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Abstract. We compute the fundamental groups π1(P2 \C) for all com-
plex curves C of degree 7 defined by an equation of the form

Ỳ

j=1

(Y − βjZ)νj = c ·
mY

i=1

(X − αiZ)λi ,

where
P`

j=1 νj =
Pm

i=1 λi is the degree of the curve, c ∈ R\{0}, and β1, . . . , β`

(respectively α1, . . . , αm) mutually distinct real numbers.

1. Introduction.

The fundamental groups of plane curve complements are powerful tools to study
ramified coverings and to distinguish the path-connected components (and, in many
cases, the irreducible components) of equisingular moduli spaces. A systematic study of
these groups was initiated by O. Zariski [14] and E. R. van Kampen [6] in the thirties
and was later developped by many other mathematicians. Bibliographies covering the
classical results as well as the latest advances can be found, for instance, in [2], [7], [10].
Among the pioneer and most remarkable results, let us mention the famous theorem of
O. Zariski, W. Fulton and P. Deligne (cf. [14], [16], [5], [3]). This theorem says that if
C is a curve with only simple points or node singularities, then the fundamental group
π1(P2 \ C) is abelian. In the same vein, a result of M. V. Nori [8] says that if C is an
irreducible curve having only nodes and cusps as singularities with

2× (number of nodes) + 6× (number of cusps) < (deg(C))2, (1.1)

then π1(P2 \ C) is abelian too. Note that when the inequality (1.1) is not satisfied, the
group π1(P2 \ C) may be non-abelian, as shown by the famous Zariski’s three-cuspidal
quartic (cf. [14]). The present article is a sequel of the papers [9], [4] where a classification
of the fundamental groups occuring in another family of curves (so-called ‘join-type
curves’) was initiated.

Join-type curves are defined as follows. Consider positive integers ν1, . . . , ν`,
λ1, . . . , λm with

∑`
j=1 νj =

∑m
i=1 λi. A curve C in the complex projective plane P2
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is called a join-type curve with exponents (ν1, . . . , ν`;λ1, . . . , λm) if it is defined by an
equation of the form

a ·
∏̀

j=1

(Y − βjZ)νj = b ·
m∏

i=1

(X − αiZ)λi ,

where X, Y , Z are homogeneous coordinates in P2, a, b non-zero complex numbers, and
β1, . . . , β` (respectively α1, . . . , αm) mutually distinct complex numbers. In the chart
C2 := P2 \ {Z = 0}, with coordinates x = X/Z and y = Y/Z, the curve C is defined by
the equation f(y) = g(x), where

f(y) := a ·
∏̀

j=1

(y − βj)νj and g(x) := b ·
m∏

i=1

(x− αi)λi .

(Note that the line defined by Z = 0 meets C at d distinct points, where d is the
degree of C.) The singular points of C (i.e., the points (x, y) satisfying f(y) = g(x)
and f ′(y) = g′(x) = 0) divide into two categories: the points (x, y) which also satisfy
the equations f(y) = g(x) = 0, and those for which f(y) 6= 0 and g(x) 6= 0. Clearly,
the singular points contained in the intersection of lines f(y) = g(x) = 0 are the points
(αi, βj) with λi, νj ≥ 2. Hereafter, such singular points will be called typical singularities,
while the singular points (x, y) with f(y) 6= 0 and g(x) 6= 0 will be called exceptional
singularities.

By [9, Theorem (1.3)], we know that if C does not have any exceptional singularity,
then the fundamental group π1(P2 \ C) is isomorphic to the group G(ν;λ; d/ν) defined
by the presentation

G(ν;λ; d/ν) := 〈ω, ak (k ∈ Z) | ω = aν−1aν−2 · · · a0, ωd/ν = e,

ak+λ = ak, ak+ν = ωakω−1 (k ∈ Z)〉,

where ν (respectively λ) is the greatest common divisor of ν1, . . . , ν` (respectively
λ1, . . . , λm), and e the unit element. For example, if C does not have any exceptional
singularity and if λ or ν is equal to 1, then the fundamental group π1(P2 \C) is abelian,
isomorphic to Zd (in particular, C is irreducible).

We say that C is an R-join-type curve if the coefficients a, b, αi (1 ≤ i ≤ m) and
βj (1 ≤ j ≤ `) are real numbers. Exceptional singularities of such curves are necessarily
node singularities. In [4], we proposed the following conjecture.1

Conjecture 1.1. Let C, C ′ ⊂ P2 be R-join-type curves with exponents (ν1, . . . , ν`;
λ1, . . . , λm) and with the same component type (see below for the definition). We suppose
that C ′ does not have any exceptional singularity. Then,

π1(P2 \ C) ' π1(P2 \ C ′) ' G(ν;λ; d/ν),

1The statement given in [4] is incorrect. It should be replaced by the statement given here.
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where d is the (common) degree of C and C ′, and ν (respectively λ) the greatest common
divisor of ν1, . . . , ν` (respectively λ1, . . . , λm). In particular, if C is irreducible and if λ

or ν is equal to 1 (in which case C ′ is also irreducible), then π1(P2 \ C) ' Zd.

Here, we say that C and C ′ have the same component type if C =
⋃r

i=1 Ci and
C ′ =

⋃r
i=1 C ′i, where Ci and C ′i are irreducible and deg(Ci) = deg(C ′i) for each i. The

r-ple {deg(C1), . . . ,deg(Cr)} is called the component type of C (and C ′).

Remark 1.2. Note that when C does have exceptional singularities, the condition
‘λ = 1 or ν = 1’ does not imply that C is irreducible.

In [4], we classified the fundamental groups of all R-join-type curves of degree 6.
In the present paper, we compute the fundamental groups of all R-join-type curves of
degree 7, the smallest degree for which still very little is known. (There is an abundant
literature for degrees less than or equal to 6.) As an immediate corollary, we get that
Conjecture 1.1 is true for all such curves.

Theorem 1.3. Suppose C ⊂ P2 is an R-join-type curve of degree 7 defined by the
(affine) equation f(y) = g(x), where

f(y) = a ·
∏̀

j=1

(y − βj)νj and g(x) = b ·
m∏

i=1

(x− αi)λi .

(1) If the set of exponents E := (ν1, . . . , ν`;λ1, . . . , λm) of C is not the set (7; 7), then
the fundamental group π1(P2 \C) is abelian. When, in addition, E is neither the set
(2, 2, 2, 1; 2, 2, 2, 1) nor the set (1, . . . , 1; 1, . . . , 1), the group π1(P2 \C) is isomorphic
to Z7 or Z depending on whether the curve is irreducible or has two irreducible
components. When E is the set (2, 2, 2, 1; 2, 2, 2, 1) or the set (1, . . . , 1; 1, . . . , 1), the
group π1(P2 \ C) is isomorphic to Z7, Z or Z3 depending on whether the curve has
one, two or four irreducible components.

(2) If E = (7; 7), then π1(P2 \ C) is non-abelian, isomorphic to the group given by the
presentation

〈a0, a1, . . . , a6 | a6a5 · · · a0 = e〉.

Actually, when E is the set of exponents (2, 2, 2, 1; 2, 2, 2, 1) or the set (1, . . . , 1;
1, . . . , 1), the curve C has only node singularities. Moreover, it has at most 15 such
singular points except when the polynomials f and g are as in Figures 48 or 50. In the
latter cases, C has 18 nodes. When C has at most 15 nodes, the group π1(P2 \ C) is
isomorphic to Z7 or Z. When it has 18 nodes, π1(P2 \ C) is isomorphic to Z3.

When E = (7; 7), exceptional singularities do not occur, and therefore the funda-
mental group is given by [9]. (Actually, in this special case, we can also simply observe
that the curve is a union of seven concurrent lines, and therefore, its complement is
C × (C \ {6 points}).) Still according to [9], when E is not the set (7; 7) and the curve
C does not have any exceptional singularity, the group π1(P2 \ C) is always isomorphic
to Z7. (In particular, this is the case when E is of the form (7;λ1, . . . , λm) with m ≥ 2.)
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Remark 1.4. Note that as soon as we know that the group π1(P2\C) is abelian, we
completely know its structure. Indeed, in this case, by the Hurewicz theorem, π1(P2 \C)
is isomorphic to first integral homology group H1(P2 \C). Then, by Poincaré–Lefschetz
duality, it is not difficult to see that H1(P2 \ C) ' Zr−1 × Zd0 , where r is the number
of irreducible components of C and d0 := gcd (d1, . . . , dr). (Here, di is the degree of the
i-th irreducible component, 1 ≤ i ≤ r.) See e.g. [12].

Table 1. Exponents and sets of singularities of pseudo-maximal curves.

# Exponents Pseudo-maximal sets of singularities
1. (6, 1; 6, 1) B6,6 ⊕A1

2. (6, 1; 5, 2) B6,5 ⊕A5 ⊕A1

3. (6, 1; 4, 3) B6,4 ⊕B6,3 ⊕A1

4. (6, 1; 4, 2, 1) B6,4 ⊕A5 ⊕ 2 A1

5. (6, 1; 3, 2, 2) B6,3 ⊕ 2 A5 ⊕ 2 A1

6. (6, 1; 2, 2, 2, 1) 3 A5 ⊕ 3 A1

7. (5, 2; 5, 2) B5,5 ⊕ 2 A4 ⊕ 2 A1

8. (5, 2; 4, 3) B5,4 ⊕E8 ⊕A3 ⊕A2 ⊕A1

9. (5, 2; 4, 2, 1) B5,4 ⊕A4 ⊕A3 ⊕ 3 A1

10. (5, 2; 3, 2, 2) E8 ⊕ 2 A4 ⊕A2 ⊕ 4 A1

11. (5, 2; 2, 2, 2, 1) 3 A4 ⊕ 6 A1

12. (4, 3; 4, 3) B4,4 ⊕ 2 E6 ⊕D4 ⊕A1

13. (4, 3; 4, 2, 1) B4,4 ⊕E6 ⊕A3 ⊕A2 ⊕ 2 A1

14. (4, 3; 3, 2, 2) D4 ⊕E6 ⊕ 2 A3 ⊕ 2 A2 ⊕ 2 A1

15. (4, 3; 2, 2, 2, 1) 3 A3 ⊕ 3 A2 ⊕ 3 A1

16. (4, 2, 1; 4, 2, 1) B4,4 ⊕ 2 A3 ⊕ 5 A1

17. (4, 2, 1; 3, 2, 2) E6 ⊕ 2 A3 ⊕A2 ⊕ 6 A1

18. (4, 2, 1; 2, 2, 2, 1) 3 A3 ⊕ 9 A1

19. (3, 2, 2; 3, 2, 2) D4 ⊕ 4 A2 ⊕ 8 A1

20. (3, 2, 2; 2, 2, 2, 1) 3 A2 ⊕ 12 A1

2. Proof of Theorem 1.3.

Throughout this section, we assume that C has at least one exceptional singularity.
(When the curve does not have any exceptional singularity, the result is already proved
in [9].)

