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Abstract. The main result of this note gives an efficient presentation
of the S1-equivariant cohomology ring of Peterson varieties (in type A) as a
quotient of a polynomial ring by an ideal J , in the spirit of the well-known
Borel presentation of the cohomology of the flag variety. Our result simplifies
previous presentations given by Harada-Tymoczko and Bayegan-Harada. In
particular, our result gives an affirmative answer to a conjecture of Bayegan
and Harada that the defining ideal J is generated by quadratics.

1. Introduction.

The main result of this paper is an explicit and efficient presentation of the S1-
equivariant cohomology ring1 of type A Peterson varieties in terms of generators and
relations, in the spirit of the well-known Borel presentation of the cohomology of the
flag variety. Our presentation is significantly simpler than the computations given in
[6] (respectively [1]) which uses the Monk formula (respectively Giambelli formula) for
type A Peterson varieties. In particular, our result gives an affirmative answer to the
conjecture formulated in [1, Remark 3.12] by showing that the defining ideal for the S1-
equivariant cohomology ring of type A Peterson varieties can be generated by quadratic
polynomials.

We briefly recall the setting of our results. Peterson varieties in type A can be
defined as the following subvariety Y of F`ags(Cn):

Y := {V• | NVi ⊆ Vi+1 for all i = 1, . . . , n− 1} (1.1)

where V• denotes a nested sequence 0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn = Cn of subspaces
of Cn and dimC Vi = i for all i and N : Cn → Cn denotes a principal nilpotent operator.
These varieties have been much studied due to its relation to the quantum cohomology
of the flag variety [7], [8]. Thus it is natural to study their topology, e.g. the structure
of their (equivariant) cohomology rings.

There is a natural circle subgroup of U(n,C) which acts on Y (recalled in Section
2). The inclusion of Y into F`ags(Cn) induces a natural ring homomorphism
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H∗
T (F`ags(Cn)) → H∗

S1(Y) (1.2)

where T is the subgroup of diagonal matrices of U(n,C) acting in the usual way on
F`ags(Cn). The content of this manuscript is to give an efficient presentation of the
equivariant cohomology ring H∗

S1(Y). Our proof uses Hilbert series and regular sequences,
in a similar spirit to previous work of Fukukawa, Ishida, and Masuda [2], [3] which
computes the graph cohomology of the GKM graphs of the flag varieties of classical type
and of G2.

This paper is organized as follows. We briefly recall the necessary background in
Section 2. The main theorem, Theorem 3.3, is formulated in Section 3. Hilbert series
and regular sequences are introduced in Section 4 to prove the main result. The proof of
one key lemma used in the proof of the main theorem occupies Section 5.

Acknowledgments. We thank Satoshi Murai for helpful comments on regular
sequences, which greatly improved our paper.

2. Peterson varieties and S1-fixed points.

In this section we briefly recall the definitions of our main objects of study. We also
record some key facts. For details and proofs, we refer the reader to [6]. Since we work
exclusively in Lie type A, we henceforth omit it from our terminology.

Let n be a fixed positive integer which we assume throughout is ≥ 2. The flag variety
F lags(Cn) is the space of nested subspaces in Cn, i.e.,

F lags(Cn) = {V• = (V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn) | dimC Vi = i}.

Let N be the n × n principal nilpotent operator which, written with respect to the
standard basis of Cn, is associated to the matrix with a single n × n Jordan block of
eigenvalue 0:

N :=




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0




.

Then the Peterson variety Y is the subvariety of F lags(Cn) defined as

Y := {V• ∈ F lags(Cn) | NVi ⊂ Vi+1 for all i = 1, 2, . . . , n− 1}. (2.1)

The Peterson variety is a (singular) projective variety of complex dimension n− 1.
The n-dimensional compact torus T consisting of diagonal n × n unitary matrices

acts on F lags(Cn) in a natural way. This torus action does not preserve Y. However,
we may consider the following circle subgroup of T :
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S := {diag(gn, gn−1, . . . , g) | g ∈ C, ‖g‖ = 1}. (2.2)

It is not hard to show that there is a 2-dimensional subtorus T 2 of T which acts on N

by scalars (i.e. N is a T 2-weight vector) under conjugation. The above S is a subgroup
of this T 2, acting by weight 1 on N . From this it immediately follows from (2.1) that S

preserves Y . The S-fixed points in Y are the T -fixed points in F lags(Cn) that lie in Y,
i.e.,

YS = F lags(Cn)T ∩ Y. (2.3)

