. G-Sobolev space) and establish a 1-1 correspondence between
them and the BSDEs (resp. BSDEs driven by a G-Brownian motion). It turns out that
rich results of existence, uniqueness, monotonicity and regularity obtained in the theory
of BSDEs (resp. G-BSDEs) in the past decades can be directly applied to obtain the
corresponding results in the quasi-linear (resp. fully nonlinear) PPDEs.

1.1. Sobolev solutions of quasi-linear path dependent PDEs.
A classical backward SDE is defined on a Wiener probability space (Ω,F ,F, P ). The

problem is to find a pair of F-progressively measurable processes (Y, Z) such that
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Yt = ξ +
∫ T

t

f(s, ω, Ys, Zs)ds−
∫ T

t

ZsdBs, (1.1)

where f : [0, T ] × Ω × Rn × Rn×d 7→ Rn is a given function and ξ : Ω 7→ Rn is a given
FT -measurable random vector. BSDE provides a probabilistic interpretation of a system
of quasi-linear parabolic PDE ([16], [17]). Let us consider the Markovian situation of
BSDE (1.1) in which ξ = ϕ(BT ) and f(t, ω, y, z) = g(t, Bt(ω), y, z) for deterministic and
continuous functions ϕ(x) and g(t, x, y, z) satisfying some regularity conditions. Assume
that (Y, Z) is the solution to the BSDE(ξ, f), i.e.,

Yt = ϕ(BT ) +
∫ T

t

g(s,Bs, Ys, Zs)ds−
∫ T

t

ZsdBs.

By the classical arguments in the BSDE theory, we know that Y is a Markovian solution,
namely, there exists a deterministic function u(t, x) such that Yt = u(t, Bt). Assume
u(t, x) is smooth. Applying Itô’s formula we get

u(t, Bt) = ϕ(BT )−
∫ T

t

[
∂su(s,Bs) +

1
2
∆u(s,Bs)

]
ds−

∫ T

t

∂xu(s,Bs)dBs.

Since the decomposition of a continuous semimartingale is unique, we have Zs =
∂xu(s,Bs) and

∂su(s,Bs) +
1
2
∆u(s,Bs) + g(s,Bs, u(s,Bs), ∂xu(s,Bs)) = 0, P -a.s.,

which is just the following quasi-linear PDE

∂su(s, x) +
1
2
∆u(s, x) + g(s, x, u(s, x), ∂xu(s, x)) = 0, (1.2)

with terminal condition u(T, T ) = ϕ(x). This is a typical case of the nonlinear Feynman–
Kac formula introduced in Peng [17] and Pardoux-Peng [16].

It is known that, in general, the solution to a typical backward SDE is a functional
of Brownian paths. A very interesting and long-standing problem is to interpret the
BSDEs as a path dependent counterpart of the above type of PDEs. In Section 2 we
introduce a P -Sobolev space W

1/2,1;p
A (0, T ) in the Wiener probability space (Ω,F ,F, P )

on which the differential operators A = Dt + (1/2)∆x and Dx are well-defined. We have
proved (see Theorem 2.9) that u is an element of W

1/2,1;p
A (0, T ) if and only if it is an

Lp-integrable Itô process of the following type

u(t, ω) = u0 +
∫ t

0

η(s, ω)ds +
∫ t

0

ζ(s, ω)dBs, ζ ∈ Hp
P (0, T ), η ∈ Mp

P (0, T ). (1.3)

Moreover, we have
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Au = η, Dxu = ζ.

We thus have a very general result of functional Itô’s formula. It follows that the corre-
sponding PPDE (1.2) can be rigorously formulated as: to find u ∈ W

1/2,1;p
A (0, T ) such

that

Au + f(t, u,Dxu) = 0. (1.4)

In Theorem 2.11 we establish the 1-1 correspondence between backward BSDEs (1.1)
and the quasi-linear PPDEs (1.4). The rich research results in the well-developed BSDE
theory can be directly interpreted as the corresponding results in the new research area
of path-dependent PDEs. On the other hand, the rich results in the Sobolev solutions of
parabolic PDEs can also be applied to the BSDE theory.

1.2. Sobolev solutions of fully non-linear path dependent PDEs.
In the above formulation the time derivative Dt and the second order space derivative

D2
x are ‘mixed’ together as A = Dt + (1/2)∆x and only A and Dx are well-defined and

well-integrated in this framework. This prevent us from formulating and solving a fully
non-linear PPDEs. We therefore replace the Wiener expectation EP by a G-expectation
EG to define a G-expectation-weighted Sobolev space or ‘G-Sobolev space’ in Section 4
and Section 5.

Recall that, just similar to the classical Feynman–Kac formula, G-Brownian motion
corresponds to the following well-posed PDE (called G-heat equation)

∂tu(t, x) + G(∂2
xu(t, x)) = 0, (t, x) ∈ [0, T )× R,

u(T, x) = ϕ(x),
(1.5)

where G(a) = (1/2)(σ2a+−σ2a−), for some 0 ≤ σ ≤ σ < ∞, is a given sublinear function.
Let ϕ be a bounded Lipschitz function and let Bt be a G-Brownian motion in the G-
expectation space (ΩT , L1

G(ΩT ),EG). Then the G-martingale EG[ϕ(BT )] is equal to
u(t, Bt), where u is the solution of the PDE (1.5).

Now for a given ξ ∈ L1
G(ΩT ), the G-martingale u(t, ω) = EG

t [ξ](ω) should be a rea-
sonable candidate of path dependent solutions of equation (1.5) with terminal condition
u(T, ω) = ξ(ω). In this paper we formulate it as the unique solution of path-dependent
PDE of (1.5) in a G-expectation-weighted Sobolev space (see Corollary 5.6).

In Section 4 and Section 5 we will define two types of G-Sobolev spaces: W 1,2;p
G (0, T )

and W
1/2,1;p
AG

(0, T ). All derivatives Dt, Dx and D2
x are well-defined continuous operators

on W 1,2;p
G (0, T ). Moreover in Theorem 4.5 we have proved that the space W 1,2;p

G (0, T )
consists of the totality of Lp

G-integrable G-Itô processes:

u(t, ω) = u(0, ω) +
∫ t

0

η(s, ω)ds +
∫ t

0

ζ(s, ω)dBs +
1
2

∫ t

0

γ(s, ω)d〈B〉s, (1.6)

where η, γ ∈ Mp
G(0, T ) and ζ ∈ Hp

G(0, T ). Furthermore, we have
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Dsu(s, ω) = η(s, ω), Dxu(s, ω) = ζ(s, ω), D2
xu(s, ω) = γ(s, ω). (1.7)

These differential operators are well-defined since the decomposition of a G-Itô process
is unique:

∫ t

0

η(s)ds +
∫ t

0

ζ(s)dBs +
1
2

∫ t

0

γ(s)d〈B〉s = 0 ⇐⇒ η, γ ≡ 0 and ζ ≡ 0.

This is mainly due to the distinguishability property of G-Itô’s processes (see Lemma
4.3).

Observing that when we study the path-derivatives Dt, Dx and D2
x in the Sobolev

spaces W 1,2;p
G (0, T ), some very deep phenomena happen. For example, for the path

process v(t, ω) := 〈B〉t(ω) we have

Dtv(t, ω) ≡ 0, Dxv(t, ω) ≡ 0, but D2
xv(t, ω) ≡ 2.

In the linear case where G(a) = a/2, the space (ΩT , Lp
G(ΩT ),EG) coincides with

the classical Wiener probability space (Ω,F , P ). The quadratic variation process 〈B〉t
coincides with t. Therefore, corresponding to (1.6), the Itô process becomes

u(t, ω) = u(0, ω) +
∫ t

0

β(s, ω)ds +
∫ t

0

ζ(s, ω)dBs,

where β = η + γ/2. We thus have

βs = Dsu +
1
2
D2

xu = Au, ζ(s, ω) = Dxu(s, ω).

This explains why the derivatives Dt and D2
x are ‘obliged’ to be mixed together to become

A in the P -Sobolev space.
Consider the following fully nonlinear path dependent PDEs: to find u ∈ W 1,2;p

G (0, T )
satisfying

Dtu + G(D2
xu) + f(u,Dxu,D2

xu) = 0, t ∈ [0, T ),

u(T, ω) = ξ(ω).
(1.8)

We provide a 1-1 correspondence between the PPDE (1.8) and the following backward
SDEs driven by G-Brownian motion: to find (Y, Z, η) satisfying

Yt = ξ +
∫ T

t

f(Ys, Zs, ηs)ds−
∫ T

t

ZsdBs − (KT −Kt),

where Kt = (1/2)
∫ t

0
ηsd〈B〉s −

∫ t

0
G(ηs)ds.

In Equation (1.8), if f is independent of D2
xu, the derivatives Dtu, D2

xu appear as
AGu := Dtu + G(D2

xu), which is similar to the quasi-linear PPDE (1.4). In this case
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we can introduce a G-Sobolev space W
1/2,1;p
AG

(0, T ) as the nonlinear counterpart of the

P -Sobolev space W
1/2,1;p
A (0, T ). W

1/2,1;p
AG

(0, T ) is the completion of W 1,2;p
G (0, T ) under

a weaker Sobolev norm. In this space, we give a weaker formulation of PPDE (1.8): to
find u ∈ W

1/2,1;p
AG

(0, T ) such that

AGu + f(u(t, ω),Dxu(t, ω)) = 0, t ∈ [0, T ),

u(T, ω) = ξ(ω).
(1.9)

This formulation corresponds exactly to G-BSDEs studied in [12]. Consequently, the
existence and uniqueness of weak solutions to the path dependent PDEs (1.9) have been
obtained via the result of G-BSDEs.

The above results give a perfect answer to a suggestion proposed in [25] mentioned
at beginning of this introduction.