For most of the fundamental groups, the commutativity is obtained by the degenera-
tion principle. This principle says that if {Ct}t∈U is an analytic family of reduced curves
in P2, where U ⊂ C is a connected open set containing the origin, if the family of curves
{Ct}t∈U\{0} is equisingular, and if the total Milnor number of Ct, t 6= 0, is less than the
total Milnor number of C0 (in which case one says that Ct degenerates to C0), then there
is a canonical epimorphism π1(P2 \ C0) ³ π1(P2 \ Ct). In particular, if π1(P2 \ C0) is
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abelian, so is π1(P2 \Ct). See [14]. An R-join-type septic is said to be pseudo-maximal if
it does not degenerate, within the class of all join-type septics,2 to any other R-join-type
septic whose exponents are not (7; 7). (Notice that an R-join-type septic always degener-
ates to an R-join-type septic with exponents (7; 7).) Thus, to determine the fundamental
groups of R-join-type septics, it suffices to find the groups of such pseudo-maximal curves.
For any set of exponents in Table 1, there is a pseudo-maximal R-join-type septic with
this set of exponents and the mentioned set of singularities. (However, a curve may
have a set of exponents listed in Table 1 without being pseudo-maximal.) For all the
other sets of exponents, the curves are non-pseudo-maximal or have only node singular-
ities (cf. Tables 2 & 3). By the Zariski–Fulton–Deligne theorem [14], [16], [5], [3], the
fundamental groups associated with curves having only node singularities are abelian.
Therefore, by Remark 1.4, to find their fundamental groups, it suffices to know their
component types. The component types of the curves associated with the sets of expo-
nents � 86–94 and � 98 can be easily determined (cf. Section 2.23). For the sets � 96,
97, 99–104, it is more difficult. However, for these exponents, it is easy to check that the
curves are non-pseudo-maximal. The sets (2, 2, 2, 1; 2, 2, 2, 1) and (1, . . . , 1; 1, . . . , 1) are
‘special’ and need to be discussed separately (cf. Section 2.23).

The fundamental groups of pseudo-maximal R-join-type septics whose exponents are
in Table 1 are computed in Sections 2.1–2.20 below. To compute these groups, we use the
Zariski–van Kampen theorem with the pencil P given by the horizontal lines Lδ : y = δ,
δ ∈ C. This theorem says that π1(P2 \ C) is isomorphic to π1(Lδ0 \ C)/G, where Lδ0 is
a generic line of the pencil and G the normal subgroup of π1(Lδ0 \ C) generated by the
monodromy relations associated with the ‘special’ lines of the pencil (cf. [14], [6]).

A line Lδ of the pencil meets the curve C at a point (γ, δ) with intersection mul-
tiplicity greater than or equal to 2 (i.e., Lδ is a special line) if and only if f(δ) = g(γ)
and g′(γ) = 0. By considering the restriction of the function g(x) to real numbers, we
see immediately that the equation g′(x) = 0 has at least one real root γi in the open
interval (αi, αi+1) for each i = 1, . . . , m − 1 (we can assume that α1 < . . . < αm and
β1 < . . . < β`). Since the degree of

g′(x)
/ m∏

i=1

(x− αi)λi−1

is m− 1, it follows that the roots of g′(x) = 0 are exactly γ1, . . . , γm−1 and the αi’s with
λi ≥ 2. In particular, this shows that γ1, . . . , γm−1 are simple roots of g′(x) = 0.

Let δi,1, . . . , δi,d be the roots of f(y) = g(γi) for 1 ≤ i ≤ m− 1.
If f ′(δi,k) 6= 0, then (γi, δi,k) is a simple point of C, and in a small neighbourhood

of it, C is topologically described by

y − δi,k = c (x− γi)2, (2.1)

where c 6= 0. Indeed, by Taylor’s formula, f and g can be written as

2Including those which are not R-join-type septics, and of course those which have other exponents.
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Table 2. Exponents of (some) non-pseudo-maximal curves.

# Exponents # Exponents # Exponents
21. (6, 1; 5, 1, 1) 43. (5, 1, 1; 4, 2, 1) 65. (3, 3, 1; 2, 1, 1, 1, 1, 1)
22. (6, 1; 3, 3, 1) 44. (5, 1, 1; 3, 3, 1) 66. (3, 2, 2; 4, 1, 1, 1)
23. (6, 1; 4, 1, 1, 1) 45. (5, 1, 1; 3, 2, 2) 67. (3, 2, 2; 3, 2, 1, 1)
24. (6, 1; 3, 2, 1, 1) 46. (5, 1, 1; 4, 1, 1, 1) 68. (3, 2, 2; 3, 1, 1, 1, 1)
25. (6, 1; 3, 1, 1, 1, 1) 47. (5, 1, 1; 3, 2, 1, 1) 69. (3, 2, 2; 2, 2, 1, 1, 1)
26. (6, 1; 2, 2, 1, 1, 1) 48. (5, 1, 1; 2, 2, 2, 1) 70. (3, 2, 2; 2, 1, 1, 1, 1, 1)
27. (6, 1; 2, 1, 1, 1, 1, 1) 49. (5, 1, 1; 3, 1, 1, 1, 1) 71. (4, 1, 1, 1; 4, 1, 1, 1)
28. (5, 2; 5, 1, 1) 50. (5, 1, 1; 2, 2, 1, 1, 1) 72. (4, 1, 1, 1; 3, 2, 1, 1)
29. (5, 2; 3, 3, 1) 51. (5, 1, 1; 2, 1, 1, 1, 1, 1) 73. (4, 1, 1, 1; 2, 2, 2, 1)
30. (5, 2; 4, 1, 1, 1) 52. (4, 2, 1; 3, 3, 1) 74. (4, 1, 1, 1; 3, 1, 1, 1, 1)
31. (5, 2; 3, 2, 1, 1) 53. (4, 2, 1; 4, 1, 1, 1) 75. (4, 1, 1, 1; 2, 2, 1, 1, 1)
32. (5, 2; 3, 1, 1, 1, 1) 54. (4, 2, 1; 3, 2, 1, 1) 76. (4, 1, 1, 1; 2, 1, 1, 1, 1, 1)
33. (5, 2; 2, 2, 1, 1, 1) 55. (4, 2, 1; 3, 1, 1, 1, 1) 77. (3, 2, 1, 1; 3, 2, 1, 1)
34. (5, 2; 2, 1, 1, 1, 1, 1) 56. (4, 2, 1; 2, 2, 1, 1, 1) 78. (3, 2, 1, 1; 2, 2, 2, 1)
35. (4, 3; 5, 1, 1) 57. (4, 2, 1; 2, 1, 1, 1, 1, 1) 79. (3, 2, 1, 1; 3, 1, 1, 1, 1)
36. (4, 3; 3, 3, 1) 58. (3, 3, 1; 3, 3, 1) 80. (3, 2, 1, 1; 2, 2, 1, 1, 1)
37. (4, 3; 4, 1, 1, 1) 59. (3, 3, 1; 3, 2, 2) 81. (3, 2, 1, 1; 2, 1, 1, 1, 1, 1)
38. (4, 3; 3, 2, 1, 1) 60. (3, 3, 1; 4, 1, 1, 1) 82. (2, 2, 2, 1; 3, 1, 1, 1, 1)
39. (4, 3; 3, 1, 1, 1, 1) 61. (3, 3, 1; 3, 2, 1, 1) 83. (3, 1, 1, 1, 1; 3, 1, 1, 1, 1)
40. (4, 3; 2, 2, 1, 1, 1) 62. (3, 3, 1; 2, 2, 2, 1) 84. (3, 1, 1, 1, 1; 2, 2, 1, 1, 1)
41. (4, 3; 2, 1, 1, 1, 1, 1) 63. (3, 3, 1; 3, 1, 1, 1, 1) 85. (3, 1, 1, 1, 1; 2, 1, 1, 1, 1, 1)
42. (5, 1, 1; 5, 1, 1) 64. (3, 3, 1; 2, 2, 1, 1, 1)

Table 3. Exponents of curves with only A1-singularities.

# Exponents # Exponents
86. (6, 1; 1, . . . , 1) 96. (2, 2, 2, 1; 2, 2, 1, 1, 1)
87. (5, 2; 1, . . . , 1) 97. (2, 2, 2, 1; 2, 1, 1, 1, 1, 1)
88. (4, 3; 1, . . . , 1) 98. (2, 2, 2, 1; 1, . . . , 1)
89. (5, 1, 1; 1, . . . , 1) 99. (3, 1, 1, 1, 1; 1, . . . , 1)
90. (4, 2, 1; 1, . . . , 1) 100. (2, 2, 1, 1, 1; 2, 2, 1, 1, 1)
91. (3, 3, 1; 1, . . . , 1) 101. (2, 2, 1, 1, 1; 2, 1, 1, 1, 1, 1)
92. (3, 2, 2; 1, . . . , 1) 102. (2, 2, 1, 1, 1; 1, . . . , 1)
93. (4, 1, 1, 1; 1, . . . , 1) 103. (2, 1, 1, 1, 1, 1; 2, 1, 1, 1, 1, 1)
94. (3, 2, 1, 1; 1, . . . , 1) 104. (2, 1, 1, 1, 1, 1; 1, . . . , 1)
95. (2, 2, 2, 1; 2, 2, 2, 1) 105. (1, . . . , 1; 1, . . . , 1)
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f(y) =
7∑

q=0

aq(y − δi,k)q and g(x) =
7∑

q=0

bq(x− γi)q. (2.2)

The equality f(δi,k) = g(γi) implies a0 = b0. The relation f ′(δi,k) 6= 0 shows a1 6= 0.
Finally, since γi is a simple root of g′(x) = 0, we have b1 = 0 and b2 6= 0. Thus, the
equation f(y) = g(x) takes the form

a1 (y − δi,k) + higher order terms = b2 (x− γi)2 + higher order terms,

and therefore, near (γi, δi,k), the curve C is topologically given by (2.1). In particular,
this says that the line y = δi,k is tangent to the curve at (γi, δi,k) with intersection
multiplicity 2.