As is standard, we identify F lags(Cn)T with the set of permutations on n letters Sn.
More specifically, it is straightforward to see that V• is in F lags(Cn)T precisely when
there exists w ∈ Sn such that

Vi = 〈ew(1), ew(2), . . . , ew(i)〉 for i = 1, 2, . . . , n (2.4)

where ek denotes the k-th element in the standard basis of Cn. It is shown in [6] that a
permutation w ∈ Sn

∼= F lags(Cn)T is in YS precisely when the one-line notation of w−1

(equivalently w, since in this case w = w−1) is of the form

w = j1 j1 − 1 · · · 1︸ ︷︷ ︸
j1 entries

j2 j2 − 1 · · · j1 + 1︸ ︷︷ ︸
j2 − j1 entries

· · ·n n− 1 · · · jm + 1︸ ︷︷ ︸
n− jm entries

, (2.5)

where 1 ≤ j1 < j2 < · · · < jm < n is any sequence of strictly increasing integers.

3. A ring presentation of H∗
S(Y).

In this section we formulate our main result, Theorem 3.3 below, which gives a ring
presentation via generators and relations of the S-equivariant cohomology ring of Y. Our
presentation is more efficient than previous computations of this ring (cf. Remark 3.5
below).

Consider the commutative diagram

H∗
T (F lags(Cn))

ι1 //

π1

²²

⊕
w∈Flags(Cn)T =Sn

H∗
T (w)

π2

²²
H∗

S(Y)
ι2 //

⊕
w∈YS⊂Sn

H∗
S(w)

(3.1)

where the maps are induced from the inclusions Y ↪→ F lags(Cn), YS ↪→ F lags(Cn)T

and S ↪→ T . Since Hodd(F lags(Cn)) and Hodd(Y) vanish, the maps ι1 and ι2 above are
both injective. Moreover, it is known that the map π1 above is surjective [6, Theorem
4.12]. Therefore, H∗

S(Y) is isomorphic to the image of H∗
T (F lags(Cn)) by π2 ◦ ι1.

Through the map diag(gn, gn−1, . . . , g) → g, we may identify S with the unit circle
S1 of C so that we have an identification
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H∗
S(pt) = H∗(BS) ∼= H∗(BS1) ∼= C[t].

The torus T ⊂ U(n) of diagonal unitary matrices has a natural product decomposition
T ∼= (S1)n. This decomposition identifies BT with (BS1)n and induces an identification

H∗
T (pt) = H∗(BT ) ∼=

n⊗

i=1

H∗(BS1) ∼= C[t1, . . . , tn],

where ti (i = 1, 2, . . . , n) denotes the element corresponding to the fixed generator t of
H2(BS1). Then from the explicit description of S as the subgroup diag(gn, gn−1, . . . , g)
of T it readily follows that

π2(ti) = (n + 1− i)t. (3.2)

We now briefly recall a well-known ring presentation of the equivariant cohomology
ring H∗

T (F lags(Cn)). There is a tautological filtration of the trivial rank n vector bundle
over F lags(Cn)

F lags(Cn)× {0} = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un−1 ⊂ Un = F lags(Cn)× Cn

where the fiber of Ui over a point in F lags(Cn) corresponding to a flag V• is precisely
the vector space Vi of V•. The bundles Ui are all T -equivariant and the quotient bundles
Ui/Ui−1 (i = 1, 2, . . . , n) are T -equivariant line bundles over F lags(Cn). We define

τi := cT
1 (Ui/Ui−1) ∈ H2

T (F lags(Cn)) for i = 1, 2, . . . , n, (3.3)

where cT
1 denotes the equivariant first Chern class. Then it is known (see e.g. [4, Equation

(2.1)] or [2]) that

H∗
T (F lags(Cn)) = C[τ1, . . . , τn, t1, . . . , tn]/I (3.4)

where I is the ideal generated by

ei(τ)− ei(t) for i = 1, 2, . . . , n

and ei(τ) (resp. ei(t)) denotes the i-th elementary symmetric polynomial in the variables
τ1, . . . , τn (resp. t1, . . . , tn). By slight abuse of notation, in the discussion below we denote
by τi, ti the corresponding cohomology classes in H∗

T (F lags(Cn)) (i.e. the equivalence
classes of τi, ti in the quotient ring C[τ1, . . . , τn, t1, . . . , tn]/I).