The rest of the paper is organized as follows. In Section 2 we define the P -Sobolev
space W

1/2,1;p
A (0, T ) in the Wiener probability space. In the space W

1/2,1;p
A (0, T ), we de-

fine the solutions to a type of quasi-linear PPDEs and establish the 1-1 correspondence
between them and BSDEs. In Section 3, we present some basic notions and properties
related to our framework of G-Sobolev spaces. In Section 4, we introduce the notion of
the Sobolev space W 1,2;p

G (0, T ) weighted by the G-expectation and prove the 1-1 corre-
spondence between BSDEs driven by G-Brownian motion and a type of fully nonlinear
PPDEs. In Section 5, we introduce another G-Sobolev space W

1/2,1;p
AG

(0, T ) which is
an expansion of W 1,2;p

G (0, T ). The 1-1 correspondence between the solutions of PPDEs
defined in this space and the solutions of BSDEs driven by Brownian motions is then
established.

2. Sobolev spaces on path space under Wiener expectation.

2.1. Smooth functions and processes of paths.
We recall that a classical Sobolev space, say W 1,p(Rd) for a given p ≥ 1, is a

completion of C∞0 (Rd), the space of all infinitely differentiable real functions u = u(x)
with compact supports, under the norm ‖u‖Lp(Rd)+‖∇u‖Lp(Rd).

Let Ω = C0(R+;Rd) be the space of all Rd-valued continuous paths ω = (ω(t))t≥0 ∈
Ω with ω(0) = 0 equipped with the distance

ρ(ω1, ω2) :=
∞∑

i=1

2−i
[(

max
t∈[0,i]

|ω1
t − ω2

t |
)
∧ 1

]
,

and let Bt(ω) = ω(t), t ∈ R+ be the canonical process. It is clear that (Ω, ρ) is a complete
separable metric space. We also denote ΩT = {ω.∧T : ω ∈ Ω} for each fixed T ∈ [0,∞).

Definition 2.1 (Cylinder function of paths). A function ξ : ΩT → R is called a
cylinder function of paths on [0, T ] if it can be represented by

ξ(ω) = ϕ(ω(t1), . . . , ω(tn)), ω ∈ ΩT ,



G-expectation weighted Sobolev spaces, backward SDE and path dependent PDE 1731

for some 0 = t0 < t1 < · · · < tn = T , where ϕ : (Rd)n → R is a C∞-function with at
most polynomial growth. We denote by C∞(ΩT ) the collection of all cylinder functions
of paths on [0, T ].

Definition 2.2 (Cylinder step process). A function η(t, ω) : [0, T ] × ΩT → R is
called a cylinder step process if there exists a time partition {ti}n

i=0 with 0 = t0 < t1 <

· · · < tn = T , such that

η(t, ω) =
n−1∑

k=0

ξtk
1(tk,tk+1](t). (2.1)

Here ξtk
:= ϕk(ω(t1), . . . , ω(tk)) is a bounded cylinder function of paths on [0, T ]. We

denote by M0(0, T ) the collection of all step processes.

The following space of functions of paths plays a similar role as C∞0 (Rd) in the
construction of the classical Sobolev space W 1,p(Rd).

Definition 2.3 (Cylinder process of paths). A function u(t, ω) : [0, T ]×ΩT → R
is called a cylinder path process if there exists a time partition {ti}n

i=0 with 0 = t0 <

t1 < · · · < tn = T , such that for each k = 0, 1, . . . , n− 1 and t ∈ (tk, tk+1],

u(t, ω) = uk(t, ω(t);ω(t1), . . . , ω(tk)).

Here for each k, the function uk : [tk, tk+1]× (Rd)k+1 → R is a C∞-function with

uk(tk, x;x1, . . . , xk−1, x) = uk−1(tk, x;x1, . . . , xk−1)

such that, all derivatives of uk have at most polynomial growth. We denote by C∞(0, T )
for the collection of all cylinder path processes.

For ζt =
∑n−1

i=0 ζti
1(ti,ti+1](t) ∈ M0(0, T ), set

∫ t

0

ζsdBs :=
n−1∑

i=0

ζti
(Bti+1∧t −Bti∧t).

The following proposition follows directly from the definitions.

Proposition 2.4. Let η, ζ be cylinder step processes. Then

u(t, ω) :=
∫ t

0

η(s, ω)ds +
∫ t

0

ζ(s, ω)dBs

belongs to C∞(0, T ).

It is clear that C∞(0, T ) ⊂ C∞(0, T̄ ) for T̄ ≥ T . We also set
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C∞(0,∞) :=
∞⋃

n=1

C∞(0, n).

For t ∈ (tk, tk+1], n ∈ N, we denote

Dtu(t, ω) := ∂t+uk(t, x;x1, . . . , xk)|x=ω(t),x1=ω(t1),...,xk=ω(tk).

For t ∈ (tk, tk+1], we denote

Dxu(t, ω) := ∂xuk(t, x;x1, . . . , xk)|x=ω(t),x1=ω(t1),...,xk=ω(tk), (2.2)

D2
xu(t, ω) := ∂2

xuk(t, x;x1, . . . , xk)|x=ω(t),x1=ω(t1),...,xk=ω(tk), (2.3)

∆xu(t, ω) := tr[D2
xu(t, ω)]. (2.4)

Let us indicate the relation between Dxu with the well-known Malliavin calculus.
Let D be the Malliavin derivative operator. Then for each u ∈ C∞(0, T ), we have

Dtu(t, ω) = Dxu(t, ω).

But since the notion of Dxu(t, ω) corresponds much more like the classical derivative of
Dxu(t, x), emphasizing simply the perturbation of state point than the Malliavin’s one
emphasizing the perturbation of the whole path, thus we prefer to use the denotation
Dxu(t, ω).

In fact, the above definition of derivatives corresponds perfectly with Dupire’s one,
introduced originally in his insightful paper ([7]) (see also [2]). An advantage of our new
formulation in this paper is that we do not need to define our derivatives on a larger
space of right continuous paths with left limit.

In the sequel, we shall give the definitions of P -Sobolev and G-Sobolev spaces. For
readers’ convenience, we divide the discussions into two parts. First we consider this
problem in the framework of the classical Wiener probability space, which presents a
quite new point of view of Itô processes.

2.2. P -Sobolev spaces of path functions.
Let P be the Wiener probability measure on ΩT . The canonical process Bt(ω) = ωt

is a standard Brownian motion under P . Let F := (Ft)t∈[0,T ] be the augmented filtration
generated by (Bt)t∈[0,T ].

For a FT -measurable random variable ξ, set ‖ξ‖Lp
P

:= (EP [|ξ|p])1/p. Let Lp
P (ΩT ) be

the space of FT -measurable random variables ξ with ‖ξ‖Lp
P

< ∞, which coincides with
the completion of C∞(ΩT ) with respect to the norm ‖ · ‖Lp

P
.

For a F-progressively measurable process η, set ‖η‖Mp
P

:= (EP [
∫ T

0
|ηs|pds])1/p (re-

spectively, ‖η‖Hp
P

:= (EP [(
∫ T

0
|ηs|2ds)p/2])1/p). Let Mp

P (0, T ) (respectively, Hp
P (0, T ))

be the space of F-progressively measurable processes η with ‖η‖Mp
P

< ∞ (respectively,
‖η‖Hp

P
< ∞), which coincides with the completion of M0(0, T ) with respect to the norm

‖ · ‖Mp
P

(respectively, ‖ · ‖Hp
P
). All equalities and inequalities in the following two sub-
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sections are in the sense of the corresponding spaces. In particular they hold P -almost
surely.

The following proposition can be directly obtained from the Itô’s formula.

Proposition 2.5. Given any u ∈ C∞(0,∞), we have, for each t ∈ [0, T ],

u(t, ω) = u(0, ω) +
∫ t

0

Au(s, ω)ds +
∫ t

0

Dxu(s, ω)dBs,

where

Au(s, ω) :=
(
Ds +

1
2
∆x

)
u(s, ω) = Dsu(s, ω) +

1
2
∆xu(s, ω).

Definition 2.6. For a process u ∈ C∞(0, T ), we define the following two norms

‖u‖Sp
P

=
{

EP

[
sup

s∈[0,T ]

|us|p
]}1/p

and

‖u‖
W

1/2,1;p
A

=
{

EP

[
sup

s∈[0,T ]

|us|p +
∫ T

0

|Aus|pds +
{ ∫ T

0

|Dxus|2ds

}p/2]}1/p

.

We denote by Sp
P (0, T ) the completion of C∞(0, T ) with respect to the norm ‖ · ‖Sp

P
.

Proposition 2.7. The norm ‖ · ‖
W

1/2,1;p
A

is closable in the space Sp
P (0, T ) in the

following sense: Let {un}∞n=1 be a Cauchy sequence in C∞(0, T ) with respect to the norm
‖ · ‖

W
1/2,1;p
A

. If ‖un‖Sp
P
→ 0, we have ‖un‖

W
1/2,1;p
A

→ 0.

Proof. The limit u of the Cauchy sequence {un}∞n=1 under ‖ · ‖
W

1/2,1;p
A

is of the
following form

u(t, ω) = u0 +
∫ t

0

η(s, ω)ds +
∫ t

0

ν(s, ω)dBs, η ∈ Mp
P (0, T ), η ∈ Hp

P (0, T ).

But since u ≡ 0, then according to the uniqueness of the decomposition for the classical
Itô processes, we must have u0 = 0, η ≡ 0, ν ≡ 0. ¤

Definition 2.8. We denote by W
1/2,1;p
A (0, T ) the completion of C∞(0, T ) with

respect to the norm ‖ · ‖
W

1/2,1;p
A

.

We call W
1/2,1;p
A (0, T ) a P -weighted Sobolev space, or simply P -Sobolev space. From

the above proposition, it is a subspace of Sp
P (0, T ). The differential operators Dx and A,

defined respectively in (2.2) and Proposition 2.5, can be continuously extended to this
space:
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Dx : W
1/2,1;p
A (0, T ) 7→ Hp

P (0, T ),

A : W
1/2,1;p
A (0, T ) 7→ Mp

P (0, T ).

The following proposition presents a quite new point of view to a classical Itô pro-
cesses.