If f ′(δi,k) = 0, then (γi, δi,k) is an exceptional singularity of type A1, and near this
point, the curve is topologically equivalent to

(y − δi,k)2 = c (x− γi)2. (2.3)

Indeed, since f(δi,k) = g(γi) 6= 0, the same argument used to prove that γ1, . . . , γm−1

are simple roots of g′(x) = 0 shows that, if f ′(δi,k) = 0, then δi,k is a simple root of
f ′(y) = 0. Now, if γi and δi,k are both simple roots, then the coefficients a1, a2, b1 and
b2 in (2.2) satisfy a1 = b1 = 0, a2 6= 0, b2 6= 0, and the equation f(y) = g(x) takes the
form

a2 (y − δi,k)2 + higher order terms = b2 (x− γi)2 + higher order terms.

Thus, near (γi, δi,k), the curve C is topologically described by (2.3).
For each αi with λi ≥ 2, the roots of f(y) = g(αi) are β1, . . . , β`. By Taylor’s

formula again, we write

f(y) =
7∑

q=0

a′q(y − βj)q and g(x) =
7∑

q=0

b′q(x− αi)q. (2.4)

Then, the same argument as above shows that, if νj = 1, then (αi, βj) is a simple point
of C, and near this point, C is topologically given by

y − βj = c (x− αi)λi . (2.5)

In particular, the line y = βj is tangent to C at (αi, βj) with intersection multiplicity λi.
Similarly, if νj ≥ 2, then (αi, βj) is a typical singularity of Brieskorn–Pham type Bνj ,λi

,
and in a small neighbourhood of it, the curve is topologically equivalent to

(y − βj)νj = c (x− αi)λi . (2.6)

Indeed, in this case, the coefficients a′q and b′q in (2.4) satisfy a′q = 0 for q ≤ νj−1, b′q = 0
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for q ≤ λi − 1, and a′νj
6= 0, b′λi

6= 0.
Let us now give a detailed calculation of the fundamental groups of the pseudo-

maximal curves. We shall proceed case-by-case for each set of exponents in Table 1. We
take the point (1 : 0 : 0) as base point for all the groups. This point is nothing but the
axis of the pencil P, which is also the point at infinity of the lines Lδ. (Note that it
does not belong to the curve.)

2.1. Exponents (6,1; 6,1).
For these exponents, we can suppose that the polynomials f and g are of the form

f(y) = a (y− β1)6 (y− β2) and g(x) = b (x−α1)6 (x−α2) and that their real graphs are
as in Figure 1, so that there exist real numbers θ ∈ (β1, β2) and γ ∈ (α1, α2) satisfying
f ′(θ) = g′(γ) = 0 and f(θ) = g(γ). Indeed, any R-join-type septic with the set of
exponents (6, 1; 6, 1) is topologically equivalent to the R-join-type septic defined by such
f and g. This can be shown as follows. For the given exponents, the possibilities for f

and g are given in Figure 2. (In this figure, the numbers refer to the exponents.) The
change of coordinates (x, y) 7→ (x,−y) shows that the curve f3(y) = gi(x) (respectively
f4(y) = gi(x)) is topologically equivalent to the curve f2(y) = gi(x) (respectively f1(y) =
gi(x)). Then, it is enough to consider f1, f2, and gi for 1 ≤ i ≤ 4. Similarly, the
change of coordinates (x, y) 7→ (−x, y) shows that the curve fi(y) = g3(x) (respectively
fi(y) = g4(x)) is topologically equivalent to the curve fi(y) = g2(x) (respectively fi(y) =
g1(x)), and therefore it suffices to consider f1, f2, g1 and g2. Actually, we do not
need to consider g2 either. Indeed, the change of coordinates (x, y) 7→ (−x,−y) shows
that the curve f1(y) = g2(x) (respectively f2(y) = g2(x)) is topologically equivalent
to the curve −f1(−y) = −g2(−x) (respectively −f2(−y) = −g2(−x)), which is in turn
topologically equivalent to the curve f2(y) = g1(x) (respectively f1(y) = g1(x)). The
curve f2(y) = g1(x) does not have any exceptional singularity and can be eliminated as
well. Finally, to find the fundamental group of pseudo-maximal curves with exponents
(6, 1; 6, 1), it suffices to consider the polynomials f := f1 and g := g1 given in Figure 1. It
is not necessary to find explicit expressions for these polynomials. It suffices to know that
such f and g exist, and this is guaranteed by [13]. However, for this set of exponents, it
is not difficult to see that the graphs in Figure 1 can be obtained, for instance, by taking
β1 = α1 = 0, β2 = α2 = 1, and a = b = −1.

The set of singularities of the corresponding curve C, defined by the equation f(y)−
g(x) = 0, is B6,6 ⊕A1, while its component type is {6, 1} — actually, as we mentioned
it above, we can take f(y) = −y6(y − 1) and g(x) = −x6(x− 1) so that

Figure 1. Real graphs of f and g (exponents (6, 1; 6, 1)).
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Figure 2.

f(y)− g(x) = (x− y)(x6 + yx5 − x5 + y2x4 − yx4 + x3y3

− y2x3 + x2y4 − x2y3 + xy5 − xy4 + y6 − y5).

Here, the sextic component C6 has a singular point of type B5,5, and the line component
intersects C6 at B5,5 and at a smooth point. The pencil P has 8 special lines Lβ1 , Lβ2 ,
Lθ, Lδ1 , . . . , Lδ5 with respect to C. These lines are given by the vertices of the ‘dessin
d’enfants’ f−1([0, f(θ)]) associated with the polynomial f (cf. Figure 3). In this figure,
the black vertices correspond to the roots β1, β2 of the equation f(y) = 0, and the white
ones to the roots θ, δ1, . . . , δ5 of the equation f(y) = f(θ) = g(γ).

Consider the generic line Lβ2−ε, and choose generators ξ1, . . . , ξ7 of the fundamental
group π1(Lβ2−ε \ C) as in Figure 4, where ε > 0 is sufficiently small. (In the figure, we
do not respect the numerical scale; we even zoom on the part that collapses to α1 when
ε → 0.) The ξk’s are ‘lassos’ oriented counterclockwise around the intersection points of
the line Lβ2−ε with the curve. To find the monodromy relations around the special lines
of the pencil, we proceed exactly as in [4] and we refer to this article for details. In our
present case, the monodromy relations around Lβ2 (multiplicity 6 tangent relations) are
given by

ξ7 = ξ6 = ξ5 = ξ4 = ξ3 = ξ2,

while the relation associated with the line Lθ (node relation) is written as ξ2ξ1 = ξ1ξ2. It
follows immediately that the group π1(P2 \C) is abelian, and since the component type
of C is {6, 1}, we have the isomorphism π1(P2 \ C) ' Z (cf. Remark 1.4).

Remark 2.1. For the given curve, the commutativity of π1(P2 \ C) can also be
seen by applying Nori’s theorem [8] (in a stronger form than the one mentioned in our
introduction). A similar remark also applies for the curves in Sections 2.2 and 2.3.

Figure 3.
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Figure 4.

2.2. Exponents (6,1; 5,2).
For this set of exponents, we can assume that the polynomials f and g are of the

form f(y) = a (y−β1)6 (y−β2) and g(x) = b (x−α1)5 (x−α2)2 and that their real graphs
are as in Figure 5, so that there exist real numbers θ ∈ (β1, β2) and γ ∈ (α1, α2) satisfying
f ′(θ) = g′(γ) = 0 and f(θ) = g(γ). (This assertion can be proved using an argument
similar to that described in Section 2.1. Since the proof does not involve any new idea,
in order to avoid repetitions this kind of argument will be systematically omitted.) The
set of singularities of the corresponding curve C is B6,5 ⊕A5 ⊕A1, and its component
type is {7} — actually, we can take

f(y) = − 12500
823543

y6(y − 1) and g(x) =
46656
823543

x5(x− 1)2,

so that

f(y)− g(x) = − 12500
823543

y7 +
12500
823543

y6 − 46656
823543

x7 +
93312
823543

x6 − 46656
823543

x5.

The special lines of the pencil with respect to C are given by the vertices of the dessin
d’enfants in Figure 3.

Let us take generators ξ1, . . . , ξ7 of π1(Lβ2−ε \ C) as in Figure 6. Then, the mon-
odromy relations around Lβ2 are given by:

Lβ2(α1) : ξ7 = ξ6 = ξ5 = ξ4 = ξ3 (multiplicity 5 tangent relations);

Lβ2(α2) : ξ2 = ξ1 (multiplicity 2 tangent relation);

Figure 5. Real graphs of f and g (exponents (6, 1; 5, 2)).
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Figure 6.

and the relation associated with the line Lθ (node relation) is written as ξ3ξ2 = ξ2ξ3.
Hence, π1(P2 \ C) ' Z7.

2.3. Exponents (6,1; 4,3).
For these exponents, we can assume that f and g are of the form f(y) = a (y −

β1)6 (y−β2) and g(x) = b (x−α1)4 (x−α2)3 and that their real graphs are as in Figure 7,
so that there exist real numbers θ ∈ (β1, β2) and γ ∈ (α1, α2) satisfying f ′(θ) = g′(γ) = 0
and f(θ) = g(γ). The set of singularities of the corresponding curve C is B6,4⊕B6,3⊕A1,
and its component type is {7} — actually, we can take

f(y) = − 6912
823543

y6(y − 1) and g(x) = − 46656
823543

x4(x− 1)3,

so that f(y)− g(x) is given by

− 6912
823543

y7 +
6912

823543
y6 +

46656
823543

x7 − 139968
823543

x6 +
139968
823543

x5 − 46656
823543

x4.

The special lines of the pencil with respect to this curve are given by the vertices of the
dessin d’enfants in Figure 3.

Take generators ξ1, . . . , ξ7 of the group π1(Lβ2−ε \ C) as in Figure 8. Then, the
monodromy relations associated with the line Lβ2 are given by:

Lβ2(α1) : ξ7 = ξ6 = ξ5 = ξ4 (multiplicity 4 tangent relations);

Lβ2(α2) : ξ3 = ξ2 = ξ1 (multiplicity 3 tangent relations);

Figure 7. Real graphs of f and g (exponents (6, 1; 4, 3)).
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Figure 8.

and the relation around Lθ (node relation) is written as ξ4ξ3 = ξ3ξ4. Hence, π1(P2 \C) '
Z7.

2.4. Exponents (6,1; 4,2,1).
For this set of exponents, we can suppose that the polynomials f and g are:

(1) either of the form f(y) = a (y−β1)6 (y−β2) and g(x) = b (x−α1)4 (x−α2)2 (x−α3),
with real graphs as in Figure 9, so that the following condition is satisfied:





∃ θ ∈ (β1, β2), γ1 ∈ (α1, α2), γ2 ∈ (α2, α3)

such that f ′(θ) = g′(γ1) = g′(γ2) = 0

and f(θ) = g(γ1) = g(γ2);

(2.7)

(2) or of the form f(y) = a (y − β1)6 (y − β2) and g(x) = b (x− α1)2 (x− α2)4 (x− α3),
with real graphs as in Figure 10, so that Condition (2.7) is satisfied.