It follows from (2.4) and (3.3) that for w ∈ Sn we have

ι1(τi)|w = tw(i) (3.5)

and clearly
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ι1(ti)|w = ti, (3.6)

where ∗|w denotes the w-th component of ∗ in the direct sum
⊕

w∈Sn
H∗

T (w).
We define

pk := π1

( k∑

i=1

(ti − τi)
)

for k = 1, . . . , n. (3.7)

The following lemma computes the images of the pk in H∗
S(YS) ∼= ⊕

w∈YS H∗
S(w) under

the map ι2 in (3.1).

Lemma 3.1. Let pk ∈ H∗
S(Y) for 1 ≤ k ≤ n be defined as above. Then

ι2(pk)|w =
k∑

i=1

(w(i)− i)t.

Proof. For w ∈ YS and 1 ≤ k ≤ n we have

ι2(pk)|w = ι2

(
π1

( k∑

i=1

(ti − τi)
))∣∣∣∣

w

by definition of pk

= π2

(
ι1

( k∑

i=1

(ti − τi)
))∣∣∣∣

w

by commutativity of (3.1)

= π2

( k∑

i=1

(ti − tw(i))
)

by (3.5) and (3.6)

=
k∑

i=1

(w(i)− i)t by (3.2) (3.8)

as desired. ¤

Since
∑n

i=1 i =
∑n

i=1 w(i), Lemma 3.1 immediately implies that ι2(pn)|w = 0 for
any w ∈ YS . In particular we may conclude

pn = 0 (3.9)

since ι2 is injective.
The next lemma derives some relations which are satisfied among the elements pk ∈

H∗
S(Y). By slight abuse of notation we denote also by t the element in H∗

S(Y) which is the
image of t ∈ H∗

S(pt) under the canonical map H∗
S(pt) → H∗

S(Y). Note that ι2(t)|w = t

for all w ∈ YS .

Lemma 3.2. Let pk ∈ H∗
S(Y) for 1 ≤ k ≤ n be defined as above. Then pk(pk −

(1/2)pk−1 − (1/2)pk+1 − t) = 0 for k = 1, 2, . . . , n− 1.
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Proof. Let w ∈ YS ⊂ Sn. It follows from Lemma 3.1 that

ι2

(
pk − 1

2
pk−1 − 1

2
pk+1 − t

)∣∣∣∣
w

=
k∑

i=1

(w(i)− i)t− 1
2

k−1∑

i=1

(w(i)− i)t− 1
2

k+1∑

i=1

(w(i)− i)t− t

=
1
2
(w(k)− w(k + 1)− 1)t. (3.10)

Since w is in YS , we know it must be of the form given in (2.5). If k = jq for some
1 ≤ q ≤ m, then

∑k
i=1 i =

∑k
i=1 w(i). Otherwise, w(k + 1) = w(k) − 1. Therefore,

for any w ∈ YS and for any k, either (3.8) or (3.10) vanishes. This implies the lemma
because ι2 is injective. ¤

Our main result states that the relations given in Lemma 3.2 are enough to determine
the ring structure.

Theorem 3.3. Let n be a positive integer, n ≥ 2. Let Y ⊆ F lags(Cn) be the
Peterson variety defined in (2.1). Let the circle group S act on Y as described in Section
2. Then the S-equivariant cohomology ring of Y can be presented by generators and
relations as follows:

H∗
S(Y) ∼= C[t, p1, . . . , pn−1]/J,

where J is the ideal generated by the quadratic polynomials

pk

(
pk − 1

2
pk−1 − 1

2
pk+1 − t

)
for k = 1, 2, . . . , n− 1 (3.11)

where we take p0 = pn = 0.

Since Hodd(Y) = 0 and H∗
S(Y) = H∗(BS) ⊗ H∗(Y) as H∗(BS)-modules, we also

obtain the following corollary.

Corollary 3.4. Let p̌k be the restriction of pk to H∗(Y). Then

H∗(Y) = C[p̌1, . . . , p̌n−1]/J̌,

where J̌ is the ideal generated by

p̌k

(
p̌k − 1

2
p̌k−1 − 1

2
p̌k+1

)
for k = 1, 2, . . . , n− 1

with p̌0 = p̌n = 0.
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Remark 3.5. In [1] it is also shown that the equivariant cohomology ring H∗
S(Y)

is a quotient of a polynomial ring C[t, p1, . . . , pn−1] by an ideal generated by polynomials
denoted as qi,A [1, Theorem 3.8]. The ring presentation in [1] is a simplification of
the presentation given in [6, Theorem 6.12 and Corollary 6.14] by decreasing both the
number of variables in the polynomial ring and the number of generators of the ideal
of relations. In fact, it was conjectured in [1, Remark 3.12] that things could be made
even simpler, namely, that the ideal of relations for the presentation in [1, Theorem 3.8]
is in fact generated by just the quadratics. Our Theorem 3.3 proves that this is in fact
the case. Indeed, it is straightforward to see from the definitions in [1], [6] that the
polynomials (3.11) in Theorem 3.3 correspond to the qi,A for the special case A = {i}.
These are precisely the quadratic polynomials among all the qi,A.