Theorem 2.9. For a given u ∈ Sp
P (0, T ), the following two conditions are equiva-

lent :

( i ) u ∈ W
1/2,1;p
A (0, T );

(ii) There exist u0 ∈ R, η ∈ Mp
P (0, T ) and v ∈ Hp

P (0, T ) such that

u(t, ω) = u0 +
∫ t

0

η(s, ω)ds +
∫ t

0

v(s, ω)dBs. (2.5)

Moreover, we have

(
Dt +

1
2
∆x

)
u(t, ω) = η(t, ω), Dxu(t, ω) = v(t, ω). (2.6)

Proof. The part of (i) =⇒ (ii) is directly from Proposition 2.5 and the definition
of W

1/2,1;p
A (0, T ). To prove (ii) =⇒ (i), we choose two sequences {ηn}∞n=1 and {vn}∞n=1

in M0(0, T ) such that ‖ηn − η‖Mp
P
→ 0 and ‖vn − v‖Hp

P
→ 0. Set

un(t, ω) := u0 +
∫ t

0

ηn(s, ω)ds +
∫ t

0

vn(s, ω)dBs.

By Proposition 2.4 un belongs to C∞(0, T ). It follows from Proposition 2.5 and the
uniqueness of the decomposition of Itô processes that

(
Dt +

1
2
∆x

)
un = ηn, Dxun = vn.

Moreover, {un}∞n=1 is a Cauchy sequence in W
1/2,1;p
A (0, T ) with the limit u under ‖ ·

‖
W

1/2,1;p
A

. We thus have (i) and (2.6). ¤

Remark 2.10. Theorem 2.9 means that each Itô’s process u of form (2.5) with
any given u0 ∈ R, η ∈ Mp

P (0, T ) and v ∈ Hp
P (0, T ) gives us a generalized path-dependent

Itô’s formula:

u(t, ω) = u0 +
∫ t

0

(
Ds +

1
2
∆x

)
u(s, ω)ds +

∫ t

0

Dxu(s, ω)dBs.
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2.3. Backward SDEs in Wiener space and related PPDEs.
Recall that a classical backward SDE is defined on a Wiener probability space

(Ω,F , P ). The problem is to find a pair of processes (Y, Z) ∈ Sp
P (0, T ) × Hp

P (0, T )
such that

Yt = ξ +
∫ T

t

f(s, ω, Ys, Zs)ds−
∫ T

t

ZsdBs, (2.7)

where f : [0, T ]×Ω×Rn×Rn×d 7→ Rn is a given function and ξ : Ω 7→ Rn is a given FT -
measurable random vector. The well-posedness of such BSDE were introduced in [1] for
the linear case and by [15] for the general nonlinear case. BSDE provides a probabilistic
interpretation of a system of quasilinear PDEs of parabolic and elliptic types. A typical
example is when ξ = ϕ(BT ) and f(s, ω, y, z) = g(t, Bt, y, z) for given functions ϕ(x),
g(t, x, y, z) with some regularity conditions. In this case, the solution can be represented
as (Yt, Zt) = (u(t, Bt),Dxu(t, Bt)), where u(t, x) is the solution of the following parabolic
PDE

(
∂t +

1
2
∆

)
u(t, x) + g(t, x, u(t, x),Dxu(t, x)) = 0, t ∈ [0, T ),

u(T, x) = ϕ(x).
(2.8)

It is known that, in general, the solution to Equation (2.7) is a functional of Brownian
paths. A very interesting and longtime standing problem is to interpret the BSDEs as a
generalized form of the above type of PDEs. In the P -Sobolev space W

1/2,1;p
A (0, T ) the

path dependent counterpart of Equation (2.8) is formulated as: to find u ∈ W
1/2,1;p
A (0, T )

such that
(
Dt +

1
2
∆x

)
u(t, ω) + f(t, u(t, ω),Dxu(t, ω)) = 0, t ∈ [0, T ),

u(T, ω) = ξ(ω).
(2.9)

We will show that the well-posedness of backward SDEs (2.7) is equivalent to that
of the path dependent PDEs (2.9). We make the following assumption:

Assumption 1. (f(t, ω, Yt, Zt))t∈[0,T ] ∈ Mp
P (0, T ) for any (Y, Z) ∈ Sp

P (0, T ) ×
Hp

P (0, T ).

Theorem 2.11. Let (Y, Z) be a solution to the backward SDE (2.7). Then we have
u(t, ω) := Yt(ω) ∈ W

1/2,1;p
A (0, T ) with Dxu(t, ω) = Zt(ω).

Moreover, given u(t, ω) ∈ W
1/2,1;p
A (0, T ), the following (i) and (ii) are equivalent :

( i ) (u,Dxu) is a solution to the backward SDE (2.7);
(ii) u is a solution to the path dependent PDE (2.9).

Remark 2.12. By this theorem, we can directly apply the result of existence and
uniqueness of backward SDEs to get that of path dependent PDE (2.9). We recall the
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result from Pardoux and Peng [15] of existence and uniqueness to the backward SDE
(2.7) under the following standard conditions: ξ ∈ Lp

P (ΩT ) and the function f satisfies
Lipschitz condition in (y, z), namely, there exists a constant C > 0, such that, for all
ω ∈ Ω,

∣∣f(t, ω, y, z)− f(t, ω, y′, z′)
∣∣ ≤ C

(|y − y′|+ |z − z′|), y, y′ ∈ Rn, z, z′ ∈ Rn×d.

This backward SDE can be directly seen as a well-posed path dependent PDE (2.9).

Proof. (i) =⇒ (ii). Assume that (Y, Z) is a solution to the backward SDE (2.7).
By Theorem 2.9, we have u ∈ W

1/2,1;p
A (0, T ), Dxu = Z and

Au(t, ω) + f(t, u(t, ω),Dxu(t, ω)) = 0.

(ii) =⇒ (i). Assume that u ∈ W
1/2,1;p
A (0, T ) is a solution to the path dependent

PDE (2.9). By Theorem 2.9 we have

u(t, ω) = u(0, ω) +
∫ t

0

Au(s, ω)ds +
∫ t

0

Dxu(s, ω)dBs

= u(0, ω)−
∫ t

0

f(s, u(s, ω),Dxu(s, ω))ds +
∫ t

0

Dxu(s, ω)dBs

= ξ(ω) +
∫ T

t

f(s, u(s, ω),Dxu(s, ω))ds−
∫ T

t

Dxu(s, ω)dBs.

It follows that (Y, Z) = (u,Dxu) ∈ Sp
P (0, T )×Hp

P (0, T ) is a solution of (2.7). ¤

Remark 2.13. An advantage of the above formulation is that the path dependent
PDE can be a system of PDEs, namely u(t, ω) can be Rn-valued, or even H-valued for
a Hilbert space H.

3. Some definitions and notations on G-expectation.

In the remaining sections we need to introduce the framework of G-expectation for
the formulation of G-Sobolev space so that the corresponding fully nonlinear PPDE can
be treated. For readers’ convenience, in this section we present some main results of
G-expectation theory related to our objective. More details with proofs and historical
remarks can be found in a book of Peng [24].

Let Ω be a given set and H be a linear space of real functions define on a set Ω
containing constants and satisfying |ξ| ∈ H for each ξ ∈ H.

Definition 3.1. A functional Ê : H 7→ R is called a sublinear expectation if

1. Monotonicity: for all X, Y in H, X ≥ Y , =⇒ Ê[X] ≥ Ê[Y ].
2. Constant translatability: for all c ∈ R, X ∈ H, Ê[X + c] = Ê[X] + c.
3. Sub-additivity: for all X, Y in H, Ê[X + Y ] ≤ Ê[X] + Ê[Y ].
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4. Positive homogeneity: for all λ ≥ 0, X ∈ H, Ê[λX] = λÊ[X].

Ê is called a linear expectation if 4. is replaced by the homogeneity, namely Ê[λX] =
λÊ[X] holds for all λ ∈ R.

The following result is well-known as representation theorem. It is a direct con-
sequence of Hahn–Banach theorem (see Delbaen [5], Föllmer and Schied [9], or Peng
[24]).

Theorem 3.2. Let Ê be a sublinear expectation defined on (Ω,H). Then there
exists a family of linear expectations {Eθ : θ ∈ Θ} on (Ω,H) such that

Ê[ξ] = max
θ∈Θ

Eθ[ξ].

A sublinear expectation Ê on (Ω,H) is said to be regular if for each sequence
{ξn}∞n=1 ⊂ H such that ξn(ω) ↓ 0, for each ω, we have Ê[ξn] ↓ 0.

Remark 3.3. If Ê is regular then from the above representation we have Eθ[ξn] ↓ 0
for each θ ∈ Θ. It follows from Daniell–Stone theorem that there exists a unique (σ-
additive) probability measure Pθ defined on (Ω, σ(H)) such that

Eθ[ξ] =
∫

Ω

ξ(ω)dPθ(ω), ξ ∈ H.

3.1. G-expectations and G-Brownian motion.
Let us recall the definitions of G-Brownian motion and its corresponding G-

expectation introduced by Shige Peng (see [21], [22] and [23] for more details). Given a
linear space of functions of paths:

Lip(ΩT ) :=
{
ϕ(ω(t1), . . . , ω(tn)) : t1, . . . , tn ∈ [0, T ], ϕ ∈ Cl,Lip((Rd)n), n ∈ N}

,

where Cl,Lip(Rn) denotes the linear space of functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|,

for any x, y ∈ Rn and for some C > 0, m ∈ N depending on ϕ.
Denote by Sd the space of d × d symmetric matrices. We are given a function

G : Sd 7→ R by

G(A) =
1
2

sup
γ∈Θ

tr[γγT A], A ∈ Sd, (3.1)

where Θ is a given non empty, bounded subset of Rd×d. Here Rd×d is the space of all
d× d matrices. When d = 1, we have G(a) := (1/2)(σ2a+ − σ2a−), for 0 ≤ σ2 ≤ σ2. We
are also interested in the linear function G(a) = a/2 for the case σ2 = σ2 = 1. It’s easily
seen that the function G satisfies the following monotonicity and sublinearity:
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a) G(A) ≥ G(B), if A,B ∈ Sd and A ≥ B;
b) G(A + B) ≤ G(A) + G(B), G(λA) = λG(A), for each A,B ∈ Sd and λ ≥ 0.