For the given exponents, the proof of this assertion is slightly more sophisticated than for

Figure 9. Real graphs of f and g (exponents (6, 1; 4, 2, 1) — first case).

Figure 10. Real graphs of f and g (exponents (6, 1; 4, 2, 1) — second case).
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the previous ones. The argument is as follows. First, observe that an R-join-type septic
with exponents (6, 1; 4, 2, 1) necessarily satisfies one of the following two conditions:

(a) it is topologically equivalent — or it degenerates to a curve topologically equivalent
— to the curve defined by a pair of polynomials f and g as above;

(b) it degenerates to an R-join-type septic with exponents (6, 1; 5, 2) or (6, 1; 4, 3).

Indeed, for the same reason as explained in Section 2.1, it is enough to consider the
polynomials f1, f2, g1, g2 and g3 given in Figure 11. (The numbers refer to the expo-
nents.) Clearly, the curves f2(y) = g1(x) and f2(y) = g3(x) do not have any exceptional
singularity. The curve f1(y) = g2(x) degenerates to the curve f1(y) = g̃2(x), with ex-
ponents (6, 1; 4, 3), where g̃2 is as in Figure 12 — push the lower critical point of g2

up to the horizontal axis. Similarly, the curve f2(y) = g2(x) degenerates to the curve
f2(y) = ĝ2(x), where ĝ2 is as in Figure 12 — push the upper critical point of g2 up to
the horizontal axis. In this case, the exponents of the degenerated curve are (6, 1; 5, 2).
Now, by the degeneration principle and since the fundamental group of any R-join-type
septic with exponents (6, 1; 4, 3) or (6, 1; 5, 2) is abelian (cf. Sections 2.3 and 2.2), the
fundamental groups associated with the curves f1(y) = g2(x) and f2(y) = g2(x) are also
abelian. Therefore, to show that the fundamental group of an R-join-type curve with
exponents (6, 1; 4, 2, 1) is abelian, it suffices to consider the curve defined by the polyno-
mials f := f1 and g := g1 given in Figure 9 and the curve defined by the polynomials
f := f1 and g := g3 given in Figure 10.

In both cases, (1) and (2), the set of singularities of the corresponding curve C is
B6,4⊕A5⊕2 A1. Moreover, C is irreducible (see below). In both cases, the special lines
of the pencil are given by the vertices of the dessin d’enfants in Figure 3. To compute
the fundamental group, in the case (1), take generators ξ1, . . . , ξ7 of π1(Lβ2−ε \C) as in
Figure 13. Then, the monodromy relations around Lβ2 are given by:

Figure 11.

Figure 12.
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Lβ2(α1) : ξ7 = ξ6 = ξ5 = ξ4 (multiplicity 4 tangent relations);

Lβ2(α2) : ξ3 = ξ2 (multiplicity 2 tangent relation).

After simplification, the relations associated with the line Lθ (node relation) are written
as ξ4ξ2 = ξ2ξ4 and ξ2ξ1 = ξ1ξ2, while the relations around Lδ4 (multiplicity 2 tangent
relations) give ξ4 = ξ1 = ξ2. By the vanishing relation at infinity, ξ7

1 = e, and therefore,

π1(P2 \ C) ' 〈ξ1 | ξ7
1 = e〉 ' Z7.

In particular, C is irreducible (cf. Remark 1.4).

Figure 13.

Figure 14.

In the case (2), take generators ξ1, . . . , ξ7 of the group π1(Lβ2−ε \ C) as in Figure
14. Then, the monodromy relations around Lβ2 are given by:

Lβ2(α1) : ξ7 = ξ6 (multiplicity 2 tangent relation);

Lβ2(α2) : ξ5 = ξ4 = ξ3 = ξ2 (multiplicity 4 tangent relations).
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After simplification, the relations associated with the line Lθ (node relation) are written
as ξ6ξ2 = ξ2ξ6 and ξ2ξ1 = ξ1ξ2, while the relations around Lδ4 and Lδ5 (multiplicity
2 tangent relations) reduce to ξ6 = ξ2 and ξ2 = ξ1 respectively. Again, since ξ7

1 = e

(vanishing relation at infinity), we have π1(P2 \ C) ' Z7.

Remark 2.2. By contrast with Remark 2.1, in the present case, we cannot substi-
tute Nori’s theorem to the Zariski–van Kampen theorem. Indeed, here, the component
type of C (needed to apply Nori’s theorem) is deduced from the structure of the group
π1(P2 \ C), and not the opposite. For the same reason, Nori’s theorem cannot be used
in the next sections either.

2.5. Exponents (6,1; 3,2,2).
For this set of exponents, we can suppose that the polynomials f and g are of the

form f(y) = a (y−β1)6 (y−β2) and g(x) = b (x−α1)2 (x−α2)2 (x−α3)3 and that their real
graphs are as in Figure 15, so that there exist real numbers θ ∈ (β1, β2), γ1 ∈ (α1, α2)
and γ2 ∈ (α2, α3) satisfying f ′(θ) = g′(γ1) = g′(γ2) = 0 and f(θ) = g(γ1) = g(γ2).
(This assertion can be proved using a degeneration argument similar to that described
in Section 2.4. Again, since the proof does not involve any new idea, in order to avoid
repetitions this kind of argument will be systematically omitted.) The set of singularities
of the corresponding curve C is B6,3⊕2 A5⊕2 A1, its component type is {7} (see below),
and the special lines of the pencil P with respect to this curve are given by the vertices
of the dessin d’enfants in Figure 3.

Figure 15. Real graphs of f and g (exponents (6, 1; 3, 2, 2)).

Let us choose generators ξ1, . . . , ξ7 of π1(Lβ2−ε \ C) as in Figure 16. Then, the
monodromy relations around the line Lβ2 are given by:

Lβ2(α1) : ξ7 = ξ6 (multiplicity 2 tangent relation);

Lβ2(α2) : ξ5 = ξ4 (multiplicity 2 tangent relation);

Lβ2(α3) : ξ3 = ξ2 = ξ1 (multiplicity 3 tangent relations).

After simplification, the relations around Lθ (node relations) are written as ξ6ξ4 = ξ4ξ6

and ξ4ξ1 = ξ1ξ4, while the relations associated with the lines Lδ4 and Lδ5 (multiplicity 2
tangent relations) give ξ6 = ξ1 and ξ4 = ξ1 respectively. Therefore, the vanishing relation
at infinity is written as ξ7

1 = e and π1(P2 \C) ' Z7. (As above, this immediately implies
that C is irreducible.)
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Figure 16.

2.6. Exponents (6,1; 2,2,2,1).
For these exponents, we can assume that the polynomials f and g are of the form

f(y) = a (y−β1)6 (y−β2) and g(x) = b (x−α1)2 (x−α2)2 (x−α3)2 (x−α4) and that their
real graphs are as in Figure 17, so that there exist real numbers θ ∈ (β1, β2), γ1 ∈ (α1, α2),
γ2 ∈ (α2, α3) and γ3 ∈ (α3, α4) satisfying f ′(θ) = g′(γ1) = g′(γ2) = g′(γ3) = 0 and
f(θ) = g(γ1) = g(γ2) = g(γ3). The set of singularities of the corresponding curve C is
3 A5 ⊕ 3 A1, its component type is {7} (see below), and the special lines of the pencil
are given, once again, by the vertices of the dessin d’enfants in Figure 3.

Figure 17. Real graphs of f and g (exponents (6, 1; 2, 2, 2, 1)).

Take generators ξ1, . . . , ξ7 of the group π1(Lβ2−ε \ C) as in Figure 18. Then, the
monodromy relations associated with the line Lβ2 (multiplicity 2 tangent relations) are
given by ξ7 = ξ6, ξ5 = ξ4 and ξ3 = ξ2. After simplification, the relations around Lθ

(node relations) and Lδ4 (multiplicity 2 tangent relations) are written as:

Lθ : ξ6ξ4 = ξ4ξ6, ξ4ξ2 = ξ2ξ4, ξ2ξ1 = ξ1ξ2;

Lδ4 : ξ6 = ξ2, ξ−1
2 ξ6ξ2 = ξ1, ξ−1

1 ξ4ξ1 = ξ2.

Then, the vanishing relation at infinity is written as ξ7
1 = e. Hence, π1(P2 \ C) ' Z7.

2.7. Exponents (5,2; 5,2).
For this set of exponents, we can assume that the polynomials f and g are of the

form f(y) = a (y − β1)5 (y − β2)2 and g(x) = b (x − α1)5 (x − α2)2 and that their real
graphs are as in Figure 19, so that there exist real numbers θ ∈ (β1, β2) and γ ∈ (α1, α2)
satisfying f ′(θ) = g′(γ) = 0 and f(θ) = g(γ). The set of singularities of the corresponding
curve C is B5,5 ⊕ 2 A4 ⊕ 2 A1, and its component type is {6, 1} — actually, we can take
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Figure 18.

f(y) = −y5 (y − 1)2 and g(x) = −x5 (x− 1)2, so that f(y)− g(x) is given by

(x− y)(x6 − 2 x5 + yx5 + y2x4 − 2 yx4 + x4 + x3y3 − 2 y2x3

+ yx3 + x2y4 − 2 x2y3 + y2x2 + xy5 − 2 xy4 + xy3 + y6 − 2 y5 + y4).

The special lines of the pencil P with respect to this curve are given by the vertices of
the dessin d’enfants in Figure 20.

Figure 19. Real graphs of f and g (exponents (5, 2; 5, 2)).

Figure 20.

We choose generators ξ1, . . . , ξ7 of the group π1(Lβ2+ε \ C) as in Figure 6. Then,
after simplification, the monodromy relations associated with the line Lβ2 are given by:

Lβ2(α1) : ξ7 = ξ5 = ξ3, ξ6 = ξ4 and ξ4ξ3ξ4ξ3ξ4 = ξ3ξ4ξ3ξ4ξ3 ((2, 5)-type relations3);

Lβ2(α2) : ξ2ξ1 = ξ1ξ2 (node relation);

3A (βj , αi)-type relation with respect to the pencil P is a Brieskorn–Pham relation which is described

by the local model yβj = xαi .
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and the relations around Lδ1 , Lθ and Lδ5 are written as:

Lδ1 : ξ3 = ξ2 (tangent relation);

Lθ : ξ4ξ1 = ξ1ξ4 (node relation);

Lδ5 : ξ2ξ4 = ξ4ξ2 (tangent relation).