4. Hilbert series and regular sequences.

In this section we prove our main result, Theorem 3.3, modulo one key lemma whose
proof we postpone to Section 5.

Since the map π1 in the diagram (3.1) is known to be surjective, it follows from
(3.4), (3.7), (3.9) and Lemma 3.2 that the natural homomorphism of graded rings

ϕ : C[t, p1, . . . , pn−1]/J ³ H∗
S(Y) (4.1)

is surjective. Forgetting the S-action, this induces a surjective homomorphism of graded
rings

ϕ̌ : C[p̌1, . . . , p̌n−1]/J̌ ³ H∗(Y). (4.2)

We next recall the definition of Hilbert series. Suppose A∗ =
⊕∞

i=0 Ai is a graded
module over C. Then its associated Hilbert series F (A∗, s) is defined to be the formal
power series

F (A∗, s) :=
∞∑

i=0

(dimCAi)si.

When comparing Hilbert series of different rings, we use the notation
∑

ais
i ≥ ∑

bis
i

to mean that ai ≥ bi for all i.
In our setting, taking the Hilbert series of both rings appearing in (4.1) and (4.2)

yields

F (C[t, p1, . . . , pn−1]/J, s) ≥ F (H∗
S(Y), s) (4.3)

F (C[p̌1, . . . , p̌n−1]/J̌, s) ≥ F (H∗(Y), s) (4.4)

since both ϕ and ϕ̌ are surjective. Note that ϕ (resp. ϕ̌) is an isomorphism if and only
if the inequality in (4.3) (resp. (4.4)) is in fact an equality.

The Hilbert series of the right hand sides of (4.3) and (4.4) are known to be as
follows. It is shown in [10] that
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F (H∗(Y), s) = (1 + s2)n−1. (4.5)

Moreover, since H∗
S(Y) = H∗(BS)⊗H∗(Y) as H∗(BS)-modules, (4.5) implies

F (H∗
S(Y), s) =

(1 + s2)n−1

1− s2
. (4.6)

The following lemma computes the left hand side of (4.4). Its proof will be given in
Section 5 in a more general setting.

Lemma 4.1. F (C[p̌1, . . . , p̌n−1]/J̌, s) = (1 + s2)n−1.

Assuming Lemma 4.1, we now complete the proof of Theorem 3.3. For this we use
the following notion from commutative algebra (see e.g. [9]).

Definition. Let R be a graded commutative algebra over C and let R+ denote
the positive-degree elements in R. Then a homogeneous sequence θ1, . . . , θr ∈ R+ is a
regular sequence if θk is a non-zero-divisor in the quotient ring R/(θ1, . . . , θk−1) for every
1 ≤ k ≤ r. This is equivalent to saying that θ1, . . . , θr is algebraically independent over
C and R is a free C[θ1, . . . , θr]-module.

It is a well-known fact (see for instance [9, p. 35]) that a homogeneous sequence
θ1, . . . , θr ∈ R+ is a regular sequence if and only if

F (R/(θ1, . . . , θr), s) = F (R, s)
r∏

k=1

(1− sdeg θk). (4.7)

A sketch of the proof of this fact is as follows. Let θ1, . . . , θr be a homogeneous sequence
of R and set Rk := R/(θ1, . . . , θk) for 1 ≤ k ≤ r. Consider the exact sequence

Rk−1
×θk−→ Rk−1 → Rk → 0 for 1 ≤ k ≤ r,

where ×θk denotes multiplication by θk, the map Rk−1 → Rk is the quotient map and
R0 := R. The regularity of the sequence θ1, . . . , θr implies that the map ×θk is injective
for every 1 ≤ k ≤ r, which in turn implies

F (Rk, s) = F (Rk−1, s)(1− sdeg θk) for any 1 ≤ k ≤ r.

The desired fact then follows.
Returning to our setting, we have the following lemma.