For each ϕ ∈ Cl,Lip(Rd), set

NG[ϕ] := uϕ(0, 0),

where u is the solution of the following PDE (G-heat equation) defined on [0, 1)× R:

∂tu + G(∂2
xu) = 0 (3.2)

with the terminal condition u(1, x) = ϕ(x). If G(A) = (1/2)tr[A], A ∈ Sd is linear,
NG[·] is none other than the standard normal distribution. Here we call NG[·] G-normal
distribution.

Generally, for each ξ(ω) ∈ Lip(ΩT ) of the form

ξ(ω) = ϕ(ω(t1), ω(t2), . . . , ω(tn)), 0 = t0 < t1 < · · · < tn = T,

we define the following conditional G-expectation

EG
t [ξ] := uk(t, ω(t);ω(t1), . . . , ω(tk−1))

for each t ∈ (tk−1, tk], k = 1, . . . , n. Here, for each k = 1, . . . , n, uk = uk(t, x;x1, . . . ,

xk−1) is a function of (t, x) parameterized by (x1, . . . , xk−1) ∈ Rk−1, which is the solution
of the G-heat equation defined on (tk−1, tk]× R with terminal conditions

uk(tk, x;x1, . . . , xk−1) = uk+1(tk, x;x1, . . . , xk−1, x), for k < n

and un(tn, x;x1, . . . , xn−1) = ϕ(x1, . . . , xn−1, x).
The G-expectation of ξ(ω) is defined by EG[ξ] = EG

0 [ξ].

Remark 3.4. The above G-heat equation has a unique viscosity solution. We
refer to [4] for the definition, existence, uniqueness and comparison theorem of this type
of parabolic PDEs (see also [22] for our specific situation). If G is non-degenerate, i.e.,
there exists a constant β > 0 such that G(A)−G(B) ≥ βTr[A− B] for each A, B ∈ Sd

with A ≥ B, then the above G-heat equation has a unique C1,2-solution (see e.g. [14]).

Remark 3.5. The above G-martingale is

u(t, ω) := EG
t [ξ] =

n−1∑

k=0

uk(t, ω(t);ω(t1), . . . , ω(tk))1[tk,tk+1)(t), t ∈ [0, T ].

u in fact the viscosity solution of the path-dependent PDE

Dtu(t, ω) +
1
2
G(D2

xu(t, ω)) = 0, u(T, ω) = ξ(ω) ∈ Lip(ΩT ).
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For the linear function G(A) = (1/2)tr[A], EG is just the Wiener probability measure,
under which the canonical process Bt(ω) = ωt is a standard Brownian motion. By
the construction of G-expectation we can verify that under EG the process Bt is still a
process with stationary and independent increments in the following sense. We call it a
G-Brownian motion.

(SI): For any 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn and s > 0 the random vector ξ := (Bt1 −
Bt0 , . . . , Btn − Btn−1) is identically distributed with η := (Bs+t1 − Bs+t0 , . . . , Bs+tn −
Bs+tn−1), i.e., for any ϕ ∈ Cl,Lip((Rd)n)

EG[ϕ(ξ)] = EG[ϕ(η)].

(II): For any 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ s0 ≤ s1 ≤ · · · ≤ sm, the random vector
η := (Bs1−Bs0 , . . . , Bsm−Bsm−1) is independent from ξ := (Bt1−Bt0 , . . . , Btn−Btn−1),
i.e., for any ϕ ∈ Cl,Lip((Rd)m+n)

EG[ϕ(ξ, η)] = EG[EG[ϕ(x, η)]|x=ξ].

It is easy to check from the properties of the G-heat equation that EG : Lip(ΩT ) 7→ R
is a sublinear expectation.

Due to the above properties we obtain a natural norm ‖ξ‖Lp
G

:= EG[|ξ|p]1/p. The
completion of Lip(ΩT ) under ‖ · ‖Lp

G
is a Banach space, denoted by Lp

G(ΩT ). Since
EG

t [ξ] : Lip(ΩT ) 7→ Lip(Ωt) is a contracting mapping under ‖·‖L1
G
, it can be continuously

extended to EG
t [ξ] : L1

G(ΩT ) 7→ L1
G(Ωt). In particular EG[·] is a sublinear expectation on

L1
G(ΩT ).

Definition 3.6. A process Y with values in L1
G(ΩT ) is called a G-martingale if

EG
s [Yt] = Ys for all 0 ≤ s < t ≤ T . If both Y and −Y are G-martingales then Y is called

a symmetric G-martingale.

3.2. Elements of Lp
G(ΩT ) as functions of path.

A very interesting question is how to formulate u(t, ω) = EG
t [ξ](ω) as a well-defined

path-dependent solution of the G-heat equation. For this we need firstly to know how to
understand u as a real function defined on [0, T ]× ΩT .

Denis, Hu, and Peng [6] proved that EG is regular and obtained the following
representation. We denote by M1(ΩT ) the collection of all probability measures on
(ΩT ,B(ΩT )).

Theorem 3.7 ([6]). There exists a tight subset P ⊂M1(ΩT ) such that

EG[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ Lip(ΩT ).

P is called a set that represents EG.

Remark 3.8. Let Wt be a d-dimensional standard Brownian motion in the prob-
ability space (Ω0,F0, P 0) and let F := (F0

t )t≥0 be the augmented filtration generated by
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(Wt)t≥0. Denote by LΘ
F the set of F-progressively measurable processes with values in

Θ ⊂ Rd×d, which is just the set in (3.1). [6] showed that

PΘ :=
{

Ph

∣∣∣∣ Ph := P 0 ◦
( ∫ ·

0

hsdWs

)−1

, h ∈ LΘ
F

}

is a set that represents EG.

Remark 3.9. For a subset P ⊂ M1(ΩT ) that represents EG, set EP [ξ] :=
supP∈P EP [ξ] for all ξ ∈ Lip(ΩT ) and cP(A) = supP∈P P (A) for all A ∈ B(ΩT ). Denote
by P̄ the closure of P with respect to the weak topology on M1(ΩT ). Clearly we have
EP̄ [ξ] = EP [ξ] for all ξ ∈ Lip(ΩT ). For the capacity cP , the following properties hold
(see ii) and iii) of Remark 2.7 in [31]).

Let P,P ′ be two subsets that represent EG. Then

i) cP(O) = cP′(O) for any open set O ⊂ ΩT ;
ii) cP̄(A) = cP̄′(A) for set A ∈ B(ΩT ).

So the capacity cP̄ is uniquely determined by the expectation EG, which is in turn
uniquely determined by the function G. We denote it by cG or simply by c.

Set N c
T = {A ⊂ ΩT | there is B ∈ B(ΩT ) s.t. A ⊂ B and c(B) = 0} and Bc

t =
σ{B(Ωt),N c

T }, t ∈ [0, T ], which can be equivalently defined as

Bc
t = {A ⊂ ΩT | there is B ∈ B(Ωt) s.t. A4B ∈ N c

T }.

For A ∈ Bc
T , let Bi, Ni ∈ B(ΩT ) s.t. A4Bi ⊂ Ni and c(Ni) = 0, i = 1, 2. Then

|c(B1)− c(B2)| ≤ c(B14B2) ≤ c(N1) + c(N2) = 0.

So we can defined c(A) := c(B1). For A ∈ Bc
T , we call A a polar set if c(A) = 0.

In the sequel, a random variable is assumed to be Bc
T -measurable unless explicitly

stated otherwise. We write ξ ∈ Bc
t if ξ is Bc

t -measurable.
Let P be a weakly compact set that represents EG. Set Lp

G(ΩT ) := {ξ| EP [|ξ|p] <

∞}. So Lp
G(ΩT ) can be considered as the closure of Lip(ΩT ) in the space Lp

G(ΩT ), which,
however, is strictly bigger than Lp

G(ΩT ) if G is nonlinear.

Definition 3.10. A map ξ : ΩT → R is said to be quasi-continuous with respect to
c if for any ε > 0, there exists an open set O with c(O) < ε such that ξ|Oc is continuous.

Remark 3.11. i) A quasi-continuous mapping ξ is Bc
T -measurable. Actually, for

n ∈ N, choose open set On such that c(On) < 1/2n and ξn := ξ|Oc
n

is continuous. Then
ξ̄ := limn→∞ξn is Bc

T -measurable and [ξ̄ 6= ξ] ⊂ ∩∞m=1 ∪∞n=m On, which is a polar set.
ii) For a random variable ξ, if there is a quasi-continuous random variable η on Ωt

for some t ∈ [0, T ] such that ξ = η except on a polar set, we say ξ has a quasi-continuous
version on Ωt. However, in this case, we don’t know whether ξ is also quasi-continuous
on Ωt.
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[6] gave a characterization for the spaces Lp
G(ΩT ), p ≥ 1.

Theorem 3.12. For p ≥ 1

Lp
G(Ωt) =

{
ξ

∣∣∣ ξ has a q.c. version on Ωt, lim
n→∞

EG
[|ξ|p1{|ξ|>n}

]
= 0

}
.

Remark 3.13. i) Clearly, the canonical process Bt(ω) := ω(t) belongs to Lp
G(Ωt),

which is called a G-Brownian motion in this sublinear expectation space (Ω, Lp
G(Ω),EG).

ii) For ξ, η ∈ L1
G(ΩT ), we say ξ = η (resp. ξ ≥ η), c-q.s., if ξ(ω) = η(ω) (ξ(ω) ≥ η(ω))

except on a polar set N ⊂ Ω, which is equivalent to

ξ = η, P -a.s., for all P ∈ P,

where P is a set (NOT necessarily weakly compact) that represents EG. In the rest of
the paper, except further specifications, all equalities and inequalities hold c-quasi surely.

3.3. Quadratic variation process.
In the rest of this section we only consider the one-dimensional G-Brownian motion

for simplicity of notations. We assume from now on that G is non degenerate. For
1-dimensional case this condition is σ > 0.