This already shows that π1(P2 \ C) is abelian, and since the component type of C is
{6, 1}, it follows that π1(P2 \ C) ' Z.

2.8. Exponents (5,2; 4,3).
For these exponents, we can suppose that the polynomials f and g are of the form

f(y) = a (y−β1)5 (y−β2)2 and g(x) = b (x−α1)3 (x−α2)4 and that their real graphs are
as in Figure 21, so that there exist real numbers θ ∈ (β1, β2) and γ ∈ (α1, α2) satisfying
f ′(θ) = g′(γ) = 0 and f(θ) = g(γ). The set of singularities of the corresponding curve C

is B5,4 ⊕E8 ⊕A3 ⊕A2 ⊕A1, and its component type is {7} — actually, we can take

f(y) = − 6912
823543

y5(y − 1)2 and g(x) = − 12500
823543

x3(x− 1)4,

so that

f(y)− g(x) = − 6912
823543

y7 +
13824
823543

y6 − 6912
823543

y5 +
12500
823543

x7

− 50000
823543

x6 +
75000
823543

x5 − 50000
823543

x4 +
12500
823543

x3.

The special lines of the pencil with respect to this curve are given by the vertices of the
dessin d’enfants in Figure 20.

Figure 21. Real graphs of f and g (exponents (5, 2; 4, 3)).

Let us choose generators ξ1, . . . , ξ7 of the group π1(Lβ2+ε \C) as in Figure 22. Then,
the monodromy relations associated with the line Lδ1 is given by ξ5 = ξ4 (multiplicity 2
tangent relation). After simplification, the relations around Lβ2 are written as:

Lβ2(α1) : ξ7 = ξ4 and ξ6ξ4ξ6 = ξ4ξ6ξ4 ((2, 3)-type relations);

Lβ2(α2) : ξ3 = ξ1, ξ4 = ξ2, and ξ1ξ2ξ1ξ2 = ξ2ξ1ξ2ξ1 ((2, 4)-type relations);
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and the relations associated with the lines Lθ, Lδ2 , Lδ3 are given by:

Lθ : ξ6ξ1 = ξ1ξ6 (node relation);

Lδ2 : ξ6 = ξ2 (multiplicity 2 tangent relation);

Lδ3 : ξ2 = ξ1 (multiplicity 2 tangent relation).

Hence, π1(P2 \ C) ' Z7.

Figure 22.

2.9. Exponents (5,2; 4,2,1).
For this set of exponents, we can suppose that the polynomials f and g are:

(1) either of the form f(y) = a (y−β1)5 (y−β2)2 and g(x) = b (x−α1)4 (x−α2)2 (x−α3),
with real graphs as in Figure 23, so that the following condition is satisfied:





∃ θ ∈ (β1, β2), γ1 ∈ (α1, α2), γ2 ∈ (α2, α3)

such that f ′(θ) = g′(γ1) = g′(γ2) = 0

and f(θ) = g(γ1) = g(γ2);

(2.8)

(2) or of the form f(y) = a (y− β1)5 (y− β2)2 and g(x) = b (x−α1)2 (x−α2)4 (x−α3),
with real graphs as in Figure 24, so that Condition (2.8) is satisfied.

In both cases, (1) and (2), the set of singularities of the corresponding curve C is B5,4⊕
A4⊕A3⊕3 A1, its component type is {7} (see below), and the special lines of the pencil
with respect to C are given by the vertices of the dessin d’enfants in Figure 20.

To compute the fundamental group, in the case (1), we choose generators ξ1, . . . , ξ7

of the group π1(Lβ2+ε \ C) as in Figure 13. Then, the monodromy relations associated
with the line Lδ1 are given by ξ4 = ξ3 and ξ2 = ξ1 (multiplicity 2 tangent relations).
After simplification, the relations around Lβ2 are written as:

Lβ2(α1) : ξ7 = ξ5, ξ6 = ξ3, ξ3ξ5ξ3ξ5 = ξ5ξ3ξ5ξ3 ((2, 4)-type relations);

Lβ2(α2) : ξ3ξ1 = ξ1ξ3 (node relation).
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Figure 23. Real graphs of f and g (exponents (5, 2; 4, 2, 1) — first case).

Figure 24. Real graphs of f and g (exponents (5, 2; 4, 2, 1) — second case).

The relations around Lθ give ξ5ξ1 = ξ1ξ5 (node relation), and the relations associated
with Lδ2 are written as ξ3 = ξ1 and ξ5 = ξ1 (multiplicity 2 tangent relations). By the
vanishing relation at infinity, we have ξ7

1 = e. Therefore, π1(P2 \ C) ' Z7.
In the case (2), we choose generators ξ1, . . . , ξ7 of π1(Lβ2+ε \ C) as in Figure 14.

Then, the monodromy relations associated with the line Lδ1 are given by ξ6 = ξ4 and
ξ2 = ξ1 (multiplicity 2 tangent relations). After simplification, the relations around Lβ2

are written as:

Lβ2(α1) : ξ4ξ7 = ξ7ξ4 (node relation),

Lβ2(α2) : ξ1 = ξ4, ξ3 = ξ5, ξ3ξ1ξ3ξ1 = ξ1ξ3ξ1ξ3 ((2, 4)-type relations).

The relations around Lθ (node relations) are written as ξ7ξ3 = ξ3ξ7 and ξ1ξ3 = ξ3ξ1, and
the relations associated with the lines Lδ2 and Lδ3 (multiplicity 2 tangent relations) give
ξ3 = ξ1 and ξ7 = ξ1 respectively. Again, as ξ7

1 = e (vanishing relation at infinity), we
have π1(P2 \ C) ' Z7.

2.10. Exponents (5,2; 3,2,2).
Here, we can assume that f and g are of the form f(y) = a (y − β1)5 (y − β2)2 and

g(x) = b (x − α1)3 (x − α2)2 (x − α3)2 and that their real graphs are as in Figure 25,
so that there exist real numbers θ ∈ (β1, β2), γ1 ∈ (α1, α2) and γ2 ∈ (α2, α3) satisfying
f ′(θ) = g′(γ1) = g′(γ2) = 0 and f(θ) = g(γ1) = g(γ2). The set of singularities of the
corresponding curve C is E8 ⊕ 2 A4 ⊕A2 ⊕ 4 A1, its component type is {7} (see below),
and the special lines of the pencil, once again, are given by the vertices of the dessin
d’enfants in Figure 20.

Let us choose generators ξ1, . . . , ξ7 of the group π1(Lβ2+ε \C) as in Figure 26. Then,
the monodromy relations associated with the line Lδ1 are given by ξ5 = ξ4 and ξ3 = ξ2

(multiplicity 2 tangent relations). After simplification, the relations corresponding to
Lβ2 are:
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Figure 25. Real graphs of f and g (exponents (5, 2; 3, 2, 2)).

Lβ2(α1) : ξ7 = ξ4 and ξ6ξ4ξ6 = ξ4ξ6ξ4 ((2, 3)-type relations);

Lβ2(α2) : ξ2ξ4 = ξ4ξ2 (node relation);

Lβ2(α3) : ξ2ξ1 = ξ1ξ2 (node relation);

and the relations associated with the lines Lθ and Lδ2 are given by:

Lθ : ξ6ξ2 = ξ2ξ6 and ξ4ξ1 = ξ1ξ4 (node relations);

Lδ2 : ξ6 = ξ2 and ξ2 = ξ1 (multiplicity 2 tangent relations).

Since ξ7
1 = e (vanishing relation at infinity), it follows that π1(P2 \ C) ' Z7.

Figure 26.

2.11. Exponents (5,2; 2,2,2,1).
For this set of exponents, we can assume that f and g are of the form f(y) =

a (y−β1)5 (y−β2)2 and g(x) = b (x−α1)2 (x−α2)2 (x−α3)2 (x−α4) and that their real
graphs are as in Figure 27, so that there exist real numbers θ ∈ (β1, β2), γ1 ∈ (α1, α2),
γ2 ∈ (α2, α3) and γ3 ∈ (α3, α4) satisfying f ′(θ) = g′(γ1) = g′(γ2) = g′(γ3) = 0 and
f(θ) = g(γ1) = g(γ2) = g(γ3). The set of singularities of the corresponding curve C is
3 A4 ⊕ 6 A1, its component type is {7} (see below), and the special lines of the pencil
with respect to this curve are given by the vertices of the dessin d’enfants in Figure 20.

Let us choose generators ξ1, . . . , ξ7 of the group π1(Lβ2+ε \ C) as in Figure 18.
Then, the monodromy relations around Lδ1 (multiplicity 2 tangent relations) are given
by ξ6 = ξ5, ξ4 = ξ3 and ξ2 = ξ1. After simplification, the relations associated with the
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Figure 27. Real graphs of f and g (exponents (5, 2; 2, 2, 2, 1)).

lines Lβ2 and Lθ (node relations) give:

Lβ2 : ξ7ξ5 = ξ5ξ7, ξ5ξ3 = ξ3ξ5, ξ3ξ1 = ξ1ξ3;

Lθ : ξ7ξ3 = ξ3ξ7, ξ5ξ1 = ξ1ξ5;

and the relations corresponding to Lδ2 are written as ξ5 = ξ1, ξ7 = ξ1 and ξ5 = ξ3. The
vanishing relation at infinity says ξ7

1 = e. Hence, π1(P2 \ C) ' Z7.

2.12. Exponents (4,3; 4,3).
Here, we can assume that f and g are of the form f(y) = a (y − β1)4 (y − β2)3

and g(x) = b (x − α1)4 (x − α2)3 and that their real graphs are as in Figure 28, so that
there exist real numbers θ ∈ (β1, β2) and γ ∈ (α1, α2) satisfying f ′(θ) = g′(γ) = 0 and
f(θ) = g(γ). The set of singularities of the corresponding curve C is B4,4⊕2 E6⊕D4⊕A1,
and its component type is {6, 1} — actually, we can take f(y) = −y4(y − 1)3 and
g(x) = −x4(x− 1)3, so that

f(y)− g(x) = (x− y)(x6 − 3 x5 + yx5 + 3 x4 − 3 yx4 + y2x4

+ y3x3 − 3 y2x3 + 3 yx3 − x3 + x2y4 − 3 x2y3 + 3 y2x2 − yx2

+ xy5 − 3 xy4 + 3 xy3 − y2x + y6 − 3 y5 + 3 y4 − y3).

The special lines of the pencil P with respect to this curve are given by the vertices of
the dessin d’enfants in Figure 29.