Lemma 4.2. In the polynomial ring C[t, p1, . . . , pn−1], the sequence

θk := pk

(
pk − 1

2
pk−1 − 1

2
pk+1 − t

)
for 1 ≤ k ≤ n− 1,

θn := t.
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is regular.

Proof. Since θn = t, from the definitions of θk and the ideals J and J̌ given in
the statements of Theorem 3.3 and Corollary 3.4 it follows that

F (C[t, p1, . . . , pn−1]/(θ1, . . . , θn−1, θn), s)

= F (C[p̌1, . . . , p̌n−1]/J̌, s)

= (1 + s2)n−1

where the last equality follows from Lemma 4.1. This implies that (4.7) is satisfied in
our setting because deg θi = 4 for 1 ≤ i ≤ n− 1, deg θn = 2 and

F (C[t, p1, . . . , pn−1], s) =
1

(1− s2)n
. (4.8)

The result follows. ¤

We can now prove the main theorem.

Proof of Theorem 3.3. From the definition of a regular sequence it is clear that
the subsequence θ1, . . . , θn−1 of a regular sequence θ1, . . . , θn is again a regular sequence.
Hence it follows from (4.7) and (4.8) that

F (C[t, p1, . . . , pn−1]/J, s) = F (C[t, p1, . . . , pn−1]/(θ1, . . . , θn−1), s)

=
1

(1− s2)n

n−1∏

k=1

(1− sdeg θk)

=
(1 + s2)n−1

1− s2
.

This together with (4.6) shows that the equality holds in (4.3). Hence the map ϕ in (4.1)
is an isomorphism, as desired. ¤

5. Proof of Lemma 4.1.

This section is devoted to the proof of Lemma 4.1. Note first that Lemma 4.1 is
equivalent to the statement that the sequence of homogeneous elements

p̌k

(
p̌k − 1

2
p̌k−1 − 1

2
p̌k+1

)
(k = 1, 2, . . . , n− 1),

(where p̌0 = p̌n are both defined to be 0) is a regular sequence in the polynomial ring
C[p̌1, . . . , p̌n−1]. We now recall a criterion which characterizes when such a homogenous
sequence in a polynomial ring is regular. We learned this criterion from S. Murai.
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Proposition 5.1. A sequence of positive-degree homogeneous elements θ1, . . . , θr

in the polynomial ring C[z1, . . . , zr] is a regular sequence if and only if the solution set
in Cr of the equations θ1 = 0, . . . , θr = 0 consists only of the origin {0}.

Proof. First we claim that the homogeneous sequence θ1, . . . , θr is regular if and
only if the Krull dimension of C[z1, . . . , zr]/(θ1, . . . , θr) is zero. To see this, observe
that by definition, if θ1, . . . , θr is a regular sequence then the θ1, . . . , θr are algebraically
independent. This implies that the Krull dimension of C[z1, . . . , zr]/(θ1, . . . , θr) is zero
(note that the number of generators of the polynomial ring C[z1, . . . , zr] is equal to
the length of the regular sequence). In the other direction, if C[z1, . . . , zr]/(θ1, . . . , θr)
has Krull dimension 0, then the θ1, . . . , θr are a homogeneous system of parameters
for C[z1, . . . , zr] [9, Definition 5.1]. Moreover, since the polynomial ring C[z1, . . . , zr] is
Cohen-Macaulay, by [9, Theorem 5.9] we may conclude that the homogeneous system of
parameters θ1, . . . , θr is a regular sequence.

Next we observe that by Hilbert’s Nullstellensatz the quotient ring

C[z1, . . . , zr]/(θ1, . . . , θr)

has Krull dimension 0 if and only if the algebraic set in Cr defined by the equations
θ1 = 0, . . . , θr = 0 is zero-dimensional. Since the polynomials θ1, . . . , θr are assumed to
be homogeneous, the corresponding zero-dimensional algebraic set in Cr must consist of
only the origin. This proves the proposition. ¤

By Proposition 5.1, in order to prove Lemma 4.1 it suffices to check that the solution
set in Cr of the equations

z2
i =

1
2
zi(zi−1 + zi+1) (i = 1, 2, . . . , r) (5.1)

(where z0 = zr+1 = 0) consists of only the origin. To prove this, we consider a more
general set of equations in Cr (r ≥ 2), namely:

z2
1 = b1z1z2

z2
i = zi(ai−1zi−1 + bizi+1) (i = 2, . . . , r − 1)

z2
r = ar−1zr−1zr

(5.2)

where ai, bi for i = 1, 2, . . . , r − 1 are fixed complex numbers.