The quadratic variation process of a G-Brownian motion is a particularly important
process. Its definition is quite classical: Let πN

t , N = 1, 2, . . . , be a sequence of partitions
of [0, t] such that |πN

t | → 0. We can easily prove that, in the space L2
G(Ω),

N−1∑

j=0

(
BtN

j+1
−BtN

j

)2

is a Cauchy sequence, whose limit, denoted by 〈B〉t, is independent of the choice of the
partitions πN

t . From the above construction, {〈B〉t}t≥0 is an increasing process with
〈B〉0 = 0. We call it the quadratic variation process of the G-Brownian motion B. It
characterizes the statistical uncertainty of the G-Brownian motion B. It is important to
keep in mind that 〈B〉t is not a deterministic process unless σ2 = σ2, i.e., when B is a
classical Brownian motion.

A very interesting point of the quadratic variation process 〈B〉 is, just like
the G-Brownian motion B itself, the increment 〈B〉t+s − 〈B〉s is independent from
(〈B〉t1 , . . . , 〈B〉tn

) for all t1, . . . , tn ∈ [0, s] and identically distributed with 〈B〉t. Fur-
thermore, the distribution of 〈B〉t is given by EG[ϕ(〈B〉t)] = maxv∈[σ2,σ2] ϕ(vt) and we
can also prove that, c-quasi-surely,

σ2t ≤ 〈B〉t+s − 〈B〉s ≤ σ2t.

3.4. Itô integral of G-Brownian motion.
Itô integral with respect to a G-Brownian motion is defined in an analogous way as

the classical one, but in a language of “c-quasi-surely”, or in other words, under Lp
G-norm.
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Definition 3.14. For each p ≥ 1, we denote by Mp
G(0, T ) the completion of the

space of M0(0, T ) under the norm

‖η‖Mp
G

:=
{
Ê

[∫ T

0

|ηt|pdt

]}1/p

,

and by Hp
G(0, T ) the completion of the space of M0(0, T ) under the norm

‖η‖Hp
G

:=
[
Ê

{∫ T

0

|ηt|2dt

}p/2]1/p

.

Just as the classical Itô’s calculus, for an η ∈ M0(0, T ) with the form of (2.1), we
define its Itô integral by

I(η) =
∫ T

0

η(s)dBs :=
N−1∑

j=0

ξtj

(
Btj+1 −Btj

)
.

It is easy to check that I : M0(0, T ) 7−→ Lp
G(ΩT ) is a linear mapping and, by

Burkholder–Davis–Gundy inequality, there are universal constants Cp > cp such that

EG[|I(η)|p] = sup
P∈PΘ

EP [|I(η)|p]

≤ Cp sup
P∈PΘ

EP

[(∫ T

0

|ηs|2d〈B〉s
)p/2]

≤ Cp
p,G‖η‖p

Hp
G
; (3.3)

EG[|I(η)|p] = sup
P∈PΘ

EP [|I(η)|p]

≥ cp sup
P∈PΘ

EP

[(∫ T

0

|ηs|2d〈B〉s
)p/2]

≥ cp
p,G‖η‖p

Hp
G
. (3.4)

Thus the linear mapping I can be continuously extended to Hp
G(0, T ). Moreover, this

extension of I satisfies Burkholder-Davis-Gundy inequality

cp,G‖η‖Hp
G
≤ ‖I(η)‖Lp

G
≤ Cp,G‖η‖Hp

G
, η ∈ Hp

G(0, T ).

Therefore we can define, for a fixed η ∈ Hp
G(0, T ), the stochastic integral

∫ T

0

η(s)dBs := I(η).

We list some main properties of the Itô integral with respect to a G-Brownian
motion.

Proposition 3.15. Let η, θ ∈ Hp
G(0, T ) and 0 ≤ s ≤ r ≤ t ≤ T . Then we have
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( i )
∫ t

s
ηudBu =

∫ r

s
ηudBu +

∫ t

r
ηudBu,

(ii)
∫ t

s
(αηu + θu)dBu = α

∫ t

s
ηudBu +

∫ t

s
θudBu, if α is bounded and in L1

G(Ωs),
(iii) ÊG

t [X +
∫ T

t
ηudBu] = ÊG

t [X], for X ∈ L1
G(ΩT ).

Now we shall list some useful results which can be derived directly from the classical
ones. Consider an Itô process

Xν
t = Xν

0 +
∫ t

0

αν
sds +

∫ t

0

ην
s d〈B〉s +

∫ t

0

βν
s dBs.

Proposition 3.16 (Itô’s formula). Let αν , ην ∈ M1
G(0, T ) and βν ∈ M2

G(0, T ),
ν = 1, . . . , n. Then for each t ≥ 0 and each function Φ in C1,2([0, t]×Rn), with polynomial
growth derivatives, we have

Φ(t,Xt)− Φ(s,Xs) =
n∑

ν=1

∫ t

s

∂xν Φ(u,Xu)βν
udBu +

∫ t

s

[
∂uΦ(u,Xu) + ∂xν

Φ(u,Xu)αν
u

]
du

+
∫ t

s

[ n∑
ν=1

∂xν Φ(u,Xu)ην
u +

1
2

n∑
ν,µ=1

∂2
xµxν Φ(u,Xu)βµ

uβν
u

]
d〈B〉u.

Proof. Note that both sides of the equality are well-defined in L1
G(ΩT ) and, by

classical Itô’s formula, the equality holds P -a.s., for each P ∈ PΘ. So the equality holds
q.s. ¤

Let Xt =
∫ t

0
ZsdBs, Z ∈ Hp

G(0, T ) for some p ≥ 1. By arguments similar to those in
(3.3) and (3.4), we get Doob’s maximal inequality for the process X.

Proposition 3.17 (Doob’s Maximal Inequality). Assume p > 1,

∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥

Lp
G

≤ p

p− 1
‖XT ‖Lp

G
.

3.5. On the spaces Mp
G(0, T ) and Hp

G(0, T ).
Let P be a weakly compact set that represents EG. Set

Mp
G(0, T ) :=

{
η

∣∣∣∣ η is a Bc
t -progressively measurable process

with EP
[ ∫ T

0

|ηs|pds

]
< ∞

}
,

Hp
G(0, T ) :=

{
η

∣∣∣∣ η is a Bc
t -progressively measurable process

with EP
[(∫ T

0

|ηs|2ds

)p/2]
< ∞

}
.
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Then Mp
G(0, T ) (resp. Hp

G(0, T )) can be considered as the closure of M0(0, T ) in the
space Mp

G(0, T ) (resp. Hp
G(0, T )).

Remark 3.18. Generally Mp
G(0, T ) (resp. Hp

G(0, T )) is strictly bigger than
Mp

G(0, T ) (resp. Hp
G(0, T )) if G is non linear. Actually, as is pointed in [33] and [34],

obviously we have

θs = limδ↓0
〈B〉s − 〈B〉s−δ

δ
∈Mp

G(0, T ),

but θ does NOT belong to Mp
G(0, T ), where 〈B〉 is the quadratic variation process of the

one dimensional G-Brownian motion B.

4. Sobolev spaces on path space under G-expectation.

In the above framework of P -Sobolev space W
1/2,1;p
A (0, T ) based on the Wiener prob-

ability measure P , only the derivatives A = Dt + (1/2)D2
x and Dx are well-defined and

well-integrated. This prevents us from formulating and solving a fully nonlinear PPDE.
This is mainly due to the fact that the process 〈B〉t coincides with t in a Wiener proba-
bility space. In this section we replace the linear Wiener expectation EP by the sublinear
G-expectation EG and thus introduce the corresponding G-expectation weighted Sobolev
space, or “G-Sobolev space”. The derivatives Dt, Dx and D2

x are all well-defined and well-
integrated in this framework. We then formulate a type of fully nonlinear PPDEs in the
G-Sobolev space and identify them with a type of backward SDEs driven by G-Brownian
motion.

4.1. G-Sobolev spaces of path functions.
In the G-expectation space, by G-Itô’s formula, for u ∈ C∞(0,∞) we immediately

obtain the following decomposition.

Proposition 4.1. For each given u ∈ C∞(0,∞) we have,

u(t, ω) = u(0, ω) +
∫ t

0

Dsu(s, ω)ds +
∫ t

0

Dxu(s, ω)dBs +
1
2

∫ t

0

D2
xu(s, ω)d〈B〉s

= u(0, ω) +
∫ t

0

AGu(s, ω)ds +
∫ t

0

Dxu(s, ω)dBs + Kt,

where

AGu(s, ω) := Dsu(s, ω) + G(D2
xu(s, ω)),

and Kt is a non-increasing G-martingale:

Kt :=
1
2

∫ t

0

D2
xu(s, ω)d〈B〉s −

∫ t

0

G(D2
xu(s, ω))ds.
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Definition 4.2. 1) For u ∈ C∞(0, T ), we set

‖u‖p
Sp

G
= EG

[
sup

s∈[0,T ]

|us|p
]
.

We denote by Sp
G(0, T ) the completion of u ∈ C∞(0, T ) with respect to the norm ‖ · ‖Sp

G
.

2) For u ∈ C∞(0, T ), we set

‖u‖p

W 1,2;p
G

= EG

[
sup

s∈[0,T ]

|us|p +
∫ T

0

(|Dsus|p + |D2
xus|p)ds +

{ ∫ T

0

|Dxus|2ds

}p/2]
.

To define the G-Sobolev space, a key point is to obtain the uniqueness of the de-
composition for G-Itô processes, which was actually solved by Song (2012) in the one-
dimensional G-expectation space and by Peng, Song and Zhang (2014) for the multi-
dimensional case.

For the simplification of notations, in the rest of this paper we only consider the
1-dimensional G-expectation space with σ̄2 := EG[B2

1 ] > σ2 := −EG[−B2
1 ].

Lemma 4.3. If

u(t, ω) =
∫ t

0

ζ(s, ω)ds +
∫ t

0

v(s, ω)dBs +
1
2

∫ t

0

w(s, ω)d〈B〉s = 0, t ∈ [0, T ],

with ζ, w ∈ Mp
G(0, T ) and v ∈ Hp

G(0, T ), then we have ζ = v = w = 0.