Take generators ξ1, . . . , ξ7 of the group π1(Lβ1+ε \ C) as in Figure 8. Then, the
monodromy relations are given as follows:

Lδ3 : ξ7ξ6ξ5ξ4 = ξ6ξ5ξ4ξ2 (multiplicity 2 tangent relation);

Lδ2 : ξ5ξ3ξ2 = ξ3ξ2ξ1 (multiplicity 2 tangent relation);

Figure 28. Real graphs of f and g (exponents (4, 3; 4, 3)).
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Lδ1 : ξ6ξ7ξ6ξ5ξ4 = ξ7ξ6ξ5ξ4ξ1 (multiplicity 2 tangent relation);

Lβ1(α1) : ξ4ξ7ξ6ξ5 = ξ7ξ6ξ5ξ4, ξ5ξ7ξ6ξ5ξ4 = ξ7ξ6ξ5ξ4ξ5, ξ6ξ7ξ6ξ5ξ4 = ξ7ξ6ξ5ξ4ξ6

((4,4)-type relations);

Lβ1(α2) : ξ1ξ3ξ2ξ1 = ξ3ξ2ξ1ξ2, ξ2ξ3ξ2ξ1 = ξ3ξ2ξ1ξ3 ((4,3)-type relations);

Lθ : ξ4ξ3 = ξ3ξ4 (node relation);

Lβ2(α1) : ξ7 = ξ3, ξ5ξ7ξ6ξ5 = ξ7ξ6ξ5ξ3, ξ6ξ7ξ6ξ5ξ3 = ξ7ξ6ξ5ξ3ξ5 ((3,4)-type relations);

Lβ2(α2) : ξ1ξ4ξ2 = ξ4ξ2ξ1, ξ2ξ4ξ2ξ1 = ξ4ξ2ξ1ξ2 ((3,3)-type relations);

Lδ5 : ξ7ξ6ξ5ξ3 = ξ6ξ5ξ3ξ2 (multiplicity 2 tangent relation);

Lδ4 : ξ5ξ4ξ2 = ξ4ξ2ξ1 (multiplicity 2 tangent relation);

R∞ : ξ7ξ6ξ5ξ4ξ3ξ2ξ1 = e (vanishing relation at infinity).

After simplification, we find π1(P2 \ C) ' 〈 ξ1 | − 〉 ' Z.

Figure 29.

2.13. Exponents (4,3; 4,2,1).
For this set of exponents, we can assume that the polynomials f and g are:

(1) either of the form f(y) = a (y−β1)4 (y−β2)2 (y−β3) and g(x) = b (x−α1)4 (x−α2)3,
with real graphs as in Figure 30, so that the following consdition is satisfied:





∃ θ1 ∈ (β1, β2), θ2 ∈ (β2, β3), γ ∈ (α1, α2)

such that f ′(θ1) = f ′(θ2) = g′(γ) = 0

and f(θ1) = f(θ2) = g(γ);

(2.9)

(2) or of the form f(y) = a (y − β1)2 (y − β2)4 (y − β3) and g(x) = b (x− α1)4 (x− α2)3,
with real graphs as in Figure 31, so that Condition (2.9) is satisfied.

In both cases, (1) and (2), the set of singularities of the corresponding curve C is B4,4⊕
E6 ⊕A3 ⊕A2 ⊕ 2 A1, and the curve is irreducible (see below).

To compute the fundamental group, note that, in the case (1), the special lines of
the pencil P with respect to C are given by the vertices of the dessin d’enfants in Figure
32. Let us take generators ξ1, . . . , ξ7 of the group π1(Lβ3−ε \ C) as in Figure 8. Then,
the monodromy relations around the line Lβ3 are given by:
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Lβ3(α1) : ξ7 = ξ6 = ξ5 = ξ4 (multiplicity 4 tangent relations);

Lβ3(α2) : ξ3 = ξ2 = ξ1 (multiplicity 3 tangent relations).

After simplification, the relation associated with the line Lθ2 (node relation) is written
as ξ4ξ1 = ξ1ξ4, while the relations around the line Lβ2 ((2, 4) and (2, 3)-type relations)
give ξ1 = ξ4. The vanishing relation at infinity says that ξ7

1 = e, and consequently
π1(P2 \ C) ' Z7.

Figure 30. Real graphs of f and g (exponents (4, 3; 4, 2, 1) — first case).

Figure 31. Real graphs of f and g (exponents (4, 3; 4, 2, 1) — second case).

Figure 32.

Figure 33.

In the case (2), the special lines of the pencil with respect to C are given by the
vertices of the dessin d’enfants in Figure 33. Let us also take generators ξ1, . . . , ξ7 of
the group π1(Lβ3−ε \ C) as in Figure 8. Then, as above and after simplification, the
monodromy relations around the special lines Lβ3 , Lθ2 and Lβ2 are given by:
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Lβ3(α1) : ξ7 = ξ6 = ξ5 = ξ4 (multiplicity 4 tangent relations);

Lβ3(α2) : ξ3 = ξ2 = ξ1 (multiplicity 3 tangent relations);

Lθ2 : ξ4ξ1 = ξ1ξ4 (node relation);

Lβ2(α2) : ξ4 = ξ1 ((4, 3)-type relation).

Again, since ξ7
1 = e (vanishing relation at infinity), we have π1(P2 \ C) ' Z7.

2.14. Exponents (4,3; 3,2,2).
Here, we can suppose that f and g are of the form f(y) = a (y − β1)3 (y − β2)4 and

g(x) = b (x − α1)3 (x − α2)2 (x − α3)2 and that their real graphs are as in Figure 34,
so that there exist real numbers θ ∈ (β1, β2), γ1 ∈ (α1, α2) and γ2 ∈ (α2, α3) satisfying
f ′(θ) = g′(γ1) = g′(γ2) = 0 and f(θ) = g(γ1) = g(γ2). The set of singularities of the
corresponding curve C is D4 ⊕ E6 ⊕ 2 A3 ⊕ 2 A2 ⊕ 2 A1, and the curve is irreducible
(see below). Here, the special lines of the pencil P with respect to C are given by the
vertices of the dessin d’enfants in Figure 35.

Figure 34. Real graphs of f and g (exponents (4, 3; 3, 2, 2)).

Take generators ξ1, . . . , ξ7 of the group π1(Lβ2+ε \ C) as in Figure 26. Then, the
monodromy relations around Lδ1 , Lδ2 and Lδ3 (multiplicity 2 tangent relations) give:

Lδ1 : ξ5 = ξ4 and ξ3 = ξ2;

Lδ2 : ξ7ξ6ξ4 = ξ6ξ4ξ2 and ξ4ξ2 = ξ2ξ1;

Lδ3 : ξ6ξ4 = ξ4ξ2.

In particular, this implies ξ7 = ξ6. Then, the relations around Lβ2 give ξ6 = ξ4. It follows
immediately that ξ4 = ξ2 = ξ1, and since ξ7

1 = e (vanishing relation at infinity), we have
π1(P2 \ C) ' Z7.

Figure 35.
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2.15. Exponents (4,3; 2,2,2,1).
For these exponents, we can assume that the polynomials f and g are of the form

f(y) = a (y−β1)4 (y−β2)3 and g(x) = b (x−α1)2 (x−α2)2 (x−α3)2(x−α4) and that their
real graphs are as in Figure 36, so that there exist real numbers θ ∈ (β1, β2), γ1 ∈ (α1, α2),
γ2 ∈ (α2, α3) and γ3 ∈ (α3, α4) satisfying f ′(θ) = g′(γ1) = g′(γ2) = g′(γ3) = 0 and
f(θ) = g(γ1) = g(γ2) = g(γ3). The set of singularities of the corresponding curve C

is 3 A3 ⊕ 3 A2 ⊕ 3 A1, its component type is {7} (see below), and the special lines of
the pencil with respect to this curve are given by the vertices of the dessin d’enfants in
Figure 29.

Figure 36. Real graphs of f and g (exponents (4, 3; 2, 2, 2, 1)).

Take generators ξ1, . . . , ξ7 of the group π1(Lβ1−ε \ C) as in Figure 18. Then, the
monodromy relations around the line Lδ1 are given by ξ6 = ξ5, ξ4 = ξ3 and ξ2 = ξ1

(multiplicity 2 tangent relations). After simplification, the relations associated with the
line Lδ2 (which are also multiplicity 2 tangent relations) are written as ξ7 = ξ5 = ξ3 = ξ1.
Then, the vanishing relation at infinity says that ξ7

1 = e, and therefore π1(P2 \ C) ' Z7.

2.16. Exponents (4,2,1; 4,2,1).4

For this set of exponents, we can assume that the polynomials f and g are:

(1) either of the form f(y) = a (y − β1)4 (y − β2)2 (y − β3) and g(x) = b (x − α1)4 (x −
α2)2 (x − α3), with real graphs as in Figure 37, so that the following condition is
satisfied:





∃ θ1 ∈ (β1, β2), θ2 ∈ (β2, β3), γ1 ∈ (α1, α2), γ2 ∈ (α2, α3)

such that f ′(θ1) = f ′(θ2) = g′(γ1) = g′(γ2) = 0

and f(θ1) = f(θ2) = g(γ1) = g(γ2);

(2.10)

(2) or of the form f(y) = a (y − β1)2 (y − β2)4 (y − β3) and g(x) = b (x − α1)4 (x −
α2)2 (x− α3), with real graphs as in Figure 38, so that Condition (2.10) is satisfied;

(3) or, finally, of the form f(y) = a (y−β1)2 (y−β2)4 (y−β3) and g(x) = b (x−α1)2 (x−
α2)4 (x− α3), with real graphs as in Figure 39, so that Condition (2.10) is satisfied.

In all the cases, the set of singularities of the corresponding curve C is B4,4⊕2 A3⊕
5 A1. As for the fundamental group, we proceed case-by-case. In the first case, the
special lines of the pencil P are given by the vertices of the dessin d’enfants in Figure
32. Let us choose generators ξ1, . . . , ξ7 of the group π1(Lβ3−ε \C) as in Figure 13. Then,
the monodromy relations are as follows:

4Compare with [1].
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Figure 37. Real graphs of f and g (exponents (4, 2, 1; 4, 2, 1) — first case).

Lβ3(α1) : ξ7 = ξ6 = ξ5 = ξ4 (multiplicity 4 tangent relations);

Lβ3(α2) : ξ3 = ξ2 (multiplicity 2 tangent relation);

Lθ2 : ξ4ξ2 = ξ2ξ4 and ξ2ξ1 = ξ1ξ2 (node relations);

Lβ2(α1) : ξ4 = ξ2 ((2, 4)-type relation).

The other monodromy relations do not give any new relation. Hence,

π1(P2 \ C) ' 〈ξ1, ξ2 | ξ2ξ1 = ξ1ξ2, ξ6
2ξ1 = e〉 ' 〈ξ2 | −〉 ' Z.