Lemma 5.2. In the setting above, set ci := aibi for i = 1, 2, . . . , r − 1. If

1− ci

1− ci+1

. . .

1− cj−1

1− cj

6= 0 (5.3)
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for all 1 ≤ i ≤ j ≤ r − 1, then the solution set of the equations (5.2) consists of only the
origin in Cr.

Proof. We prove the lemma by induction on r, the number of variables. It is
easy to check the lemma directly for the base case r = 2. Now suppose that r ≥ 3 and
the result of the lemma holds for r − 1. Note that the equations in (5.2) which involve
the variable zr are the two equations

z2
r−1 = zr−1(ar−2zr−2 + br−1zr)

z2
r = ar−1zr−1zr.

From the latter equation we can conclude that either zr = 0 or zr = ar−1zr−1.
Now we take cases. Suppose zr = 0. Then the equations (5.2) become

z2
1 = b1z1z2

z2
i = zi(ai−1zi−1 + bizi+1) (i = 2, . . . , r − 2)

z2
r−1 = ar−2zr−2zr−1.

By the induction assumption, the solution set of these equations consists of only the
origin since (5.3) is satisfied for all 1 ≤ i ≤ j ≤ r − 2.

Next suppose zr = ar−1zr−1. In this case the equations (5.2) turn into

z2
1 = b1z1z2

z2
i = zi(ai−1zi−1 + bizi+1) (i = 2, . . . , r − 2) (5.4)

z2
r−1 =

ar−2

1− ar−1br−1
zr−2zr−1.

Here we know that 1− ar−1br−1 6= 0 from the condition (5.3) with i = j = r − 1. Again
by the induction assumption, the solution set of the equations (5.4) consists of only the
origin if

1− c′i

1− c′i+1

. . .

1− c′j−1

1− c′j

6= 0 for all 1 ≤ i ≤ j ≤ r − 2, (5.5)

where

c′k = ck (1 ≤ k ≤ r − 3), c′r−2 =
cr−2

1− cr−1
.
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From the definition of the c′k it is clear that (5.5) is equivalent to (5.3) for i and j with
1 ≤ i ≤ j ≤ r − 3. Further, the case i = j = r − 2 of (5.5) follows from the i = r − 2,
j = r− 1 case of (5.3), and the case i < j = r− 2 of (5.5) follows from the i ≤ j = r− 1
case of (5.3). Hence (5.5) holds for all choices of i and j and by the induction assumption
the solution set consists of only the origin, as desired. ¤

Remark 5.3. It is not difficult to see that the “only if” part of Lemma 5.2 also
holds, but we do not need this implication in what follows.

We now return to our special case, for which ai = bi = 1/2 and hence ci = 1/4 for
all 1 ≤ i ≤ r − 1. Below, we give a sufficient condition for (5.3) to be satisfied when
ci = aibi (i = 1, 2, . . . , r − 1) is a constant c independent of i. This will suffice to prove
Lemma 4.1. For this purpose, consider the numerical sequence {xm}∞m=0 defined by the
following recurrence relation and with x0 = 1:

xm = 1− c

xm−1
for m ≥ 1. (5.6)

In the situation when the ci are all equal, it is straightforward to see that the condition
(5.3) is equivalent to the statement that xm 6= 0 for m = 1, 2, . . . , r − 1. We have the
following.

Lemma 5.4. Let {xm} be the sequence defined in (5.6). Then:

1. if 0 ≤ c ≤ 1/4, then xm ≥ (1 +
√

1− 4c)/2 for any m ≥ 1, and
2. if c < 0, then xm ≥ 1 for any m ≥ 1.

In particular, if c is any real number ≤ 1/4, then xm > 0 for all m ≥ 1.

Proof. Let 0 ≤ c ≤ 1/4 and suppose that

xm−1 ≥ 1 +
√

1− 4c

2
> 0 for some m ≥ 1. (5.7)

Then it follows from (5.6) and (5.7) that

xm = 1− c

xm−1
≥ 1− 2c

1 +
√

1− 4c
=

1 +
√

1− 4c

2
.

This proves (1) in the lemma since the inequality (5.7) is satisfied for m = 1. A similar
argument proves (2). ¤

The proof of Lemma 4.1 is now straightforward.

Proof of Lemma 4.1. The statement of Lemma 4.1 follows from Proposition
5.1, Lemma 5.2 and Lemma 5.4. ¤
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