Proof. By the uniqueness of the decomposition for continuous semimartingales
we have v = 0 and

∫ t

0
ζ(s, ω)ds + (1/2)

∫ t

0
w(s, ω)d〈B〉s = 0. By Corollary 3.5 in Song

(2012) we conclude that ζ = w = 0. ¤

Proposition 4.4. The norm ‖ · ‖W 1,2;p
G

is closable in the space Sp
G(0, T ) : Let

un ∈ C∞(0, T ) be a Cauchy sequence with respect to the norm ‖ · ‖W 1,2;p
G

. If ‖un‖Sp
G
→ 0,

we have ‖un‖W 1,2;p
G

→ 0.

Proof. The limit u of the Cauchy sequence {un}∞n=1 under ‖ · ‖W 1,2;p
G

is of the
following form

u(t, ω) = u0 +
∫ t

0

ζ(s, ω)ds +
∫ t

0

v(s, ω)dBs +
1
2

∫ t

0

w(s, ω)d〈B〉s,

u0 ∈ R, ζ, w ∈ Mp
G(0, T ), v ∈ Hp

G(0, T ).

But since u ≡ 0, then by Lemma 4.3, we must have u0 = 0, ζ = w ≡ 0, v ≡ 0. ¤

Denote by W 1,2;p
G (0, T ) the completion of C∞(0, T ) with respect to the norm

‖ · ‖W 1,2;p
G

. By the above proposition, W 1,2;p
G (0, T ) is a subspace of Sp

G(0, T ). Now the
differential operators Dt, D2

x (resp. Dx), can be all continuously extended as continuous
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linear operators from W 1,2;p
G (0, T ) to Mp

G(0, T ) (resp. to Hp
P (0, T )).

Theorem 4.5. Assume u ∈ Sp
G(0, T ). Then the following two conditions are

equivalent :

( i ) u ∈ W 1,2;p
G (0, T );

(ii) There exists u0 ∈ R, ζ, w ∈ Mp
G(0, T ) and v ∈ Hp

G(0, T ) such that

u(t, ω) = u0 +
∫ t

0

ζ(s, ω)ds +
∫ t

0

v(s, ω)dBs +
1
2

∫ t

0

w(s, ω)d〈B〉s. (4.1)

Moreover, we have

Dtu(t, ω) = ζ(t, ω), Dxu(t, ω) = v(t, ω), D2
xu(t, ω) = w(t, ω).

Remark 4.6. Just like the remark for Theorem 2.9, the above theorem also gives
us a general path-dependent Itô’s formula: for each Itô process u of the form (4.1) with
any given ζ, w ∈ Mp

G(0, T ) and v ∈ Hp
G(0, T ), we have

u(t, ω) = u0 +
∫ t

0

Dsu(s, ω)ds +
∫ t

0

Dxu(s, ω)dBs +
1
2

∫ t

0

D2
xu(s, ω)d〈B〉s. (4.2)

Proof. (i) =⇒ (ii) is obvious. For the part (ii) =⇒ (i) it suffices to prove it
for the case that ζ, v, w in (4.1) are cylinder step processes. Set tnk = kT/2n and

Qn(t, ω) :=
2n−1∑

k=0

(
Btn

k+1∧t −Btn
k∧t

)2 =
∫ t

0

λn(s, ω)dBs + 〈B〉t,

where λn(t, ω) =
∑2n−1

k=0 2(Bt −Btk
)1(tk,tk+1](t). Set

un(t, ω) := u(0, ω) +
∫ t

0

ζ(s, ω)ds +
∫ t

0

v(s, ω)dBs +
1
2

∫ t

0

wsdQn(s, ω)

= u(0, ω) +
∫ t

0

ζ(s, ω)ds +
∫ t

0

(
v(s, ω) +

1
2
w(s, ω)λn(s, ω)

)
dBs

+
∫ t

0

1
2
w(s, ω)d〈B〉s.

Clearly un belongs to C∞(0, T ). By Proposition 4.1 and Lemma 4.3, we have

Dtu
n(t, ω) = ζ(t, ω), Dxun(t, ω) = v(t, ω) +

1
2
w(t, ω)λn(t, ω), D2

xun(t, ω) = w(t, ω).

It’s easy to check that EG[(
∫ T

0
|Dxun(t, ω) − v(t, ω)|2dt)p/2] → 0. So u belongs to

W 1,2;p
G (0, T ) with
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Dtu(t, ω) = ζ(t, ω), Dxu(t, ω) = v(t, ω), D2
xu(t, ω) = w(t, ω). ¤

Proposition 4.7. For each u, v ∈ W 1,2;p
G (0, T ), we have c1u + c2v ∈ W 1,2;p

G (0, T )
and

Dt(c1u + c2v) = c1Dtu + c2Dtv,

Dx(c1u + c2v) = c1Dxu + c2Dxv, D2
x(c1u + c2v) = c1D2

xu + c2D2
xv.

Moreover, if their product uv is also in W 1,2;p
G (0, T ), then

Dt(uv) = vDtu + uDtv, Dx(uv) = vDxu + uDxv,

D2
x(uv) = vD2

xu + uD2
xv + 2DxuDxv.

Applying Itô’s formula for uv, the proof follows directly from Theorem 4.5.

Remark 4.8. 1) By Theorem 4.5 we note that the equality

D2
xu(t, ω) = Dx(Dxu)(t, ω)

does NOT always hold for general u ∈ W 1,2;p
G (0, T ) although it holds for u ∈ C∞(0, T ).

Let us see how this can happen from a simple example: Let u(t, ω) = 〈B〉t, t ∈ [0, 1]. By
the definition we have

Dtu(t, ω) = 0, Dxu(t, ω) = 0, D2
xu(t, ω) = 2.

Set tnk = k/2n and un(t, ω) =
∑2n−1

k=0 (Btn
k+1∧t −Btn

k∧t)2. By the definition we have

Dtu
n(t, ω) = 0, Dxun(t, ω) =

∑

k

2(Bt −Btk
)1(tk,tk+1](t), D2

xun(t, ω) = 2.

It is easily seen that un → u in W 1,2;2
G (0, T ). Particularly, Dxun → Dxu ≡ 0 in H2

G(0, T ).
However,

Dx(Dxun)(t, ω) = D2
xun(t, ω) = 2.

It does NOT converge to

Dx(Dxu)(t, ω) = 0.

2) Compared to Theorem 2.9, here the derivatives Dtu, Dxu, D2
xu can be distin-

guished clearly.

4.2. Backward SDEs driven by G-Brownian motion.
In this section we show that a fully nonlinear backward stochastic differential equa-

tion is in fact the corresponding fully nonlinear path dependent PDE.
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4.2.1. One-to-one correspondence.
Let us consider backward SDEs driven by G-Brownian motion of the following from:

to find Y ∈ Sp
G(0, T ), Z ∈ Hp

G(0, T ), η ∈ Mp
G(0, T ) such that

Yt = ξ +
∫ T

t

f(s, Ys, Zs, ηs)ds−
∫ T

t

ZsdBs − (KT −Kt), (4.3)

where Kt = (1/2)
∫ t

0
ηsd〈B〉s −

∫ t

0
G(ηs)ds, f : [0, T ]×R× Rd × S(d) 7→R is a given

function and ξ ∈ Lp
G(ΩT ) is a given random variable.

Similar to the framework of P -Sobolev space in Subsection 2.3, the corresponding
problem of path dependent PDEs is to find a path-dependent u ∈ W 1,2;p

G (0, T ) such that

Dtu + G(D2
xu) + f(t, u,Dxu,D2

xu) = 0, t ∈ (0, T ],

u(T, ω) = ξ(ω).
(4.4)

We call u a W 1,2;p
G -solution of the path dependent PDE (4.4).

Assumption 2. We assume that f(t, ω, Yt, Zt, ηt) ∈ Mp
G(0, T ) for any (Y, Z, η) ∈

Sp
G(0, T )×Hp

G(0, T )×Mp
G(0, T ).

Theorem 4.9. Let (Y, Z, η) be a solution to the backward SDE (4.3). Then we
have u(t, ω) := Yt(ω) ∈ W 1,2;p

G (0, T ) with Dxu(t, ω) = Zt(ω) and D2
xu(t, ω) = ηt(ω).

Moreover, Given a u ∈ W 1,2;p
G (0, T ), the following conditions are equivalent :

( i ) (u,Dxu,D2
xu) is a solution to the backward SDE (4.3);

(ii) u is a W 1,2;p
G -solution to the path dependent PDE (4.4).

Proof. (i) ⇒ (ii). Let (Y, Z, η) be a solution to the backward SDE (4.3):

Yt = Y0 −
∫ t

0

[f(s, Ys, Zs, ηs) + G(ηs)]ds +
∫ t

0

ZsdBs +
1
2

∫ t

0

ηsd〈B〉s,

and let u(t, ω) := Yt(ω). By Theorem 4.5, we have u ∈ W 1,2;p
G (0, T ) with Dxu = Z,

D2
xu = η and

Dtu + G(D2
xu) + f(t, u,Dxu,D2

xu) = 0.

(ii) ⇒ (i). If u is a W 1,2;p
G -solution to the path dependent PDE (4.4), we have, by

Theorem 4.5,

u(t) = u0 −
∫ t

0

[
G(D2

xu(s)) + f(s, u,Dxu(s),D2
xu(s))

]
ds

+
∫ t

0

Dxu(s)dBs +
1
2

∫ t

0

D2
xu(s)d〈B〉s
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= ξ +
∫ T

t

f
(
s, u,Dxu(s),D2

xu(s)
)
ds−

∫ T

t

Dxu(s)dBs

−
(

1
2

∫ T

t

D2
xu(s)d〈B〉s −

∫ T

t

G(D2
xu(s))ds

)
. ¤

4.2.2. Solutions of path dependent PDEs defined by G-BSDEs.
Now we consider a typical case of the path dependent PDE (4.4): f is independent

of D2
xu.

Dtu + G(D2
xu) + f(t, u,Dxu) = 0, t ∈ [0, T ),

u(T, ω) = ξ(ω).
(4.5)

Let u ∈ W 1,2;p
G (0, T ) be a solution to the path dependent PDE (4.5). By Theorem

4.9, the processes

Yt := u(t, ω), Zt := Dxu(t, ω), Kt :=
1
2

∫ t

0

D2
xu(s, ω)d〈B〉s −

∫ t

0

G(D2
xu(s, ω))ds

satisfy the following backward SDE:

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt), (4.6)

which is a type of BSDE driven by G-Brownian motion (G-BSDE) studied in [12] (see
Appendix).