Remark 2.3. Here, the component type of C is {6, 1}. Indeed, the fundamental
group π1(C \ Σ) acts on the generic fibre Lβ3−ε ∩ C (which consists of seven points) by
so-called braid action. (Here, Σ is the set of parameters corresponding to the special
lines of the pencil.) It is well known that the component type of C is {d1, . . . , dr} if the
seven points of Lβ3−ε ∩ C split into r orbits of d1, . . . , dr elements, respectively, under
this action. See also [11, Proposition (6.1)].

Figure 38. Real graphs of f and g (exponents (4, 2, 1; 4, 2, 1) — second case).

In the second case, the special lines of the pencil are given by the vertices of the dessin
d’enfants in Figure 33. Let us also take generators ξ1, . . . , ξ7 of the group π1(Lβ3−ε \C)
as in Figure 13. Then, the monodromy relations associated with the line Lβ3 are given
by:

Lβ3(α1) : ξ7 = ξ6 = ξ5 = ξ4 (multiplicity 4 tangent relations);

Lβ3(α2) : ξ3 = ξ2 (multiplicity 2 tangent relation).

After simplification, the relations corresponding to Lθ2 (node relations) are written as
ξ4ξ2 = ξ2ξ4 and ξ2ξ1 = ξ1ξ2, while the relations associated with the line Lδ2 (multiplicity
2 tangent relations) give ξ4 = ξ2 = ξ1. Finally, by the vanishing relation at infinity, we
have ξ7

1 = e. Hence, π1(P2 \ C) ' Z7.
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Figure 39. Real graphs of f and g (exponents (4, 2, 1; 4, 2, 1) — third case).

Finally, in the third case, the special lines of the pencil are given by the vertices
of the dessin d’enfants in Figure 33. Here, we choose generators ξ1, . . . , ξ7 of the group
π1(Lβ3−ε \ C) as in Figure 14. Then, the monodromy relations are as follows:

Lβ3(α1) : ξ7 = ξ6 (multiplicity 2 tangent relation);

Lβ3(α2) : ξ5 = ξ4 = ξ3 = ξ2 (multiplicity 4 tangent relations);

Lθ2 : ξ6ξ2 = ξ2ξ6 and ξ2ξ1 = ξ1ξ2 (node relations);

Lδ2 : ξ6 = ξ2 (multiplicity 2 tangent relation).

The other monodromy relations do not give any new relation. Therefore, as in the first
case, π1(P2 \ C) ' Z.

Remark 2.4. For the same reason as in Remark 2.3, here the component type of
C is {6, 1}.

2.17. Exponents (4,2,1; 3,2,2).
For these exponents, we can suppose that f and g are:

(1) either of the form f(y) = a (y − β1)2 (y − β2)4 (y − β3) and g(x) = b (x − α1)2 (x −
α2)2 (x − α3)3, with real graphs as in Figure 40, so that the following condition is
satisfied:





∃ θ1 ∈ (β1, β2), θ2 ∈ (β2, β3), γ1 ∈ (α1, α2), γ2 ∈ (α2, α3)

such that f ′(θ1) = f ′(θ2) = g′(γ1) = g′(γ2) = 0

and f(θ1) = f(θ2) = g(γ1) = g(γ2);

(2.11)

(2) or of the form f(y) = a (y − β1)4 (y − β2)2 (y − β3) and g(x) = b (x − α1)2 (x −
α2)2 (x−α3)3, with real graphs as in Figure 41, so that Condition (2.11) is satisfied.

Figure 40. Real graphs of f and g (exponents (4, 2, 1; 3, 2, 2) — first case).
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Figure 41. Real graphs of f and g (exponents (4, 2, 1; 3, 2, 2) — second case).

In both cases, the set of singularities of the corresponding curve C is E6⊕2 A3⊕A2⊕
6 A1, and its component type is {7} (see below). As for the fundamental group, in the
first case, the special lines of the pencil are given by the vertices of the dessin d’enfants in
Figure 33. Take generators ξ1, . . . , ξ7 of the group π1(Lβ3−ε \ C) as in Figure 16. Then,
the monodromy relations associated with the line Lβ3 are given by ξ7 = ξ6, ξ5 = ξ4

(multiplicity 2 tangent relations) and ξ3 = ξ2 = ξ1 (multiplicity 3 tangent relation).
After simplification, the relations around the line Lθ2 (node relations) are written as
ξ6ξ4 = ξ4ξ6 and ξ4ξ1 = ξ1ξ4, while the relations corresponding to Lβ2(α3) ((4, 3)-type
relation) and Lδ3 (multiplicity 2 tangent relation) give ξ4 = ξ1 and ξ6 = ξ1 respectively.
Since ξ7

1 = e (vanishing relation at infinity), it follows immediately that π1(P2 \C) ' Z7.
In the second case, the special lines of the pencil are given by the vertices of the dessin

d’enfants in Figure 32. Let us also take generators ξ1, . . . , ξ7 of the group π1(Lβ3−ε \C)
as in Figure 16. Then, after simplification, the monodromy relations are given as follows:

Lβ3(α1) : ξ7 = ξ6 (multiplicity 2 tangent relation);

Lβ3(α2) : ξ5 = ξ4 (multiplicity 2 tangent relation);

Lβ3(α3) : ξ3 = ξ2 = ξ1 (multiplicity 3 tangent relations);

Lθ2 : ξ6ξ4 = ξ4ξ6 and ξ4ξ1 = ξ1ξ4 (node relations);

Lβ2(α2) : ξ6ξ1 = ξ1ξ6 (node relation);

Lβ2(α3) : ξ4 = ξ1 ((2, 3)-type relation);

Lδ3 : ξ6 = ξ1 (multiplicity 2 tangent relation).

Then, the vanishing relation at infinity is written as ξ7
1 = e. Again, π1(P2 \ C) ' Z7.

2.18. Exponents (4,2,1; 2,2,2,1).
For this set of exponents, we can assume that the polynomials f and g are:

(1) either of the form f(y) = a (y − β1)4 (y − β2)2 (y − β3) and g(x) = b (x − α1)2 (x −
α2)2 (x−α3)2 (x−α4), with real graphs as in Figure 42, so that the following condition
is satisfied:





∃ θ1 ∈ (β1, β2), θ2 ∈ (β2, β3),

γ1 ∈ (α1, α2), γ2 ∈ (α2, α3), γ3 ∈ (α3, α4) such that

f ′(θ1) = f ′(θ2) = g′(γ1) = g′(γ2) = g′(γ3) = 0 and

f(θ1) = f(θ2) = g(γ1) = g(γ2) = g(γ3);

(2.12)
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(2) or of the form f(y) = a (y − β1)2 (y − β2)4 (y − β3) and g(x) = b (x − α1)2 (x −
α2)2 (x− α3)2 (x− α4), with real graphs as in Figure 43, so that Condition (2.12) is
satisfied.

In both cases, the set of singularities of the corresponding curve C is 3 A3 ⊕ 9 A1,
and the curve is irreducible (see below). As for the fundamental group, in the first case,
the special lines of the pencil P are given by the vertices of the dessin d’enfants in Figure
32. Take generators ξ1, . . . , ξ7 of the group π1(Lβ3−ε \ C) as in Figure 18. Then, after
simplification, the monodromy relations are given as follows:

Lβ3 : ξ7 = ξ6, ξ5 = ξ4 and ξ3 = ξ2 (multiplicity 2 tangent relations);

Lθ2 : ξ6ξ4 = ξ4ξ6, ξ4ξ2 = ξ2ξ4 and ξ1ξ2 = ξ2ξ1 (node relations);

Lβ2 : ξ6ξ2 = ξ2ξ6 and ξ4ξ1 = ξ1ξ4 (node relations);

Lθ1 : ξ6ξ1 = ξ1ξ6 (node relation);

Lδ3 : ξ4 = ξ1, ξ6 = ξ2 and ξ6 = ξ4 (multiplicity 2 tangent relations).

Then, the vanishing relation at infinity is written as ξ7
1 = e, and it follows immediately

that π1(P2 \ C) ' Z7.

Figure 42. Real graphs of f and g (exponents (4, 2, 1; 2, 2, 2, 1) — first case).

Figure 43. Real graphs of f and g (exponents (4, 2, 1; 2, 2, 2, 1) — second case).

In the second case, the special lines of the pencil are given by the vertices of the dessin
d’enfants in Figure 33. Again, we take generators ξ1, . . . , ξ7 of the group π1(Lβ3−ε \ C)
as in Figure 18. Then, after simplification, the monodromy relations are given as follows:

Lβ3 : ξ7 = ξ6, ξ5 = ξ4 and ξ3 = ξ2 (multiplicity 2 tangent relations);

Lθ2 : ξ6ξ4 = ξ4ξ6, ξ4ξ2 = ξ2ξ4 and ξ1ξ2 = ξ2ξ1 (node relations);

Lδ3 : ξ6 = ξ2, ξ−1
2 ξ6ξ2 = ξ1 and ξ−1

1 ξ4ξ1 = ξ2 (multiplicity 2 tangent relations).

Again, the vanishing relation at infinity is written as ξ7
1 = e, and π1(P2 \ C) ' Z7.
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2.19. Exponents (3,2,2; 3,2,2).
Here, we can assume that the polynomials f and g are of the form f(y) = a (y −

β1)3 (y − β2)2 (y − β3)2 and g(x) = b (x − α1)3 (x − α2)2 (x − α3)2 and that their real
graphs are as in Figure 44, so that there exist real numbers θ1 ∈ (β1, β2), θ2 ∈ (β2, β3),
γ1 ∈ (α1, α2) and γ2 ∈ (α2, α3) satisfying f ′(θ1) = f ′(θ2) = g′(γ1) = g′(γ2) = 0 and
f(θ1) = f(θ2) = g(γ1) = g(γ2). The set of singularities of the corresponding curve C is
D4 ⊕ 4 A2 ⊕ 8 A1. The special lines of the pencil with respect to this curve are given by
the vertices of the dessin d’enfants in Figure 45.

Figure 44. Real graphs of f and g (exponents (3, 2, 2; 3, 2, 2)).

Figure 45.