Let (Y, Z,K) be a solution of backward SDE (4.6) considered in Hu et al. (2014).
Notice that, although we have many interesting examples, but to give reasonable con-
ditions on ξ and f under which Y is in the Sobolev space W 1,2;p

G (0, T ) is still a very
interesting and challenging problem.

In Section 5, we shall formulate u = Y as the unique solution in a Sobolev space
W

1/2,1;p
AG

(0, T ), which can be considered as the fully nonlinear counterpart of the P -

Sobolev space W
1/2,1;p
A (0, T ) introduced in Subsection 2.3 based on the Wiener proba-

bility P .

4.2.3. Examples and applications.
Example 4.10. Let η ∈ Mp

G(0, T ). To find u ∈ W 1,2;p
G (0, T ) such that

Dtu + G(D2
xu + ηt) = 0,

u(T, ω) = 0.
(4.7)

Assume that u ∈ W 1,2;p
G (0, T ) is a solution to (4.7). Then

u(t, ω) = EG
t

[
1
2

∫ T

t

ηsd〈B〉s
]
.
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In fact,

ut = −
∫ T

t

Dsusds−
∫ T

t

DxusdBs − 1
2

∫ T

t

D2
xusd〈B〉s

= −(MT −Mt) +
1
2

∫ T

t

ηsd〈B〉s,

where Mt :=
∫ t

0
DxusdBs + (1/2)

∫ t

0
(D2

xus + ηs)d〈B〉s −
∫ t

0
G(D2

xus + ηs)ds is a G-
martingale. So

ut = EG
t

[
1
2

∫ T

t

ηsd〈B〉s
]
.

Example 4.11. We consider the following problem for a given η ∈ Mp
G(0, T ): to

find a solution v ∈ W 1,2;p
G (0, T ) of the following path dependent PDE:

Dtv + Gη(D2
xv) = 0,

v(T, ω) = 0,
(4.8)

where Gη(ζs) = (1/2)[G(ζs + ηs) + G(ζs − ηs)].
Assume that v ∈ W 1,2;p

G (0, T ) is a solution to (4.8). Then

vt = lim sup
n→∞

EG
t

[
1
2

∫ T

t

δn(s)ηsd〈B〉s
]
,

where δn(s) =
∑n−1

i=0 (−1)i1(iT/n,(i+1)T/n].
Actually,

vt = −
∫ T

t

Dsvsds−
∫ T

t

DxvsdBs − 1
2

∫ T

t

D2
xvsd〈B〉s

= −
∫ T

t

DxvsdBs − 1
2

∫ T

t

(D2
xvs + δn(s)ηs)d〈B〉s +

∫ T

t

Gη(D2
xvs)ds

+
1
2

∫ T

t

δn(s)ηsd〈B〉s.

So

vt + lim sup
n→∞

EG
t

[
1
2

∫ T

t

(D2
xvs + δn(s)ηs)d〈B〉s −

∫ T

t

Gη(D2
xvs)ds

]

= lim sup
n→∞

EG
t

[
1
2

∫ T

t

δn(s)ηsd〈B〉s
]
.
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Noting that

lim sup
n→∞

EG
t

[
1
2

∫ T

t

(D2
xvs + δn(s)ηs)d〈B〉s −

∫ T

t

Gη(D2
xvs)ds

]
= 0,

we get

vt = lim sup
n→∞

EG
t

[
1
2

∫ T

t

δn(s)ηsd〈B〉s
]
.

Example 4.12. Let η ∈ Mp
G(0, T ) and ε ∈ [0, (σ2−σ2)/2]. To find w ∈ W 1,2;p

G (0, T )
such that

Dtw + Gε(D2
xw) +

1
2
ηt = 0,

w(T, ω) = 0,

(4.9)

where Gε(a) = (1/2)[(σ2 − ε)a+ − (σ2 + ε)a−].
Assume that w ∈ W 1,2;p

G (0, T ) is a solution to (4.9). Then

w(t, ω) = EGε
t

[
1
2

∫ T

t

ηsds

]
.

In fact,

wt = −
∫ T

t

Dswsds−
∫ T

t

DxwsdBs − 1
2

∫ T

t

D2
xwsd〈B〉s

= −(Mε
T −Mε

t ) +
1
2

∫ T

t

ηsds,

where Mε
t :=

∫ t

0
DxwsdBs +(1/2)

∫ t

0
D2

xwsd〈B〉s−
∫ t

0
Gε(D2

xws)ds is a Gε-martingale. So

wt = EGε
t

[
1
2

∫ T

t

ηsds

]
.

Set β = σ2/σ2 and γ = (β − 1)/(β + 1). For any a, α ∈ R and ε ∈ [0, (σ2 − σ2)/2],
it’s easy to check that

G(a + γ|α|) ≥ Gα(a) ≥ Gε(a) +
1
2
ε|α|. (4.10)

Denote by uη, vη, wη,ε the solutions to equations (4.7), (4.8) and (4.9), respectively. By
(4.10) and the comparison theorem for the (path dependent) PDEs, we have
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u
γ|η|
0 ≥ vη

0 ≥ w
ε|η|,ε
0 ,

which recovers the estimates obtained in [33] and [26].

Corollary 4.13. For any η ∈ M1
G(0, T ), we have

γEG

[ ∫ T

0

|ηs|d〈B〉s
]
≥ lim sup

n→∞
EG

[ ∫ T

0

δn(s)ηsd〈B〉s
]
≥ εEGε

[ ∫ T

0

|ηs|ds

]
.

5. Fully nonlinear PPDEs in G-Sobolev space W
1/2,1;p
AG

(0, T ) and BSDEs
driven by G-Brownian motion.

5.1. G-Sobolev space W
1/2,1;p
AG

(0, T ).
5.1.1. Definitions.
For each u ∈ W 1,2;p

G (0, T ) with Dtu = λ, Dxu = ζ and D2
xu = γ, we have

u(t, ω) = u0 +
∫ t

0

Dsu(s, ω)ds +
∫ t

0

Dxu(s, ω)dBs +
1
2

∫ t

0

D2
xu(s, ω)d〈B〉s

= u0 +
∫ t

0

AGu(s, ω)ds +
∫ t

0

Dxu(s, ω)dBs + Kγ
t

where we denote

Kγ
t =

1
2

∫ t

0

γ(s, ω)d〈B〉s −
∫ t

0

G(γ(s, ω))d〈B〉s

and

AGu = Dtu + G
(D2

xu
)
.

We define the following distance for elements u, v in W 1,2;p
G (0, T ):

d
W

1/2,1;p
AG

(u, v) =
{
EG

[
sup

s∈[0,T ]

|us − vs|p +
( ∫ T

0

|Dx(us − vs)|2ds

)p/2

+
∫ T

0

|AGus −AGvs|pds

]}1/p

.

We denote by W
1/2,1;p
AG

(0, T ) the collection of all processes u ∈ Sp
G(0, T ) with the

following property: there exists a Cauchy sequence {un} ⊂ W 1,2;p
G (0, T ) with respect to

the metric d
W

1/2,1;p
AG

(·, ·) such that ‖un − u‖Sp
G
→ 0.

We denote by Kp the closure of K0 := {Kγ
· : γ ∈ Mp

G(0, T )} in the space Sp
G(0, T ).

Obviously, we have
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W
1/2,1;p
AG

(0, T ) =
{

u = u0 +
∫ t

0

β(s)ds +
∫ t

0

ζ(s)dBs + Kt :

β ∈ Mp
G(0, T ), ζ ∈ Hp

G(0, T ), K ∈ Kp

}
.

For each given η ∈ Mp
G(0, T ), we also denote

W
1/2,1;p
AG

(η) :=
{

u = u0 +
∫ t

0

η(s)ds +
∫ t

0

ζ(s)dBs + Kt : ζ ∈ Hp
G(0, T ), K ∈ Kp

}
.

5.1.2. A review of the structure of G-martingales.
In order to understand the spaces W

1/2,1;p
AG

(0, T ) and W
1/2,1;p
AG

(η), we recall the
structure of G-martingales. [22] proved that for any ξ ∈ C∞(ΩT ), the G-martingale
Xt = EG

t [ξ] has the following representation:

Xt = EG[ξ] +
∫ t

0

ZsdBs +
1
2

∫ t

0

ηsd〈B〉s −
∫ t

0

G(ηs)ds (5.1)

for some Z ∈ Hp
G(0, T ), η ∈ Mp

G(0, T ) and conjectured that for any ξ ∈ Lp
G(ΩT ) the

representation (5.1) holds. Besides, [22] showed that for any η ∈ Mp
G(0, T ),

Kt :=
1
2

∫ t

0

ηsd〈B〉s −
∫ t

0

G(ηs)ds

is a non-increasing G-martingale. So any process K ∈ Kp is a non-increasing G-
martingale with KT ∈ Lp

G(ΩT ). By Theorem 5.4 in [32], the converse statement is
also right.

For p ≥ 1 and ξ ∈ C∞(ΩT ), set ‖ξ‖p
Lp

G
= EG[supt∈[0,T ] |EG

t [ξ]|p]. Denote by Lp
G(ΩT )

the closure of C∞(ΩT ) with respect to the norm ‖ · ‖Lp
G

in Lp
G(ΩT ). [29] showed that for

any ξ ∈ L2
G(ΩT ) the G-martingale Xt := EG

t [ξ] has the following decomposition:

Xt = EG[ξ] +
∫ t

0

ZsdBs + Kt, (5.2)

where Kt is a non-increasing G-martingale.
[31] showed that Lp

G(ΩT ) ⊃ Lq
G(ΩT ) for any 1 ≤ p < q. Moreover, [31] proved

that the decomposition (5.2) holds for any ξ ∈ Lp
G(ΩT ) with p > 1. Independently, [29]

showed that L2
G(ΩT ) ⊃ Lq

G(ΩT ) for any q > 2.

5.1.3. A probabilistic characterization of the G-Sobolev spaces.
Proposition 5.1. Assume u ∈ Sp

G(0, T ). Then the following two conditions are
equivalent :

1. u ∈ W
1/2,1;p
AG

(0, T );
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2. There exist η ∈ Mp
G(0, T ) and ζ ∈ Hp

G(0, T ) such that

Kt := u(t, ω)−
∫ t

0

ηsds−
∫ t

0

ζsdBs

is a non-increasing G-martingale.

The following proposition provides closability of the metric d
W

1/2,1;p
AG

in W 1,2;p
G (η).

Proposition 5.2. The metric d
W

1/2,1;p
AG

(·, ·) defined on the space W 1,2;p
G (η) is clos-

able in Sp
G(0, T ) in the following sence: Let {un}∞n=1 and {ūn}∞n=1 be two Cauchy se-

quences in W 1,2;p
G (η) with respect to the metric d

W
1/2,1;p
AG

(·, ·). If ‖un − ūn‖Sp
G
→ 0, then

we also have d
W

1/2,1;p
AG

(un, ūn) → 0.

Proof. We denote the Cauchy limits of {un} and {ūn} in W 1,2;p
G (0, T ) by

u(t, ω) = u(0, ω)−
∫ t

0

η(s, ω)ds +
∫ t

0

v(s, ω)dBs + Kt

and

ū(t, ω) = ū(0, ω)−
∫ t

0

η(s, ω)ds +
∫ t

0

v̄(s, ω)dBs + K̄t

respectively, with u(t, ω) ≡ ū(t, ω). Thus
∫ t

0
v(s, ω)dBs + Kt ≡

∫ t

0
v̄(s, ω)dBs + K̄t.

Applying Itô’s formula to (u(t, ω)− ū(t, ω))2 ≡ 0, and then taking the G-expectation, we
obtain

0 = EG

∫ T

0

|v(s, ω)− v̄(s, ω)|2ds.

It follows that v ≡ v̄ in Hp
G(0, T ) and thus K ≡ K̄ in Kp. ¤

Proposition 5.3. Let η ∈ Mp
G(0, T ) be given. Then u ∈ W

1/2,1;p
AG

(η) if and only

if u ∈ W
1/2,1;p
AG

(0, T ) and ut −
∫ t

0
Dxu(s)dBs −

∫ t

0
ηsds is a non-increasing G-martingale.

5.2. Fully nonlinear path dependent PDEs.
We define a solution of the path dependent PDE (4.5) in the G-Sobolev space

W
1/2,1;p
AG

(0, T ).

Definition 5.4. An element u ∈ W
1/2,1;p
AG

(0, T ) is called a W
1/2,1;p
AG

-solution to the
path dependent PDE (4.5) if

u(T, ω) = ξ(ω) and u ∈ W
1/2,1;p
AG

(η) with ηt(ω) = g(t, ω, u(t, ω),Dxu(t, ω)).
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The following theorem asserts that a W
1/2,1;p
AG

-solution of the PPDE (4.5) corre-
sponds to a solution of G-BSDE (4.6) studied in [12].

Theorem 5.5. (i) Assume (Y, Z,K) is a solution to the backward SDE (4.6) and
g(t, ω, Yt, Zt) ∈ Mp

G(0, T ). Then u(t, ω) := Yt(ω), t ∈ [0, T ] is in W
1/2,1;p
AG

(0, T ) with
Dxu(t, ω) = Zt(ω), t ∈ [0, T ], in Hp

G(0, T ). Moreover, we have u(T, ω) = ξ(ω), u ∈
W

1/2,1;p
AG

(η) with ηt(ω) = g(t, ω, u(t, ω),Dxu(t, ω)), namely, u is a W
1/2,1;p
AG

-solution to
the path dependent PDE (4.5).

(ii) Let u ∈ W
1/2,1;p
AG

(0, T ) be a W
1/2,1;p
AG

-solution to the path dependent PDE (4.5).
Set

Kt = u(t, ω) +
∫ t

0

g(s, ω, u(s, ω),Dxu(s, ω))ds−
∫ t

0

Dxu(s, ω)dBs.

Then the triple (Y, Z,K) = (u,Dxu,K) ∈ Sp
G(0, T ) × Hp

G(0, T ) is a solution to the
backward SDE (4.6).

Assume that the function g(t, ω, y, z) : [0, T ]×ΩT ×R×R → R satisfies the following
assumptions: there exists some β > 1 such that

(H1) for any y,z, g(t, ω, y, z) ∈ Mβ
G(0, T );

(H2) |g(t, ω, y, z)− g(t, ω, y′, z′)| ≤ L(|y − y′|+ |z − z′|) for some constant L > 0.

Corollary 5.6. Assume ξ ∈ Lβ
G(ΩT ) and g satisfies (H1) and (H2) for some

β > 1. Then, for each p ∈ (1, β), the path dependent PDE (4.5) has a unique W
1/2,1;p
AG

-

solution u. In particular, u(t, ω) := EG
t [ξ](ω) is the unique W

1/2,1;p
AG

-solution of

Dtu(t, ω) + G(D2
xu(t, ω)) = 0, u(T, ω) = ξ(ω).

Proof. The uniqueness is straightforward from Theorem 5.5 and Theorem 6.2.
We now prove the existence. By Theorem 6.2 we know that the backward

SDE (4.6) has a solution (Y, Z,K). By the assumption (H1) and (H2), we conclude
g(t, ω, Yt(ω), Zt(ω)) ∈ Mp

G(0, T ). So we get the existence from Theorem 5.5.
By the G-martingale decomposition theorem, u ∈ Sp

G(0, T ) is a G-martingale if and
only if u is a solution of backward SDE (4.6) with f = 0. ¤

Remark 5.7. It is an interesting question whether a solution of a 2BSDE intro-
duced by Soner, Touzi and Zhang [30] can be also interpreted as a Sobolev solution of the
corresponding PPDE. A direct obstacle is that, by the definition, the solution (Y, Z,K)
may not be within a completion of certain space of cylindrical functions of paths.

6. Appendix: Backward SDEs driven by G-BM.

In [12] the authors studied the backward stochastic differential equations driven by
a G-Brownian motion (Bt)t≥0 in the following form:
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Yt = ξ +
∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt), (6.1)

where K is a non-increasing G-martingale.
The main result in [12] is the existence and uniqueness of a solution (Y, Z,K) for

Equation (6.1) in the G-framework under the following assumption: there exists some
β > 1 such that (H1) and (H2) are satisfied.

Definition 6.1. Let ξ ∈ Lβ
G(ΩT ) and g satisfy (H1) and (H2) for some β > 1. A

triplet of processes (Y, Z,K) is called a solution of Equation (6.1) if for some 1 < α ≤ β

the following properties hold:

(a) Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), K is a non-increasing G-martingale with K0 = 0 and
KT ∈ Lα

G(ΩT );
(b) Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds− ∫ T

t
ZsdBs − (KT −Kt).

The main result in [12] is the following theorem:

Theorem 6.2. Assume that ξ ∈ Lβ
G(ΩT ) and f satisfies (H1) and (H2) for some

β > 1. Then Equation (6.1) has a unique solution (Y, Z,K). Moreover, for any 1 < α <

β we have Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ) and KT ∈ Lα
G(ΩT ).
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[ 7 ] B. Dupire, Functional Itô calculus, papers.ssrn.com., 2009.

[ 8 ] I. Ekren, Ch. Keller, N. Touzi and J. Zhang, On Viscosity Solutions of Path Dependent PDEs,

Ann. Probab., 42 (2014), 204–236.

[ 9 ] H. Föllmer and A. Schied, Statistic Finance, Walter de Gruyter, 2004.

[10] I. Ekren, N. Touzi and J. Zhang, Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent

PDEs: Part I–II, 2012, arXiv:1210.0007v1.

[11] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,

Math. Finance, 7 (1997), 1–71.

[12] M. Hu, S. Ji, S. Peng and Y. Song, Backward Stochastic Differential Equations Driven by G-

Brownian Motion, Stochastic Processes and their Applications, 124 (2014), 759–784.

[13] M. Hu and S. Peng, On Representation Theorem of G-Expectations and Paths of G-Brownian

Motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539–546.

[14] N. V. Krylov, Nonlinear Parabolic and Elliptic Equations of the Second Order, Reidel Publishing

Company, (Original Russian Version by Nauka, Moscow, 1985), 1987.

[15] E. Pardoux and S. Peng, Adapted Solutions of Backward Stochastic Equations, Systerm and

Control Letters, 14 (1990), 55–61.

http://dx.doi.org/10.1016/0022-247X(73)90066-8
http://dx.doi.org/10.1016/0022-247X(73)90066-8
http://dx.doi.org/10.1214/11-AOP721
http://dx.doi.org/10.1007/s004400100172
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://dx.doi.org/10.1007/s11118-010-9185-x
http://dx.doi.org/10.1214/12-AOP788
http://dx.doi.org/10.1111/1467-9965.00022
http://dx.doi.org/10.1016/j.spa.2013.09.010
http://dx.doi.org/10.1007/s10255-008-8831-1
http://dx.doi.org/10.1016/0167-6911(90)90082-6
http://dx.doi.org/10.1016/0167-6911(90)90082-6


G-expectation weighted Sobolev spaces, backward SDE and path dependent PDE 1757

[16] E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic

partial differential equations, Stochastic partial differential equations and their applications, Proc.

IFIP, LNCIS, 176 (1992), 200–217.

[17] S. Peng, Probabilistic Interpretation for Systems of Quasilinear Parabolic Partial Differential

Equations, Stochastics, 37 (1991), 61–74.

[18] S. Peng, BSDE and related g-expectation, In: Pitman Research Notes in Mathematics Series, 364,

Backward Stochastic Differential Equation, (eds. N. El Karoui and L. Mazliak), 1997, 141–159.

[19] S. Peng, Nonlinear Expectations, Nonlinear Evaluations and Risk Measures, Lectures Notes in

CIME-EMS Summer School, 2003, Bressanone, Springer’s Lecture Notes in Math., 1856.

[20] S. Peng, Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 26B (2005),

159–184.

[21] S. Peng, G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type, Stochas-
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