Take generators ξ1, . . . , ξ7 of π1(Lβ3+ε \ C) as in Figure 26. Then, the monodromy
relations around the line Lδ1 are given by ξ5 = ξ4 and ξ3 = ξ2 (multiplicity 2 tangent
relations). After simplification, the relations associated with the line Lβ3 are written
as ξ7 = ξ4, ξ6ξ4ξ6 = ξ4ξ6ξ4 ((2, 3)-type relations) and ξ4ξ2 = ξ2ξ4, ξ2ξ1 = ξ1ξ2 (node
relations), while the relations around the line Lθ2 (which are also node relations) give
ξ6ξ2 = ξ2ξ6 and ξ4ξ1 = ξ1ξ4. Finally, the relations associated with the line Lβ2 simplify
to ξ6 = ξ2 = ξ4. The other monodromy relations do not give any new relation. It follows
that

π1(P2 \ C) ' 〈 ξ1, ξ2 | ξ2ξ1 = ξ1ξ2, ξ6
2ξ1 = e 〉 ' Z.

Remark 2.5. For the same reason as in Remark 2.3, here the component type of
C is {6, 1}.

2.20. Exponents (3,2,2; 2,2,2,1).
Here, we can assume that the polynomials f and g are of the form f(y) = a (y −

β1)2 (y − β2)2 (y − β3)3 and g(x) = b (x − α1)2 (x − α2)2 (x − α3)2 (x − α4) and that
their real graphs are as in Figure 46, so that there exist real numbers θ1 ∈ (β1, β2),
θ2 ∈ (β2, β3), γ1 ∈ (α1, α2), γ2 ∈ (α2, α3) and γ3 ∈ (α3, α4) satisfying f ′(θ1) = f ′(θ2) =
g′(γ1) = g′(γ2) = g′(γ3) = 0 and f(θ1) = f(θ2) = g(γ1) = g(γ2) = g(γ3). The set of
singularities of the corresponding curve C is 3 A2 ⊕ 12 A1, and the curve is irreducible
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(see below). The special lines of the pencil P are given by the vertices of the dessin
d’enfants in Figure 47.

Figure 46. Real graphs of f and g (exponents (3, 2, 2; 2, 2, 2, 1)).

Figure 47.

Take generators ξ1, . . . , ξ7 of π1(Lβ1−ε \ C) as in Figure 18. Then, the monodromy
relations around the line Lδ1 are given by ξ6 = ξ5, ξ4 = ξ3 and ξ2 = ξ1 (multiplicity 2
tangent relations). After simplification, the relations associated with the line Lβ1 , Lθ1 ,
Lβ2 (node relations) and Lδ2 (multiplicity 2 tangent relations) are written as:

Lβ1 : ξ7ξ5 = ξ5ξ7, ξ5ξ3 = ξ3ξ5 and ξ3ξ1 = ξ1ξ3;

Lθ1 : ξ7ξ3 = ξ3ξ7 and ξ5ξ1 = ξ1ξ5;

Lβ2 : ξ7ξ1 = ξ1ξ7;

Lδ2 : ξ7 = ξ5 = ξ3 = ξ1.

Therefore, the vanishing relation at infinity is written as ξ7
1 = e, and we have π1(P2\C) '

Z7.

2.21. Remark on the pseudo-maximality.
There is no general rule to detect the pseudo-maximality property. It should be

checked case-by-case. It is not difficult to see that, in each section 2.i (i = 1, . . . , 20),
the curve C that we considered is pseudo-maximal. Indeed, in each case, it is clear that
there is no further degeneration within the real numbers. There is no further degeneration
within the complex numbers either, because, in each case, the critical values (for both f

and g) are all positive or all negative.

2.22. Exponents in Table 2.
If the set of exponents of C is in Table 2, then one checks easily that C degenerates

either to a curve that we have already encountered in Sections 2.1–2.20 or to a curve whose
exponents appear previously in the list. (Again, the proof is similar to that described in
Section 2.4, and details are left to the reader.) Therefore, by the degeneration principle,
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its fundamental group π1(P2 \ C) is necessarily isomorphic to Z7 or Z.

2.23. Exponents in Table 3.
If the set of exponents of C is in Table 3, then C has only singularities of type A1,

and therefore its fundamental group π1(P2 \C) is abelian by the Zariski–Fulton–Deligne
theorem (cf. [14], [16], [5], [3]). For the sets of exponents numbered 86, 87 and 88, the
maximal number of nodes is 3. Then, by Bezout’s theorem, the corresponding curves
are necessarily irreducible, and therefore their fundamental groups are isomorphic to Z7.
For the sets of exponents numbered 89, 90, 91 and 92, we have at most 6 nodes, so the
component type can be only {7} or {6, 1}, and therefore the fundamental group is Z7 or
Z. For the sets numbered 93, 94 and 98, we have at most 9 nodes. In this case too, the
component type can be only {7} or {6, 1}, and the fundamental group is Z7 or Z. If the
set of exponents of C is the set � 96, 97, 99, 100, 101, 102, 103 or 104, then one checks
easily that C degenerates to a curve whose exponents are in Tables 1 or 2. Therefore,
by the degeneration principle, the group π1(P2 \ C) is necessarily isomorphic to Z7 or
Z. The sets (2, 2, 2, 1; 2, 2, 2, 1) (� 95) and (1, . . . , 1; 1, . . . , 1) (� 105) are ‘special’ and
should be discussed separately.

For the set (2, 2, 2, 1; 2, 2, 2, 1), the curve C has at most 15 A1, except when f and
g have the form f(y) = (y − β1)2(y − β2)2(y − β3)2(y − β4) and g(x) = (x − α1)2(x −
α2)2(x− α3)2(x− α4) with the real graphs given in Figure 48. In the latter case, there
exist real numbers θ1 ∈ (β1, β2), θ2 ∈ (β2, β3), θ3 ∈ (β3, β4), γ1 ∈ (α1, α2), γ2 ∈ (α2, α3)
and γ3 ∈ (α3, α4) satisfying

{
f ′(θ1) = f ′(θ2) = f ′(θ3) = g′(γ1) = g′(γ2) = g′(γ3) = 0,

f(θ1) = f(θ2) = f(θ3) = g(γ1) = g(γ2) = g(γ3),

and the curve C has 18 A1.

Figure 48. Real graphs of f and g (exponents (2, 2, 2, 1; 2, 2, 2, 1)
— case where Sing(C) = 18A1).

Figure 49.

When the curve has at most 15 A1, it degenerates to a curve whose exponents are
in Tables 1 or 2, and therefore its fundamental group π1(P2 \ C) is Z7 or Z. When the
curve has 18 nodes, its fundamental group π1(P2 \C) is isomorphic to Z3. Indeed, in this
case, the special lines of the pencil P are given by the vertices of the dessin d’enfants in
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Figure 49. Let us choose generators ξ1, . . . , ξ7 of the group π1(Lβ1−ε \ C) as in Figure
18. Then, the monodromy relations are given as follows:

Lδ1 : ξ6 = ξ5, ξ4 = ξ3, ξ2 = ξ1;

Lβ1 : ξ7ξ5 = ξ5ξ7, ξ5ξ3 = ξ3ξ5, ξ3ξ1 = ξ1ξ3;

Lθ1 : ξ7ξ3 = ξ3ξ7, ξ5ξ1 = ξ1ξ5;

Lβ2 : ξ7ξ1 = ξ1ξ7.

The relations associated with the lines Lθ2 , Lβ3 , Lθ3 and Lβ4 do not give any new relation.
By the vanishing relation at infinity, ξ7 = (ξ2

5ξ2
3ξ2

1)−1. Hence,

π1(P2 \ C) ' 〈ξ1, ξ3, ξ5 | ξ1ξ3 = ξ3ξ1, ξ1ξ5 = ξ5ξ1, ξ3ξ5 = ξ5ξ3〉 ' Z3.

Remark 2.6. For the same reason as in Remark 2.3, here the component type of
C is {2, 2, 2, 1}.

For the set (1, . . . , 1; 1, . . . , 1), the curve C has at most 15 A1, except when f and
g are as in Figure 50. In the latter case, there exist real numbers θj ∈ (βj , βj+1) and
γi ∈ (αi, αi+1) for 1 ≤ i, j ≤ 6 satisfying





f ′(θ1) = · · · = f ′(θ6) = g′(γ1) = · · · = g′(γ6) = 0,

f(θ1) = f(θ3) = f(θ5) = g(γ1) = g(γ3) = g(γ5) > 0,

f(θ2) = f(θ4) = f(θ6) = g(γ2) = g(γ4) = g(γ6) < 0,

and the curve C has 18 A1.

Figure 50. Real graphs of f and g (exponents (1, . . . , 1; 1, . . . , 1)
— case where Sing(C) = 18A1).

Figure 51.

When C has at most 15 A1, it degenerates to a curve whose exponents appear in
Tables 1 or 2, and therefore its fundamental group is Z7 or Z. When the curve has 18
nodes, the group π1(P2 \ C) is isomorphic to Z3. Indeed, in this case, the special lines
of the pencil are given by the vertices of the dessin d’enfants in Figure 51. (The black
vertices correspond to the roots of the equation f(y) = f(θ1) = g(γ1), and the white
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ones to the roots of f(y) = f(θ2) = g(γ2).) Take generators ξ1, . . . , ξ7 of the group
π1(Lθ1−ε \ C) as in Figure 18. Then, the monodromy relations are given as follows:

Lδ1 : ξ6 = ξ5, ξ4 = ξ3, ξ2 = ξ1;

Lθ1 : ξ5ξ7 = ξ7ξ5, ξ3ξ5 = ξ5ξ3, ξ3ξ1 = ξ1ξ3;

Lθ2 : ξ7ξ3 = ξ3ξ7, ξ5ξ1 = ξ1ξ5;

Lθ3 : ξ7ξ1 = ξ1ξ7.

The relations associated with the lines Lθ4 , Lθ5 , Lθ6 and Lδ2 do not give any new relation.
By the vanishing relation at infinity, ξ7 = (ξ2

5ξ2
3ξ2

1)−1. Hence, as above, π1(P2 \C) ' Z3.

Remark 2.7. For the same reason as in Remark 2.3, here the component type of
C is {2, 2, 2, 1}.

This completes the proof of Theorem 1.3.
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307.

[14] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given

http://dx.doi.org/10.1016/j.topol.2012.04.011
http://dx.doi.org/10.1112/plms/pds085
http://dx.doi.org/10.1112/plms/pds085
http://dx.doi.org/10.2307/1971204
http://dx.doi.org/10.2307/1971204
http://dx.doi.org/10.2307/2371128
http://dx.doi.org/10.2307/2371128
http://dx.doi.org/10.2969/jmsj/03040579
http://dx.doi.org/10.2969/jmsj/03040579
http://dx.doi.org/10.2969/jmsj/04430375
http://dx.doi.org/10.1016/0040-9383(65)90079-0
http://dx.doi.org/10.1016/0040-9383(65)90079-0


698 C. Eyral and M. Oka

branch curve, Amer. J. Math., 51 (1929), 305–328.
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